
656 IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS, VOL. 24, NO. 4, APRIL 1994

Adaptive Probabilities of Crossover
Genetic in Mu tation and Algorithms

M. Srinivas, and L. M. Patnaik, Fellow, ZEEE

Abstract- In this paper we describe an efficient approach locally optimal solution. On the other hand, they differ from
for multimodal function optimization using Genetic Algorithms

crossover and mutation to realize the twin goals of maintaining
diversity in the population and sustaining the convergence
capacity of the GA. In the Adaptive Genetic Algorithm (AGA),
the probabilities of crossover and mutation, p , and p,, are

random sampling algorithms due to their ability to direct the

‘pace.

nents:

(GAS). we IW3”end the use of adaptive probabilities of search towards relatively ‘prospective’ regions in the search

VPiCallY a GA is characterized by the following Compo-

variid depending on the fitness values of the-solutio6. High-
fitness solutions are ‘protected’, while solutions with subaverage
fitnesses are totally disrupted. By using adaptivdy varying p ,
and pm, we also provide a solution to the problem of deciding
the optimal values of p c and pm, i.e., p c and pm need not be
specified at all. The AGA is compared with previous approaches
for adapting operator probabilities in genetic algorithms. The
sShema theorem is derived for the AGA, and the working of
the AGA is analyzed.

We compare the performance of the AGA with that of
the Standard GA (SGA) in optimizing several nontrivial
multimodal functions with varying degrees of complexity. For
most functions, the AGA converges to the global optimum in
far fewer generations than the SGA, and it gets stuck at a local
optimum fewer times. Our experiments demonstrate that the
relative performance of the AGA as compared to that of the
SGA improves as the epistacity and the multimodal nature of
the objective function increase. We believe that the AGA is the
first step in realizing a class of self organizing GAS capable
of adapting themselves in locating the global optimum in a
multimodal landscape.

I. INTRODUCTION

ENETIC Algorithms [2], [7], [lo], [17] are robust search G and optimization techniques which are finding applica-
tion in a number of practical problems. The robustness of
Genetic Algorithms (hereafter referred to as GAS) is due to
their capacity to locate the global optimum in a multimodal
landscape. A plethora of such multimodal functions exist in en-
gineering problems (optimization of neural network structure
and learning neural network weights, solving optimal control
problems, designing structures, and solving flow problems) are
a few examples. It is for the above reason that considerable
attention has been paid to the design of GAS for optimizing
multimodal functions.

GAS employ a random, yet directed, search for locating
the globally optimal solution. They are superior to ‘gradient
descent’ techniques as the search is not biased towards the

a genetic representation (or an encoding) for the feasible

a population of encoded solutions
a fitness function that evaluates the optimality of each

genetic operators that generate a new population from

control parameters.
The GA may be viewed as an evolutionary process wherein

a population of solutions evolves over a sequence of genera-
tions. During each generation, the fitness of each solution is
evaluated, and solutions are selected for reproduction based
on their fitness. Selection embodies the principle of ‘Survival
of the fittest.’ ‘Good’ solutions are selected for reproduction
while ‘bad’ solutions are eliminated. The ‘goodness’ of a
solution is determined from its fitness value. The selected
solutions then undergo recombination under the action of the
crossover and mutation operators. It has to be noted that
the genetic representation may differ considerably from the
natural form of the parameters of the solutions. Fixed-length
and binary encoded strings for representing solutions have
dominated GA research since they provide the maximum
number of schemata and as they are amenable to simple
implementation.

The power of GAS arises from crossover. Crossover causes
a structured, yet randomized exchange of genetic material
between solutions, with the possibility that ‘good’ solutions
can generate ‘better’ ones. The following sentences from [lo,
pp. 131 aptly summarize the working of GAS:
”. . ., the population contains not just a sample of n ideas,
rather it contains a multitude of notions and rankings of those
notions for task pe$onnance. Genetic Algorithms ruthlessly
exploit this wealth of information by 1) reproducing high
quality notions according to their performance and 2) crossing
these notions with many other high-performance notions from

solutions to the optimization problem

solution

the existing population

other strings.”
some probability P C (the

crossover probability or crossover rate). When the SOlUtiOnS are
not subjected to crossover, they remain unmodified. Notable
crossover techniques include the single-point, the two-point,
and the uniform types [23].

Manuscript received August 4, 1991: revised August 28, 1992, February

M Srinivas is with the Department of Computer Science and Automation,

L. M. Patnaik is with the Microprocessor Applications Laboratory, Indian

25, 1993, and June 11, 1993. Recommended by Associate Editor Bezdek. Crossover OccUTs Only

Indian Institute of Science, Bangalore 560 012, India

Institute of Science, Bangalore 560 012, India.
IEEE Log Number 9400454.

0018-9472/94$04.00 0 1994 IEEE

SRlNIVAS AND PATNAIK: CROSSOVER AND MUTATION IN GENETIC ALGORITHMS 651

Simple Genetic Algorithm ()

initialize population;
evaluate population ;
while convergence not achieved

I

{
scale population fitnesses ;
select solutions for next population ;
perform crossover and mutation ;
evaluate population ;

I
1

Fig. 1. Basic structure of a GA.

Mutation involves the modification of the value of each
‘gene’ of a solution with some probability p , (the mutation
probability). The role of mutation in GAS has been that of
restoring lost or unexplored genetic material into the popu-

suboptimal solutions.

auxiliary operations are common in GAS. Of these, scaling
mechanisms [161 are widely used. Scaling involves a readjust-
ment of fitness values of solutions to sustain a steady selective
pressure in the population and to prevent the premature con-
vergence of the population to suboptimal solutions.

I lation to prevent the premature convergence of the GA to

Apart from selection, crossover, and mutation, various other I

i
~

The basic structure of a GA is illustrated in Fig. 1.
In this paper we describe an efficient technique for multi-

modal function optimization using GAS. We recommend the
use of adaptive probabilities of crossover and mutation to
realize the twin goals of maintaining diversity in the population
and sustaining the convergence capacity of the GA. With the
approach of adaptive probabilities of crossover and mutation,
we also provide a solution to the problem of choosing the
optimal values of the probabilities of crossover and mutation
(hereafter referred to as p , and p , respectively) for the
GA. The choice of p , and p , is known to critically affect
the behavior and performance of the GA, and a number of
guidelines exist in the literature for choosing p , and p ,
[6], [SI, [lo], [16], [22]. These generalized guidelines are
inadequate as the choice of the optimal p , and p , becomes
specific to the problem under consideration. Grefenstette [161
has formulated the problem of selecting p , and p , as an
optimization problem in itself, and has recommended the use
of a second-level GA to determine the parameters of the GA.
The disadvantage of Grefenstette’s method is that it could
prove to be computationally expensive. In our approach, p ,
and p , are determined adaptively by the GA itself, and the
user is relieved of the burden of specifying the values of p ,
and p,.

