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Abstract

Tree-based classifiers are important in pattern recognéial have been well studied.
Although the problem of finding an optimal decision tree heived attention, it is a hard
optimization problem. Here we propose utilizing a genelgpeathm to improve on the
finding of compact, near-optimal decision trees. We presemtthod to encode and decode
a decision tree to and from a chromosome where genetic @peisich as mutation and
crossover can be applied. Theoretical properties of detisees, encoded chromosomes,
and fitness functions are presented.
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1. Introduction

Decision trees have been well studied and widely used in ladiye discovery and decision sup-

port systems. Here we are concerned with decision tree&fesification where the leaves represent
classifications and the branches represent feature-bpketisat lead to the classifications. These
trees approximate discrete-valued target functions &s ted are a widely used practical method
for inductive inference [1]. Decision trees have prospéndahowledge discovery and decision sup-

port systems because of their natural and intuitive panaddgclassify a pattern through a sequence
of questions. Algorithms for constructing decision treseg;h as ID3 [1-3], often use heuristics that
tend to find short trees. Finding the shortest decision gr@ehiard optimization problem [4, 5].

Attempts to construct short, near-optimal decision tresagetbeen described (see the extensive
survey [6]). Gehrke et al developed a bootstrapped opiiraggorithm for decision tree construc-
tion [7]. For continuous attribute data, Zhao and Shirag8kauggested an evolutionary design,
Bennett and Blue [9] proposed an extrepwnt tabu searclalgorithm, and Pajunen and Girolami
[10] exploited lineaindependent component analyfi€A) to construct binary decision trees.

Genetic algorithms (GAs) use an optimization techniquetas natural evolution [1, 2, 11, 12].
GAs have been used to find near-optimal decision trees irotdioOn the one hand, they were used
to select attributes to be used to construct decision treashiybrid or preprocessing manner [13-
15]. On the other hand, they were applied directly to denisiees [16, 17]. A problem that arises
with this approach is that an attribute may appear more timae @ the path of the tree. In this
paper, we describe an alternate method of constructingaptmnal binary decision trees proposed
succinctly in [18].

In order to utilize genetic algorithms, decision trees nhestepresented as chromosomes where
genetic operators such as mutation and crossover can biecdapflhe main contribution of this
paper is proposing a new scheme to encode and decode a ddpesido and from a chromosome.
The remainder of the paper is organized as follows. Secti@mvi2ws decision trees and defines a
new function denoted asA to describe the complexity. Section 3 presents the encfai#ogding
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(a) T, consistent t® (b) T, inconsistent t®

Fig. 1: Decision trees consistent and inconsistent viith

decision trees to/from chromosomes which stems ftll) genetic operators like mutation and
crossover, fithess functions and their analysis. Finaligti®n 4 concludes this work.

2. Preliminary

Let D be a set of labeled training data, a database of instancessegyed by attribute-value pairs
where each attribute can have a small number of possibleirdtisjalues. Here we consider only
binary attributes. Hencd) hasn instances where each instanceconsists ofd ordered binary
attributes and a target value which is one:states of naturey. The following sample databage
wheren = 6, d = 4, ¢ = 2, andw = {w1, w2} will be used for illustration throughout the rest of
this paper.

A B C D w

Tl 0 0 0 0 w1

T2 0 1 1 0 w1

D = T3 1 0 1 0 w1
zg 0 0 1 1 we

zs 1 1 0 0 ws

Te 0 0 1 0 w2

Algorithms to construct a decision tree take a set of trgirimstancesD as input and output
a learned discrete-valued target function in the form ofeg.tr A decision tree is a rooted tree
T that consists of internal nodes representing attribuezd, iodes representing labels, and edges
representing the attributes possible values. Branchessemt the attributes possible values and in
binary decision trees, left branches have values of 0 aid biganches have values of 1 as shown
in Fig. 1. For simplicity we omit the value labels in some idigures. A decision tree represents a
disjunction of conjunctions. In Fig. 1(a), for examplg, represents the); andw, states as

(=CA=A)V(CA-DA-BANA)V(CA-DAB)and(-CAA)V(CA-DA=BA=A)V(CAD),
respectively. Each conjunction corresponds to a path flremdot to a leaf.

