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Neural Networks – Historical Perspective 
 

A first wave of interest in neural networks also known as connectionist 
models or parallel distributed processing emerged after the 
introduction of simplfied neurons by McCulloch and Pitts in 1943. 
These neurons were presented as models of biological neurons and 
as conceptual components for circuits that could perform 
computational tasks 
 

When Minsky and Papert published their book Perceptrons in 1969 in 
which they showed the deficiencies of perceptron models most neural 
network funding was redirected and researchers left the field Only a 
few researchers continued their efforts most notably Teuvo Kohonen, 
Stephen Grossberg, James Anderson, and Kunihiko Fukushima. 
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Neural Networks – Historical Perspective 
 

The interest in neural networks reemerged only after some important 
theoretical results were attained in the early eighties most notably the 
discovery of error backpropagation and new hardware developments. 
This renewed interest is reflected in the number of scientists, the 
amounts of funding, and the number of large conferences and journals 
associated with neural networks  
 

Aftificial neural networks can be most adequately characterised as 
computational models with particular properties such as the ability to 
adapt or learn to generalise or to cluster or organise data and which 
operation is based on parallel processing. However many of these 
properties can be attributed to existing non-neural models. 
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Neural Networks – Historical Perspective 
 

Often parallels with biological systems are described. However there is 
still so little known even at the lowest cell level about biological 
systems that the models we are using for our artificial neural systems 
seem to introduce an oversimplification of the biological models. 
 

The point of view we take in thisintroduction is that of a computer 
scientist. We are not concerned with the psychological implication of 
the networks. We consider neural networks as an alternative 
computational scheme rather than anything else. 
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Neural Networks – A Framework for Distributed Representation 

 An artificial network consists of a pool of simple processing units 
which communicate by sending signals to each other over a large 
number of weighted connections 
 A set of major aspects of a parallel distributed model can be 
distinguished: 

•   a set of processing units {‘neurons,’ ‘cells’}; 
•   a state of activation yk for every unit which equivalent to the 

output of the unit; 
•   connections between the units. Generally each connection 

is defined by a weight wjk which determines the effect which 
the signal of unit j has on unit k; 

•   a propagation rule which determines the effective input sk of 
a unit from its external inputs; 
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Neural Networks – A Framework for Distributed Representation 
 

•   an activation function Fk which determines the new level of 
activation based on the effective input sk(t) and the current 
activation yk(t), i.e., the update; 

•   an external input (aka bias, offset) Φk for each unit; 
•   a method for information gathering (the learning rule); 
•   an environment within which the system must operate, providing 

input signals and - if necessary - error signals 

The figure illustrates  
these basics concepts: 
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Neural Networks – A Framework for Distributed Representation 
Processing units 
•  Each unit performs a relatively simple job: receive input from 

neighbours or external sources and use this to compute an output 
signal which is propagated to other units.  Apart from this 
processing a second task is the adjustment of the weights. The 
system is inherently parallel in the sense that many units can carry 
out their computations at the same time. 

•  Within neural systems it is useful to distinguish three types of units: 
input units (indicated by an index i) which receive data from outside 
the neural network, output units (indicated by an index o) which 
send data out of the neural network, and hidden units (indicated by 
an index h) whose input and output signals remain within the neural 
network 
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Neural Networks – A Framework for Distributed Representation 
Processing units (cont) 
•  During operation, units can be updated either synchronously or 

asynchronously. With synchronous updating, all units update their 
activation simultaneously; with asynchronous updating each unit 
has a (usually fixed) probability of updating its activation at a time t 
and usually only one unit will be able to do this at a time. In some 
cases the latter model has some advantages 

Connections between units 
•  In most cases we assume that each unit provides an additive 

contribution to the input of the unit with which it is connected. The 
total input to unit k is simply the weighted sum of the separate 
outputs from each of the connected units plus a bias or offset term 
Φk 
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Neural Networks - Activation and Output Rules (cont) 
 
threshold (see figure below) 
 
 
 
 
 
For this smoothly limiting function often a sigmoid (s-shaped) function 
like: 
 

 yk = F(sk) = 1 / (1 + e-sk )    {5} 
 
is used. In some applications a hyperbolic tangentis used, yielding 
output values in the range {-1, +1}. 
 

