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AGENDA

Motivation for interactive rough-granular computation (IRGC)
Granules and their interactions

— elementary (atomic)

— granules obtained by fusion of existing granules

s relational structures (e.g., telerance classes,
approximation spaces) and their clusters

< approeximation ofichangesand trajectories ofichanges

srulesioficoexistence offlocallstates: diSCoVery ofi Process
models from data and demainknewledge:

s coalitions

Interactiveigranulesin approximation Gii ComplEX CoNCEPISITOm
datarandidemainknowledge

RESEANCHTOPICS:

— searchingforrelevantinteractiveraranules

= adaptaueniniREE

= diSCOVEN GilNteracton Stiuciires

SoitwaresReughICERUnE|N
ConclusionsalREECHRNVISTECHIProgram

Why interactive computations on
granules are needed?

[EXisting]] Algorithms are
metaphorically, dumb; and blind
bECalISE they: cannot adapt
Jteractively, While they: computes

pPeter\WegnerAhyinte raction.ISimone: | ;\DowerTu!
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Interaction is a fundamental dimension for
modeling and engineering complex
computational'systems. More generally;
interactioniis a critical issuein the
understanding of;complex:systems;ofiany,

sortsxas;such; itshas;emerged/iniseveral well=

established/scientific:areas;othersthan
computersscience; likebiologys PhysICS;
socialland/organizational/SCIences:
Andrea @micin, Alessandre Rice) and MirkoVirolr,
NheMultidisciplinary Patternis: o lnteraction o
SGienees to) ConnputerzSeience i Dy Eoldiny's.

Stolkay PAWagnen (€dsy) s Interactivelcomputation:
Mhenewiparadigm), Sphrnger 2006

ADAPTIVE JUDGMENT

While employing IRGC, interactions
and process mining we must stay in
touch) withr the reality: we are trying
tor model (describe) and predict.

If for some reason the decisions we
aliel makingl arelnconsistent with real
lifie, Werneed toradapt ol judgment:




COMPUTATIONS IN'IRGC

+ Are performed on complex concepts
called granules
— Invelve uncertainty, noise, Vagueness
— Manage parts of (descriptions and

pattenns for) complex: concepts
¢ Are interactive
= Perfiormed by many’atutonemous),
inteEracting UnitsH(@gents)
—Inflvencedibyschiangestin data/knowledge
andiinrtherWayiCoropEation gOESs.
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EXAMPLES OF GRANULES:
FROM
NEIGHBORHOODS OF OBJECITS 10O
CLUSTERS;
APPROXIMATION ISPACES;

CLASSIEIERS;
ONIOLOGIESTAND A HEIR
APEROKNATON
BEHAVIORALEPAT I ERN'S,
PROCESS VYOP)=ES)
ADAPTIY = SCpl=N=S OF NGNS

Plays a key role in
implementation of
Witold Pedrycz | Andrzej Skowron | Viadik et the strate gy of
2 divide-and-conquer
in human problem-
solving - Lotfi Zadeh

Over 1000 pages
describing:
_# Various approaches to
2 granularity
+» Foundations of GrC

+ Methodologies and
algorithms

+ Applications
...

(INFORMATION) GRANULES:
OBJECITS CONSTRUCITED/INTHE
GRANULATION AND
DEGRANULATION PROCESSES

=165 INSEARCE | INE FORICOY I PE =3
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INDISCERNIBILITY GRANULES

al a2 e a'n

APPROXIMATION SPACE

INDUCTION

PARTITIONS > COVERINGS

APPROXIMATION SPACES

A. Skowron; J. Stepaniuk, Generalized Approximation
Spaces 1994

ROUGH MEREOLOGY

St. LESNIEWSKI (1916)

£ Polkewskitand AL Skowkon (1994~

L Polkewskil AT SKkowrony Reughimereology ISMISIOAENAIBE8 Springer;
1002785:07




INDUCTION

What if Inf,(x,) for x, ZU"- U
is different from any Inf,(x)
forx U ?

l

similarity of Inf,(x,)
with Infa(x)

partial matching of
InfA(X,) with Inf,(X)

