
JOURNAL OF PATTERN RECOGNITION RESEARCH1 (2009) 1-13

Received Jul 27, 2008. Accepted Feb 6, 2009.

A Genetic Algorithm for Constructing Compact
Binary Decision Trees

Sung-Hyuk Cha scha@pace.edu
Charles Tappert ctappert@pace.edu
Computer Science Department, Pace University
861 Bedford Road, Pleasantville, New York, 10570, USA

Abstract
Tree-based classifiers are important in pattern recognition and have been well studied.

Although the problem of finding an optimal decision tree has received attention, it is a hard
optimization problem. Here we propose utilizing a genetic algorithm to improve on the
finding of compact, near-optimal decision trees. We presenta method to encode and decode
a decision tree to and from a chromosome where genetic operators such as mutation and
crossover can be applied. Theoretical properties of decision trees, encoded chromosomes,
and fitness functions are presented.

Keywords: Binary Decision Tree, Genetic Algorithm.

1. Introduction
Decision trees have been well studied and widely used in knowledge discovery and decision sup-
port systems. Here we are concerned with decision trees for classification where the leaves represent
classifications and the branches represent feature-based splits that lead to the classifications. These
trees approximate discrete-valued target functions as trees and are a widely used practical method
for inductive inference [1]. Decision trees have prosperedin knowledge discovery and decision sup-
port systems because of their natural and intuitive paradigm to classify a pattern through a sequence
of questions. Algorithms for constructing decision trees,such as ID3 [1-3], often use heuristics that
tend to find short trees. Finding the shortest decision tree is a hard optimization problem [4, 5].

Attempts to construct short, near-optimal decision trees have been described (see the extensive
survey [6]). Gehrke et al developed a bootstrapped optimistic algorithm for decision tree construc-
tion [7]. For continuous attribute data, Zhao and Shirasaka[8] suggested an evolutionary design,
Bennett and Blue [9] proposed an extremepoint tabu searchalgorithm, and Pajunen and Girolami
[10] exploited linearindependent component analysis(ICA) to construct binary decision trees.

Genetic algorithms (GAs) use an optimization technique based on natural evolution [1, 2, 11, 12].
GAs have been used to find near-optimal decision trees in twofold. On the one hand, they were used
to select attributes to be used to construct decision trees in a hybrid or preprocessing manner [13-
15]. On the other hand, they were applied directly to decision trees [16, 17]. A problem that arises
with this approach is that an attribute may appear more than once in the path of the tree. In this
paper, we describe an alternate method of constructing near-optimal binary decision trees proposed
succinctly in [18].

In order to utilize genetic algorithms, decision trees mustbe represented as chromosomes where
genetic operators such as mutation and crossover can be applied. The main contribution of this
paper is proposing a new scheme to encode and decode a decision tree to and from a chromosome.
The remainder of the paper is organized as follows. Section 2reviews decision trees and defines a
new function denoted asd∆ to describe the complexity. Section 3 presents the encoding/decoding

c© 2009 JPRR. All rights reserved. Permissions to make digitalor hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the firstpage. To copy otherwise, or to republish, requires a fee and/or special
permission from JPRR.

CHA AND TAPPERT

C

A D

B

A

0 1

0

0

0 11

w1 w2 w2
1

w1

0 1

w2 w1

(a) T1 consistent to D

C

A B

D

A

0 1

0

0

0 11

w1 w2 w2
1

w1

0 1

w2 w1

(b) Tx inconsistent to D

Fig. 1: Decision trees consistent and inconsistent withD.

decision trees to/from chromosomes which stems fromd∆, genetic operators like mutation and
crossover, fitness functions and their analysis. Finally, Section 4 concludes this work.

2. Preliminary
Let D be a set of labeled training data, a database of instances represented by attribute-value pairs
where each attribute can have a small number of possible disjoint values. Here we consider only
binary attributes. Hence,D hasn instances where each instancexi consists ofd ordered binary
attributes and a target value which is one ofc states of nature,w. The following sample databaseD
wheren = 6, d = 4, c = 2, andw = {w1, w2} will be used for illustration throughout the rest of
this paper.

