
 	

CSE4403 3.0 & CSE6002E - Soft Computing	

Fall Semester, 2013	

	
 	

Neural Networks

Fundamentals
Framework for
 distributed processing
Network topologies
Training of ANN’s
Notation
Perceptron
Back Propagation

 	

CSE4403 3.0 & CSE6002E - Soft Computing	

Fall Semester, 2013	

	
 	

Neural Networks – Historical Perspective

A first wave of interest in neural networks also known as connectionist
models or parallel distributed processing emerged after the
introduction of simplfied neurons by McCulloch and Pitts in 1943.
These neurons were presented as models of biological neurons and
as conceptual components for circuits that could perform
computational tasks

When Minsky and Papert published their book Perceptrons in 1969 in
which they showed the deficiencies of perceptron models most neural
network funding was redirected and researchers left the field Only a
few researchers continued their efforts most notably Teuvo Kohonen,
Stephen Grossberg, James Anderson, and Kunihiko Fukushima.

 	

CSE4403 3.0 & CSE6002E - Soft Computing	

Fall Semester, 2013	

	
 	

Neural Networks – Historical Perspective

The interest in neural networks reemerged only after some important
theoretical results were attained in the early eighties most notably the
discovery of error backpropagation and new hardware developments.
This renewed interest is reflected in the number of scientists, the
amounts of funding, and the number of large conferences and journals
associated with neural networks

Aftificial neural networks can be most adequately characterised as
computational models with particular properties such as the ability to
adapt or learn to generalise or to cluster or organise data and which
operation is based on parallel processing. However many of these
properties can be attributed to existing non-neural models.

 	

CSE4403 3.0 & CSE6002E - Soft Computing	

Fall Semester, 2013	

	
 	

Neural Networks – Historical Perspective

Often parallels with biological systems are described. However there is
still so little known even at the lowest cell level about biological
systems that the models we are using for our artificial neural systems
seem to introduce an oversimplification of the biological models.

The point of view we take in thisintroduction is that of a computer
scientist. We are not concerned with the psychological implication of
the networks. We consider neural networks as an alternative
computational scheme rather than anything else.

 	

CSE4403 3.0 & CSE6002E - Soft Computing	

Fall Semester, 2013	

	
 	

Neural Networks – A Framework for Distributed Representation

 An artificial network consists of a pool of simple processing units
which communicate by sending signals to each other over a large
number of weighted connections
 A set of major aspects of a parallel distributed model can be
distinguished:

•  a set of processing units {‘neurons,’ ‘cells’};
•  a state of activation yk for every unit which equivalent to the

output of the unit;
•  connections between the units. Generally each connection

is defined by a weight wjk which determines the effect which
the signal of unit j has on unit k;

•  a propagation rule which determines the effective input sk of
a unit from its external inputs;

 	

CSE4403 3.0 & CSE6002E - Soft Computing	

Fall Semester, 2013	

	
 	

Neural Networks – A Framework for Distributed Representation

•  an activation function Fk which determines the new level of
activation based on the effective input sk(t) and the current
activation yk(t), i.e., the update;

•  an external input (aka bias, offset) Φk for each unit;
•  a method for information gathering (the learning rule);
•  an environment within which the system must operate, providing

input signals and - if necessary - error signals

The figure illustrates
these basics concepts:

 	

CSE4403 3.0 & CSE6002E - Soft Computing	

Fall Semester, 2013	

	
 	

Neural Networks – A Framework for Distributed Representation
Processing units
•  Each unit performs a relatively simple job: receive input from

neighbours or external sources and use this to compute an output
signal which is propagated to other units. Apart from this
processing a second task is the adjustment of the weights. The
system is inherently parallel in the sense that many units can carry
out their computations at the same time.

