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Greedy algorithm 

A greedy algorithm is any algorithm that follows the problem solving heuristic of making the locally optimal 
choice at each stage with the hope of finding the global optimum. For example, applying the greedy 
strategy to the traveling salesman problem yields the following algorithm: "At each stage visit the 
unvisited city nearest to the current city". In general, greedy algorithms are used for optimization 
problems. 

Specifics 
In general, greedy algorithms have five pillars: 

1. A candidate set, from which a solution is created 

2. A selection function, which chooses the best candidate to be added to the solution 

3. A feasibility function, that is used to determine if a candidate can be used to contribute to a 
solution 

4. An objective function, which assigns a value to a solution, or a partial solution, and 

5. A solution function, which will indicate when we have discovered a complete solution 

Greedy algorithms produce good solutions on some mathematical problems, but not on others. Most 
problems, for which they work, will have two properties: 

Greedy choice property  
We can make whatever choice seems best at the moment and then solve the sub-problems that arise 
later. The choice made by a greedy algorithm may depend on choices made so far but not on future 
choices or all the solutions to the sub-problem. It iteratively makes one greedy choice after another, 
reducing each given problem into a smaller one. In other words, a greedy algorithm never reconsiders its 
choices. This is the main difference from dynamic programming, which is exhaustive and is guaranteed to 
find the solution. After every stage, dynamic programming makes decisions based on all the decisions 
made in the previous stage, and may reconsider the previous stage's algorithmic path to solution. 

Optimal substructure  
A problem exhibits optimal substructure if an optimal solution to the problem contains optimal solutions to 
the sub-problems. 

Cases of failure 
Starting at A, a greedy algorithm will find the local maximum at "m", oblivious of the global 
maximum at "M" 
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For many other problems, greedy algorithms fail to produce the optimal solution, and may even produce 
the unique worst possible solution. One example is the traveling salesman problem mentioned above: for 
each number of cities there is an assignment of distances between the cities for which the nearest 
neighbor heuristic produces the unique worst possible tour. 

Imagine a coin example with only 25-cent, 10-cent, and 4-cent coins. The greedy algorithm would not be 
able to make change for 41 cents, since after committing to use one 25-cent coin and one 10-cent coin it 
would be impossible to use 4-cent coins for the balance of 6 cent. Whereas a person or a more 
sophisticated algorithm could make change for 41 cents change with one 25-cent coin and four 4-cent 
coins. 

Types 
Greedy algorithms can be characterized as being 'short sighted', and as 'non-recoverable'. They are ideal 
only for problems, which have 'optimal substructure'. Despite this, greedy algorithms are best suited for 
simple problems (e.g. giving change). It is important, however, to note that the greedy algorithm can be 
used as a selection algorithm to prioritize options within a search, or branch and bound algorithm. There 
are a few variations to the greedy algorithm: 

 Pure greedy algorithms 

 Orthogonal greedy algorithms 

Applications 
Greedy algorithms mostly (but not always) fail to find the globally optimal solution, because they usually 
do not operate exhaustively on all the data. They can make commitments to certain choices too early, 
which prevent them from finding the best overall solution later. For example, all known greedy coloring 
algorithms for the graph-coloring problem and all other NP-complete problems do not consistently find 
optimum solutions. Nevertheless, they are useful because they are quick to think up and often give good 
approximations to the optimum. 

If a greedy algorithm can be proven to yield the global optimum for a given problem class, it typically 
becomes the method of choice because it is faster than other optimization methods like dynamic 
programming. Examples of such greedy algorithms are Kruskal's algorithm and Prim's algorithm for 
finding minimum spanning trees, Dijkstra's algorithm for finding single-source shortest paths, and the 
algorithm for finding optimum Huffman trees. 

The theory of matroids, and the more general theory of greedoids, provide whole classes of such 
algorithms. 

Greedy algorithms appear in network routing as well. Using greedy routing, a message is forwarded to 
the neighboring node, which is "closest" to the destination. The notion of a node's location (and hence 
"closeness") may be determined by its physical location, as in geographic routing used by ad-hoc 
networks. Location may also be an entirely artificial construct as in small world routing and distributed 
hash table. 
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