D =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A B C D w
x1 0 0 0 0 w1

x2 0 1 1 0 w1

x3 1 0 1 0 w1

x4 0 0 1 1 w2

x5 1 1 0 0 w2

x6 0 0 1 0 w2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Algorithms to construct a decision tree take a set of training instancesD as input and output
a learned discrete-valued target function in the form of a tree. A decision tree is a rooted tree
T that consists of internal nodes representing attributes, leaf nodes representing labels, and edges
representing the attributes possible values. Branches represent the attributes possible values and in
binary decision trees, left branches have values of 0 and right branches have values of 1 as shown
in Fig. 1. For simplicity we omit the value labels in some later figures. A decision tree represents a
disjunction of conjunctions. In Fig. 1(a), for example,T1 represents thew1 andw2 states as

(¬C∧¬A)∨(C∧¬D∧¬B∧A)∨(C∧¬D∧B) and(¬C∧A)∨(C∧¬D∧¬B∧¬A)∨(C∧D),
respectively. Each conjunction corresponds to a path from the root to a leaf.

A decision tree based on a databaseD with c number of classes is ac-class classification prob-
lem. Decision trees classify instances by traversing from root node to leaf node. The classification
process starts from the root node of a decision tree, tests the attribute specified at this node, and
then moves down the tree branch according to the attribute value given. Fig. 1 shows two decision
trees,T1 andTx. The decision treeT1 is said to be aconsistentdecision tree because it is consistent

2

A GENETIC ALGORITHM FOR CONSTRUCTINGCOMPACT BINARY DECISION TREES

D

A

B B

C

0 1

0

0

0

0

1

11

1

A

B

C

B

0 1

0

0

01 1

1

(a) T2 with 11 nodes (b) T3 with 9 nodes

w2

w2

w2

w2

w2

w1w1

w1

w1

w1 w1

Fig. 2: Two decision trees consistent withD: (a) by ID-3 and (b) by GA.

with all instances inD. However, the decision treeTx is inconsistentwith D becausex2’s class is
actuallyw1 in D whereasTx classifies it asw2.

There are two important properties of a binary decision tree:

Property 1 The size of a decision tree withl leaves is2l − 1.

Property 2 The lower and upper bounds ofl for a consistent binary decision tree arec and n:
c ≤ l ≤ n.

The number of leaves in a consistent decision tree must be at leastc in the best cases. In the worst
cases, the number of leaves will be the size ofD with each instance corresponding to a unique leaf,
e.g.,T1 andT2.

2.1 Occams Razor and ID3
Among numerous decision trees that are consistent with the training database of instances, Fig. 2
shows two of them. All instancesx = {x1, . . . , x6} are classified correctly by both decision trees
T2 and T3. However, an unknown instance〈0, 0, 0, 1, ?〉, which is not in the training set,D is
classified differently by the two decision trees;T2 classifies the instance asw2 whereasT3 classifies
it as w1. This inductive inference is a fundamental problem in machine learning. Theminimum
description length principleformalized fromOccam’s Razor[19] is a very important concept in
machine learning theory [1, 2]. Albeit controversial, manydecision-tree building algorithms such
as ID3 [3] prefer smaller (more compact, shorter depth, fewer nodes) trees and thus the instance
〈0, 0, 0, 1, ?〉 is preferably classified asw2 by T3 becauseT3 is shorter thanT2. In other words,T3

has a simpler description thanT2. The shorter the tree, the fewer the number of questions required
to classify instances.

Based onOccam’s Razor, Ross Quinlan proposed a heuristic that tends to find smallerdecision
trees [3]. The algorithm is called ID3 (Iterative Dichotomizer 3) and it utilizes theEntropywhich is
a measure of homogeneity of examples as defined in the equation 1.