The paper is organized as follows. In Section I1 we discuss
the problems of multimodal function optimization, and the
various techniques proposed in the literature to overcome
the problems. Section 111 describes our approach of using
adaptively varying probabilities of crossover and mutation for
multimodal function optimization. In Section IV we compare
the AGA with previous techniques at adapting operator proba-

I

bilities in GAS. In Section V we derive the Schema theorem for
GA and analyze the variation of schema fitnesses. In Section
VI, we present experimental results to compare the perfor-
mance of the GAS with and without adaptive probabilities of
crossover and mutation. The conclusions and directions for
future work are presented in Section VII.

11. GENETIC ALGORITHMS AND
MULTIMODAL FUNCTION O ~ I Z A T I O N

In optimizing unimodal functions, it is important that the
GA should be able to converge to the optimum in as few
generations as possible. For multimodal functions, there is
a need to be able to locate the region in which the global
optimum exists, and then to converge to the optimum. GAS
possess hill-climbing properties essential for multimodal func-
tion optimization, but they too are vulnerable to getting stuck
at a local optimum (notably when the populations are small).
In this section, we discuss the role of the parameters p , and
p , (probabilities of crossover and mutation) in controlling the
behavior of the GA. We also discuss the techniques proposed
in the literature for enhancing the performance of GAS for
optimizing multimodal functions.

The significance of p , and p , in controlling GA per-
formance has long been acknowledged in GA research [7],
[lo]. Several studies, both empirical [16], [22] and theoretical
[20] have been devoted to identify optimal parameter settings
for GAS. The crossover probability p , controls the rate at
which solutions are subjected to crossover. The higher the
value of p,, the quicker are the new solutions introduced into
the population. As p , increases, however, solutions can be
disrupted faster than selection can exploit them. Typical values
of p , are in the range 0.5-1.0. Mutation is only a secondary
operator to restore genetic material. Nevertheless the choice of
p , is critical to GA performance and has been emphasized in
DeJong’s inceptional work [6]. Large values of p , transform
the GA into a purely random search algorithm, while some
mutation is required to prevent the premature convergence of
the GA to suboptimal solutions. Typically p , is chosen in the
range 0.005-0.05.

Efforts to improve the performance of the GA in optimizing
multimodal functions date back to DeJong’s work [6]. DeJong
introduced the ideas of ‘overlapping populations’ and ‘crowd-
ing’ in his work. In the case of ‘overlapping populations’,
newly generated offspring replace similar solutions of the
population, primarily to sustain the diversity of solutions in
the population and to prevent premature convergence. The
technique however introduces a parameter CF (the crowding
factor), which has to be tuned to ensure optimal performance
of the GA. The concept of ‘crowding’ led to the ideas of
‘niche’ and ‘speciation’ in GAS. Goldberg’s ‘sharing function’
has been employed in the context of multimodal function
optimization; [151 describes a method of encouraging ‘niche’
formation and ‘speciation’ in GAS. More recently, Goldberg
has proposed a Boltzmann tournament selection scheme [l 11
for forming and sizing stable sub-populations. This technique
is based on ideas from simulated annealing and promises
convergence to the global optimum.

658 IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS, VOL. 24, NO. 4, APRIL 1994

0.6
Besl

I

I
I

‘. - - a
-..--_ 0.5 -

aJ a 9 0 . 4 - I ’\
I s
\ I

‘,Pop. Max.- Avg.
I I

,
\

!

\

I
’1.

I I I

average fitness value 7 of the population in relation to the
maximum fitness value fmax of the population. fmax - f is
likely to be less for a population that has converged to an
optimum solution than that for a population scattered in the
solution space. We have observed the above property in all our
experiments with GAS, and Fig. 2 illustrates - the property for a

the GA converges to a local optimum with a fitness value of
0.5 (The globally optimal solution has a fitness value of 1.0).

-

typical case. In Fig. 2, we notice that fmax - f decreases when

We use the difference in the average and maximum fitness
values, fmax - f, as a yardstick for detecting the convergence

-

-
Fig. 2. Variation of fmax - f and fbest (best fitness).

In all the techniques described above, no emphasis is placed
on the choice of p , and p,. The choice of p , and p , is
still left to the user to be determined statically prior to the
execution of the GA. The idea of adaptive operators to improve
GA performance has been employed earlier [13 131 191 1241.
Our approach to multimodal function optimization also uses
adaptive probabilities of crossover and mutation, but in a
manner different from these previous approaches. We devote
Section IV to discuss the above approaches, and compare them
with the AGA. In the next section, we discuss the motivation
for having adaptive probabilities of crossover and mutation,
and describe the methods adopted to realize them.

111. ADAFTIVE PROBABILITIES OF
CROSSOVER AND MUTATION

A. Motivations

It is essential to have two characteristics in GAS for op-
timizing multimodal functions. The first characteristic is the
capacity to converge to an optimum (local or global) after
locating the region containing the optimum. The second char-
acteristic is the capacity to explore new regions of the solution-
space in search of the global optimum. The balance between
these characteristics of the GA is dictated by the values of p ,
and p, , and the type of crossover employed 1231. Increasing
values of p , and p , promote exploration at the expense of
exploitation. Moderately large values of p , (0.5-1.0) and small
values of p , (0.001-0.05) are commonly employed in GA
practice. In our approach, we aim at achieving this trade-off
between exploration and exploitation in a different manner, by
varying p , and p , adaptively in response to the fitness values
of the solutions; p , and p , are increased when the population
tends to get stuck at a local optimum and are decreased when
the population is scattered in the solution space.

B. Design of Adaptive pc and p ,

To vary p , and p , adaptively, for preventing premature

decreases, p , and p , will have to be varied inversely with
fmax - f . The expressions that we have chosen for p , and
p , are of the form

,-

and
-

P, = k2 / (fmax - f) *
It has to be observed in the above expressions that p , and p ,
do not depend on the fitness value of any particular solution,
and have the same values for all the solutions of the population.
Consequently, solutions with high fitness values as well as
solutions with low fitness values are subjected to the same
levels of mutation and crossover. When a population converges
to a globally optimal solution (or even a locally optimal
solution), p , and p , increase and may cause the disruption of
the near-optimal solutions. The population may never converge
to the global optimum. Though we may prevent the GA from
getting stuck at a local optimum, the performance of the GA
(in terms of the generations required for convergence) will
certainly deteriorate.

To overcome the above-stated problem, we need to preserve
‘good’ solutions of the population. This can be achieved by
having lower values of p , and p , for high fitness solutions
and higher values of p , and p , for low fitness solutions. While
the high fitness solutions aid in the convergence of the GA,
the low fitness solutions prevent the GA from getting stuck
at a local optimum. - The value of p , should depend not only
on fmax - f, but also on the fitness value f of the solution.
Similarly, p , should depend on the fitness values of both the
parent solutions. The closer f is to fmax, the smaller p , should
be, i.e., p , should vary directly as fmax - f . Similarly, p ,
should vary directly as fmax - f’, where f’ is the larger of the
fitness values of the solutions to be crossed. The expressions
for p , and p , now take the forms

-
p c = h (f m a x - f‘)/(fmax - f), k l I 1.0 (1)

and

.~

convergence of the GA to aiocal optimum, it is essential to be
able to identify whether the GA is converging to an optimum.