•  Within neural systems it is useful to distinguish three types of units:
input units (indicated by an index i) which receive data from outside
the neural network, output units (indicated by an index o) which
send data out of the neural network, and hidden units (indicated by
an index h) whose input and output signals remain within the neural
network

 	

CSE4403 3.0 & CSE6002E - Soft Computing	

Fall Semester, 2013	

	
 	

Neural Networks – A Framework for Distributed Representation
Processing units (cont)
•  During operation, units can be updated either synchronously or

asynchronously. With synchronous updating, all units update their
activation simultaneously; with asynchronous updating each unit
has a (usually fixed) probability of updating its activation at a time t
and usually only one unit will be able to do this at a time. In some
cases the latter model has some advantages

Connections between units
•  In most cases we assume that each unit provides an additive

contribution to the input of the unit with which it is connected. The
total input to unit k is simply the weighted sum of the separate
outputs from each of the connected units plus a bias or offset term
Φk

 	

CSE4403 3.0 & CSE6002E - Soft Computing	

Fall Semester, 2013	

	
 	

 	

CSE4403 3.0 & CSE6002E - Soft Computing	

Fall Semester, 2013	

	
 	

 	

CSE4403 3.0 & CSE6002E - Soft Computing	

Fall Semester, 2013	

	
 	

Neural Networks - Activation and Output Rules (cont)

threshold (see figure below)

For this smoothly limiting function often a sigmoid (s-shaped) function
like:

 yk = F(sk) = 1 / (1 + e-sk) {5}

is used. In some applications a hyperbolic tangentis used, yielding
output values in the range {-1, +1}.

Various activation
Functions for a unit

 	

CSE4403 3.0 & CSE6002E - Soft Computing	

Fall Semester, 2013	

	
 	

Neural Networks - Activation and Output Rules (cont)

In some cases the output of a unit can be a stochastic function of the
total input of the unit. In that case the activation is not deterministically
determined by the neuron input but the neuron input determines the
probability p that a neuron get a high activation value:

 p(yk←1) = F(sk) = 1 / (1 + e-sk/T) {6}

in which T (cf temperature) is a parameter which determines the slope
of the probability function.

In all networks we describe we consider the output of a neuron to be
identical to its activation level.

 	

CSE4403 3.0 & CSE6002E - Soft Computing	

Fall Semester, 2013	

	
 	

Neural Networks – Network Topologies

Connections between units and heir data propagation distinguishes:
•  Feed-forward networks where the data flow from input to output

units is strictly feed forward Data processing can extend over
multiple layers of units but no feedback connections are present,
that is, connections extending from outputs of units to inputs of units
in the same layer or previous layers.

•  Recurrent networks that do contain feedback connections. Contrary
to feed-forward networks the dynamic network properties are
important. In some cases the activation values of the units undergo
a relaxation process such that the network will evolve to a stable
state in which these activations do not change anymore. In other
applications the change of the activation values of the output
neurons are signicant such that the dynamic behaviour constitutes
the output of the network.

 	

CSE4403 3.0 & CSE6002E - Soft Computing	

Fall Semester, 2013	

	
 	

Neural Networks – Training of ANN’s

 Classic examples of feed-forward networks are the Perceptron and
Adaline which will be discussed below.

 A neural network has to be configured such that the application of a
set of inputs produces (either direct or via a relaxation process) the
desired set of outputs. Various methods to set the strengths of the
connections exist. One way is to set the weights explicitly using a
priori knowledge. Another way is to train the neural network by
feeding it teaching patterns and letting it change its weights
according to some learning rule.

 	

CSE4403 3.0 & CSE6002E - Soft Computing	

Fall Semester, 2013	

	
 	

Neural Networks – Paradigms of Learning

We can categorise the learning situations in two distinct sorts:
 Supervised learning or Associative learning in which the network is
trained by providing it with input and matching output patterns.
These input-output pairs can be provided by an external teacher or
by the system which contains the network (self-supervised).
 Unsupervised learning or Self-organisation in which an output unit is
trained to respond to clusters of pattern within the input. In this
paradigm the system is supposed to discover statistically salient
features of the input population. Unlike the supervised learning
paradigm there is no a priori set of categories into which the patterns
are to be classified; rather the system must develop its own
representation of the input stimuli.