Entropy(D) = −
∑

x∈w={w1,w2}

P (x) log P (x) (1)

3

CHA AND TAPPERT

D

A

B B

C

0 1

0

0

0

0

1

11

1

w2

w2

w2

w1w1

w1

0.191000gain

C DBAA B C w

x1 0 0 0 w1
x2 0 1 1 w1
x3 1 0 1 w1
x5 1 1 0 w2
x6 0 0 1 w2

gain 0.02 0.02 0.02
x4 0 0 1 w2

A B C w

B C w
x3 0 1 w1
x5 1 0 w2

gain 1 1

B C w

x1 0 0 w1
x2 1 1 w1
x6 0 1 w2

gain 0.33 0.33

C w

x1 0 w1
x6 1 w2

gain 1

DL

DR

DLL DLR

DLLL

C w

x3 1 w1

DLRL C w

x5 0 w2

DLRRC w

x2 1 w1

DLLR

Fig. 3: Illustration of the ID3 algorithm.

Information gainor simplygain is defined in terms ofEntropywhereX is one of attributes inD.
When all attributes are binary type, the gain can be defined asin the equation 2.

gain(D,X) = Entropy(D) −

(

|DL|

|D|
Entropy(DL) +

|DR|

|D|
Entropy(DR)

)

(2)

The ID3 algorithm first selects the attribute whosegain is the maximum as a root node. For all
subtrees of the root node, it finds the next attribute whose gain is the maximum iteratively. Fig. 3
illustrates the ID3 algorithm. Starting with the root node,it evaluates all attributes in the databaseD.
Since the attributeD has the highest gain, the attributeD is selected as a root node. Then it partitions
the databaseD into two sub databases:DL andDR. For each sub-database, it calculates the gain.
As a result,T2 decision tree is built. However, as is apparent from Fig. 2 the ID3 algorithm does not
necessarily find the smallest decision tree.

2.2 Complexity ofd∆ Function
To the extent that smaller trees are preferred, it becomes interesting to find a smallest decision tree.
Finding a smallest decision tree is an NP-complete problem though [4, 5]. So as to comprehend
the complexity of finding a smallest decision tree, considera full binary decision tree,T f

1 (the
superscriptf denotes full), where each path from the root to a leaf contains all the attributes exactly
once as exemplified in Fig. 4 . There are2d leaves whered+1 is the height of the full decision tree.

In order to build a consistent full binary tree, one may choose any attribute as a root node, e.g.,
there are four choices in Fig. 4 . In the second level nodes, one can choose any attribute that is not
in the root node. For example, in Fig. 4 there are2 × 2 × 2 × 2 × 3 × 3 × 4 possible full binary
trees. We denote the number of possible full binary tree withd attributes asd∆.

Definition 1 The number of possible full binary tree with d attributes is formally defined as

4

A GENETIC ALGORITHM FOR CONSTRUCTINGCOMPACT BINARY DECISION TREES

C

A D

D B

B B D D

B B

A A A A

0 1

0

0 0 0 0

0 11

1111

d + 1

0 1

w1 w1

0 1

w1 w1

0 1

w2 w2

0 1

w2 w2

0 1

w2 w1

0 1

w1 w1

0 1

w2 w2

0 1

w2 w2

{x1,x2,x3,x4,x5,x6}

{x1, x5} {x2,x3,x4,x6}

{x1} {x5} {x4}{x2,x3,x6}

{x2}{x3,x6}{x5}

{x5}

{x1}

{x1} {x6} {x3} {x2}

{x4}

{x4} ∅∅∅∅

∅

∅

∅ ∅

∅∅ ∅∅∅

2d

Fig. 4: A sample full binary decision tree structureT
f
1

.

Table 1: Comparison ofd∆ andd! functions.

d d∆ d!

1 1∆ = 1 = 1 1!= 1

2 2∆ = 1 × 1 × 2 = 2 2!= 2

3 3∆ = 1 × 1 × 1 × 1 × 2 × 2 × 3 = 12 3!= 6

4 4∆ = 2 × 2 × 2 × 2 × 3 × 3 × 4 = 576 4!= 24

5 5∆ = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 3 × 3 × 3 × 3 × 4 × 4 × 5 = 1658880 5!= 120