GENERALIZATIONS OF GRANULES
BY GRANULE FUSION:
TOLERANCE GRANULES

vrwiff virw; fori=1,..m
r(v) ={w:vrw}
Ir (v)]| = U{|jw] :w O r (v)}

GENERALIZATION

from v to r(v)




GENERALIZATIONS OF TOLERANCE-GRANULES
GENERALIZATION OPERATORS
by Ryszard: Michalski

generalization over tolerance
granule

FUSION AND GENARALIZATION
OF GRANULES

+ fusion of granules:
—tolerance granules
— clusters over tolerance granules
—relational structures and their clusters; .9;,
apPPreXIMmation| SPACeS

— degreesiefimatechings fiision), propadation

Interacive processes

There are two components:

1. Process — changes of states of the
system occur with| time.

2. Interaction — the change ofi a given
state i the process depends not only,
on| time; but alser on eExchange: ofi
infermation withrothER statess

GRANULES REPRESENTING
STRUCTURES OF OBJECTS

‘ properties of time windows |

TIME WINDOWS

INTERACTIVE COMPUTATIONS
ON GRANULES
IN
DISCOVERY OF PROCESS
MODELS FROM DATA
AND
DOMAIN KNOWLEDGE
(PREC =SS \VIININE)

INTERACTIVE GRANULES

e cellular automata
« differential equations

» approximation of changes
* MAS

» coexistence of local states
« interactions with experts
 reinforcement learning




INTERACTIONS
REPRESENTED BY CHANGES
OF LOCAL STATES.

THE CHANGES ARE DEFINED
BY INTERACTIONS OF LOCAL
STATES IN NEIGHBORHOODS

' ®
e.g.,cellular Iz
automata [EEESS

DISCOVERY OF INTERACTION
MODELS FROM DATA AND
DOMAIN KNOWLEDGE

DEEININGINTERACITION
VS
INDUCINGIVIODEIES IO
INTIERACTION

ds A imation of
BS_ G o) et pproximation o
dt (t. (1) 1) functions G,H:

de - rough, fuzzy methods

dt =H(t,s(t),e(t)) - statistical methods

PROBLEMS

# States are complex and only uncertain
information about them is available

+ How to define neighborhoods?

¢ How to approximate changes in states
as the results of interactions?

P ooc

PROCESS MODELS AND
INTERACTIONS
examples: coupled map lattice, oscilator

it +1) = Fla() + ndizjj (Flas(t— 7)) — Flaa(®)
i

neighborhood
relation

a2 () = flai(t);e) + shﬂi D (wlt—7) — alt)
T
Feng, J., Jost, J., Minping, Q. (eds): Network: Fromdgjpl
to Theory, Springer, Berlin, 2007

DISCOVERY PROCESS MODELS FROM DATA:
METHODS FOR APPROXIMATION. OF
FUNCTIONS CHARACTERIZING
CHANGES [T
NEEDED !

[ attributes relevant for characterizing



A trajectory of a granule

Suppose we track a single trajectory: in
al process

Time 0

Granule
corresponding
to initial state

A trajectory of a granule

Suppose we track a single trajectory in
a PrOCESS

Granule Q
corresponding to
state at time t+1
Q is obtained as

,composition” of G
with approximation
of changes
obtained in
interaction with
other granules

Time t+17

Granule G
corresponding
to state at time t

Example: trajectory approximation
Suppose we track a single trajectory: in
al process

The actual
trajectory P

* The predicted
N trajectory P’
Up to this point the actual and e

predicted trajectories are
sufficiently close

A trajectory of a granule

Suppose we track a single trajectory: in
al process

Time t

L

Granule G
corresponding
to state at time t

INTERACTIONS OF GRANULES IN
TRAJECTORY APPROXIMATION

( current interaction new
\_object granule / module 2 \ object granule

‘f/possible degrees \
» of changes |
\ for object granule /

N

analogy to
defuzzification

and conflict

resolution

'/granular components \

{

‘\f . of mation/ a fragment of

function approximation, approximated
. trajectory

Example: trajectory approximation

Adaptation must be used to fix the
deviation of the model _

The actual
trajectory P

At this point we have to adapt the
underlying model criteria to make
it more relevant