(ICl and k2 have to be less than 1.0 to constrain p , and p ,
to the range 0.0-1.0).

SRINIVAS AND PATNAIK CROSSOVER AND MUTATION IN GENETIC ALGORITHMS 659

Note that p , and p , are zero for the solution with the
maximum fitness. Also p, = kl for a solution with f’ = 7,
and p , = k2 for a solution with f = 7. For solutions with
subaverage fitness values i.e., f < 7, p , and p, might assume
values larger than 1.0 . To prevent the overshooting of p , and
p , beyond 1.0, we also have the following constraints,

pc = k3, f’ 57 (3)

P m = k 4 r f s 7 (4)

and

where k3,k4 5 1.0.

C. Practical Considerations and Choice
of Values for k1, k2, k3 and k4

In the previous section, we saw that for a solution with
the maximum fitness value, p , and p , are both zero. The best
solution in a population is transferred undisrupted into the next
generation. Together with the selection mechanism, this may
lead to an exponential growth of the solution in the population
and may cause premature convergence. To overcome the above
stated problem, we introduce a default mutation rate (of 0.005)
for every solution in the AGA.

We now discuss the choice of values for k l , k2, k3, and k4.

For convenience, the expressions for p, and p , are given as
-

~c = kl(fmax - f’)/(fmax - f) , (5)
Pc = 163, f’ < 7 (6)

p m = k2(fmax - f)/(fmax - f) , (7)
P m = k 4 , f<7 (8)

f’ 2 7,

and
-

f 2 7,

where k1,k2,k3 ,k4 5 1.0.
It has been well established in GA literature [6] [lo] that

moderately large values of p, (0.5 < p , < 1.0), and small
values of p, (0.001 < p, < 0.05) are essential for the
successful working of GAS. The moderately large values of
p , promote the extensive recombination of schemata, while
small values of p , are necessary to prevent the disruption
of the solutions. These guidelines, however, are useful and
relevant when the values of p , and p , do not vary.

One of the goals of our approach is to prevent the GA
from getting stuck at a local optimum. To achieve this goal,
we employ solutions with subaverage fitnesses to search the
search space for the region containing the global optimum.
Such solutions need to be completely disrupted, and for this
purpose we use a value of 0.5 for k4. Since solutions with
a fitness value of 7 should also be disrupted completely, we
assign a value of 0.5 to k2 as well.

Based on similar reasoning, we assign k1 and 163 a value of
1 .O. This ensures that all solutions with a fitness value less than
or equal to 7 compulsarily undergo crossover. The probability
of crossover decreases as the fitness value (maximum of the
fitness values of the parent solutions) tends to fmax and is 0.0
for solutions with a fitness value equal to fmax.

In the next section, we compare the AGA with previous
approaches for employing adaptive operators in GAS.

IV. COMPARISON OF AGA WITH
OTHER ADAPTIVE STRATEGIES

The idea of adapting crossover and mutation operators to
improve the performance of GAS has been employed earlier
[ll, [31, 191, 1241. This section reviews these techniques and
compares them with our approach.

Schaffer et al. [l] discuss a crossover mechanism wherein
the distribution of crossover points is adapted based on the
performance of the generated offspring. The distribution in-
formation is encoded into each string using additional bits.
Selection and recombination of the distribution bits occurs in
the normal fashion along with the other bits of the solutions.

Davis [3], [4] discusses an effective method of adapting
operator probabilities based on the performance of the opera-
tors. The adaptation mechanism provides for the alteration of
operator probabilities in proportion to the fitnesses of strings
created by the operators. Simply stated, operators which create
and cause the generation of better strings are alloted higher
probabilities. The technique has been developed in the context
of a steady-state GA (see [24]), and experimental evidence has
demonstrated considerable promise.

Fogarty [9] has studied the effects of varying the mutation
rate over generations and integer encodings. Specifically, a
mutation rate that decreases exponentially with generations has
demonstrated superior performance for a single application.

In an approach employing a form of adaptive mutation,
Whitley et al. [24] have reported significant performance
improvements. The probability of mutation is a dynamically
varying parameter determined from the Hamming distance
between the parent solutions. The diversity in the population
is sustained by subjecting similar solutions to increased levels
of mutation.

The adaptation policy in AGA is different from all the
approaches described above; [l] is not related to adapting
mutation and crossover rates. AGA is different from [3]
and [9] as, in the AGA, p , and p , are determined for
each individual as a function of its fitness. In [9], p , is
varied in a predetermined fashion. In [3] too, the operator
probabilities are invariant with the individual fitnesses of
solutions, although they are modified periodically based on the
average performance of the operators (determined indirectly
from the fitnesses of solutions).

The AGA bears closer resemblance to Whitley’s adaptive
mutation approach [24]. In both cases, the mutation rate is
determined specifically for each solution. Both techniques are
also derived from the idea of sustaining the diversity in the
population without affecting the convergence properties. In
Whitley’s approach, however, the adaptive mutation technique
has been employed in the context of a steady state GA, while
we are concemed with generational replacement, in the AGA.
Since the steady state GA employs a form of populationary
elitism, there is no need to ‘protect’ the best solutions from
the high levels of disruption. In the AGA, the best solutions
are explicitly protected from disruption. The criterion for
adaptation is also different in both cases: in [24] p , is varied
based on the Hamming distance between solutions, while in
our approach p , and p , are adapted based on fitness values.

660 IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS, VOL. 24, NO. 4, APRIL 1994

The experimental results in [24] and our own experiments
(Section V) demonstrate the efficacy of this line of approach.

V. THE SCHEMA THEOREM AND THE 'AGA'

The Schema theorem [7], [101, [171, has been the predomi-
nant method for analyzing GAS. Schemata are building blocks
that form the solutions, and the Schema theorem predicts the
growth of high fitness building blocks at the expense of low
fitness ones. The Schema theorem also models the detrimental
effects of crossover and mutation on the propagation of
schemata from generation to generation. In this section, we
derive the Schema theorem for the GA with adaptive p, and
p,. The notation that we have used in the derivation is as
follows. We now derive the expression to predict Nh(t + 1)

h : a schema
f i

f
f h

- fmax

f;

: the fitness value of an instance (solution) of

: the average fitness value of the population
: the average fitness value of schema h
: the maximum fitness value of the population
: the average of the square of fitness values

(second moment of fitness values) for the
schema h

n;(t + 1) : the expected number of offspring created in

schema -
-

To transform the two inequalities of (10) and (11) into one
inequality, we recall the assumption made in the previous
section that kl = k3.