Various activation 
Functions for a unit 



 	
  
CSE4403 3.0 & CSE6002E - Soft Computing	
  

Fall Semester, 2013	
  
	
  	
  

Neural Networks - Activation and Output Rules (cont) 
 
In some cases the output of a unit can be a stochastic function of the 
total input of the unit. In that case the activation is not deterministically 
determined by the neuron input but the neuron input determines the 
probability p that a neuron get a high activation value: 
 

 p(yk←1) = F(sk) = 1 / (1 + e-sk/T )     {6} 
 
in which T (cf temperature) is a parameter which determines the slope 
of the probability function.  
 
In all networks we describe we consider the output of a neuron to be 
identical to its activation level. 
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Neural Networks – Network Topologies 

Connections between units and heir data propagation distinguishes: 
•  Feed-forward networks where the data flow from input to output 

units is strictly feed forward Data processing can extend over 
multiple layers of units but no feedback connections are present, 
that is, connections extending from outputs of units to inputs of units 
in the same layer or previous layers. 

•  Recurrent networks that do contain feedback connections. Contrary 
to feed-forward networks the dynamic network properties are 
important. In some cases the activation values of the units undergo 
a relaxation process such that the network will evolve to a stable 
state in which these activations do not change anymore. In other 
applications the change of the activation values of the output 
neurons are signicant such that the dynamic behaviour constitutes 
the output of the network. 
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Neural Networks – Training of ANN’s 

 Classic examples of feed-forward networks are the Perceptron and 
Adaline which will be discussed below. 

  

 A neural network has to be configured such that the application of a 
set of inputs produces (either direct or via a relaxation process) the 
desired set of outputs. Various methods to set the strengths of the 
connections exist. One way is to set the weights explicitly using a 
priori knowledge. Another way is to train the neural network by 
feeding it teaching patterns and letting it change its weights 
according to some learning rule. 
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Neural Networks – Paradigms of Learning 

We can categorise the learning situations in two distinct sorts: 
 Supervised learning or Associative learning in which the network is 
trained by providing it with input and matching output patterns. 
These input-output pairs can be provided by an external teacher or 
by the system which contains the network (self-supervised). 
 Unsupervised learning or Self-organisation in which an output unit is 
trained to respond to clusters of pattern within the input. In this 
paradigm the system is supposed to discover statistically salient 
features of the input population. Unlike the supervised learning 
paradigm there is no a priori set of categories into which the patterns 
are to be classified; rather the system must develop its own 
representation of the input stimuli. 
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Neural Networks – Modifying Patterns of Connectivity 

  Both learning paradigms described above result in an adjustment of 
the weights of the connections between units according to some 
modification rule. Virtually all learning rules for models of this type 
can be considered as a variant of the Hebbian learning rule 
suggested by Hebb in his classic book Organization of Behaviour  in 
1949. The basic idea is that if two units j and k are active 
simultaneously, their interconnection must be strengthened. If j 
receives input from k, the simplest version of Hebbian learning 
prescribes to modify the weight wjk with  

    Δwjk = γyjyk 
 
 
 

 {7} 
 where γ is a positive constant of proportionality representing the 
learning rate. Another common rule uses not the actual activation of 
unit k but the dierence between the actual and desired activation for 
adjusting the weights.  
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Neural Networks – Modifying Patterns of Connectivity (cont) 

    Δwjk = γyj (dk- yk)   {8} 
  

 in which dk is the desired activation provided by a teacher. This is 
often called the Widrow-Hoff rule or the delta rule. 

 

 Many variants (often very exotic ones) have been published over the 
last 20 years. 
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Neural Networks – Terminology 
 

Output vs activation of a unit. We consider the output and the activation 
value of a unit to be one and the same thing, i.e., the output of each 
neuron equals its activation value. 

Bias offset threshold. These terms all refer to a constant term (i.e., 
independent of the network input but adapted by the learning rule) 
which is input to a unit. They may be used interchangeably, although 
the latter two terms are often seen as a property of the activation 
function. This external input is usually implemented (and can be 
written) as a weight from a unit with activation value 1. 

Number of layers. In a feed-forward network the inputs perform no 
computation and their layer is therefore not counted. Thus a network 
with one input layer, one hidden layer, and one output layer is 
referred to as a network with two layers This convention is widely 
though not universally used 
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Neural Networks – Terminology (cont) 
 

Representation vs learning. When using a neural network one has to 
distinguish two issues which influence the performance of the 
system The first issue is the representational power of the network, 
the second issue is the learning algorithm. 