 	

CSE4403 3.0 & CSE6002E - Soft Computing	

Fall Semester, 2013	

	
 	

Neural Networks – Modifying Patterns of Connectivity

 Both learning paradigms described above result in an adjustment of
the weights of the connections between units according to some
modification rule. Virtually all learning rules for models of this type
can be considered as a variant of the Hebbian learning rule
suggested by Hebb in his classic book Organization of Behaviour in
1949. The basic idea is that if two units j and k are active
simultaneously, their interconnection must be strengthened. If j
receives input from k, the simplest version of Hebbian learning
prescribes to modify the weight wjk with

 Δwjk = γyjyk

 {7}
 where γ is a positive constant of proportionality representing the
learning rate. Another common rule uses not the actual activation of
unit k but the dierence between the actual and desired activation for
adjusting the weights.

 	

CSE4403 3.0 & CSE6002E - Soft Computing	

Fall Semester, 2013	

	
 	

Neural Networks – Modifying Patterns of Connectivity (cont)

 Δwjk = γyj (dk- yk) {8}

 in which dk is the desired activation provided by a teacher. This is
often called the Widrow-Hoff rule or the delta rule.

 Many variants (often very exotic ones) have been published over the
last 20 years.

 	

CSE4403 3.0 & CSE6002E - Soft Computing	

Fall Semester, 2013	

	
 	

Neural Networks – Terminology

Output vs activation of a unit. We consider the output and the activation
value of a unit to be one and the same thing, i.e., the output of each
neuron equals its activation value.

Bias offset threshold. These terms all refer to a constant term (i.e.,
independent of the network input but adapted by the learning rule)
which is input to a unit. They may be used interchangeably, although
the latter two terms are often seen as a property of the activation
function. This external input is usually implemented (and can be
written) as a weight from a unit with activation value 1.

Number of layers. In a feed-forward network the inputs perform no
computation and their layer is therefore not counted. Thus a network
with one input layer, one hidden layer, and one output layer is
referred to as a network with two layers This convention is widely
though not universally used

 	

CSE4403 3.0 & CSE6002E - Soft Computing	

Fall Semester, 2013	

	
 	

Neural Networks – Terminology (cont)

Representation vs learning. When using a neural network one has to
distinguish two issues which influence the performance of the
system The first issue is the representational power of the network,
the second issue is the learning algorithm.

 The representational power of a neural network refers to the ability
of a neural network to represent a desired function. Because a
neural network is built from a set of standard functions, in most
cases the network will only approximate the desired function, and
even for an optimal set of weights the approximation error is not
zero

 The second issue is the learning algorithm. Given that there exist a
set of optimal weights in the network, is there a procedure to
iteratively find this set of weights?

 	

CSE4403 3.0 & CSE6002E - Soft Computing	

Fall Semester, 2013	

	
 	

The Perceptron – networks with threshold activation functions

 A single layer feed-forward network consists of one or more output
neurons o, each of which is connected with a weighting factor wio to
all of the inputs I. In the simplest case the network has only two
inputs and a single output as sketched in the figure below (we leave
the output index o out. The input of the neuron is the weighted sum
of the inputs plus the bias term. The output of the network is formed
by the activation of the output neuron which is some function of the
input:

single layer
network with
one input &
two outputs

 	

CSE4403 3.0 & CSE6002E - Soft Computing	

Fall Semester, 2013	

	
 	

The Perceptron – networks with threshold activation functions (cont)

 The activation function F can be linear so that we have a linear
network, or nonlinear. We consider the threshold function

F(s) = {1 if s>0 | -1 otherwise}

 The output of the network thus is either +1 or -1, depending on the
input. The network can now be used for a classification task: it can
decide whether an input pattern belongs to one of two classes. If the
total input is positive, the pattern will be assigned to class +1, if the
total input is negative the sample will be assigned to class -1. The
separation between the two classes in this case is a straight line,
given by the equation

w1x1 + w2x2 + θ = 0 {9}
 The single layer network represents a linear discriminant function.