Now, we get a single inequality without any constraints on
f i ,

To get an estimate for Nh(t+l), we consider the summation of
n: over all the solutions, i, that are instances of the schema
h, i.e.,

Nh (t)

Nh(t + 1) = n!(t + 1).
i=l

Equivalently, from (12), we get,

Since, (x2:) fi) = (Nh(t) x x), and (xzJt) fi2) =

(Nh (t) x E), (13) gets modified to

generation t + 1 due to a solution i of schema h
After rearranging the terms, (15) can be rewritten as (and of the generation t)

: the number of solutions of generation t which are
instances of the schema h

: the dejning length of the schema h
: the length of the solution, i.e., the number of

binary bits in the encoded solution.

Nh (t)

Z(h)
L

from Nh(t). The selection criterion that we have used for the
GA is that of proportional selection. We first consider the effect
of crossover and then generalize the results for mutation.

The expected number of offspring generated by a solution
a of the schema h is given by

The expression that we have used for pc is given by

(fmax - fi,, f i 7,
(fmax - f) Pc = kl

~ c = k 3 , fi 7
where kl,k3 5 1.0 and kl 5 k3.

After substituting for pc in (9), we get

(9)

'In our research, we have used a binary alphabet for encoding the solutions.

(15) represents the schema theorem when adaptive crossover
is used in the GA. We now consider some special cases of
(15) based on the value of 5.

A. ESfect of Mutation

may be generalized to the form
When we include the disruptive effects of mutation, (12)

where (1 - k 2 u) n (f m a x - f) gives the probability that
the solution i survives disruption due to mutation. For
kz << 1, the right side of (16) may be approximated to

F -

SRINNAS AND PATNAIK: CROSSOVER AND MUTATION IN GENETIC ALGORITHMS 661

When k2 is comparable with 1.0, a complete Taylor series
expansion of the right side of (16) needs to considered. In
what follows, we derive the generalized schema theorem for
the AGA for all values of k1 and k2. The following analysis
however generates a slightly inferior lower bound for Nh (t+ I)
than that obtained in (16) and (15).

We first introduce the notion of the nth fitness moment of
a schema h in generation t , defined as

It may be noted that M i (t) is the average fitness of h and that
M l (t) - (M:(t))' gives the variance of fitness of h.

We also state the following two lemmas without outlining
the proofs.

Lemma 1:
Lemma 2:

Let us recall (16). We may express it in a general form

ML(t) 2 ML(t)M,"(t) where k = I + m.
M:(t)Mh(t) 2 Mh(t)Mi(t) where p + q =

T + s and Ip - 41 > Ir - S I .

n +2

k = l

To obtain Nh (t + I), consider the summation of n: (t + 1) over
all solutions i that are members of h,

n+2

Nh(t + 1) 2 a k (f i) ' .
i E h k = l

After interchanging the order of summations,
expressed in terms of the fitness moments of h

n+2

Nh(t + 1) 2 Nh(t) akMf(k) .
k = l

From Lemma 1 it follows that ML(t) 2 (M:(t)) ' . Conse-
quently (21) may be further reduced to the form

n+2

Nh(t + 1) 2 Nh(t) ak(Mi(t)) l" (22)
k = l

From the structural similarity of (22) and (19), and after
considering (16), we gather that (22) may be expressed as

(15) represents the Generalized Schema theorem for the AGA.
A comparison of (15) and (23) (k ~ = 0) demonstrates that

the former provides a tighter bound than the latter. This is
because we have employed the inequality M; (t) 2 (ML (t))'
to obtain a closed form expression for the Generalized Schema
theorem. -

For f h = fmax, we get
-

(24)
f h Nh(t + 1) 2 Nh(t)--,
f

and for fh = 7, it follows that

(24) and (25) are instances of the generalized schema theorem
for schemata with fitnesses fmax and 7, and elucidate the
adaptation policy.

B. Variation of Schema Fitness

The Schema theorem provides a bound for the growth rate
of a schema, but it does not provide any insight into the effect
of the genetic operators on the growth rates of instances of a
schema. Specifically it would be interesting to characterize the
variation of fitness of a schema from one generation to another,
which is caused by the different growth rates of the instances
of the schema. In this section we compare the variation of the
average fitness of a schema under the action of the AGA and
the SGA and demonstrate that the AGA tends to induce higher
schema fitnesses than the SGA.

In evaluating the expected average fitness of schema h
in generation k + 1, from the fitnesses of solutions in gen-
eration t , we need to focus attention on two components:
instances of the schema in generation t which are expected
to remain undisrupted, and solutions that are generated due to
recombination.

By definition, the average fitness of schema h in generation
t + 1 may be expressed as

~ i (t + I),,,

due to recombination.
Equation (26) may be simplified to the form

The notation in the above equation is the same as used in the
previous section. The corresponding expression for the average
fitness in the case of the SGA is given by

where P = (1 - p,)(l - P ~) ~ .
For purposes of comparison, let us assume that CjEh nj f j

as well as C j E h n j are identical in both cases (AGA and
SGA). This assumption becomes necessary to be able to
focus attention on the disruptive effects of the operators. The
complexity of GA dynamics makes it practically impossible
to exactly model the effects of recombination in an elegant
fashion.

From Lemma 2. it follows that, for each k in (271,

2 Consequently, it may easily be shown
M , (t) .

662 IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS, VOL. 24, NO. 4, APRIL 1994

from (27) and (28) that

In a similar fashion, we can extend the result to moments of
higher orders

~ k (t + 1) A G A 2 ~ k (t + 1)SGA (30)

(29) and (30) may be explained intuitively from the adaptive
mechanism. Since the probability of disruption of a solution
with a high fitness value is smaller than that for a solution
with a lower fitness value, the expected fitness of a randomly
selected solution after disruption is higher than in the case
of SGA wherein all solutions are disrupted with the same
probability. Thus we observe that the AGA promotes schemata
with high fitness values, and also causes the fitnesses of
schemata to increase rapidly. Both the effects are the outcomes
of the adaptation policy.

VI. EXPERIMENTS AND RESULTS

In this section, we discuss the experiments that we have
conducted to compare the performance of the AGA and SGA.
For this purpose we have employed several multimodal test
problems with varying complexities. The rest of this section
is devoted to a discussion of the performance criteria for the
GAS, the functions that are to be optimized, experiments, and
the comparative results.

A. Performance Measures

As a measure of performance, we consider the average
number of generations that the GA requires to generate a
solution with a certain high fitness value (called the threshold).
The average number of generations is obtained by performing
the experiment repeatedly (in our case, 30 times) with different
and randomly chosen initial populations.

Since the goal of our approach is to prevent the convergence
of the GA to a local optimum, we also evaluate the perfor-
mance of the GA in terms of the number of runs for which
the GA gets stuck at a local optimum. When the GA fails to
reach the global optimum after a sufficiently large number of
generations, we conclude that it has gotten stuck at a local
optimum.

