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Adaptive Probabilities of Crossover 
Genetic in Mu tation and Algorithms 

M. Srinivas, and L. M. Patnaik, Fellow, ZEEE 

Abstract- In this paper we describe an efficient approach locally optimal solution. On the other hand, they differ from 
for multimodal function optimization using Genetic Algorithms 

crossover and mutation to realize the twin goals of maintaining 
diversity in the population and sustaining the convergence 
capacity of the GA. In the Adaptive Genetic Algorithm (AGA), 
the probabilities of crossover and mutation, p ,  and p,, are 

random sampling algorithms due to their ability to direct the 

‘pace. 

nents: 

(GAS). we IW3”end the use of adaptive probabilities of search towards relatively ‘prospective’ regions in the search 

VPiCallY a GA is characterized by the following Compo- 

variid depending on the fitness values of the-solutio6. High- 
fitness solutions are ‘protected’, while solutions with subaverage 
fitnesses are totally disrupted. By using adaptivdy varying p ,  
and pm, we also provide a solution to the problem of deciding 
the optimal values of p c  and pm, i.e., p c  and pm need not be 
specified at all. The AGA is compared with previous approaches 
for adapting operator probabilities in genetic algorithms. The 
sShema theorem is derived for the AGA, and the working of 
the AGA is analyzed. 

We compare the performance of the AGA with that of 
the Standard GA (SGA) in optimizing several nontrivial 
multimodal functions with varying degrees of complexity. For 
most functions, the AGA converges to the global optimum in 
far fewer generations than the SGA, and it gets stuck at a local 
optimum fewer times. Our experiments demonstrate that the 
relative performance of the AGA as compared to that of the 
SGA improves as the epistacity and the multimodal nature of 
the objective function increase. We believe that the AGA is the 
first step in realizing a class of self organizing GAS capable 
of adapting themselves in locating the global optimum in a 
multimodal landscape. 

I. INTRODUCTION 

ENETIC Algorithms [2], [7], [lo], [17] are robust search G and optimization techniques which are finding applica- 
tion in a number of practical problems. The robustness of 
Genetic Algorithms (hereafter referred to as GAS) is due to 
their capacity to locate the global optimum in a multimodal 
landscape. A plethora of such multimodal functions exist in en- 
gineering problems (optimization of neural network structure 
and learning neural network weights, solving optimal control 
problems, designing structures, and solving flow problems) are 
a few examples. It is for the above reason that considerable 
attention has been paid to the design of GAS for optimizing 
multimodal functions. 

GAS employ a random, yet directed, search for locating 
the globally optimal solution. They are superior to ‘gradient 
descent’ techniques as the search is not biased towards the 

a genetic representation (or an encoding) for the feasible 

a population of encoded solutions 
a fitness function that evaluates the optimality of each 

genetic operators that generate a new population from 

control parameters. 
The GA may be viewed as an evolutionary process wherein 

a population of solutions evolves over a sequence of genera- 
tions. During each generation, the fitness of each solution is 
evaluated, and solutions are selected for reproduction based 
on their fitness. Selection embodies the principle of ‘Survival 
of the fittest.’ ‘Good’ solutions are selected for reproduction 
while ‘bad’ solutions are eliminated. The ‘goodness’ of a 
solution is determined from its fitness value. The selected 
solutions then undergo recombination under the action of the 
crossover and mutation operators. It has to be noted that 
the genetic representation may differ considerably from the 
natural form of the parameters of the solutions. Fixed-length 
and binary encoded strings for representing solutions have 
dominated GA research since they provide the maximum 
number of schemata and as they are amenable to simple 
implementation. 

The power of GAS arises from crossover. Crossover causes 
a structured, yet randomized exchange of genetic material 
between solutions, with the possibility that ‘good’ solutions 
can generate ‘better’ ones. The following sentences from [lo, 
pp. 131 aptly summarize the working of GAS: 
”. . ., the population contains not just a sample of n ideas, 
rather it contains a multitude of notions and rankings of those 
notions for task pe$onnance. Genetic Algorithms ruthlessly 
exploit this wealth of information by 1) reproducing high 
quality notions according to their performance and 2 )  crossing 
these notions with many other high-performance notions from 

solutions to the optimization problem 

solution 

the existing population 

other strings.” 
some probability P C  (the 

crossover probability or crossover rate). When the SOlUtiOnS are 
not subjected to crossover, they remain unmodified. Notable 
crossover techniques include the single-point, the two-point, 
and the uniform types [23]. 

Manuscript received August 4, 1991: revised August 28, 1992, February 

M Srinivas is with the Department of Computer Science and Automation, 

L. M. Patnaik is with the Microprocessor Applications Laboratory, Indian 

25, 1993, and June 11, 1993. Recommended by Associate Editor Bezdek. Crossover OccUTs Only 

Indian Institute of Science, Bangalore 560 012, India 

Institute of Science, Bangalore 560 012, India. 
IEEE Log Number 9400454. 

0018-9472/94$04.00 0 1994 IEEE 



SRlNIVAS AND PATNAIK: CROSSOVER AND MUTATION IN GENETIC ALGORITHMS 651 

Simple Genetic Algorithm () 

initialize population; 
evaluate population ; 
while convergence not achieved 

I 

{ 
scale population fitnesses ; 
select solutions for next population ; 
perform crossover and mutation ; 
evaluate population ; 

I 
1 

Fig. 1. Basic structure of a GA. 

Mutation involves the modification of the value of each 
‘gene’ of a solution with some probability p ,  (the mutation 
probability). The role of mutation in GAS has been that of 
restoring lost or unexplored genetic material into the popu- 

suboptimal solutions. 

auxiliary operations are common in GAS. Of these, scaling 
mechanisms [ 161 are widely used. Scaling involves a readjust- 
ment of fitness values of solutions to sustain a steady selective 
pressure in the population and to prevent the premature con- 
vergence of the population to suboptimal solutions. 