 

 The representational power of a neural network refers to the ability 
of a neural network to represent a desired function. Because a 
neural network is built from a set of standard functions, in most 
cases the network will only approximate the desired function, and 
even for an optimal set of weights the approximation error is not 
zero 

 

 The second issue is the learning algorithm. Given that there exist a 
set of optimal weights in the network, is there a procedure to 
iteratively find this set of weights? 
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The Perceptron – networks with threshold activation functions 
 

 A single layer feed-forward network consists of one or more output 
neurons o, each of which is connected with a weighting factor wio to 
all of the inputs I. In the simplest case the network has only two 
inputs and a single output as sketched in the figure below (we leave 
the output index o out. The input of the neuron is the weighted sum 
of the inputs plus the bias term. The output of the network is formed 
by the activation of the output neuron which is some function of the 
input: 

single layer 
network with 
one input & 
two outputs 
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The Perceptron – networks with threshold activation functions (cont) 
 

 The activation function F can be linear so that we have a linear 
network, or nonlinear. We consider the threshold function 

 

F(s) = {1  if s>0 | -1 otherwise} 

 The output of the network thus is either +1 or -1, depending on the 
input. The network can now be used for a classification task: it can 
decide whether an input pattern belongs to one of two classes. If the 
total input is positive, the pattern will be assigned to class +1, if the 
total input is negative the sample will be assigned to class -1. The 
separation between the two classes in this case is a straight line, 
given by the equation 

w1x1 + w2x2 + θ = 0    {9} 
 The single layer network represents a linear discriminant function. 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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The Perceptron – networks with threshold activation functions (cont) 
 

 A geometrical representation of the linear threshold neural network 
is given in the figure below. Equation {9} can be written as 

x2 = - (w1/w2)x1 - (θ/w2)    {10} 

 
 
 

 and we see that the weights determine the slope of the line and the 
bias determines the offset, i.e., how far the line is from the origin. 
Note also that the weights can be plotted in the input space: the 
weight vector is always perpendicular to the discriminant function. 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

Geometric representation 
Of the discriminant function 
And the weights 
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The Perceptron – networks with threshold activation functions (cont) 
 

 Now that we have shown the representational power of the single 
layer network with linear threshold units we come to the second 
issue: how do we learn the weights and biases in the network? We 
describe two learning methods for these types of networks: the 
perceptron learning rule and the delta or LMS rule. Both methods are 
iterative procedures that adjust the weights. A learning sample is 
presented to the network. For each weight the new value is computed 
by adding a correction to the old value. The threshold is updated in a 
same way: 

wi(t+1) = wi(t) +  Δwi(t), 
 θ(t+1) =  θ(t) + Δθ(t)  

 The learning problem can now be formulated as how do we compute 
Δwi(t) and Δθ(t) in order to classify the learning patterns correctly? 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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The Perceptron – perceptron learning rule and convergence theorem 
 

 Suppose we have a set of learning samples consisting of an input 
vector x and a desired output d(x). For a classication task the d(x) is 
usually +1 or -1.The perceptron learning rule is very simple and can 
be stated as follows: 

 1. start with random weights for the connections; 
 2. select an input vector x from the set of training samples; 
 3. If y ≠ d(x) (the perceptron gives an incorrect response), modify all 

 connections wi according to  Δwi = d(x)xi; 
 4. Go back to 2. 

 Note that the procedure is very similar to the Hebb rule; the only 
difference is that, when the network responds correctly, no connection 
weights are modified. Besides modifying the weights we must also 
modify the threshold θ.  

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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The Perceptron – perceptron learning rule and convergence theorem 
 

 This θ is considered as a connection w0 between the output neuron 
and a ‘dummy’ predicate unit which is always on: x0 = 1.  Given the 
perceptron learning rule as stated above this threshold is modied 
according to: 

Δθ = {0 if the perceptron responds correctly; | d(x) otherwise } 
 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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The Perceptron – Example of the Perceptron learning rule 
 

 A perceptron is initialized with the following weights w1 = 1, w2 = 2,  
θ= -2. The perceptron learning rule is used to learn a correct 
discriminant function for a number of samples sketched in the figure 
below. The first sample A, with values x = {0.5, 1.5} and target value 
d(x)=+1 is presented to the network.  