B. Functions for Optimization

The choice of suitable functions to verify the performance
of GAS is not an easy task. The nature of the optimization
function varies a lot from application to application, in terms
of the number of local optima, the rate of variation of the
objective function, etc. In this research, we have used several
multimodal functions with varying complexities. They are the
following:

This is a spiky function (also known as
Shekel’s foxholes) with 25 sharp spikes of varying heights.
The function has two variables and the solution is encoded
using 34 bits. The task of the GA is to locate the highest

DeJong’s f5:

TABLE I
A THREE-BIT DECEPTIVE FUNCTION

Binary Code Function Value

OOO
0 0 1
010
01 1
100
101
110
1 1 1

28
26
22
0
14
0
0
30

peak. The expression for f5 is as
25

f6: This is a rapidly varying multimodal function of two
variables, and is symmetric about the origin with the height of
the barrier between adjacent minima increasing as the global
optimum is approached. The variables are encoded using 22
bits each, and assume values in the range (-100.0, 100.0). f6
has been employed earlier [22] for comparative studies, where
it is referred to as the ‘Sine envelope sine wave function.’ The
expression for f6 is

s i n 2 d w - 0.5
f6 = 0.5 +

[1.0 + O.OOl(X12 + Z22>l2

j7: * This function is also similar to f6, but has the
barrier height between adjacent minima approaching zero as
the global optimum is approached

f 7 = ($1’ + Z22)0’25 [~ i n ~ (5 0 (~ ~ ~ + x~~)”’) + 1.01

Order-3 Deceptive: GA-deceptive functions are being used
extensively to evaluate the performance of GAS. The order-3
deceptive function depends on three binary bits as shown in
Table I. Optimizing the three-bit deceptive function is a trivial
exercise. The actual function to be optimized by the GAS is
the sum of five such independent functions. The solution string
is obtained by concatenating five of the three-bit codes. We
used only five subfunctions in our function, mainly to enable
the GAS to converge to the optimum with small populations
(population size = 100). For a further description of deceptive
functions the reader is referred to [12].

The traveling salesman problem (TSP) involves
finding the shortest Hamiltonian cycle in a complete graph
of n nodes. The Euclidean distance between any two nodes is
computed from their coordinates. An instance of the TSP is
specified by n, the number of cities, and the coordinates of the
n cities (nodes). In our implementations, we have employed
the order crossover operator [21], [lo], and a mutation operator
that swaps the positions of two randomly chosen cities. p ,
and p , determine the. probability with which the operators

2The decoded value of each variable of the functions f 5 , f6 , and f 7 has
been shifted by 10% to the left, and wrapped around the upper limit in case
the value is less than the lower limit. This has been done to shift the optimal
solutions away from Hamming cliffs (see [5]) .

TSP:

SRINIVAS AND PATNAIK CROSSOVER AND MUTATION IN GENETIC ALGORITHMS 663

are employed. We have chosen the 30-city and
problems (see [24] for coordinates of cities) for comparing
the performance of the SGA and the AGA. Function Str. Len. Gens. Stuck Thresh. En’,

The underlying optimization problem

105-city TABLE I1
COMPARISON OF PERFORMANCE OF AGA AND SGA

Neural Networks:
in feedfonvard neural networks is that of identifying a set SGA AGA SGA AGA

of interconnection weights, such that a mean square error
defined between a set of output patterns and training patterns
is minimized. Each neuron i may be associated with

An output value Oi,
A set of Ic input values Ij;
A threshold value Ti,
A set of interconnection weights wj;
An activation value A; = E,”=, wjilji - Ti,

1 5 j 5 IC,

1 5 j 5 Ic

The output value of each neuron is typically a nonlinear
function of the activation value. In a feed-forward network, the
neurons are organized into layers (input, output and hidden),
with the inputs of each neuron connected to the outputs of the
neurons of the previous layer. The input patterns are applied
to the input layer, and the training pattern is compared with
the outputs of neurons in the output layer. The mean square
error for a given set of weights is evaluated as

where
MSE: the mean square error
p : number of input patterns
No : number of output neurons
Oij : output value of the j th neuron for the ith input pattern
0’;j : training value of j th neuron for ther ith input pattern.
In our implementation, the output function f is sigmoidal:
f; = (1 + exp-loA,)-’. We also use binary inputs and train
the network to generate binary outputs. Further, Tij = 0.1 for
a binary 0 and Tij = 0.9 for a binary 1. wij and Tj assume
values in the range -1.0 to +1.0. Each weight is encoded
using 8 bits, and the string is formed by concatenating the
binary codes for all the weights and threshold values.

We consider three mapping problems,
XOR: 2 inputs, 1 output, 5 neurons, 9 weights, 4 input
patterns, the output value is the Exclusive OR of the
input bits.
4-bit parity: 4 inputs, 1 output, 9 neurons, 25 weights, 16
input patterns, the output value is 1 if there are an odd
number of 1s among the inputs.
Decoder Encoder: 10 inputs, 10 outputs, 25 neurons, 115
weights, 10 input patterns (each having all Os and a 1 at
one of the ten inputs), output pattern is the same as the
input pattern.

The primary task of test gen-
eration for digital logic circuits is to generate input vectors
of logical 0’s and 1’s that can check for possible faults in
the circuit by producing observable faulty response at the
primary outputs of the circuit. The problem of generating a
test for a given fault has been proved to be NP-complete [18].
In generating tests, it is desirable to detect close to 100%
of all the possible faults in the circuit. Test generation as a

Test Generation Problem:

XOR 72 61.2 36.73 10 0 0.999 100
4-bit parity 200 399.33 93.43 18 0 0.999 500
Dec. Enc. 920 456.43 71.70 26 0 0.99 500

f5 34 64.06 36.63 7 0 1.00 100
f6 44 173.9 106.56 23 6 0.999 200
fl 44 419.90 220.61 21 5 0.995 500

Order-3 Dec. 15 70.32 105.33 8 9 1.00 200

candidate optimization problem for GAS may be characterized
as follows:

0

0

0

0

0

The
is a

Faults are modelled as being stuck-at-0 or stuck-at-1.
A test for a fault should (i) generate a logic value at the
fault site that is different from the stuck-at value of the
fault, (ii) should be able to propogate the fault effect to
one of the primary outputs.
Fault simulation approach to test generation: Input vectors
are generated randomly, and then through logic simula-
tion, the faults that the vector detects are identified as
being detected.
Random test generation may be improved by using a
search based on a cost associated with each input vector.
Distance Cost function: C, = CiEF L, - L,i where
C,: cost associated with a vector u,
F : set of undetected faults
L,: maximum number of gate levels in the circuit
L,i: level to which the fault effect of i has been pro-
pogated by vector u.

cost C, is minimum (locally) when a given input vector
test for a certain fault. It should be noted that the cost

function changes as faults are detected and removed from the
list of undetected faults. The task for the GA is to minimize
the cost C,. Test circuits for experiments have been chosen
from the ISCAS-85 benchmarks [19].