I lation to prevent the premature convergence of the GA to 

Apart from selection, crossover, and mutation, various other I 

i 
~ 

The basic structure of a GA is illustrated in Fig. 1. 
In this paper we describe an efficient technique for multi- 

modal function optimization using GAS. We recommend the 
use of adaptive probabilities of crossover and mutation to 
realize the twin goals of maintaining diversity in the population 
and sustaining the convergence capacity of the GA. With the 
approach of adaptive probabilities of crossover and mutation, 
we also provide a solution to the problem of choosing the 
optimal values of the probabilities of crossover and mutation 
(hereafter referred to as p ,  and p ,  respectively) for the 
GA. The choice of p ,  and p ,  is known to critically affect 
the behavior and performance of the GA, and a number of 
guidelines exist in the literature for choosing p ,  and p ,  
[6], [SI, [lo], [16], [22]. These generalized guidelines are 
inadequate as the choice of the optimal p ,  and p ,  becomes 
specific to the problem under consideration. Grefenstette [ 161 
has formulated the problem of selecting p ,  and p ,  as an 
optimization problem in itself, and has recommended the use 
of a second-level GA to determine the parameters of the GA. 
The disadvantage of Grefenstette’s method is that it could 
prove to be computationally expensive. In our approach, p ,  
and p ,  are determined adaptively by the GA itself, and the 
user is relieved of the burden of specifying the values of p ,  
and p,. 

The paper is organized as follows. In Section I1 we discuss 
the problems of multimodal function optimization, and the 
various techniques proposed in the literature to overcome 
the problems. Section 111 describes our approach of using 
adaptively varying probabilities of crossover and mutation for 
multimodal function optimization. In Section IV we compare 
the AGA with previous techniques at adapting operator proba- 

I 

bilities in GAS. In Section V we derive the Schema theorem for 
GA and analyze the variation of schema fitnesses. In Section 
VI, we present experimental results to compare the perfor- 
mance of the GAS with and without adaptive probabilities of 
crossover and mutation. The conclusions and directions for 
future work are presented in Section VII. 

11. GENETIC ALGORITHMS AND 
MULTIMODAL FUNCTION O ~ I Z A T I O N  

In optimizing unimodal functions, it is important that the 
GA should be able to converge to the optimum in as few 
generations as possible. For multimodal functions, there is 
a need to be able to locate the region in which the global 
optimum exists, and then to converge to the optimum. GAS 
possess hill-climbing properties essential for multimodal func- 
tion optimization, but they too are vulnerable to getting stuck 
at a local optimum (notably when the populations are small). 
In this section, we discuss the role of the parameters p ,  and 
p ,  (probabilities of crossover and mutation) in controlling the 
behavior of the GA. We also discuss the techniques proposed 
in the literature for enhancing the performance of GAS for 
optimizing multimodal functions. 

The significance of p ,  and p ,  in controlling GA per- 
formance has long been acknowledged in GA research [7],  
[lo]. Several studies, both empirical [16], [22] and theoretical 
[20] have been devoted to identify optimal parameter settings 
for GAS. The crossover probability p ,  controls the rate at 
which solutions are subjected to crossover. The higher the 
value of p,, the quicker are the new solutions introduced into 
the population. As p ,  increases, however, solutions can be 
disrupted faster than selection can exploit them. Typical values 
of p ,  are in the range 0.5-1.0. Mutation is only a secondary 
operator to restore genetic material. Nevertheless the choice of 
p ,  is critical to GA performance and has been emphasized in 
DeJong’s inceptional work [6]. Large values of p ,  transform 
the GA into a purely random search algorithm, while some 
mutation is required to prevent the premature convergence of 
the GA to suboptimal solutions. Typically p ,  is chosen in the 
range 0.005-0.05. 

Efforts to improve the performance of the GA in optimizing 
multimodal functions date back to DeJong’s work [6]. DeJong 
introduced the ideas of ‘overlapping populations’ and ‘crowd- 
ing’ in his work. In the case of ‘overlapping populations’, 
newly generated offspring replace similar solutions of the 
population, primarily to sustain the diversity of solutions in 
the population and to prevent premature convergence. The 
technique however introduces a parameter CF (the crowding 
factor), which has to be tuned to ensure optimal performance 
of the GA. The concept of ‘crowding’ led to the ideas of 
‘niche’ and ‘speciation’ in GAS. Goldberg’s ‘sharing function’ 
has been employed in the context of multimodal function 
optimization; [ 151 describes a method of encouraging ‘niche’ 
formation and ‘speciation’ in GAS. More recently, Goldberg 
has proposed a Boltzmann tournament selection scheme [l 11 
for forming and sizing stable sub-populations. This technique 
is based on ideas from simulated annealing and promises 
convergence to the global optimum. 



658 IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS, VOL. 24, NO. 4, APRIL 1994 

0.6 
Besl 

I 

I 
I 

‘. - - a  
-..--_ 0.5 - 

aJ a 9 0 . 4 -  I ’\ 
I s 
\ I 

‘,Pop. Max.- Avg. 
I I 

, 
\ 

! 

\ 

I 
’1. 

I I I 

average fitness value 7 of the population in relation to the 
maximum fitness value fmax of the population. fmax - f is 
likely to be less for a population that has converged to an 
optimum solution than that for a population scattered in the 
solution space. We have observed the above property in all our 
experiments with GAS, and Fig. 2 illustrates - the property for a 

the GA converges to a local optimum with a fitness value of 
0.5 (The globally optimal solution has a fitness value of 1.0). 

- 

typical case. In Fig. 2, we notice that fmax - f decreases when 

We use the difference in the average and maximum fitness 
values, fmax - f, as a yardstick for detecting the convergence 

- 

- 
Fig. 2. Variation of fmax - f and fbest (best fitness). 

In all the techniques described above, no emphasis is placed 
on the choice of p ,  and p,. The choice of p ,  and p ,  is 
still left to the user to be determined statically prior to the 
execution of the GA. The idea of adaptive operators to improve 
GA performance has been employed earlier [13 131 191 1241. 
Our approach to multimodal function optimization also uses 
adaptive probabilities of crossover and mutation, but in a 
manner different from these previous approaches. We devote 
Section IV to discuss the above approaches, and compare them 
with the AGA. In the next section, we discuss the motivation 
for having adaptive probabilities of crossover and mutation, 
and describe the methods adopted to realize them. 