6 6∆ = 216 × 38 × 44 × 52 × 6 = 16511297126400 6!= 720

7 7∆ = 232 × 316 × 48 × 54 × 62 × 7 = 1.9084e + 027 7!= 5040

8 8∆ = 264 × 332 × 416 × 58 × 64 × 72 × 8 = 2.9135e + 055 8!= 40320

9 9∆ = 2128 × 364 × 432 × 516 × 68 × 74 × 82 × 9 = 7.6395e + 111 9!= 362880

10 10∆ = 2256 × 3128 × 464 × 532 × 616 × 78 × 84 × 92 × 10 = 5.8362e + 224 10!= 3628800

d∆ =
d

∏

i=1

i2
d−i

. (3)

As illustrated in Table 1, asd grows, the functiond∆ grows faster than all polynomial, exponen-
tial, and even factorial functions. Thefactorial functiond! is the product of all positive integers less
than or equal tod and manycombinatorial optimizationproblems have the complexity ofO(d!)
search space. The search space of full binary decision treesis much larger, i.e.,d∆ = Ω(d!). Lower
and upper bounds ofd∆ areΩ(22d

) ando(d2d

). Note that real decision trees, such asT1 in Fig. 1 (a),
can be sparse because some internal nodes can be leaves as long as they are homogeneous. Hence,
the search space for finding a shortest binary decision tree can be smaller thand∆.

3. Genetic Algorithm for Binary Decision Tree Construction
Genetic algorithms can provide good solutions to many optimization problems [11, 12]. They are
based on natural processes of evolution and the survival-of-the-fittest concept. In order to use the

5

CHA AND TAPPERT

3

1 3

2 1 2 2

{1~4}

{1~3}

{1~2}

4321

DCBA

321

DBA
321

DBA

21

DB

21

DB

21

BA

21

BA

3 1 3 2 1 2 2

(a)

(b)

{1~4} {1~3} {1~2}

T1
e

S1
f

Fig. 5: Encoding and decoding schema: (a) encoded tree forT
f
1

in Fig. 4 and (b) its chromosome attribute-selection
scheduling string.

genetic algorithm process, one must define at least the following four steps: encoding, genetic
operators such as mutation and crossover, decoding, and fitness function.

3.1 Encoding
For genetic algorithms to construct decision trees the decision trees must be encoded so that genetic
operators, such as mutation and crossover, can be applied. LetA = {a1, a2, . . . , ad} be the ordered
attribute list. We illustrate and describe the process by considering the full binary decision treeT f

1

in Fig. 4, whereA = {A,B,C,D}.
Graphically speaking, the encoding process converts the attribute names inT f

1 into the index of
the attribute according to the ordered attribute list,A, recursively, starting from the root as depicted
in Fig. 5. For example, the root isC and its index inA is 3. Recursively, for each sub-tree, update
A to A − {C} = {A,B,D} attribute list. The possible integer values at a node in thei’th level
in the encoded decision treeTe are from 1 tod − i + 1. Finally, take the breadth-first traversal to
generate the chromosome string S, which stems fromd∆ function. ForT f

1 the chromosome string
S1 is given in Fig. 5 (b).

T1 andT3 in Fig. 1 is encoded intoS1 = 〈3, 1, 3, ∗, ∗, 2, ∗〉 where∗ can be any number within
the restricted bounds.T2 and T3 in Fig. 2 are encoded intoS2 = 〈4, 1, ∗, 1, 1, ∗, ∗〉 and S3 =
〈1, 1, 1, 1, ∗, ∗, ∗〉, respectively. Let us call this a chromosome attribute-selection scheduling string,
S, where genetic operators can be applied. Properties ofS include:

Property 3 The parent position of positioni is ⌊i/2⌋, except fori = 1, the root.

Property 4 The left and right child positions of positioni are 2i and 2i + 1, respectively, ifi ≤
2d−2 − 1; otherwise, there are no children.

Property 5 The length of theS’s is exponential ind : |S| = 2d−2 − 1.

Property 6 Possible integer values at positioni are 1 tod − ⌈log(i + 1)⌉ − 1 : Si ∈ {1, . . . , d −
⌈log(i + 1)⌉ − 1} .

Property 6 provides the restricted bounds for each positionof S.