INTERACTIONS IN MAS

- complex states

- partial information

- conflicts
- negotiations,

- cooperation
interaction P
between

agents
a and g - competitions,

- coalition,

- intentions,
agent &
and its
neighborhood

" membrane

Membrane
Computing
G. Paun et al

Granule fusion:
coalition of G 4,...G,

with functionalities for interaction with E
and members of the coalition

INTERACTIONS FORCED BY

DEPENDENCIES OR RULES

(DISCOVERED FROM DATA)

PRESERVING COEXISTENCE
OF LOCAL STATES

IN CONCURRENT SYSTEMS

E = E" := Perception(E, );

G :=G" = Perception(G, );

while Property(G,E) do
begin

Each granule has a
scheme of interaction
obtained by specifying:
< Property;

< Select_Action;

< Perception;

< Predict_...

< Cancel

a:= Select_ Action(G* ,G, E" ,E);
E" = Predict _ Env(G, E,a);
Gz Predict _Gran(G, E, a);

Gy =14 (G .Er);

En =15 (G E);

G, =Gy E, = Ep;

G := Perception(G, );

E := Perception(E; )

lg andly

are perceived only
through Perception.

end

cancel(G)

INTERACTIONS OF GRANULES
ARE BASED
ON LOCAL LOGICS

¢ set of (high level) concepts with
(approximate) rules off inference

¥ concepts andlrulesiare adaptively.
changing

SPECIFICATION OF
CONCURRENT SYSTEMS BY
INFORMATIONISYSTEMS

+ Pawlak,Z.: Concurrent versus:sequential the rough
sets perspective. Bulletiniof the EATCS 48 (1992)
178—190

< Skowron, A.,;-Suraj#Z.:‘Rough: sets:and concurrency.
BulltAcad. Polon:Sei:41(3) (1993):123 7254

¢ Suraj,’Z.: Rough'setimethods:forthe synthesis and
analysis:of-conctirrent processes. Inz b 'Polkowski, S!
Misumotoy kY Lin(teds); Rough-Set:Methods fand
Applications Studies inFuzziness:and: Seft Computing
56, SpringertPhysicarVieriag (2000),379:488



MAIN IDEA WE USE IN PROCERSS
MINING

TH(E)(;RY PROCESS MODEL
DATAA C\?V’I\‘TﬂsTLEL\‘T + Complex Petri Nets can be generated
Th(A) @ automatically: from' their specification
by datal tables

o e.g., set of rules e.g., Petri net with ¢ Petri Net can be adaptively modified

information defined by reachability with' changes of data
system information markings
g system consistent with all

rules in Th(A)

ADVANTAGES

Studies in Computational Intelligence 163 CO NTI N UATI O N

Pawel Delimata

T . + Which kinds of rules should be used
?E.Z'ﬁféviks?ﬁ;j’" (e.g., non-deterministic,

probabilistic, temporal, spatio-temporal)?
Inhibitory Rules + How! to characterize the expressibility
in Data Analysis ofi different rule sets?

¥ How! to) extendi the appreach by,
adding infermation en transition
relation o temponalldepeEndencies?
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Research by Z:Suraf.and histeam, also M. Moshkov .and
AL SKOWEON; e

-é Springer

DISCOVERY OF STRUCTURES OF INTERACTING
PROCESSES ALONG DOMAIN ONTOLOGY

INTERACTION WITH EXPERTS

- set of paths
of interaction of P,

APPROXIMATION
OF
VAGUE COMPLEX CONCEPTS
, USING
Ozfspe;g ggsr;a;h_s__ . DOMAIN ONTOLOGY
- APPROXIMATION
How PN is constructed from PN1 and PN2 ?




...when you have a technical description x of the object
and have some impression x* about this object you have
two forms of description: a formal description and a
halistic description or Gestalt description. Using both
descriptions: during training can help to find'a better.
decision function. This technique remains, master-class
learning, like musicians training’in'master; classes: The
teacher.doesinot show exactly:how:toiplay: He talksiio
students;and/gives seme images; transmitting seme
hiddeniinfermation = andthis helps: So; the challengelis
toicreate anjalgerithmiwhichiusingadditional
Infermation; Willlgeneralize betierthan classical
algoerithms;

Viadimis\Vapnik (2008):

UNDERSTANDING THE ORGANIZATION
AND PRINCIPLES OF HIGHER BRAIN
FUNCTIONS: HIERARCHICAL LEARNING

¢ Organization of cortex - for instance visual cortex
—is strongly hierarchical.