111. ADAFTIVE PROBABILITIES OF 
CROSSOVER AND MUTATION 

A. Motivations 

It is essential to have two characteristics in GAS for op- 
timizing multimodal functions. The first characteristic is the 
capacity to converge to an optimum (local or global) after 
locating the region containing the optimum. The second char- 
acteristic is the capacity to explore new regions of the solution- 
space in search of the global optimum. The balance between 
these characteristics of the GA is dictated by the values of p ,  
and p, ,  and the type of crossover employed 1231. Increasing 
values of p ,  and p ,  promote exploration at the expense of 
exploitation. Moderately large values of p ,  (0.5-1.0) and small 
values of p ,  (0.001-0.05) are commonly employed in GA 
practice. In our approach, we aim at achieving this trade-off 
between exploration and exploitation in a different manner, by 
varying p ,  and p ,  adaptively in response to the fitness values 
of the solutions; p ,  and p ,  are increased when the population 
tends to get stuck at a local optimum and are decreased when 
the population is scattered in the solution space. 

B. Design of Adaptive pc and p ,  

To vary p ,  and p ,  adaptively, for preventing premature 

decreases, p ,  and p ,  will have to be varied inversely with 
fmax - f .  The expressions that we have chosen for p ,  and 
p ,  are of the form 

,- 

and 
- 

P, = k2 / ( fmax - f ) * 
It has to be observed in the above expressions that p ,  and p ,  
do not depend on the fitness value of any particular solution, 
and have the same values for all the solutions of the population. 
Consequently, solutions with high fitness values as well as 
solutions with low fitness values are subjected to the same 
levels of mutation and crossover. When a population converges 
to a globally optimal solution (or even a locally optimal 
solution), p ,  and p ,  increase and may cause the disruption of 
the near-optimal solutions. The population may never converge 
to the global optimum. Though we may prevent the GA from 
getting stuck at a local optimum, the performance of the GA 
(in terms of the generations required for convergence) will 
certainly deteriorate. 

To overcome the above-stated problem, we need to preserve 
‘good’ solutions of the population. This can be achieved by 
having lower values of p ,  and p ,  for high fitness solutions 
and higher values of p ,  and p ,  for low fitness solutions. While 
the high fitness solutions aid in the convergence of the GA, 
the low fitness solutions prevent the GA from getting stuck 
at a local optimum. - The value of p ,  should depend not only 
on fmax - f, but also on the fitness value f of the solution. 
Similarly, p ,  should depend on the fitness values of both the 
parent solutions. The closer f is to fmax, the smaller p ,  should 
be, i.e., p ,  should vary directly as fmax - f .  Similarly, p ,  
should vary directly as fmax - f’, where f’ is the larger of the 
fitness values of the solutions to be crossed. The expressions 
for p ,  and p ,  now take the forms 

- 
p c  = h ( f m a x  - f‘)/(fmax - f), k l  I 1.0 (1) 

and 

.~ 

convergence of the GA to aiocal optimum, it is essential to be 
able to identify whether the GA is converging to an optimum. 

(ICl and k2 have to be less than 1.0 to constrain p ,  and p ,  
to the range 0.0-1.0). 
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Note that p ,  and p ,  are zero for the solution with the 
maximum fitness. Also p, = kl  for a solution with f’ = 7, 
and p ,  = k2 for a solution with f = 7. For solutions with 
subaverage fitness values i.e., f < 7, p ,  and p, might assume 
values larger than 1.0 . To prevent the overshooting of p ,  and 
p ,  beyond 1.0, we also have the following constraints, 

pc = k3, f’ 57 (3) 

P m = k 4 r  f s 7  (4) 

and 

where k3,k4 5 1.0. 

C. Practical Considerations and Choice 
of Values for k1, k2, k3 and k4 

In the previous section, we saw that for a solution with 
the maximum fitness value, p ,  and p ,  are both zero. The best 
solution in a population is transferred undisrupted into the next 
generation. Together with the selection mechanism, this may 
lead to an exponential growth of the solution in the population 
and may cause premature convergence. To overcome the above 
stated problem, we introduce a default mutation rate (of 0.005) 
for every solution in the AGA. 

We now discuss the choice of values for k l ,  k2, k3, and k4. 

For convenience, the expressions for p, and p ,  are given as 
- 

~c = kl(fmax - f’)/(fmax - f ) ,  ( 5 )  
Pc = 163, f’ < 7 (6) 

p m  = k2(fmax - f)/(fmax - f ) ,  (7) 
P m = k 4 ,  f<7 (8) 

f’ 2 7, 

and 
- 

f 2 7, 

where k1,k2,k3 ,k4  5 1.0. 
It has been well established in GA literature [6] [lo] that 

moderately large values of p, (0.5 < p ,  < 1.0), and small 
values of p, (0.001 < p, < 0.05) are essential for the 
successful working of GAS. The moderately large values of 
p ,  promote the extensive recombination of schemata, while 
small values of p ,  are necessary to prevent the disruption 
of the solutions. These guidelines, however, are useful and 
relevant when the values of p ,  and p ,  do not vary. 

One of the goals of our approach is to prevent the GA 
from getting stuck at a local optimum. To achieve this goal, 
we employ solutions with subaverage fitnesses to search the 
search space for the region containing the global optimum. 
Such solutions need to be completely disrupted, and for this 
purpose we use a value of 0.5 for k4. Since solutions with 
a fitness value of 7 should also be disrupted completely, we 
assign a value of 0.5 to k2 as well. 

Based on similar reasoning, we assign k1 and 163 a value of 
1 .O. This ensures that all solutions with a fitness value less than 
or equal to 7 compulsarily undergo crossover. The probability 
of crossover decreases as the fitness value (maximum of the 
fitness values of the parent solutions) tends to fmax and is 0.0 
for solutions with a fitness value equal to fmax. 

In the next section, we compare the AGA with previous 
approaches for employing adaptive operators in GAS. 

IV. COMPARISON OF AGA WITH 
OTHER ADAPTIVE STRATEGIES 

The idea of adapting crossover and mutation operators to 
improve the performance of GAS has been employed earlier 
[ll,  [31, 191, 1241. This section reviews these techniques and 
compares them with our approach. 

Schaffer et al. [ l ]  discuss a crossover mechanism wherein 
the distribution of crossover points is adapted based on the 
performance of the generated offspring. The distribution in- 
formation is encoded into each string using additional bits. 
Selection and recombination of the distribution bits occurs in 
the normal fashion along with the other bits of the solutions. 