A decision tree based on a databd3evith ¢ number of classes is@class classification prob-
lem. Decision trees classify instances by traversing froat node to leaf node. The classification
process starts from the root node of a decision tree, testatthibute specified at this node, and
then moves down the tree branch according to the attributes waven. Fig. 1 shows two decision
trees, T andT,. The decision tre’ is said to be @onsistentlecision tree because it is consistent
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(a) T, with 11 nodes (b) T; with 9 nodes

Fig. 2: Two decision trees consistent with: (a) by ID-3 and (b) by GA.

with all instances inD. However, the decision treE, is inconsistentwith D becausers’s class is
actuallywl in D whereasl’, classifies it agv2.
There are two important properties of a binary decision tree

Property 1 The size of a decision tree witheaves i/ — 1.

Property 2 The lower and upper bounds o6ffor a consistent binary decision tree areand n:
c<l<n.

The number of leaves in a consistent decision tree must leasit:lin the best cases. In the worst
cases, the number of leaves will be the sizéakvith each instance corresponding to a unique leaf,
e.g., 71 and7s.

2.1 Occams Razor and ID3
Among numerous decision trees that are consistent withrénang database of instances, Fig. 2
shows two of them. All instances = {z1,...,z¢} are classified correctly by both decision trees
T, andT5. However, an unknown instange, 0,0, 1, ?), which is not in the training setD is
classified differently by the two decision tre€s;classifies the instance as whereasl’; classifies
it aswy. This inductive inference is a fundamental problem in maeHearning. Theminimum
description length principldormalized fromOccam’s Razof19] is a very important concept in
machine learning theory [1, 2]. Albeit controversial, matgcision-tree building algorithms such
as ID3 [3] prefer smaller (more compact, shorter depth, favegles) trees and thus the instance
(0,0,0,1,7) is preferably classified as, by T35 becausé’; is shorter thar?;. In other words T3
has a simpler description th&s. The shorter the tree, the fewer the number of questionsrestu
to classify instances.

Based orOccam’s RazqQrRoss Quinlan proposed a heuristic that tends to find smadleision
trees [3]. The algorithm is called ID&¢rative Dichotomizer Band it utilizes theEntropywhich is
a measure of homogeneity of examples as defined in the eguatio

Entropy(D) = — Z P(x)log P(x) (1)

rzew={wl,w2}
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DD A B C w c| D

x1 0 0 0 wi gain|0|0]|0|0.191

x2 0 1 1 wl

X3 1 0 1wl

x5 1 1 0 w2 A B C )
x6 0 0 1 w2 0 0 1w
gain0.02 0.02 0.02

DLB C w Dr B C w
x1 0 0wl x3 0 1 wl
x 1 1 wl X5 1 0 w2
x6 0 1 w2 -
gain 1 1
gain0.330.33
DhCc w
x1 0 wi
X6 1 w2 \
gain 1 w2
Dirr C_ W,
x2 1 wl x3 1wl x5 0 w2
‘ wl ‘ ‘ w2 ‘

Fig. 3: lllustration of the ID3 algorithm.

Information gainor simplygainis defined in terms oEntropywhere X is one of attributes iD.
When all attributes are binary type, the gain can be definéudl the equation 2.

gain(D, X) = Entropy(D) — (’@”Entropy(DL) ’%”Entropy(D@) (2
The ID3 algorithm first selects the attribute whagen is the maximum as a root node. For all

subtrees of the root node, it finds the next attribute whoseigahe maximum iteratively. Fig. 3
illustrates the ID3 algorithm. Starting with the root noleyvaluates all attributes in the databdse
Since the attributé has the highest gain, the attribufes selected as a root node. Then it partitions
the databas® into two sub database$?; and Dy. For each sub-database, it calculates the gain.
As aresult,T, decision tree is built. However, as is apparent from Fig.e2B8 algorithm does not
necessarily find the smallest decision tree.

