’%' CSE4403 3.0 & CSE6002E - Soft Computing g
A& Fall Semester, 2013

Neural Networks Videos
Brief Review

The Next Generation
Neural Networks - Geoff
Hinton

CSE4403 3.0 & CSE6002E - Soft Computing

A& Fall Semester, 2013

Neural Networks — Brief Review

Brains

10" neurons of > 20 types, 10'* synapses, 1ms—10ms cycle time
Signals are noisy “spike trains” of electrical potential

Axonal arborization

\ Axon from another cell

Dendrite

Nucleus

Cell body or Soma

RN
g A g
e CSE4403 3.0 & CSE6002E - Soft Computing g

ﬁ%
‘i& Fall Semester, 2013

Neural Networks — Brief Review

McCulloch—Pitts “unit”

Qutput i1s a “squashed” linear function of the inputs:

Q; +— _‘]1:"”:} = g IZL;H-;_;Q,:I

Rias Weight

m=—lw\ a = gling

Wi

aj—b -~

/

[npest [nput Activation Out put
Links Function Function Outpust Links

A gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do

X

ﬁvf‘ CSE4403 3.0 & CSE6002E - Soft Computing
A& Fall Semester, 2013

Neural Networks — Brief Review

Activation functions

glin) A glin)

o |

in

(b)
(a) is a step function or threshold function
(b) 1s a sigmoid function 1/(1 + ¢ *)

Changing the bias weight W1, , moves the threshold location

N
g i
e CSE4403 3.0 & CSE6002E - Soft Computing g

ﬁ%
‘i& Fall Semester, 2013

Neural Networks — Brief Review

|| Implementing logical functions "

Wo=15 W= 0.5 Wy=- 05
W T~ W T .
_~ - W, =1
=1 W= 1
AND OR NOT

McCulloch and Pitts: every Boolean function can be implemented

N
B TR
3 ;.g’ CSE4403 3.0 & CSE6002E - Soft Computing g

Fall Semester, 2013

Neural Networks — Brief Review

Network structures

Feed-forward networks:
— single-layer perceptrons
— mulu-layer perceptrons

Feed-forward networks implement functions, have no internal state

Recurrent networks:
— Hopfield networks have symmetnc weights (W, ; = W, ;)
glx)=sign(x), a;= = 1; holographic associative memory
— Boltzmann machines use stochastic activation functions,
= MCMC in Bayes nets
— recurrent neural nets have directed cycles with delays
= have internal state (like flip-flops), can osaillate etc.

5
| CSE4403 3.0 & CSE6002E - Soft Computing

A& Fall Semester, 2013

Neural Networks — Brief Review

|| Feed-forward example ||

W,

.

Feed-forward network = a parametenized family of nonlinear functions:

as = g(Wss-as+ Wys - as)
= g(Wss5-g(Wis-a1 + Was-a2)+ Wys-g(Wire-ar + Wag-az))

Adjusting weights changes the function: do learning this way!

CSE4403 3.0 & CSE6002E - Soft Computing

A& Fall Semester, 2013

Neural Networks — Brief Review

Single-layer perceptrons

Pertoptron ocutpes

o I o T o W o

N oén O3 00 =

Input ; Oulput
, ” iy, ,
Units ‘ Units

Qutput units all operate separately—no shared weights

Adjusting weights moves the location, orientation, and steepness of cliff

| CSE4403 3.0 & CSE6002E - Soft Computing

‘i& Fall Semester, 2013

Neural Networks — Brief Review

Expressiveness of perceptrons

Consider a perceptron with ¢ = step function (Rosenblatt, 1957, 1960)
Can represent AND, OR, NOT, majority, etc., but not XOR
Represents a linear separator in input space:

YiWiz; >0 oo W-x>10

x) n
l o l O
?
0 0
0 | .. 0 |
(a) x; and x7 (b) x; or x3 (c) x; xor x3

Minsky & Papert (1969) pricked the neural network balloon

E - CSE4403 3.0 & CSE6002E - Soft Computing
A& Fall Semester, 2013

Neural Networks — Brief Review

|| Perceptron learning ||

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output v Is

E = =Err = (y — hwi(x) |

] e
tvvl-—‘

Perform optimization search by gradient descent:

dF dErr a
— = Emr X —— =Emr X —— (y — ¢ (3" oWiz;))
aw, W, aw, W T 9=t

= —FErr x ¢'(in) x T;

Simple weight update rule:
W; — W; +a x Err x ¢'(in) x ;

E.g., +ve error = Increase network output
—» Increase weights on +ve inputs, decrease on -ve inputs

| CSE4403 3.0 & CSE6002E - Soft Computing g

é& Fall Semester, 2013

Neural Networks — Brief Review

|| Perceptron learning contd. ||

Perceptron learning rule converges to a consistent function
for any linearly separable data set

3 1. 1,

% % .