Davis [3], [4] discusses an effective method of adapting 
operator probabilities based on the performance of the opera- 
tors. The adaptation mechanism provides for the alteration of 
operator probabilities in proportion to the fitnesses of strings 
created by the operators. Simply stated, operators which create 
and cause the generation of better strings are alloted higher 
probabilities. The technique has been developed in the context 
of a steady-state GA (see [24]), and experimental evidence has 
demonstrated considerable promise. 

Fogarty [9] has studied the effects of varying the mutation 
rate over generations and integer encodings. Specifically, a 
mutation rate that decreases exponentially with generations has 
demonstrated superior performance for a single application. 

In an approach employing a form of adaptive mutation, 
Whitley et al. [24] have reported significant performance 
improvements. The probability of mutation is a dynamically 
varying parameter determined from the Hamming distance 
between the parent solutions. The diversity in the population 
is sustained by subjecting similar solutions to increased levels 
of mutation. 

The adaptation policy in AGA is different from all the 
approaches described above; [ l ]  is not related to adapting 
mutation and crossover rates. AGA is different from [3] 
and [9] as, in the AGA, p ,  and p ,  are determined for 
each individual as a function of its fitness. In [9], p ,  is 
varied in a predetermined fashion. In [3] too, the operator 
probabilities are invariant with the individual fitnesses of 
solutions, although they are modified periodically based on the 
average performance of the operators (determined indirectly 
from the fitnesses of solutions). 

The AGA bears closer resemblance to Whitley’s adaptive 
mutation approach [24]. In both cases, the mutation rate is 
determined specifically for each solution. Both techniques are 
also derived from the idea of sustaining the diversity in the 
population without affecting the convergence properties. In 
Whitley’s approach, however, the adaptive mutation technique 
has been employed in the context of a steady state GA, while 
we are concemed with generational replacement, in the AGA. 
Since the steady state GA employs a form of populationary 
elitism, there is no need to ‘protect’ the best solutions from 
the high levels of disruption. In the AGA, the best solutions 
are explicitly protected from disruption. The criterion for 
adaptation is also different in both cases: in [24] p ,  is varied 
based on the Hamming distance between solutions, while in 
our approach p ,  and p ,  are adapted based on fitness values. 
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The experimental results in [24] and our own experiments 
(Section V) demonstrate the efficacy of this line of approach. 

V. THE SCHEMA THEOREM AND THE 'AGA' 

The Schema theorem [7], [ 101, [ 171, has been the predomi- 
nant method for analyzing GAS. Schemata are building blocks 
that form the solutions, and the Schema theorem predicts the 
growth of high fitness building blocks at the expense of low 
fitness ones. The Schema theorem also models the detrimental 
effects of crossover and mutation on the propagation of 
schemata from generation to generation. In this section, we 
derive the Schema theorem for the GA with adaptive p, and 
p,. The notation that we have used in the derivation is as 
follows. We now derive the expression to predict Nh(t + 1) 

h : a schema 
f i  

f 
f h  

- fmax 

f; 

: the fitness value of an instance (solution) of 

: the average fitness value of the population 
: the average fitness value of schema h 
: the maximum fitness value of the population 
: the average of the square of fitness values 

(second moment of fitness values) for the 
schema h 

n;(t + 1) : the expected number of offspring created in 

schema - 
- 

To transform the two inequalities of (10) and (11) into one 
inequality, we recall the assumption made in the previous 
section that kl = k3. 

Now, we get a single inequality without any constraints on 
f i ,  

To get an estimate for Nh(t+l), we consider the summation of 
n: over all the solutions, i, that are instances of the schema 
h, i.e., 

Nh ( t )  

Nh(t + 1) = n!(t + 1). 
i=l 

Equivalently, from (12), we get, 

Since, (x2:) fi) = (Nh( t )  x x), and (xzJt) fi2) = 

(Nh ( t )  x E), (13) gets modified to 

generation t + 1 due to a solution i of schema h 
After rearranging the terms, (15) can be rewritten as (and of the generation t) 

: the number of solutions of generation t which are 
instances of the schema h 

: the dejning length of the schema h 
: the length of the solution, i.e., the number of 

binary bits in the encoded solution. 

Nh ( t )  

Z(h) 
L 

from Nh(t).  The selection criterion that we have used for the 
GA is that of proportional selection. We first consider the effect 
of crossover and then generalize the results for mutation. 

The expected number of offspring generated by a solution 
a of the schema h is given by 

The expression that we have used for pc is given by 

(fmax - fi,, f i  7, 
(fmax - f )  Pc = kl 

~ c = k 3 ,  fi 7 
where kl,k3 5 1.0 and kl 5 k3. 

After substituting for pc in (9), we get 

(9) 

'In our research, we have used a binary alphabet for encoding the solutions. 

(15) represents the schema theorem when adaptive crossover 
is used in the GA. We now consider some special cases of 
(15) based on the value of 5. 

A. ESfect of Mutation 

may be generalized to the form 
When we include the disruptive effects of mutation, (12) 

where (1 - k 2 u ) n  ( f m a x - f )  gives the probability that 
the solution i survives disruption due to mutation. For 
kz << 1, the right side of (16) may be approximated to 
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When k2 is comparable with 1.0, a complete Taylor series 
expansion of the right side of (16) needs to considered. In 
what follows, we derive the generalized schema theorem for 
the AGA for all values of k1 and k2. The following analysis 
however generates a slightly inferior lower bound for Nh (t+ I )  
than that obtained in (16) and (15). 

We first introduce the notion of the nth fitness moment of 
a schema h in generation t ,  defined as 

It may be noted that M i  ( t )  is the average fitness of h and that 
M l ( t )  - (M:(t))' gives the variance of fitness of h. 

We also state the following two lemmas without outlining 
the proofs. 