2.2 Complexity of dA Function

To the extent that smaller trees are preferred, it becomeresting to find a smallest decision tree.
Finding a smallest decision tree is an NP-complete problemgh [4, 5]. So as to comprehend
the complexity of finding a smallest decision tree, consiadull binary decision treeTlf (the
superscriptf denotes full), where each path from the root to a leaf coatalithe attributes exactly
once as exemplified in Fig. 4 . There &éleaves wherd + 1 is the height of the full decision tree.

In order to build a consistent full binary tree, one may cleoasy attribute as a root node, e.g.,
there are four choices in Fig. 4 . In the second level nodescan choose any attribute that is not
in the root node. For example, in Fig. 4 there @re 2 x 2 x 2 x 3 x 3 x 4 possible full binary
trees. We denote the number of possible full binary tree wlktributes asiA.

Definition 1 The number of possible full binary tree with d attributesoisifally defined as
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{xl,x2,x3,x4,x5,x6}
Q 1
{x1, x5} {x2,x3,x4,x6}
0 1 0 1
x1 x5 X2,X3,X6 x4
O O R O B N T

0 1 0 0
{x1} {x5} {x3/x6} {x2} {x4 0

9@0000

0 10 1 0 10 1 0 10 1 0 10 1

o o e o e e

(x13 O O O 0O O {x5y O {x6}{x3}{x2} O {x4 O 0O O
2d

Fig. 4: A sample full binary decision tree structtﬂ‘é.

Table 1: Comparison ofiA andd! functions.

d dA d!
1 1A=1 =1 =1
2 2A=1x1x2 =2 21=2
3 BA=1x1x1x1x2x2x3 =12 31=6
4 AA =2x2x2x2x3x3x4 = 576 41=24
5 BA=2X2X2X2X2X2xXx2x2x3x3x3x3x4x4x5 = 1658880 5!1=120
6 6A =216 x3%x4%x52x%x6 = 16511297126400 6!= 720
7 TA =232 %316 x48 x 54 x62x7 = 1.9084e + 027 7= 5040
8  8A =264 % 332 x 416 x 58 x 6% x 72 x 8 = 2.9135¢ + 055 81= 40320
9 9A = 2128 5 364 5 432 516 68 x T4 x 82 x 9 = 7.6395e + 111 91= 362880
10 10A = 2256 5 3128 5 464 532 » 616 x 78 x 84 x 92 x 10 = 5.8362¢ + 224 10'= 3628800
d
od—i
dA =" (3)
i=1

As illustrated in Table 1, ag grows, the function/A grows faster than all polynomial, exponen-
tial, and even factorial functions. Thactorial functiond! is the product of all positive integers less
than or equal tal and manycombinatorial optimizatiorproblems have the complexity o#(d!)
search space. The search space of full binary decisionigremsch larger, i.edA = Q(d!). Lower
and upper bounds afA areQ(22d) ando(dzd). Note that real decision trees, suchasn Fig. 1 (a),
can be sparse because some internal nodes can be leaveg as thay are homogeneous. Hence,
the search space for finding a shortest binary decision &ed®de smaller thadA.

3. Genetic Algorithm for Binary Decision Tree Construction
Genetic algorithms can provide good solutions to many dp#tion problems [11, 12]. They are
based on natural processes of evolution and the survivdiesfittest concept. In order to use the
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(b)

Fig.5: Encoding and decoding schema: (a) encoded tre@lfo'm Fig. 4 and (b) its chromosome attribute-selection
scheduling string.

genetic algorithm process, one must define at least thewfoigp four steps: encoding, genetic
operators such as mutation and crossover, decoding, aaddifanction.