6

A GENETIC ALGORITHM FOR CONSTRUCTINGCOMPACT BINARY DECISION TREES

D

A C

C B

B B C C

B B

A A A A

3 1 3 2 1 2 2

{1~4} {1~3} {1~2}

C

A B

D B

B B D D

D D

A A A A

4
fT 5

fT

4 1 3 2 1 2 2

3 1 2 2 1 2 2

S1
f

S4

S5

3→4 3→2

Fig. 6: Mutation operator.

Property 7 The number of possibleS, |π(S)|, is d∆ or |π(S)| =
|S|
∏

i=1

(d − ⌈log(i + 1)⌉ − 1)i.

The lower and upper bounds of|π(S)| areΩ(2|S|) ando(d|S|).

3.2 Genetic Operators
Two of the most common genetic operators are mutation and crossover. The mutation operator
is defined as changing the value of a certain position in a string to one of the possible values in
the range. We illustrate the mutation process on the attribute selection scheduling stringSf

1 =
〈3, 1, 3, 2, 1, 2, 2〉 in Fig. 6. If a mutation occurs in the first position and changes the value to 4,
which is in the range{1, .., 4}, T f

4 is generated. If a mutation happens in the third position and
changes the value to 2, which is in the range{1, .., 3}, thenT f

5 is generated. As long as the changed
value is within the allowed range, the resulting new string always generates a valid full binary
decision tree.

ConsiderSx = 〈4, 1, 3, 1, 1, 2, 1〉. A full binary decision tree is built according to this schedule.
The final decision tree forSx will be T2 Fig. 2, i.e.,Sx = 〈4, 1, ∗, 1, 1, ∗, ∗〉. There are3×2×2 = 12
equivalent schedules that produceT2. Therefore, for the mutation to be effective we apply the
mutation operators only to those positions that are not∗.

To illustrate the crossover operator, consider the two parent attribute selection scheduling strings,
P1 andP2, in Fig. 7 . After randomly selecting a split point, the first part ofP1 and the last part of
P2 contribute to yield a child stringS6. Reversing the crossover produces a second childS7. The
resulting full binary decision trees for these two childrenareT f

6 andT f
7 , respectively.

3.3 Decoding
Decoding is the reverse of the encoding process in Fig. 5. Starting from the root node, we place
the attribute according to the chromosome scheduleS which contains the index values of attribute
list A. When an attributea is selected,D is divided into left and right branchesDL andDR. DL

consists of all thexi havinga value of 0 andDR consists of all thexi having a value of 1. For each
pair of sub-trees we repeat the process recursively with thenew attribute listA = A − {a}. When
a node becomes homogeneous, i.e., all class values inD are the same, we label the leaf. Fig. 8
displays the decision trees fromS4, S5, S6, andS7, respectively.

7

CHA AND TAPPERT

C

A B

D B

B B D D

A D

D D A A

3 1 3 2 1 2 2

D

C C

B A

A A B B

B B

A A A A

4 3 2 2 1 1 2

P1 :

P2 :

3 1 2 2 1 1 2

4 3 3 2 1 2 2

:

:

6
fT 7

fT

6S

7S

Fig. 7: Crossover operator.

D

A

C B

B

w2

w2w1w1

w1w2

C

A B

D

A

w2w1 w1

w2

w1w2

C

A B

Aw2w1 w1

w1w2

D

C

B A

w2

w1w2w1 B

w1w2

T4 T5

T6 T7

Fig. 8: Decoded decision trees.

Sometimes a chromosome introduces mutants. For instance, consider a chromosomeS8 〈3, 3, 2, 1,
1, 1, 2〉 which resultsT8 in Fig. 9. The⊗ occurs whenD at the node attributea has non-homogeneous
labels but thea column inD has either all 0‘s or all 1‘s. In other words, thea attribute provides
no information gain. We refer to such a decision tree as a mutant tree for two reasons. First, what
values should we put in⊗? The label may be chosen at random butDL provides no clue. Second,
if we allow entering a value for⊗, it may violate the Property 2; the number of leavesl may exceed
n. Indeed,T8 behaves identically toT6 with respect toD. Thus, mutant decision trees will not be
chosen as the fittest trees according to the fitness functionspresented in the later section.