Lemma 1: 
Lemma 2: 

Let us recall (16). We may express it in a general form 

ML(t) 2 ML(t)M,"(t) where k = I + m. 
M:(t)Mh(t) 2 Mh(t )Mi( t )  where p + q = 

T + s and Ip - 41 > Ir - S I .  

n +2 

k = l  

To obtain Nh ( t  + I), consider the summation of n: ( t  + 1) over 
all solutions i that are members of h, 

n+2 

Nh(t + 1) 2 a k ( f i ) ' .  
i E h  k = l  

After interchanging the order of summations, 
expressed in terms of the fitness moments of h 

n+2 

Nh(t + 1) 2 Nh(t) akMf(k) .  
k = l  

From Lemma 1 it follows that ML(t) 2 (M:(t)) ' .  Conse- 
quently (21) may be further reduced to the form 

n+2 

Nh(t + 1) 2 Nh(t) ak(Mi(t)) l" (22) 
k = l  

From the structural similarity of (22) and (19), and after 
considering (16), we gather that (22) may be expressed as 

(15) represents the Generalized Schema theorem for the AGA. 
A comparison of (15) and (23) ( k ~  = 0) demonstrates that 

the former provides a tighter bound than the latter. This is 
because we have employed the inequality M; ( t )  2 (ML (t))' 
to obtain a closed form expression for the Generalized Schema 
theorem. - 

For f h  = fmax, we get 
- 

(24) 
f h  Nh(t + 1) 2 Nh(t)--, 
f 

and for fh = 7, it follows that 

(24) and (25) are instances of the generalized schema theorem 
for schemata with fitnesses fmax and 7, and elucidate the 
adaptation policy. 

B. Variation of Schema Fitness 

The Schema theorem provides a bound for the growth rate 
of a schema, but it does not provide any insight into the effect 
of the genetic operators on the growth rates of instances of a 
schema. Specifically it would be interesting to characterize the 
variation of fitness of a schema from one generation to another, 
which is caused by the different growth rates of the instances 
of the schema. In this section we compare the variation of the 
average fitness of a schema under the action of the AGA and 
the SGA and demonstrate that the AGA tends to induce higher 
schema fitnesses than the SGA. 

In evaluating the expected average fitness of schema h 
in generation k + 1, from the fitnesses of solutions in gen- 
eration t ,  we need to focus attention on two components: 
instances of the schema in generation t which are expected 
to remain undisrupted, and solutions that are generated due to 
recombination. 

By definition, the average fitness of schema h in generation 
t + 1 may be expressed as 

~ i ( t  + I),,, 

due to recombination. 
Equation (26) may be simplified to the form 

The notation in the above equation is the same as used in the 
previous section. The corresponding expression for the average 
fitness in the case of the SGA is given by 

where P = (1 - p,)(l - P ~ ) ~ .  
For purposes of comparison, let us assume that CjEh nj  f j  

as well as C j E h n j  are identical in both cases (AGA and 
SGA). This assumption becomes necessary to be able to 
focus attention on the disruptive effects of the operators. The 
complexity of GA dynamics makes it practically impossible 
to exactly model the effects of recombination in an elegant 
fashion. 

From Lemma 2. it follows that, for each k in (271, 

2 Consequently, it may easily be shown 
M ,  ( t )  . 
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from (27) and (28) that 

In a similar fashion, we can extend the result to moments of 
higher orders 

~ k ( t  + 1 ) A G A  2 ~ k ( t  + 1)SGA (30) 

(29) and (30) may be explained intuitively from the adaptive 
mechanism. Since the probability of disruption of a solution 
with a high fitness value is smaller than that for a solution 
with a lower fitness value, the expected fitness of a randomly 
selected solution after disruption is higher than in the case 
of SGA wherein all solutions are disrupted with the same 
probability. Thus we observe that the AGA promotes schemata 
with high fitness values, and also causes the fitnesses of 
schemata to increase rapidly. Both the effects are the outcomes 
of the adaptation policy. 

VI. EXPERIMENTS AND RESULTS 

In this section, we discuss the experiments that we have 
conducted to compare the performance of the AGA and SGA. 
For this purpose we have employed several multimodal test 
problems with varying complexities. The rest of this section 
is devoted to a discussion of the performance criteria for the 
GAS, the functions that are to be optimized, experiments, and 
the comparative results. 

A. Performance Measures 

As a measure of performance, we consider the average 
number of generations that the GA requires to generate a 
solution with a certain high fitness value (called the threshold). 
The average number of generations is obtained by performing 
the experiment repeatedly (in our case, 30 times) with different 
and randomly chosen initial populations. 

Since the goal of our approach is to prevent the convergence 
of the GA to a local optimum, we also evaluate the perfor- 
mance of the GA in terms of the number of runs for which 
the GA gets stuck at a local optimum. When the GA fails to 
reach the global optimum after a sufficiently large number of 
generations, we conclude that it has gotten stuck at a local 
optimum. 

B. Functions for Optimization 

The choice of suitable functions to verify the performance 
of GAS is not an easy task. The nature of the optimization 
function varies a lot from application to application, in terms 
of the number of local optima, the rate of variation of the 
objective function, etc. In this research, we have used several 
multimodal functions with varying complexities. They are the 
following: 

This is a spiky function (also known as 
Shekel’s foxholes) with 25 sharp spikes of varying heights. 
The function has two variables and the solution is encoded 
using 34 bits. The task of the GA is to locate the highest 

DeJong’s f5: 

TABLE I 
A THREE-BIT DECEPTIVE FUNCTION 

Binary Code Function Value 

OOO 
0 0 1  
010 
01 1 
100 
101 
110 
1 1 1  

28 
26 
22 
0 
14 
0 
0 
30 

peak. The expression for f5 is as 
25 

f6: This is a rapidly varying multimodal function of two 
variables, and is symmetric about the origin with the height of 
the barrier between adjacent minima increasing as the global 
optimum is approached. The variables are encoded using 22 
bits each, and assume values in the range (-100.0, 100.0). f6 
has been employed earlier [22] for comparative studies, where 
it is referred to as the ‘Sine envelope sine wave function.’ The 
expression for f6 is 

s i n 2 d w  - 0.5 
f6 = 0.5 + 

[1.0 + O.OOl(X12 + Z22>l2 

j7: * This function is also similar to f6, but has the 
barrier height between adjacent minima approaching zero as 
the global optimum is approached 

f 7  = ($1’ + Z22)0’25 [ ~ i n ~ ( 5 0 ( ~ ~ ~  + x~~)”’) + 1.01 

Order-3 Deceptive: GA-deceptive functions are being used 
extensively to evaluate the performance of GAS. The order-3 
deceptive function depends on three binary bits as shown in 
Table I. Optimizing the three-bit deceptive function is a trivial 
exercise. The actual function to be optimized by the GAS is 
the sum of five such independent functions. The solution string 
is obtained by concatenating five of the three-bit codes. We 
used only five subfunctions in our function, mainly to enable 
the GAS to converge to the optimum with small populations 
(population size = 100). For a further description of deceptive 
functions the reader is referred to [12]. 