C. Experimental Results

Except for the TSP’s, in all our experiments, we have used
a population size of 100 for the GAS. ‘Scaling’ of fitness
values, and the Stochastic remainder technique (see [lo]) for
‘selection’ have been used in the GAS. All parameters have
been encoded using a fixed point encoding scheme.

For the SGA, we have used values of p , = 0.65 and
p , = 0.008.

For the AGA, p , and p , are determined according to
expressions (5) , (6), (7), and (8) given in Section 111-C.

The experimental results are presented in Tables 11-IV.
Table I1 gives the average number of generations required by
each GA for attaining a solution with a fitness value equal
to the threshold value ‘ thre~h.’~ Also tabulated is the number

We are not measuring population convergence based on the mean conver-
gence of each bit since the AGA never converges in the above sense due to
the high disruption rates of low fitness solutions.

664 IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS, VOL. 24, NO. 4. APRIL 1994

TABLE III
PEWORMANCE OF AGA AND SGA FOR TSP

Avg. Tour Optimum Tour Located Max. Gens. Pop. Size Length Cities

SGA AGA SGA AGA

30 (424.0) 442.1 430.2 0 7 100 1000
105 (14383) 16344.3 14801.4 0 4 500 2000

TABLE IV
PERFORMANCE OF AGA AND SGA FOR THE TEST GENERATION PROBLEM

Circuit SGA (Gens.) AGA (Gens.) cEe2 e Str. Len.

c432 102.10 10.73 99.23% 36
c499 10.91 10.50 98.94% 41
c880 155.23 37.33 100.00% 60

c1355 35.26 31.70 99.49% 41
c 1908 122.13 57.93 99.52% 33
c3540 155.43 73.66 96.00% 50
c5315 53.33 21.56 98.89% 178

of instances (out of 30 trials) for which the GAS have gotten
stuck at a local optimum. The maximum number of generations
that the GAS were executed for, and the string length are also
indicated for each of the problems.

The AGA outperforms the SGA for all the problems except
the Order-3 Deceptive. For the three neural network problems,
AGA has located the optimal solution in every trial, while the
performance of the SGA has been poor.

For the TSP’s we have used populations of 1000 and 2000
for the 30-city and 105-city problems respectively. The number
of function evaluations have been 100,OOO and 1,000,000
respectively. Results have been obtained for 10 different trials.
For both the problems, the SGA was not able to locate the
optimal tour even on one occasion, while AGAs performance
has been significantly better, both in terms of the average tour
length and the number of instances when the optimal tour was
located.

Table IV compares the performance of the AGA and the
SGA for the Test Generation problem. The numeral in the
circuit name indicates the gate count of the circuit. Once again,
the superior performance of AGA is clear. For c432, the SGA
requires almost 10 times the number of generations that the
AGA needs to locate all detectable faults. Only for c499, the
SGA has come close to performing as well as the AGA. The
results are averages over 30 different trials for each circuit.
It may be noted that the complexity of test generation is not
directly dependent on the circuit size, but is controlled by
several other factors such as the fanins and fanouts of gates,
the number of levels in the circuit, etc.

D. When Does The AGA Perform Well?

The optimization problems considered above span a range
of complexities, string lengths, and problem domains. In
general, the performance of the AGA has been significantly
superior to that of the SGA, while in specific instances
such as Order-3 Deceptive problem and for c499 in the
Test generation problem, the SGA has performed as well

TABLE V
EFFECT OF “MULTIMODALJTY” ON THE PERFORMANCE OF THE AGA AND SGA

k Gens. Stuck

SGA AGA SGA AGA

1 24.10 27.73 0 0
3 75.56 70.91 4 0
5 78.96 71.93 12 3
7 82.76 72.70 13 4

as the AGA or better. The experimental results also point
out that the relative performance of the AGA as compared
to that of the SGA varies considerably from problem to
problem. All the problems that we have considered have some
epistaticity present, however the extent of epistaticity varies
considerably. For instance, in the neural network problems,
the high epistaticity is brought about by the fitness being a
complex nonlinear function of the weights, while in the order-
3 Deceptive problem, the epistaticity is relatively lower with
the fitness contribution due to a bit being affected only by two
other bits.

A different aspect of multimodal function optimization is the
sensitivity of the optimization technique to the ‘multimodality’
of the problem, i.e., how the performance varies as the number
of local optima in the search space vary. It may be observed
from Table I1 that the relative performance of the AGA with
respect to that of the SGA is better for f 6 and f 7 than for
f5. Although the evidence is not conclusive, it appears that
the AGA performs relatively better than the SGA when the
number of local optima in the search space is large.

To better understand the circumstances under which AGA
performs better than the SGA, we have conducted two sets of
experiments where we have methodically varied the epistacity
in the problem and the number of local optima in the search
space. For purposes of convenience, we have chosen the
following objective function for these experiments

P
- 0.5 5 X; 5 0.5

i=l

where P gives the number of variables.
The function has one global optimum and Pk local optima

for odd values of k.
To characterize the effect of varying the number of local

optima in the search space, we have varied IC for a fixed
value of P = 5. Each variable zi is encoded using 10 bits.
The experimental results are presented in Table V. Table V
confirms our earlier observation that, with increasing number
of local optima the performance of AGA improves steadily
over that of the SGA. For k = 1, the function is unimodal,
and the SGA outperforms the AGA.

Next we consider the effects of varying the epistaticity of
the function. We consider strings of length 40, k = 5, and we
vary the number of parameters P. Correspondingly the number
of bits required for encoding each variable also changes. The
epistacity increases as P decreases, since the fitness due to a
single variable z; depends on the interactions of 40/P bits.
From Table VI, it is clear that the relative performance of the

SRINIVAS AND PATNAIK: CROSSOVER AND MUTATION IN GENETIC ALGORITHMS 665

' ' " 1 AGA

. n - -

0.9 Populalion Maximum

0.8

Average
0.7

1 .o
SGA

0.61 I I I I I
4 8 12 16 20 0 4 8 12 16 20

General on Generation

(a) (b)
Fig. 3. Comparison of the Best, Average, and Population-Maximum fitness values for the AGA and SGA.