3.4 Fitness Functions
Each attribute selection scheduling stringS must be evaluated according to a fitness function. We
consider two cases: in the first caseD contains no contradicting instances andd is a small finite
number, in the other cased is very large. Contradicting instances are those whose attribute values are

8

A GENETIC ALGORITHM FOR CONSTRUCTINGCOMPACT BINARY DECISION TREES

w2011x5

0

D

w100x1

wBADL

w2000x6

w2100x4

w1001x3

w1010x2

D wBADR

w200x6

w210x4

w101x3

D wADRL

w211x5

w100x1

wBADLL

w10x1

wBDLLL

w21x5

wBDLLR

w100x2

D wADRR

w10x3

D wDRLR

w20x6

w21x4

D wDRLL

C

D B

A w1

w1w2

A

w2w1

T8

Fig. 9: Mutant binary decision tree.

identical but their target values are different. The case with smalld and no contradicting instances
has application to network function representation [20].

Theorem 1 Every attribute selection scheduling stringS produces a consistent full binary decision
tree as long as the set of instances contains no contradicting instances.

Proof Every attribute selection scheduling stringS produces a full binary decision tree, e.g., in
Fig. 4. Since each instance inD corresponds to a certain branch, add the leaves with target values in
the set of instances accordingly. If the target value is not available in the training set, add a random
target value. This becomes a complete truth table as the number of leaves is2d. The predicted
value by the decision tree is always consistent with the actual target value inD. If there are two
instances with same attribute values but different classes, no consistent binary decision tree exists.�

Since the databases we consider contain no contradicting instances, one obvious fitness function
is the size of the tree; the fitness functionfs is the size, the total number of nodes, e.g.,fs(T2) = 11
andfs(T3) = 9. Here, however, we use a different fitness functionfd, i.e., the sum of the depth
of the leaf nodes for each instance. This is equivalent to thesum of questions to be asked for each
instance, e.g.,fd(T2) = 18 andfd(T3) = fd(T6) = 15 as shown in Table 2. This requires the
assumption that each instance inD has equal prior probability. Both of these evaluation functions
suggest thatT3 andT6 are better thanT2 which is produced by the ID3 algorithm.

With two decision trees of the same size(2l − 1) wherel is the number of leaves, the number of
questions to be asked could be different by theorem 2.

Theorem 2 There existTx andTy such thatfs(Tx) = fs(Ty) andfd(Tx) < fd(Ty).

Proof Let Tx be a balanced binary tree andTy be a skewed or linear binary tree. Thenfd(Tx) =

Θ(n log n) whereasFd(Ty) = Θ(n2) = Θ(
n
∑

i=1

i). �

9

CHA AND TAPPERT

Table 2: Training instances and their depths in decision trees.

T1 T2 T3 T4 T5 T6 T7 T8

x1 2 4 3 3 2 2 3 3
x2 3 3 2 4 2 2 4 2
x3 4 3 2 3 4 3 3 3
x4 2 1 3 1 3 3 1 3
x5 2 3 2 3 2 2 3 3
x6 4 4 3 4 4 3 4 3

sum 17 18 15 18 17 15 18 17

The fd fitness function prefers not only shorter decision trees to larger ones, but also balanced
decision trees to skewed ones.

Corollary 1 n log c ≤ fd(Tx) ≤
n
∑

i=1

i − 1 wheren is the number of instances.

Proof By the Property 2, in the best case the decision tree will havel = c leaves. In the best case,
the tree is completely balanced with heightlog c. Thus the lower bound forfd(Tx) is n log c. In
the worst case, the number of leaves isn by the Property 2 and the decision tree forms a skewed or

linear binary tree. Thus the upper bound is
n
∑

i=1

i − 1. �

If fd(Tx) < n log c, Tx classifies only a subset of classes. Regardless of the size, this tree should

not be selected. Iffd(Tx) >
n
∑

i=1

i − 1 , there is a mutant node andTx can be shortened.