The traveling salesman problem (TSP) involves 
finding the shortest Hamiltonian cycle in a complete graph 
of n nodes. The Euclidean distance between any two nodes is 
computed from their coordinates. An instance of the TSP is 
specified by n, the number of cities, and the coordinates of the 
n cities (nodes). In our implementations, we have employed 
the order crossover operator [21], [lo], and a mutation operator 
that swaps the positions of two randomly chosen cities. p ,  
and p ,  determine the. probability with which the operators 

2The decoded value of each variable of the functions f 5 ,  f6 ,  and f 7 has 
been shifted by 10% to the left, and wrapped around the upper limit in case 
the value is less than the lower limit. This has been done to shift the optimal 
solutions away from Hamming cliffs (see [ 5 ] ) .  

TSP: 
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are employed. We have chosen the 30-city and 
problems (see [24] for coordinates of cities) for comparing 
the performance of the SGA and the AGA. Function Str. Len. Gens. Stuck Thresh. En’, 

The underlying optimization problem 

105-city TABLE I1 
COMPARISON OF PERFORMANCE OF AGA AND SGA 

Neural Networks: 
in feedfonvard neural networks is that of identifying a set SGA AGA SGA AGA 

of interconnection weights, such that a mean square error 
defined between a set of output patterns and training patterns 
is minimized. Each neuron i may be associated with 

An output value Oi, 
A set of Ic input values Ij; 
A threshold value Ti, 
A set of interconnection weights wj; 
An activation value A; = E,”=, wjilji - Ti, 

1 5 j 5 IC, 

1 5 j 5 Ic 

The output value of each neuron is typically a nonlinear 
function of the activation value. In a feed-forward network, the 
neurons are organized into layers (input, output and hidden), 
with the inputs of each neuron connected to the outputs of the 
neurons of the previous layer. The input patterns are applied 
to the input layer, and the training pattern is compared with 
the outputs of neurons in the output layer. The mean square 
error for a given set of weights is evaluated as 

where 
MSE: the mean square error 
p : number of input patterns 
No : number of output neurons 
Oij  : output value of the j th  neuron for the ith input pattern 
0’;j : training value of j th  neuron for ther ith input pattern. 
In our implementation, the output function f is sigmoidal: 
f; = (1 + exp-loA, )-’. We also use binary inputs and train 
the network to generate binary outputs. Further, Tij = 0.1 for 
a binary 0 and Tij = 0.9 for a binary 1. wij and Tj assume 
values in the range -1.0 to +1.0. Each weight is encoded 
using 8 bits, and the string is formed by concatenating the 
binary codes for all the weights and threshold values. 

We consider three mapping problems, 
XOR: 2 inputs, 1 output, 5 neurons, 9 weights, 4 input 
patterns, the output value is the Exclusive OR of the 
input bits. 
4-bit parity: 4 inputs, 1 output, 9 neurons, 25 weights, 16 
input patterns, the output value is 1 if there are an odd 
number of 1s among the inputs. 
Decoder Encoder: 10 inputs, 10 outputs, 25 neurons, 115 
weights, 10 input patterns (each having all Os and a 1 at 
one of the ten inputs), output pattern is the same as the 
input pattern. 

The primary task of test gen- 
eration for digital logic circuits is to generate input vectors 
of logical 0’s and 1’s that can check for possible faults in 
the circuit by producing observable faulty response at the 
primary outputs of the circuit. The problem of generating a 
test for a given fault has been proved to be NP-complete [18]. 
In generating tests, it is desirable to detect close to 100% 
of all the possible faults in the circuit. Test generation as a 

Test Generation Problem: 

XOR 72 61.2 36.73 10 0 0.999 100 
4-bit parity 200 399.33 93.43 18 0 0.999 500 
Dec. Enc. 920 456.43 71.70 26 0 0.99 500 

f5 34 64.06 36.63 7 0 1.00 100 
f6 44 173.9 106.56 23 6 0.999 200 
fl 44 419.90 220.61 21 5 0.995 500 

Order-3 Dec. 15 70.32 105.33 8 9 1.00 200 

candidate optimization problem for GAS may be characterized 
as follows: 

0 

0 

0 

0 

0 

The 
is a 

Faults are modelled as being stuck-at-0 or stuck-at-1. 
A test for a fault should (i) generate a logic value at the 
fault site that is different from the stuck-at value of the 
fault, (ii) should be able to propogate the fault effect to 
one of the primary outputs. 
Fault simulation approach to test generation: Input vectors 
are generated randomly, and then through logic simula- 
tion, the faults that the vector detects are identified as 
being detected. 
Random test generation may be improved by using a 
search based on a cost associated with each input vector. 
Distance Cost function: C, = CiEF L, - L,i where 
C,: cost associated with a vector u, 
F :  set of undetected faults 
L,: maximum number of gate levels in the circuit 
L,i: level to which the fault effect of i has been pro- 
pogated by vector u. 

cost C, is minimum (locally) when a given input vector 
test for a certain fault. It should be noted that the cost 

function changes as faults are detected and removed from the 
list of undetected faults. The task for the GA is to minimize 
the cost C,. Test circuits for experiments have been chosen 
from the ISCAS-85 benchmarks [19]. 

C. Experimental Results 

Except for the TSP’s, in all our experiments, we have used 
a population size of 100 for the GAS. ‘Scaling’ of fitness 
values, and the Stochastic remainder technique (see [lo]) for 
‘selection’ have been used in the GAS. All parameters have 
been encoded using a fixed point encoding scheme. 

For the SGA, we have used values of p ,  = 0.65 and 
p ,  = 0.008. 

For the AGA, p ,  and p ,  are determined according to 
expressions (5 ) ,  (6), (7), and (8) given in Section 111-C. 