3.1 Encoding
For genetic algorithms to construct decision trees thest@tirees must be encoded so that genetic
operators, such as mutation and crossover, can be appk¢d. £ {a;,as,...,as} be the ordered

attribute list. We illustrate and describe the process msiciering the full binary decision tréqf
in Fig. 4, whered = {A, B,C, D}.

Graphically speaking, the encoding process converts thbuie names irTlf into the index of
the attribute according to the ordered attribute listrecursively, starting from the root as depicted
in Fig. 5. For example, the root S and its index inA is 3. Recursively, for each sub-tree, update
Ato A—{C} = {A, B, D} attribute list. The possible integer values at a node in’thdevel
in the encoded decision trgé are from 1 tod — ¢ + 1. Finally, take the breadth-first traversal to
generate the chromosome string S, which stems #fdnfunction. ForTlf the chromosome string
S1is given in Fig. 5 (b).

Ty andT3 in Fig. 1 is encoded int&; = (3,1, 3, %, %, 2, x) wherex can be any number within
the restricted boundsT; and 73 in Fig. 2 are encoded int§y = (4,1,%,1,1,%,%) andSs =
(1,1,1,1, %, %, x), respectively. Let us call this a chromosome attributeet&in scheduling string,
S, where genetic operators can be applied. Propertiésinclude:

Property 3 The parent position of positionis [i/2], except fori = 1, the root.

Property 4 The left and right child positions of positianare 2i and 2i + 1, respectively, if <
2d-2 _ 1: otherwise, there are no children.

Property 5 The length of theS’s is exponential ini : |S| = 2972 — 1.

Property 6 Possible integer values at positidrare 1 tod — [log(i +1)| —1: S; € {1,...,d —
[log(i +1)] — 1} .

Property 6 provides the restricted bounds for each positigh
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Fig. 6: Mutation operator.

Property 7 The number of possibl§, |7 (S)|, isdA or |7(S)| = [ (d — [log(i +1)] — 1)*.

=1

The lower and upper bounds fof(S)| areQ(2/°l) ando(dl*).

3.2 Genetic Operators

Two of the most common genetic operators are mutation argsgver. The mutation operator
is defined as changing the value of a certain position in agtid one of the possible values in
the range. We illustrate the mutation process on the atéribalection scheduling strin@{ =
(3,1,3,2,1,2,2) in Fig. 6. If a mutation occurs in the first position and change value to 4,
which is in the rang€1, ..,4}, Tf is generated. If a mutation happens in the third position and
changes the value to 2, which is in the radde.., 3}, thenTgc is generated. As long as the changed
value is within the allowed range, the resulting new strihgags generates a valid full binary
decision tree.

ConsiderS, = (4,1,3,1,1,2,1). A full binary decision tree is built according to this sché
The final decision tree fo$,, will be 75 Fig. 2, i.e.,S, = (4,1,%,1,1,%,*). There argx2x2 = 12
equivalent schedules that produ¢e. Therefore, for the mutation to be effective we apply the
mutation operators only to those positions that arexnot

To illustrate the crossover operator, consider the tworgatribute selection scheduling strings,
PlandP2, in Fig. 7 . After randomly selecting a split point, the firsirpof P1 and the last part of
P2 contribute to yield a child strings. Reversing the crossover produces a second ¢hildlhe
resulting full binary decision trees for these two childe&aTg andT7f, respectively.

3.3 Decoding

Decoding is the reverse of the encoding process in Fig. Sitilgidrom the root node, we place
the attribute according to the chromosome schedukéhich contains the index values of attribute
list A. When an attribute is selected,D is divided into left and right branched; andDg. Dy,
consists of all ther; havinga value of 0 andDy consists of all the:; having a value of 1. For each
pair of sub-trees we repeat the process recursively witiné¢heattribute listA = A — {a}. When

a node becomes homogeneous, i.e., all class valuésare the same, we label the leaf. Fig. 8
displays the decision trees frofi, S5, Sg, and.S7, respectively.
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PL: 13 1! 3 2 1 2 2
P2: (4 3)X[2 2 1 1 2

Fig. 8: Decoded decision trees.