Whend is large, the size of the chromosome,|S| will explode by the Property 5. In this case we
must limit the height of the decision tree. The chromosome has a finite length and guides to select
attributes up to a certain height. Sincen ≪ 2d typically, a good choice of the height of the decision
tree ish = log n, i.e., |S| ≈ n. When a branch reaches a heighth, the node is assigned to be a leaf
with the class whose prior probability is the highest instead of choosing another attribute. When the
height is limited, decision trees may be no longer consistent to D.

Suppose that the height is limited to 3;h = 3 in Fig. 3 case. Fig. 10 shows the pruned binary
decision tree,T9. In the 4th node in breadth first traversal order, instead of choosingB attribute in
Fig. 3,w1 is labeled because the prior probability ofw1 is higher thanw2 in DLL. When the prior
probabilities are the same, either one can be chosen. Letfa be the fitness function that represents
the percentage of correctly classified instances by the decision tree. In Fig. 10,{x1, x2, x4, x5} are
correctly predicted byT9 and hencefa(T9) = 4/6.

We randomly generated a 26 binary attribute training database and limited the tree height to 8.
Fig. 11 shows the initial population of 100 binary decision trees generated by random chromosomes
in respect to theirfd(Tx) and accuracyfa(Tx) on the training examples. The size of decision trees
and their accuracies on the training examples have no correlations.

4. Discussion
In this paper, we reviewed binary decision trees and demonstrated how to utilize genetic algorithms
to find compact binary decision trees. By limiting the tree’sheight the presented method guarantees
finding a better or equal decision tree than the best known algorithms since such trees can be put in
the initial population.

Methods that apply GAs directly to decision trees [16, 17] can yield subtrees that are never visited
as shown in Fig. 12. After mutation operator in ‘O’ node inTa, Tc has a dashed subtree that

10

A GENETIC ALGORITHM FOR CONSTRUCTINGCOMPACT BINARY DECISION TREES

D

A

0 1

0 1

w2

A B C w

x1 0 0 0 w1
x2 0 1 1 w1
x3 1 0 1 w1
x5 1 1 0 w2
x6 0 0 1 w2

DL

x4 0 0 1 w2
A B C wDR

B C w

x1 0 0 w1
x2 1 1 w1
x6 0 1 w2

DLL
B C w

x3 0 1 w1
x5 1 0 w2

DLR

w1 w2

T9

w2

w2

w2

w1

w1

w1

w

w10100x6

w20011x5

w21100x4

w20101x3

w10110x2

0

D

w1000x1

Predicted by T9CBAD

Fig. 10: Pruned decision tree at the height of 3.

Fig. 11: Binary decision trees with respect tofd and accuracyfa.

is never visited. After crossover betweenTa andTb, the child treesTd andTe also have dashed
subtrees. These unnecessary subtrees occur whenever an attribute occurs more than once in a path
of a decision tree. However, by encoding the decision tree, this problem never occurs as illustrated
in Fig. 13.

Whend is large, limiting the height was recommended. Encoding thebinary decision tree in this
paper utilized the breadth first traversal. However, pre-order depth first traversal can be utilized as
shown in Fig. 13 . Mutation shown in this paper is still valid in pre-order depth first traversal repre-
sentation but crossover may cause a mutant when two subtreesto be switched are at different levels.

11

CHA AND TAPPERT

The index number of a node may exceed the limit due to a crossover. Thus mutation immediately
after crossover is inevitable. Analyzing and implementingthe depth first traversal of encoded deci-
sion tree remains ongoing work. Encoding and decoding non-binary decision trees where different
attributes have different possible values is an open problem.

References

[1] Mitchell, T. M., ”Machine Learning”, McGraw-hill, 1997.
[2] Duda, R. O., Hart, P. E., and Stork, D. G.,Pattern Classification, 2nd Ed., Wiley interscience, 2001.
[3] Quinlan, J. R., Induction of decision trees,Machine Learning, 1(1), 81-106.
[4] L. Hyafil and R. L. Rivest, Constructing optimal binary decision trees is NP-complete ,Information

Processing Letters, Vol. 5, No. 1, 15-17, 1976.
[5] Bodlaender, L.H. and Zantema H., Finding Small Equivalent Decision Trees is Hard,International

Journal of Foundations of Computer Science, Vol. 11, No. 2 World Scientific Publishing, 2000, pp.
343-354.