The experimental results are presented in Tables 11-IV. 
Table I1 gives the average number of generations required by 
each GA for attaining a solution with a fitness value equal 
to the threshold value ‘ thre~h.’~ Also tabulated is the number 

We are not measuring population convergence based on the mean conver- 
gence of each bit since the AGA never converges in the above sense due to 
the high disruption rates of low fitness solutions. 
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TABLE III 
PEWORMANCE OF AGA AND SGA FOR TSP 

Avg. Tour Optimum Tour Located Max. Gens. Pop. Size Length Cities 

SGA AGA SGA AGA 

30 (424.0) 442.1 430.2 0 7 100 1000 
105 (14383) 16344.3 14801.4 0 4 500 2000 

TABLE IV 
PERFORMANCE OF AGA AND SGA FOR THE TEST GENERATION PROBLEM 

Circuit SGA (Gens.) AGA (Gens.) cEe2 e Str. Len. 

c432 102.10 10.73 99.23% 36 
c499 10.91 10.50 98.94% 41 
c880 155.23 37.33 100.00% 60 

c1355 35.26 31.70 99.49% 41 
c 1908 122.13 57.93 99.52% 33 
c3540 155.43 73.66 96.00% 50 
c5315 53.33 21.56 98.89% 178 

of instances (out of 30 trials) for which the GAS have gotten 
stuck at a local optimum. The maximum number of generations 
that the GAS were executed for, and the string length are also 
indicated for each of the problems. 

The AGA outperforms the SGA for all the problems except 
the Order-3 Deceptive. For the three neural network problems, 
AGA has located the optimal solution in every trial, while the 
performance of the SGA has been poor. 

For the TSP’s we have used populations of 1000 and 2000 
for the 30-city and 105-city problems respectively. The number 
of function evaluations have been 100,OOO and 1,000,000 
respectively. Results have been obtained for 10 different trials. 
For both the problems, the SGA was not able to locate the 
optimal tour even on one occasion, while AGAs performance 
has been significantly better, both in terms of the average tour 
length and the number of instances when the optimal tour was 
located. 

Table IV compares the performance of the AGA and the 
SGA for the Test Generation problem. The numeral in the 
circuit name indicates the gate count of the circuit. Once again, 
the superior performance of AGA is clear. For c432, the SGA 
requires almost 10 times the number of generations that the 
AGA needs to locate all detectable faults. Only for c499, the 
SGA has come close to performing as well as the AGA. The 
results are averages over 30 different trials for each circuit. 
It may be noted that the complexity of test generation is not 
directly dependent on the circuit size, but is controlled by 
several other factors such as the fanins and fanouts of gates, 
the number of levels in the circuit, etc. 

D. When Does The AGA Perform Well? 

The optimization problems considered above span a range 
of complexities, string lengths, and problem domains. In 
general, the performance of the AGA has been significantly 
superior to that of the SGA, while in specific instances 
such as Order-3 Deceptive problem and for c499 in the 
Test generation problem, the SGA has performed as well 

TABLE V 
EFFECT OF “MULTIMODALJTY” ON THE PERFORMANCE OF THE AGA AND SGA 

k Gens. Stuck 

SGA AGA SGA AGA 

1 24.10 27.73 0 0 
3 75.56 70.91 4 0 
5 78.96 71.93 12 3 
7 82.76 72.70 13 4 

as the AGA or better. The experimental results also point 
out that the relative performance of the AGA as compared 
to that of the SGA varies considerably from problem to 
problem. All the problems that we have considered have some 
epistaticity present, however the extent of epistaticity varies 
considerably. For instance, in the neural network problems, 
the high epistaticity is brought about by the fitness being a 
complex nonlinear function of the weights, while in the order- 
3 Deceptive problem, the epistaticity is relatively lower with 
the fitness contribution due to a bit being affected only by two 
other bits. 

A different aspect of multimodal function optimization is the 
sensitivity of the optimization technique to the ‘multimodality’ 
of the problem, i.e., how the performance varies as the number 
of local optima in the search space vary. It may be observed 
from Table I1 that the relative performance of the AGA with 
respect to that of the SGA is better for f 6  and f 7  than for 
f5. Although the evidence is not conclusive, it appears that 
the AGA performs relatively better than the SGA when the 
number of local optima in the search space is large. 

To better understand the circumstances under which AGA 
performs better than the SGA, we have conducted two sets of 
experiments where we have methodically varied the epistacity 
in the problem and the number of local optima in the search 
space. For purposes of convenience, we have chosen the 
following objective function for these experiments 

P 
- 0.5 5 X; 5 0.5 

i=l 

where P gives the number of variables. 
The function has one global optimum and Pk local optima 

for odd values of k. 
To characterize the effect of varying the number of local 

optima in the search space, we have varied IC for a fixed 
value of P = 5. Each variable zi is encoded using 10 bits. 
The experimental results are presented in Table V. Table V 
confirms our earlier observation that, with increasing number 
of local optima the performance of AGA improves steadily 
over that of the SGA. For k = 1, the function is unimodal, 
and the SGA outperforms the AGA. 

Next we consider the effects of varying the epistaticity of 
the function. We consider strings of length 40, k = 5, and we 
vary the number of parameters P. Correspondingly the number 
of bits required for encoding each variable also changes. The 
epistacity increases as P decreases, since the fitness due to a 
single variable z; depends on the interactions of 40/P bits. 
From Table VI, it is clear that the relative performance of the 
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Fig. 3. Comparison of the Best, Average, and Population-Maximum fitness values for the AGA and SGA. 

TABLE VI 
EFFECT OF E P I S T A C ~  ON THE PERFORMANCE OF THE AGA AND SGA 

Code Len. Variables Gens. Stuck 

SGA AGA SGA AGA 

20 2 92.50 86.13 11 7 
10 4 71.73 64.36 5 4 
8 5 59.33 52.40 3 3 
5 8 35.10 48.86 1 2 
4 10 27.73 42.66 0 0 

TABLE VII 
EFFECT OF kl ON AGA PERFORMANCE: AVERAGE NUMBER 

OF GENERATIONS FOR CONVERGENCE AND NUMBER OF 
INSTANCES WHEN AGA GETS STUCK AT A LOCAL OFTIMUM 

Function kl=0.2 0.4 0.6 0.8 1 .o 
f5 47.76 (6) 40.20 (3) 33.46 (3) 41.33 (1) 36.63 (0) 
XOR 45.70 (2) 37.36 (0) 42.30 (0) 38.56 (0) 36.73 (0) 

order-3 Dec. 143.13 (11) 125.66 (9) 109.7 (10) 121.66 (13) 105.33 (9) 

AGA with respect to the SGA deteriorates as the epistaticity 
decreases. 