Sometimes a chromosome introduces mutants. For instaoegider a chromosonts; (3, 3,2, 1,
1,1, 2) which resultslg in Fig. 9. Thex occurs wherD at the node attribute has non-homogeneous
labels but thex column inD has either all O's or all 1's. In other words, theattribute provides
no information gain We refer to such a decision tree as a mutant tree for two msagerst, what
values should we put im? The label may be chosen at random but provides no clue. Second,
if we allow entering a value fop, it may violate the Property 2; the number of lealesay exceed
n. Indeed, Iy behaves identically t@y with respect taD. Thus, mutant decision trees will not be
chosen as the fittest trees according to the fitness fungti@sented in the later section.

3.4 Fitness Functions
Each attribute selection scheduling strisignust be evaluated according to a fithess function. We

consider two cases: in the first caBecontains no contradicting instances ahd a small finite
number, in the other caghs very large. Contradicting instances are those whosbuttrvalues are
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Fig. 9: Mutant binary decision tree.

identical but their target values are different. The cagé wmalld and no contradicting instances
has application to network function representation [20].

Theorem 1 Every attribute selection scheduling strisgoroduces a consistent full binary decision
tree as long as the set of instances contains no contradidtistances.

Proof Every attribute selection scheduling strisgproduces a full binary decision tree, e.g., in
Fig. 4. Since each instance incorresponds to a certain branch, add the leaves with taafjetvin
the set of instances accordingly. If the target value is mail@ble in the training set, add a random
target value. This becomes a complete truth table as the euofldeaves i2¢. The predicted
value by the decision tree is always consistent with theahd¢tauget value inD. If there are two
instances with same attribute values but different classesonsistent binary decision tree exisis.

Since the databases we consider contain no contradictignices, one obvious fitness function
is the size of the tree; the fitness functifinis the size, the total number of nodes, efg(l») = 11
and f4(T5) = 9. Here, however, we use a different fitness functfgni.e., the sum of the depth
of the leaf nodes for each instance. This is equivalent tetime of questions to be asked for each
instance, e.g.fq(72) = 18 and f4(73) = f4(Ts) = 15 as shown in Table 2. This requires the
assumption that each instancel/inhas equal prior probability. Both of these evaluation fioret
suggest thai; andTj are better thafi, which is produced by the ID3 algorithm.

With two decision trees of the same siZ — 1) wherel is the number of leaves, the number of
guestions to be asked could be different by theorem 2.

Theorem 2 There existl;, andT;, such thatfs(T,) = fs(Ty) and fq(T;) < fa(T,).
Proof Let T}, be a balanced binary tree afi{] be a skewed or linear binary tree. Thgf7T,) =

O(nlogn) whereast,(T,) = O(n?) = O(Y_ i). O
i=1
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Table 2: Training instances and their depths in decision trees.

T, Ty T3 Ty Ts5 Tg Tv T3

1 2
T2 3
3 4
T4 2
5 2
g 4

sum 17 18 15 18 17 15 18 17

P WOFRPRWAW
WWwwnN w

The f; fitness function prefers not only shorter decision treestgdr ones, but also balanced
decision trees to skewed ones.

n
Corollary 1 nloge < fq(T,) < > i — 1 wheren is the number of instances.
=1
Proof By the Property 2, in the best case the decision tree will have: leaves. In the best case,
the tree is completely balanced with heidbg c. Thus the lower bound fof(7);) is nloge. In
the worst case, the number of leaves isy the Property 2 and the decision tree forms a skewed or
n

linear binary tree. Thus the upper boundisi — 1. O
=1

If fa(Ty) < nloge, T, cIaSS|f|es only a subset of classes. Regardless of the lsizérde should
not be selected. If;(T,) > E i — 1, there is a mutant node afig can be shortened.