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

 	

CSE4403 3.0 & CSE6002E - Soft Computing	

Fall Semester, 2013	

	
 	

The Perceptron – networks with threshold activation functions (cont)

 A geometrical representation of the linear threshold neural network
is given in the figure below. Equation {9} can be written as

x2 = - (w1/w2)x1 - (θ/w2) {10}

 and we see that the weights determine the slope of the line and the
bias determines the offset, i.e., how far the line is from the origin.
Note also that the weights can be plotted in the input space: the
weight vector is always perpendicular to the discriminant function.

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

Geometric representation
Of the discriminant function
And the weights

 	

CSE4403 3.0 & CSE6002E - Soft Computing	

Fall Semester, 2013	

	
 	

The Perceptron – networks with threshold activation functions (cont)

 Now that we have shown the representational power of the single
layer network with linear threshold units we come to the second
issue: how do we learn the weights and biases in the network? We
describe two learning methods for these types of networks: the
perceptron learning rule and the delta or LMS rule. Both methods are
iterative procedures that adjust the weights. A learning sample is
presented to the network. For each weight the new value is computed
by adding a correction to the old value. The threshold is updated in a
same way:

wi(t+1) = wi(t) + Δwi(t),
 θ(t+1) = θ(t) + Δθ(t)

 The learning problem can now be formulated as how do we compute
Δwi(t) and Δθ(t) in order to classify the learning patterns correctly?

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

 	

CSE4403 3.0 & CSE6002E - Soft Computing	

Fall Semester, 2013	

	
 	

The Perceptron – perceptron learning rule and convergence theorem

 Suppose we have a set of learning samples consisting of an input
vector x and a desired output d(x). For a classication task the d(x) is
usually +1 or -1.The perceptron learning rule is very simple and can
be stated as follows:

 1. start with random weights for the connections;
 2. select an input vector x from the set of training samples;
 3. If y ≠ d(x) (the perceptron gives an incorrect response), modify all

 connections wi according to Δwi = d(x)xi;
 4. Go back to 2.

 Note that the procedure is very similar to the Hebb rule; the only
difference is that, when the network responds correctly, no connection
weights are modified. Besides modifying the weights we must also
modify the threshold θ.

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

 	

CSE4403 3.0 & CSE6002E - Soft Computing	

Fall Semester, 2013	

	
 	

The Perceptron – perceptron learning rule and convergence theorem

 This θ is considered as a connection w0 between the output neuron
and a ‘dummy’ predicate unit which is always on: x0 = 1. Given the
perceptron learning rule as stated above this threshold is modied
according to:

Δθ = {0 if the perceptron responds correctly; | d(x) otherwise }

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

 	

CSE4403 3.0 & CSE6002E - Soft Computing	

Fall Semester, 2013	

	
 	

The Perceptron – Example of the Perceptron learning rule

 A perceptron is initialized with the following weights w1 = 1, w2 = 2,
θ= -2. The perceptron learning rule is used to learn a correct
discriminant function for a number of samples sketched in the figure
below. The first sample A, with values x = {0.5, 1.5} and target value
d(x)=+1 is presented to the network.

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

 	

CSE4403 3.0 & CSE6002E - Soft Computing	

Fall Semester, 2013	

	
 	

The Perceptron – Example of the Perceptron learning rule

 From this equation

 it can be calculated that the network output is +1, so no weights are
adjusted. The same is the case for point B, with values x = {-0.5, 0.5}
and target value d(x) = -1; the network output is negative so no
change. When presenting point C with values x = {0.5, 0.5} the
network output will be -1, while the target value d(x) = +1. According
to the perceptron learning rule the weight changes are: Δw1 = 0.5,
 Δw2 = 0.5, Δθ = 1. The new weights are now: w1 = 1.5, w2 = 2.5, Δθ =
-1, and sample C is classified correctly.