TABLE VI
EFFECT OF E P I S T A C ~ ON THE PERFORMANCE OF THE AGA AND SGA

Code Len. Variables Gens. Stuck

SGA AGA SGA AGA

20 2 92.50 86.13 11 7
10 4 71.73 64.36 5 4
8 5 59.33 52.40 3 3
5 8 35.10 48.86 1 2
4 10 27.73 42.66 0 0

TABLE VII
EFFECT OF kl ON AGA PERFORMANCE: AVERAGE NUMBER

OF GENERATIONS FOR CONVERGENCE AND NUMBER OF
INSTANCES WHEN AGA GETS STUCK AT A LOCAL OFTIMUM

Function kl=0.2 0.4 0.6 0.8 1 .o
f5 47.76 (6) 40.20 (3) 33.46 (3) 41.33 (1) 36.63 (0)
XOR 45.70 (2) 37.36 (0) 42.30 (0) 38.56 (0) 36.73 (0)

order-3 Dec. 143.13 (11) 125.66 (9) 109.7 (10) 121.66 (13) 105.33 (9)

AGA with respect to the SGA deteriorates as the epistaticity
decreases.

E. Sensitivity of AGA to IC1 and IC2

We have already pointed out in Section I1 that p , and
p , critically control the performance of the GA. One of the
goals of having adaptive mutation and crossover is to ease the
user's burden of specifying p , and p c . However, our method
has introduced new parameters IC1 and IC2 for controlling the
adaptive nature of p , and p,. To evaluate the effect of ICl and
IC2 on the performance of the AGA, we have monitored the
performance of the AGA for varying values of k1 (0.2-1.0)
and IC2 (0.14.5). The experimental results are presented in
Tables VI1 and VIII.

On analyzing the results presented in Table VI11 for dif-
ferent values of k2, we notice no dramatic difference in the

TABLE VIII
EFFECT OF k2 ON AGA PERFORMANCE AVERAGE NUMBER

OF GENERATIONS FOR CONVERGENCE AND NUMBER OF
INSTANCES WHEN AGA GETS STUCK AT A LOCAL OPTIMUM

Function k2d.1 0.2 0.3 0.4 0.5

f5 60.20 (2) 48.26 (1) 65.33 (1) 44.33 (2) 36.63 (0)
XOR 52.26 (0) 51.66 (0) 49.73 (0) 44.60 (0) 36.73 (0)

Order-3 Dec. 122.30 (15) 117.43 (12) 98.66 (8) 96.53 (6) 105.33 (9)

performance of the AGA in terms of the average number
of generations required for convergence. The fact that the
performance of the GA hardly varies with the value of IC2

shows that the AGA is not sensitive to the external parameter
S2--one of the goals of our research. The AGA gets stuck
at local optima fewer times for higher values of IC2 than for
lower values of k2. The results justify our choice of IC2 = 0.5
for the AGA.

Table VI1 demonstrates the steady improvement in perfor-
mance of AGA as kl is increased. This may be expected since
a large value of kl maximizes the recombination of schemata,
while the best schemata are yet retained due to the adaptation
policy.

To illustrate how the AGA works in a fashion different from
that of the SGA, we plot in Fig. 3, the variation of the average,
best, and population-maximum fitness values for the SGA and
the AGA. The XOR function is being optimized, and the
population size is 100. On comparing the two plots, we observe
that the average fitness of the population increases gradually
for the AGA (approximately 0.025 per generation) while it
increases rapidly for the SGA (0.075 per generation). A careful
observation of Fig. 3 reveals that, in the first 5 generations,
the average fitness for the AGA increases rapidly (0.12 per
generation), remains rather flat until about the 15th generation,
and once again increases quickly (0.1 per generation). The
relatively flat zone (generations 5 to 15) occurs when the AGA
has not yet located the global optimum, and has only located a
locally optimal solution with a fitness of 0.92. Another feature

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS, VOL. 24, NO. 4, APRIL 1994 666

that stands out is the fluctuation of the population-maximum
fitness for the SGA, indicating that the SGA loses the best
solutions often. For the AGA, since the best solution in each
population is being propagated to the subsequent generation
with minimal disruption, the population-maximum fitness is
increasing most of the time. The lower average fitness value of
the AGA indicates that the population has remained scattered
in the search space and has not gotten stuck at any local
optimum. We have not only achieved a better convergence
rate to the global optimum, but have also prevented the AGA
from getting stuck at the local optimum (with a fitness value
of around 0.92) that the SGA has succumbed to.

VII. CONCLUSION
Recent research on GAS has witnessed the emergence of

new trends that break the traditional mold of ‘neat’ GAS that
are characterized by static crossover and mutation rates, fixed
length encodings of solutions, and populations of fixed size.
Goldberg has introduced the notions of variable-length solu-
tions for GAS in [13] and [14], and has shown that the ‘Messy
GAS’ perform very well. Davis [4], [3] has recommended the
technique of adapting operator probabilities dynamically based
on the relative performance of the operators.

In this paper, we adopt a ‘messy’ approach to determine
p , and p,, the probabilities of crossover and mutation. The
approach is different from the previous techniques for adapting
operator probabilities as p , and p, are not predefined, they
are determined adaptively for each solution of the population.
The values of p , and p, range from 0.0 to 1.0 and 0.0 to
0.5 respectively. It might appear that the low values of p ,
and the high values of p , might either lead to premature
convergence of the GA or transform the GA into a random
search. However, it is the manner in which p , and p, are
adapted to the fitness values of the solutions, that not only
improves the convergence rate of the GA, but also prevents the
GA from getting stuck at a local optimum. In the adaptive GA,
low values of p , and p, are assigned to high fitness solutions,
while low fitness solutions have very high values of p , and p,.
The best solution of every population is ‘protected’, i.e., it is
not subjected to crossover, and receives only a minimal amount
of mutation. On the other hand, all solutions with a fitness
value less than the average fitness value of the population
have p, = 0.5. This means that all subaverage solutions are
completely disrupted and totally new solutions are created.
The GA can, thus, rarely get stuck at a local optimum.

We have conducted extensive experiments on a wide
range of problems including TSP’s, neural network weight-
optimization problems, and generation of test vectors for VLSI
circuits. In most cases, the AGA has outperformed the SGA
significantly. Specifically, we have observed that, for problems
that are highly epistatic and multimodal, the AGA performs
very well.

In this work, we have chosen one particular way of adapting
p , and p, based on the various fitnesses of the population. The
results are encouraging, and future work should be directed at
developing other such adaptive models for the probabilities of
crossover and mutation. A similar dynamic model for varying

the population size in relation to the fitnesses of the population
is certainly worth investigating. We hope that this paper,
along with Goldberg’s ‘Messy Genetic Algorithms’, lays the
foundations for a new class of adaptive, self organizing GAS.

ACKNOWLEDGMENT
The authors thank all the three reviewers for their critical

evaluation of the paper, which has considerably helped in
improving the overall quality of the work presented here.