E. Sensitivity of AGA to IC1 and IC2 

We have already pointed out in Section I1 that p ,  and 
p ,  critically control the performance of the GA. One of the 
goals of having adaptive mutation and crossover is to ease the 
user's burden of specifying p ,  and p c .  However, our method 
has introduced new parameters IC1 and IC2 for controlling the 
adaptive nature of p ,  and p,.  To evaluate the effect of ICl and 
IC2 on the performance of the AGA, we have monitored the 
performance of the AGA for varying values of k1 (0.2-1.0) 
and IC2 (0.14.5). The experimental results are presented in 
Tables VI1 and VIII. 

On analyzing the results presented in Table VI11 for dif- 
ferent values of k2, we notice no dramatic difference in the 

TABLE VIII 
EFFECT OF k2 ON AGA PERFORMANCE AVERAGE NUMBER 

OF GENERATIONS FOR CONVERGENCE AND NUMBER OF 
INSTANCES WHEN AGA GETS STUCK AT A LOCAL OPTIMUM 

Function k2d.1  0.2 0.3 0.4 0.5 

f5 60.20 (2) 48.26 (1) 65.33 (1) 44.33 (2) 36.63 (0) 
XOR 52.26 (0) 51.66 (0) 49.73 (0) 44.60 (0) 36.73 (0) 

Order-3 Dec. 122.30 (15) 117.43 (12) 98.66 (8) 96.53 (6) 105.33 (9) 

performance of the AGA in terms of the average number 
of generations required for convergence. The fact that the 
performance of the GA hardly varies with the value of IC2 

shows that the AGA is not sensitive to the external parameter 
S2--one of the goals of our research. The AGA gets stuck 
at local optima fewer times for higher values of IC2 than for 
lower values of k2. The results justify our choice of IC2 = 0.5 
for the AGA. 

Table VI1 demonstrates the steady improvement in perfor- 
mance of AGA as kl is increased. This may be expected since 
a large value of kl maximizes the recombination of schemata, 
while the best schemata are yet retained due to the adaptation 
policy. 

To illustrate how the AGA works in a fashion different from 
that of the SGA, we plot in Fig. 3, the variation of the average, 
best, and population-maximum fitness values for the SGA and 
the AGA. The XOR function is being optimized, and the 
population size is 100. On comparing the two plots, we observe 
that the average fitness of the population increases gradually 
for the AGA (approximately 0.025 per generation) while it 
increases rapidly for the SGA (0.075 per generation). A careful 
observation of Fig. 3 reveals that, in the first 5 generations, 
the average fitness for the AGA increases rapidly (0.12 per 
generation), remains rather flat until about the 15th generation, 
and once again increases quickly (0.1 per generation). The 
relatively flat zone (generations 5 to 15) occurs when the AGA 
has not yet located the global optimum, and has only located a 
locally optimal solution with a fitness of 0.92. Another feature 
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that stands out is the fluctuation of the population-maximum 
fitness for the SGA, indicating that the SGA loses the best 
solutions often. For the AGA, since the best solution in each 
population is being propagated to the subsequent generation 
with minimal disruption, the population-maximum fitness is 
increasing most of the time. The lower average fitness value of 
the AGA indicates that the population has remained scattered 
in the search space and has not gotten stuck at any local 
optimum. We have not only achieved a better convergence 
rate to the global optimum, but have also prevented the AGA 
from getting stuck at the local optimum (with a fitness value 
of around 0.92) that the SGA has succumbed to. 

VII. CONCLUSION 
Recent research on GAS has witnessed the emergence of 

new trends that break the traditional mold of ‘neat’ GAS that 
are characterized by static crossover and mutation rates, fixed 
length encodings of solutions, and populations of fixed size. 
Goldberg has introduced the notions of variable-length solu- 
tions for GAS in [13] and [14], and has shown that the ‘Messy 
GAS’ perform very well. Davis [4], [3] has recommended the 
technique of adapting operator probabilities dynamically based 
on the relative performance of the operators. 

In this paper, we adopt a ‘messy’ approach to determine 
p ,  and p,, the probabilities of crossover and mutation. The 
approach is different from the previous techniques for adapting 
operator probabilities as p ,  and p, are not predefined, they 
are determined adaptively for each solution of the population. 
The values of p ,  and p, range from 0.0 to 1.0 and 0.0 to 
0.5 respectively. It might appear that the low values of p ,  
and the high values of p ,  might either lead to premature 
convergence of the GA or transform the GA into a random 
search. However, it is the manner in which p ,  and p, are 
adapted to the fitness values of the solutions, that not only 
improves the convergence rate of the GA, but also prevents the 
GA from getting stuck at a local optimum. In the adaptive GA, 
low values of p ,  and p, are assigned to high fitness solutions, 
while low fitness solutions have very high values of p ,  and p,. 
The best solution of every population is ‘protected’, i.e., it is 
not subjected to crossover, and receives only a minimal amount 
of mutation. On the other hand, all solutions with a fitness 
value less than the average fitness value of the population 
have p, = 0.5. This means that all subaverage solutions are 
completely disrupted and totally new solutions are created. 
The GA can, thus, rarely get stuck at a local optimum. 

We have conducted extensive experiments on a wide 
range of problems including TSP’s, neural network weight- 
optimization problems, and generation of test vectors for VLSI 
circuits. In most cases, the AGA has outperformed the SGA 
significantly. Specifically, we have observed that, for problems 
that are highly epistatic and multimodal, the AGA performs 
very well. 

In this work, we have chosen one particular way of adapting 
p ,  and p, based on the various fitnesses of the population. The 
results are encouraging, and future work should be directed at 
developing other such adaptive models for the probabilities of 
crossover and mutation. A similar dynamic model for varying 

the population size in relation to the fitnesses of the population 
is certainly worth investigating. We hope that this paper, 
along with Goldberg’s ‘Messy Genetic Algorithms’, lays the 
foundations for a new class of adaptive, self organizing GAS. 
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