 In the previous figure the discriminant function before and after this
weight update is shown

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

 	

CSE4403 3.0 & CSE6002E - Soft Computing	

Fall Semester, 2013	

	
 	

The Perceptron – Convergence theorem

 For the perceptron learning rule there exists a convergence theorem
which states the following
 Theorem 1: If there exists a set of connection weights w* which is able
to perform the transformation y = d(x), the perceptron learning rule will
converge to some solution (which may or may not be the same as w*)
in a finite number of steps for any initial choice of the weights.
 Proof: Given the fact that the length of the vector w* does not play a
role (because of the sgn operation), we take ||w*||=1. Because w* is a
correct solution, the value |w* - x|, where • denotes dot or inner
product, will be greater than 0 or: there exists a δ>0 such that |w*-x|>δ
for all inputs x. Now define cos α ≡ w • w* / ||w||. When according to
the perceptron learning rule connection weights are modified at a
given input x, we know that Δw= d(x) / x and the weight after
modication is w’ = w + Δw. From this it follows that:

• 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

 	

CSE4403 3.0 & CSE6002E - Soft Computing	

Fall Semester, 2013	

	
 	

The Perceptron – Convergence theorem (cont)

 w’ • w* = w • w* + d(x) • w* • x
 = w • w* + sgn(w* • x) w* • x
 > w • w* + δ

 ||w’||2 = ||w + d(x) x||2

 = w2 + 2d(x)w • x • x2

 = w2 + x2 (because d(x) = - sgn[w • x] !!)
 = w2 + M

After t modications we have
||w’||2 = w2 + tM

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

 	

CSE4403 3.0 & CSE6002E - Soft Computing	

Fall Semester, 2013	

	
 	

The Perceptron – Convergence theorem (cont)

 The conclusion is that there must be an upper limit tmax for t The
system modies its connections only a limited number of times In other
words after maximally tmax modications of the weights the perceptron
is correctly performing the mapping tmax will be reached when cos
α=1. If we start with connections w =0,

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

 	

CSE4403 3.0 & CSE6002E - Soft Computing	

Fall Semester, 2013	

	
 	

Feed-Forward Nets can Recognise Regularity in Data

 The net below is equipped with werights thast enable it to recognise
properties of pairs of people. Some of the pairs involve siblings nd
others involve acquaintances. The input connjections receive a value
of 1 to identify the pairs of people under consideration. All other input
connections receive values of 0 because the corresponding people

 are not part of the pair under consideration. Assume that the people in
the top group of three are siblings, as are the people in the bottom
group.

-1.
5 .5

.5 1.5

Robert
Rachel
Romeo

Jean

James
Juliet

acquaintances

siblings

H1

H2
-1.0

 	

CSE4403 3.0 & CSE6002E - Soft Computing	

Fall Semester, 2013	

	
 	

Feed-Forward Nets can Recognise Regularity in Data (cont)

 Further assume that any pair of people who are not siblings are
acquaintances.

 The net is not fully connected to simplify discussion. Nodes to the right
of the input links are hidden nodes because their outputs are not fully
observable. Output nodes convey conclusions.

 Any of the first three inputs produces enough stimulation to fire H1
because all connecting weights are 1.0 and because H1’s threshold id
0.5. Similarly any of the second three produces enough to fire H2.
Thus H1 and H2 act as logical OR gates. At least one of H1 and H2
has to fire because two inputs are always presumed to be on.

 If both H1 and H2 fire then the weighted sum presented to the
aquaintances node is 2 because both of the weights involved are 1.0

 	

CSE4403 3.0 & CSE6002E - Soft Computing	

Fall Semester, 2013	

	
 	

Feed-Forward Nets can Recognise Regularity in Data (cont)

 and because the acquaintance nodes threshold is 1.5, If only one of
H1 or h2 fire, then the acquaintance node does not fire. Thus the
acquaintance node acts as a logical AND gate: it fires only when the
input pair are acquaintances.

 What happens if both H1 and H2 fire?

 Note that in this example each link and node has a clear role.
Generally this is not the case since recognition capability id distributed
diffusely over many more nodes and weights and the role of particular
links and hidden nodes becoes obscure.

 	

CSE4403 3.0 & CSE6002E - Soft Computing	

Fall Semester, 2013	

	
 	

Concluding Remarks

Out of Time

(A holiday thought)

My old clock used to tell the time

and subdivide diurnity;

but now it's lost both hands and chime

and only tells eternity.