REFERENCES

J. D. Schaffer and A. Morishma, “An adaptive crossover mechanism
for genetic algorithms,” in Proc. Second Int. Con$ Genetic Algorithms,
1987, pp. 3640.
L. Davis (Ed.), Genetic Algorithms and Simulated Annealing, London:
Pitman, 1987.
L. Davis, “Adapting operator Probabilities in genetic algorithms,” Proc.
Third Int. Genetic Algorithms, 1989, pp. 61-69.
- (Ed), “Handbook of Genetic Algorithms,” Van Nostrand Rein-
hold, 1991.
-, “Bit climbing, representational bias, and test suite design’ in
Proc. Fourfh Int. Con6 Genetic Algorithms, pp. 18-23, 1991.
K. A. DeJong, “An analysis of the behavior of a class of genetic adaptive
systems,” Ph.D. dissertation, University of Michigan (1975).
K. A. DeJong, “Genetic algorithms: A 10 year perspective” in Pro-
ceedings of an International Conference of Genetic Algorithms and their
Applications, (J Greffenstette, editor), Pittsburgh, July 24-26, 1985, pp.

K. A. Ddong, “Adaptive system design: a genetic approach,” ZEEE
Trans Syst, Man, and Cybernitics, vol. 10, No. 9, pp. 566-574, Sep.
1980.
T. C. Fogarty, “Varying the probability of mutation in genetic algo-
rithms,” Proc. Third Int. Con. Genetic Algorithms, 1989, pp. 104-109.
D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-
chine Learning.
D. E. Goldberg, “A note on Boltzmann tournament selection for genetic
algorithms and population-oriented simulated annealing,” Complex Syst.,
vol. 4, pp. 445-460, 1990.
D. E. Goldberg, “Genetic algorithms and Walsh functions: Part 11,
deception and its analysis,” Complex Syst.,vvol. 3, pp. 153-171, 1989.
D. E. Goldberg et. al., “Messy genetic algorithms: motivation, analysis
and first results,” Complex Syst., vol. 3, pp. 493-530, 1989.
D. E. Goldberg et. al., “Messy genetic algorithms revisited: Studies in
mixed size and scale,” Complex Syst., vol. 4, pp. 4 1 5 4 , 1990.
D. E. Goldberg and J. Richardson, “Genetic algorithms with sharing
for multimodal function optimization,” Proc. Second Znt Con5 Gemtic
Algorithms, 1987, pp. 41-49.
J. J. Grefenstette, “Optimization of control parameters for genetic
algorithms,” IEEE Trans Syst. Man, and Cybernietics, vol. SMC-16, No.
1, pp. 122-128, Jan./Feb. 1986.
J. H. Holland, Adapation in Natural and ArtiJicial Systems, “Ann Arbor:
Univ. Michigan Press, 1975.
0. H. Ibarra and S. K. Sahni, “Polynomially complete fault detection
problems,” IEEE Trans. Computers, vol. C-24, pp. 242-247, Mar. 1975.
“Special session: Recent algorithms for gate-level atpg with fault
simulation and their performance assessment,” Proc.1985 IEEE Int.
Symp. Circuits and Syst. (ZSCAS), June !985, pp. 663-698.
Jurgen Hesser and Reinhard Manner, ‘Towards an optimal mutation
probability for genetic algorithms,” Proceedings of the First Workshop,

I. M. Oliver, D. J. Smith and J. R. C. Holland, “A study of permutation
crossover operators on the travelling salesman problem,” Proc. Second
Int. Con. Genetic Algorithms, 1987, pp. 224-230.
J. D. Schaffer et. al., “A study of control parameters affecting online
performance of genetic algorithms for function optimization” Proc.
Third Int. Con$ Genetic Algorithms, 1989, pp. 51-60.
W. M. Spears and K. A. DeJong, “An analysis of multipoint crossover,”
in the Proc. 1990 Workshop of the Foundations of Genetic Algorithms,

D. Whitley and D. Starkweather, “Genitor-I1 A distributed genetic
algorithm,” J.. Expt. Theor. Art$ Int., vol. 2 , pp. 189-214, 1990.
D. Whitley et. al., “Genetic algorithms and neural networks: Optimiz-
ing connections and connectivity,” Parallel Computing, vol. 14, pp.
347-361, 1990.

169-177.

Reading, MA: Addison Wesley. 1989.

PPSN-I, pp. 23-32, 1990.

1991, pp. 301-315.

n

SRINIVAS AND PATNAIK CROSSOVER AND MUTATION IN GENETIC ALGORITHMS 661

1

M. Srinivas (M’92) graduated from the Indian In-
stitute of Technology, Madras, India, in 1989. From
July, 1989-July, 1990, he was employed by the
Centre for Development of Advanced Computing,
Bangalore. He is currently a Ph.D. student at the
Department of Computer Science and Automation,
Indian Institute of Science, Bangalore.

His research interests include the theory and de-
sign of genetic algorithms, neural networks, stochas-
tic optimzation, and optimization in VLSI CAD
algorithms.

L. M. Patnaik (S’75-M’76-SM’86F‘92) obtained
the Ph.D. in real-time systems in 1978 and the
D.Sc. in computer science and architectures in 1989,
both from the Indian Institute of Science, Banglore,
India.

He is currently Professor with the Electrical Sci-
ences Division at Indian Institute of Science. He
also directs a research group in the Microprocessor
Applications Laboratory at the Institute.

Dr. Patnaik is a Distinguished Lecturer of the
IEEE, Region 10. He was awarded the Dr. Vikram

Sarabhai Research Award in 1989 and the Dr. Ramlal Wadhwa Award in
1992 by the Institution of Electronics and Telecommunications Engineers. He
is a Fellow of the Indian National Sciences Academy, the Indian Academy of
Sciences, The National Academy of Sciences, the Indian National Academy of
Engineering, the Institution of Electronics and Telecommunications Engineers,
and the Institution of Engineers. He is a Fellow of the Computer Society
of India, a life member of the VLSI Society of India and the Instrument
Society of India, and a Founding Member of the executive committee of
the Association for the Advancement of Fault-Tolerant and Autonomous
Systems. His name Appears in Who’s Who in the World (eighth edition),
Reference Asia, Asia’s Who’s Who of Men and Women of Achievement, and
Distinguished Computer Professionals of India. He was the Program Chair
(1990, 1991) and General Chair (1992) for the IEEE-sponsored International
Conference on VLSI Design and a Member of the program committee for the
Sixth International Parallel Processing Symposium (1992) and the Twenty-
Second Annual Symposium on Fault-Tolerant Computing (1992). In 1993,
he was the Program Chair (AsidAustralia) for the IEEE Symposium on
Parallel and Distributed Processing, a Member of the Asian subcommittee
for ACM Multimedia ’93 Symposium, and a member of the executive
committee and Coordinator, Asia and Australia, for the IEEE Technical
Committee on Parallel Processing. He has been Chairman of the IEEE
Computer Society chapter of the Bangalore section, for the past two years.
He is the Chairman of the Indian Transputer User Group. He is a member of
the editorial boards of the following pub1ications:lntemtional Journal of High
Speed Computing, Journal of Computer-Aided Design, The Computer Journal,
Parallel Algorithms and Applications, and V U 1 Design: An International
Journal of Custom Chip Design, Simulation and Teshng. He is Editor of
Computer Science and Informatics.