[6] Safavian, S.R. and Landgrebe, D., A survey of decision tree classifier methodology,IEEE Transactions
on Systems, Man and Cybernetics, Vol 21, No. 3, pp 660-674, 1991.

[7] Gehrke, J., Ganti, V., Ramakrishnan R., and Loh, W., BOAT-Optimistic Decision Tree Construction, in
/it Proc. of the ACM SIGMOD Conference on Management of Data,1999, p169-180.

[8] Zhao, Q. and Shirasaka, M., A Study on Evolutionary Design of Binary Decision Trees, inProceedings
of the Congress on Evolutionary Computation, Vol 3, IEEE, 1999, pp. 1988-1993.

[9] Bennett , K. and Blue, J.,Optimal decision trees, Tech. Rpt. No. 214 Department of Mathematical
Sciences, Rensselaer Polytechnic Institute, Troy, New York., 1996.

[10] Pajunen, P. and Girolami, M., ”Implementing decisionsin binary decision trees using independent
component analysis”, inProceedings of ICA, 2000, pp. 477-481.

[11] Goldberg D. L.,Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley,
1989.

[12] Mitchell, M., An Introduction to Genetic Algorithms, Massachusetts Institute of Technology, 1996.
[13] Kyoung Min Kim, Joong Jo Park, Myung Hyun Song, In Cheol Kim, and Ching Y. Suen, Binary

Decision Tree Using Genetic Algorithm for Recognizing Defect Patterns of Cold Mill Strip,⁀LNCS Vol.
3060, Springer, 2004, pp. 1611-3349.

[14] Teeuwsen, S.P., Erlich, I., El-Sharkawi, M.A., and Bachmann, U., Genetic algorithm and decision tree-
based oscillatory stability assessment,IEEE Transactions on Power Systems, Vol 21, Issue 2, May 2006
pp. 746-753.

[15] Bala, J., Huang, J., Vafaie, H., DeJong, K., and Wechsler, H., Hybrid learning using genetic algorithms
and decision tress for pattern classification. inProceedings of the 14th International Joint Conference
on Artificial Intelligence, Montreal, Canada, 1995, pp. 719-724.

[16] Papagelis, A. and Kalles, D., GA Tree: genetically evolved decision trees, inProceedings of 12th IEEE
International Conference on Tools with Artificial Intelligence, 2000, pp. 203-206.

[17] Fu, Z., An Innovative GA-Based Decision Tree Classifierin Large Scale Data Mining,LNCSVol. 1704,
Springer, 1999, pp 348-353.

[18] S. Cha and C. C. Tappert, Constructing Binary Decision Trees using Genetic Algorithms, inProceed-
ings of International Conference on Genetic and Evolutionary Methods, July 14-17, 2008, Las Vegas,
Nevada.

[19] P. Grnwald,The Minimum Description Length principle, MIT Press, June 2007.
[20] Martinez, T. R. and Campbell, D. M., A Self-Organizing Binary Decision Tree For Incrementally De-

fined Rule Based Systems, Systems,IEEE Systems, Man, and Cybernetics, Vol. 21, No. 5, pp.1231-
1238, 1991.

12

A GENETIC ALGORITHM FOR CONSTRUCTINGCOMPACT BINARY DECISION TREES

B

J

O

R

V

K

M

B

C

AJ

K

B

J K

K

M

B

J B

C

AJ

K

O

R

V

K

O

M

Ta Tb

Tc
Td Te

Mutate

Crossover

O

Fig. 12: Direct GA on decision trees.

2

9

15

17

20

e
bT

10

13

11

2

2

18

10

2

9 10

10

11

2

9 2

2

18

10

15

17

20

10

13

11

B

J K

L

N

B

J C

D

AK

L

O

R

V

J

N

L

e
aT

e
hTe

fT e
gT

hTfT gT

Fig. 13: Pre-order depth first traversal for decision trees.

13