+ Hierarchical learning systems show superior
performance in several engineering applications.

# This is just one of several possible connections,
still to be characterized, between learning theory
and the ultimate problem in natural science - the
organization and the principles of higher brain
functions.

T. Poggio, S. Smale: The Mathematics of Learning:
Dealing with Data, Notices AMS,; Vol.50, May 2003

I'believe that understanding human
experience will be a driving challenge
forwork in Al'in the years to come, and that
the work that will result will
profoundly impact: eur- knowledge of:how we
live and interact: with'the world
andwithreach ether:

HennzKautz(2005)Avtficiallntelligences he
INEXTIWERYEFIVENEarsH AV agazine; 26(4):
Winter2005; 85=01/

ROUGH SET BASED
ONTOLOGY APPROXIMATION

e Spac

Expert's
Perception

Knowledge transfer from .
expert using positive and \
negative examples

COMPLEX
CONCEPT
APPROXIMATION

Safe driving

JiBazan s SIHENGIVERRHLS. Nguyen, A. Skowron (RSCTC 2004)
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AN EXAMPLE OF BEHAVIORAL
GRAPH FOR SINGLE VEHICLE

Acceleration and
changing lanes from|
Tight to left

Acceleration
on the left lane.

Acceleration
on the right lane

Stable speed and
changing lanes from|
right to left

Stable speed Stable speed
on the right lane. on the left lane

Stable speed and
changing lanes from|
left to right

Deceleration Deceleration and Deceleration
on the right lane changing lanes from on the leftlane
leftto right

Results of experiments for. concept:

“Is the vehicle driving, safely?"’

RS1 0.978 0.946
RS2 0.962 0.992

Real accuracy = Accuracy * Coverage

SUNSPOT CLASSIFICATION

close-up (hi-res)

Son Nguyen et al

BEHAVIORAL GRAPH FOR A GROUP.OF

OBJECTS
( TWOVEHICLE OF OBJECTS DURING OVERTAKING)

1.VehicleAis 6. Vehicle A isbefore B on
behind B on theright lane theright lane

3.VehicleA ismoving back 2.VehicleA ischanging 5.Vehicle A ischanging
to theright lane, lanes from right to left, lanesfrom left to right,
vehicle B isdriving on the vehicle B isdriving on the vehicle B isdriving on the
right lane right lane right lane

4.Vehicle A isdriving on
theleft laneand
Aispassing B (Bis
driving on theright lane)

Pawel Gora

FEEE

FEPEPEEPELEPEEEEE
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OUTLIER CLASSIFICATION

THE RESPIRATORY FAILURE

¢ The respiratory failure develops when
the rate of gas exchange between the
atmosphere and blood is unable to
match the body's metabolic demands

+ Arterial blood gasican be used! to define
respiratony fiailure — lower level of blood
oxyden and accumulation off carbon dioxide
= Clinicallsymptoms: increased rate ol breathing),
aCCessony espiratory musclesiuse, peripheral
CY/2noSis

— Otherusefitlproceduressx=rayling
examination) IUngrbiopsy, bronchoalves|ar:
laVvage) echocandiography

AN EXAMPLE OF BEHAVIORAL 'GRAPH

(the simple model-of-behavior for a single patient in sepsis)

Sepsis is not present gression of gression of
(multi-organ failure multi-organ failure multi-organ failure
is not detected) in sepsis on level 3 in sepsis on level 4

(2)8(1)

Progression of
(3) mji”:‘;g’:‘f’;‘:}re multi-organ failure
in sepsis on level 2
Progression of
(2) multi-organ failure

in sepsis on level 1 6'nodesand
17/ connections

Four possibilities of transition from the node: Sepsis without multi-organ failure

COMPLEX DYNAMIC SYSTEMS
(AUTONOMOUS MULTIAGENT SYSTEMS)

o Systems of complex objects with the
following features:
— objects are changing over time
— dependencies between objects
— cooperation between| objects

— objectsiablertor perfiorm) flexible
auteonomousicomplex:actions

Examples: =0
= Complextdynamic systems: a paticht (€:gk, c:
HEWborINRENs)

—Complexiobject:s ald/seaseN(€:gr, espiatory.
railure),

Data sets

The experiments have been performed on
the data sets obtained from Neonatal
Intensive Care Unit in Department of
Pediatrics, Collegitum Medicum), Jagiellonian
University, Cracow.