Whend is large, the size of the chromosoms#| will explode by the Property 5. In this case we
must limit the height of the decision tree. The chromosoneahfinite length and guides to select
attributes up to a certain height. Sinee< 2¢ typically, a good choice of the height of the decision
tree ish = logn, i.e.,|S| ~ n. When a branch reaches a heighthe node is assigned to be a leaf
with the class whose prior probability is the highest indtebchoosing another attribute. When the
height is limited, decision trees may be no longer considten.

Suppose that the height is limited to ;= 3 in Fig. 3 case. Fig. 10 shows the pruned binary
decision tree]y. In the 4th node in breadth first traversal order, insteachobsingB attribute in
Fig. 3, w1 is labeled because the prior probabilitywof is higher thanuv2 in Dy ;. When the prior
probabilities are the same, either one can be chosenf st the fitness function that represents
the percentage of correctly classified instances by theideciree. In Fig. 10{x1, x2, x4, x5} are
correctly predicted byy and hencef,, (7y) = 4/6.

We randomly generated a 26 binary attribute training da@tzand limited the tree height to 8.
Fig. 11 shows the initial population of 100 binary decisioges generated by random chromosomes
in respect to theirf; (7)) and accuracy,(T,) on the training examples. The size of decision trees
and their accuracies on the training examples have no atioes.

4. Discussion
In this paper, we reviewed binary decision trees and demreiest how to utilize genetic algorithms
to find compact binary decision trees. By limiting the trde$ght the presented method guarantees
finding a better or equal decision tree than the best knowariethgns since such trees can be putin
the initial population.

Methods that apply GAs directly to decision trees [16, 1T gield subtrees that are never visited
as shown in Fig. 12. After mutation operator in ‘O’ nodelp, 7. has a dashed subtree that

10
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D A B C w
x1 0 0 0wl
X2 0 1 1w
x3 1 0 1w
X5 1 1 0 w2
X6 0 0 1 w
D, B C W
xl 0 0 wl
2 1 1wl
X 0 1 WZN
D ABCD w Predicted byl
x1 0 0 0 O wl wl
x2 0 1 1 O wl wl
x31 0 1 O wl w2
x4 0 0 1 1 w2 w2
x51 1 0 0 w2 w2
x6 0 0 1 O w2 wl
Fig. 10: Pruned decision tree at the height of 3.
82
80 *
X
X X
78 x x
x x
X XX X X
76 xx>><< xxx>§< >§( X
X X W™ XXX X
Q x x * * xx)lo(x:
X XX X Xm¢ X X X X
74 xx x x xxxxx X X
xAXX X
X X X
72 x x xxx xx.x
x x x
x x x
70 X X X x

68
600 650 700 750 800 850 900 950 1000
1,

Fig. 11: Binary decision trees with respect fg and accuracy,,.

is never visited. After crossover betwe&ph andT;, the child treesl; and T, also have dashed
subtrees. These unnecessary subtrees occur whenevertari@aticcurs more than once in a path
of a decision tree. However, by encoding the decision ttee problem never occurs as illustrated
in Fig. 13.

Whend is large, limiting the height was recommended. Encodingbihary decision tree in this
paper utilized the breadth first traversal. However, paepdepth first traversal can be utilized as
shown in Fig. 13 . Mutation shown in this paper is still validgre-order depth first traversal repre-
sentation but crossover may cause a mutant when two sulrbeswitched are at different levels.

11
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The index number of a node may exceed the limit due to a cressdwus mutation immediately
after crossover is inevitable. Analyzing and implementimg depth first traversal of encoded deci-
sion tree remains ongoing work. Encoding and decoding moarp decision trees where different
attributes have different possible values is an open pnoble
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Fig. 12: Direct GA on decision trees.

Fig. 13: Pre-order depth first traversal for decision trees.
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