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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The Perceptron – Example of the Perceptron learning rule 
 

 From this equation   
 

 it can be calculated that the network output is +1, so no weights are 
adjusted. The same is the case for point B, with values x = {-0.5, 0.5} 
and target value d(x) = -1; the network output is negative so no 
change. When presenting point C with values x = {0.5, 0.5} the 
network output will be -1, while the target value d(x) = +1.  According 
to the perceptron learning rule the weight changes are: Δw1 = 0.5,  
 Δw2 = 0.5, Δθ = 1. The new weights are now: w1 = 1.5, w2 = 2.5, Δθ = 
-1, and sample C is classified correctly. 

 

 In the previous figure the discriminant function before and after this 
weight update is shown 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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The Perceptron – Convergence theorem 
 

 For the perceptron learning rule there exists a convergence theorem 
which states the following 
 Theorem 1: If there exists a set of connection weights w* which is able 
to perform the transformation y = d(x), the perceptron learning rule will 
converge to some solution (which may or may not be the same as w*) 
in a finite number of steps for any initial choice of the weights. 
 Proof: Given the fact that the length of the vector w* does not play a 
role (because of the sgn operation), we take ||w*||=1.  Because w* is a 
correct solution, the value |w* - x|, where • denotes dot or inner 
product, will be greater than 0 or: there exists a δ>0 such that |w*-x|>δ 
for all inputs x. Now define cos α ≡ w • w* / ||w||.  When according to 
the perceptron learning rule connection weights are modified at a 
given input x, we know that Δw= d(x) / x and the weight after 
modication is w’ = w + Δw.  From this it follows that: 

•    

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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The Perceptron – Convergence theorem (cont) 
 

    w’ • w*  = w • w* + d(x) • w* • x 
    = w • w* + sgn(w* • x) w* • x 
    > w • w* + δ 

 
   ||w’||2  = ||w + d(x) x||2 

    =  w2 + 2d(x)w • x • x2 

    =  w2 + x2  (because d(x) = - sgn[w • x] !!) 
    =  w2 + M 
     

After t modications we have 
||w’||2  =  w2 + tM 

 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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The Perceptron – Convergence theorem (cont) 
 

 The conclusion is that there must be an  upper limit tmax for t The 
system modies its connections only a limited number of times In other 
words after maximally tmax modications of the weights the perceptron 
is correctly performing the mapping tmax will be reached when cos 
α=1. If we start with connections w =0,  

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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Feed-Forward Nets can Recognise Regularity in Data 
 

 The net below is equipped with werights thast enable it to recognise 
properties of pairs of people. Some of the pairs involve siblings nd 
others involve acquaintances. The input connjections receive a value 
of 1 to identify the pairs of people under consideration. All other input 
connections receive values of 0 because the corresponding people 

 
 
 
 
 
 
 
 
 
 
 

 are not part of the pair under consideration. Assume that the people in 
the top group of three are siblings, as are the people in the bottom 
group. 

-1.
5 .5 

.5 1.5 

Robert 
Rachel 
Romeo 

 
Jean 

James 
Juliet 

acquaintances 
 
 
 
 

siblings 

H1 

H2 
-1.0 
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Feed-Forward Nets can Recognise Regularity in Data (cont) 
 

 Further assume that any pair of people who are not siblings are 
acquaintances. 

 

 The net is not fully connected to simplify discussion. Nodes to the right 
of the input links are hidden nodes because their outputs are not fully 
observable. Output nodes convey conclusions.  

 

 Any of the first three inputs produces enough stimulation to fire H1 
because all connecting weights are 1.0 and because H1’s threshold id 
0.5. Similarly any of the second three produces enough to fire H2. 
Thus H1 and H2 act as logical OR gates. At least one of H1 and H2 
has to fire because two inputs are always presumed to be on. 

 

 If both H1 and H2 fire then the weighted sum presented to the 
aquaintances node is 2 because both of the weights involved are 1.0 
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Feed-Forward Nets can Recognise Regularity in Data (cont) 
 

 and because the acquaintance nodes threshold is 1.5, If only one of 
H1 or h2 fire, then the acquaintance node does not fire. Thus the 
acquaintance node acts as a logical AND gate: it fires only when the 
input pair are acquaintances. 

 

 What happens if both H1 and H2 fire? 
 

 Note that in this example each link and node has a clear role. 
Generally this is not the case since recognition capability id distributed 
diffusely over many more nodes and weights and the role of particular 
links and hidden nodes becoes obscure. 
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Concluding Remarks 
 

  
Out of Time 

(A holiday thought)  
 

My old clock used to tell the time 
 

and subdivide diurnity; 
 

but now it's lost both hands and chime 
 

and only tells eternity. 