— The data were collected between 2002 and 2004

— Jhe detailediinformation’about treatment of: 340 nEWbOrnSE

+ perinatal history, birth weight, gestationallage, Iabitests
results, imagine technigues restlts) detailedidiagnoses
duringrhospitalization) proceduresiand medications

s inaindtestmethod hasibeen performed to
estimate acelliaGy), SENSItiVity andispecificitys

— Altriain data set consistsiofi 5810 ehjects and a
testidatalset consistsiofi 5280 ehjects

THE RESPIRATORY FAILURE
AS A COMPLEX‘PROCESS

The respiratory failure

VA \ RDS

Sepsis (respiratory
(generalized distress
reaction on syndrome)

infection leading
to multiorgan
failure) Ureaplasma
lung infection
(acquired during
pregnancy or birth)

12



BEHAVIORAL GRAPH AS
A BEHAVIORAL
PATTERN
(the risk pattern of death due
to respiratory failure)

Stabile and mild respiratory
failure in sepsis
 Exacerbation of respiratory failure
from mild (o moderate in sepsis Exacerbation of respiratory failure
from mild to severe in sepsis.
Stabile and moderate
respi failure
in sepsis

Exacerbation of respiratory failure Stabile and severe respiratory
from moderate to severe in sepsis failure in sepsis

Stabile and moderate respiratory
failure in RDS and PDA

# The visualization of
infant behavior by a
pathiin the behavioral
graph.

» Behavioraligraph
(behavioralipattern) as
alclassifier

Stabile and moderate respiratory
failure in sepsis, RDS and PDA

Exacerbation of respiratory
failure from moderate
to severe in RDS and PDA

Exacerbation of respiratory
failure from moderate to severe
in sepsis, RDS and PDA

Stabile and severe respiratory Stabile and severe respiratory
failure in RDS and PDA failure in sepsis, RDS and PDA
Stabile and severe
Stabile and severe respiratory
respiratory failure in RDS failure in sepsis and PDA
Stabile and severe respiratory Stabile and severe respiratory
failure in PDA failure in sepsis and RDS

THE APPROACH WAS EXTENDED FOR
AUTOMATED PLANNING OF
TREATMENT!

OF INFEANTS WITH RESPIRATORY
EAILURE

+ As a measure ofi planning success (or
failure), we use the speciall classifier that
can predict the similarity between two
plansias a number between) 0.0/ and 1.0:
— Jhis classifier has been constriicted on the

basis off the ontelogy: specified by human
EXPErts and clinicalidata sets

sihe average similarty between plans for
allftestedfsitiationSWeas 0:82

AN EXAMPLE OF MEDICAL ONTOLOGY

TO SUPPORT THE ESTIMATION OF SIMILARITY, BETWEEN

PLANS OF THE TREATMENT OF NEWBORN INFANTS WITH
THE RESPIRATORY, FAILURE

General similarity in the Similarity in
‘approach to the respiratory treatment of
failure treatment Ureaplasma

Similarity in use of macrolide
antibiotics in treatment of
Ureaplasma infection

16 concepts
and

Similariy in 18/ connections

treatment of PDA

Similatity in
treatment of sepsis Similatity in
treatment of RDS.

Similarity of
sucralfat

Similarity of

Similarity of a causal administration PDA closing

treatment of sepsis procedure

Similarity of a
symptom treatment
f
Similarity of (8| Similarity of
antibiotics
use agents use Similatity of mechanical
ventilation mode
Similarity of hemostatic
agents use

Any concept
represents
different aspect
of similarity
between medical
plans

of sepsis

-mycolic
Similarity of similarity of
corticosteroid use catecholamin use

Results of experiments for the risk pattern
ofideath due-to respiratory failure

| Decisionclass |~ Results |
Yes (the high risk of death) 0.992 (sensitivity)
No (the low: risk ofi death) 0.936 (specificity)
All'classes (Yes + No) 0:956 (accuracy)

s Measures description:

— sensitivity, - the proportion) those casesthaving
a positive: test result ofi all positive cases tested,

= specificity, - the propontionf ofi trtiernegatives; ofi all
the negative casesitested)

= acclurdacy, - the ratior o the numberR o all propery
classified cases tor the total nlmber ofitested cases.

THE PROBLEM OF
COMPARISON OF PLANS

| :
oy G- -GG

human experts)

Plan 2:
automatically by our

computer system)

Problem: How to compare Plan 1 and Plan 2?

Solution: A tool to estimate similarity
between plans.

RESULTS OF EXPERIMENTS

FOR THE AUTOMATED PLANNING OFTREATMENT
OF INFANTS WITH RESPIRATORY! FAILURE

» As a measure ofi planning success (or
failure) in our experiments, we use the
special classifier that can predict the
similarity between two plans as a
number between 0.0 and 1.0
— Jihe classifier hasi been| constructed on the

basis ofithe ontology/ specified by human
EXPENtS and datal Sets

% Iheaverage similarty between plans
o allftested sitiationsiwas 0:82

13
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On the WWW
http://logic.mimuw.edu.pl/~bazan/roughice

CONCLUSIONS
Wisdom Technology (WisTech) Program

The basic meta-equation off Wisliech
wisdom = network of knowledge sources +
adaptive judgment +
interactive processes

IRGC = systems based)on interactive
computations on granules with'use;of
domaini(expert) knowledge; process minmng
ancd concept learning

Why WisTech?

Aristotle’s man of practical wisdom, the phrenimos,
... IS observant ofi principles and; at the same
time, open toitheir modification. He begins with
nomoj — establishied law:- and employs: practical
wisdom, tordetermine how it shouldibe appliediin
pantictlarsituations and When depantures: ane
warianted: RUIES provide the guUideposts fof;
mguinysand critical reflection:

L PIThiEl e he Heart o udumentsPractical Wisdomy INeUroscience,
andNarativesCambritgeUnVaRIESSH2006H 05

TUNEDIT: www.tunedit.org

Automated evaluation of machine-learning and
data-mining algorithms

Generation of reproducible experimental results
— for high-quality research papers

Collaboration between researchers: sharing of
algorithms, datasets, experimental results and
other resources; project: IRGC in discovery of
new features

Benchmarks of algorithms: currently stores
performance data for nearly 100 algorithms
tested on several tens of datasets. Included:
Weka, Rseslib algorithms, UCI datasets

CONCLUSIONS

We discussed. some issues-of WisTech in the framewo-. . rkof
ROUGH GRANULAR:COMPUTING: In our further-study -we
plan to develop foundations for WisTech-based on.RG C.

Wistech wisdom =

knowledge sources network
+ adaptive judgment
+ interactive processes

knowledge =

information +
information relationships
+ inference rules

Knowiedge
Management
Technology

Information

information =
Technology

data
interpretation

Database
Technology

TECHNOLOGY LEVELS HIERACHY

THREE COMPLEXITY LEVELS OF THE SOLUTION PROBLEM SUPPORT

http//logic.mimuw.edu.pl/

THANKSYOUH
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ATTRIBUTE

formula

selected by v

7 formulas defining partition of V, '

-
"

{objectfromu ‘

[ the result of measurement by a on x

TRAJECTORY APPROXIMATION

Q: GRANULE
REPRESENTING

SLCRANLLE NEXT STATE

REPRESENTING
CURRENT STATE

Q= ,,COMPOSITION"” of G with approximation
of changes

EXAMPLE: LIGHT CONTROL

‘ Local processes

“V Global states
U, U, Uy - States
a, b, c = movement.directions

0,1,2 —[ightcolor (red; green; green arw

+ In some cases hints for adaptation can
be acquired firom experts but quite
often they will'be expressed!in
natural language and complex vague
concepts will'be invelved inithem. Such
hintSiwith Vague complexicencepts should
e appreximated:
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