009 ; ® 094 -

508 | 508

1+ T

go7{ £ 07

go_e. //) :ewewm e goﬁ‘ Jr’4.+..HA~..-r‘\A~—.._/

g 05 T 505{" Perceptron —+

504 ————v——————— §0,4 —r—r————r—r—r—

3 0 10 20 30 40 50 60 70 &0 20100 0 10 20 30 40 50 60 70 80 20100
Traming set size - MAJORITY on 11 inputs Traning set size - RESTAURANT data

Perceptron learns majority function easily, DTL is hopeless

DTL learns restaurant function easily, perceptron cannot represent it

| CSE4403 3.0 & CSE6002E - Soft Computing

‘i& Fall Semester, 2013

Neural Networks — Brief Review

Multilayer perceptrons

Layers are usually fully connected;
numbers of hidden units typically chosen by hand

Oustput units a,
W

Hidden units a,
Wi,

[nput units a2

CSE4403 3.0 & CSE6002E - Soft Computing

e
A& Fall Semester, 2013

Neural Networks — Back Propagation Algorithm

Most people would consider the Back Propagation network to be the
quintessential Neural Net. Actually, Back Propagation is the training
or learning algorithm rather than the network itself. Let's consider
what Back Propagation is and how to use it.

A Back Propagation network learns by example. You give the
algorithm examples of what you want the network to do and it
changes the network’s weights so that, when training is finished, it
will give you the required output for a particular input. Back
Propagation networks are ideal for simple Pattern Recognition and
Mapping Tasks. To train the network you need to give it examples of
what you want - the output you want (called the Target) for a
particular input.

CSE4403 3.0 & CSE6002E - Soft Computing

e
A& Fall Semester, 2013

Neural Networks — Back Propagation Algorithm

Once the network is trained, it will provide the desired output for any
of the input patterns. Let’'s now look at how the training works.

The network is first initialised by setting up all its weights to be small
random numbers - say between -1 and +1. Next, the input pattern
is applied and the output calculated (this is called the forward pass).
The calculation gives an output which is completely different to what
you want (the Target), since all the weights are random. We then
calculate the Error of each neuron, which is essentially: Target -
Actual Output (i.e., What you want - What you actually get). This
error is then used mathematically to change the weights in such a
way that the error will get smaller. In other words, the Output of each
neuron will get closer to its Target (this part is called the reverse
pass). The process is repeated again and again until the error is
minimal.

CSE4403 3.0 & CSE6002E - Soft Computing

e
A& Fall Semester, 2013

Neural Networks — Back Propagation Algorithm

Let's do an example with an actual network to see how the process
works. We'll just look at one connection initially, between a neuron in
the output layer and one in the hidden layer.

Single connection learning in
a Back Propagation network.

The connection we're interested in is between neuron A (a hidden
layer neuron) and neuron B (an output neuron) and has the weight
W ,g. The diagram also shows another connection, between neuron
A and C, but we'll return to that later. The algorithm works like this:

CSE4403 3.0 & CSE6002E - Soft Computing

e
A& Fall Semester, 2013

Neural Networks — Back Propagation Algorithm

1. First apply the inputs to the network and work out the output -
remember this initial output could be anything, as the initial weights
were random numbers.

2. Next work out the error for neuron B. The error is What you want -
What you actually get, in other words:

Errorg = Outputg (1-Outputy)(Targetg — Outputy)
The “Output(1-Output)” term is necessary in the equation because

of the Sigmoid Function - if we were only using a threshold neuron it
would just be (Target - Output).

3. Change the weight. Let W+, be the new (trained) weight and W ,g
be the initial weight.

W+,5 = W,z + (Errorg x Output,)

Notice that it is the output of the connecting neuron (neuron A) we use
(not B). We update all the weights in the output layer in this way.

CSE4403 3.0 & CSE6002E - Soft Computing

e
A& Fall Semester, 2013

Neural Networks — Back Propagation Algorithm

4. Calculate the Errors for the hidden layer neurons. Unlike the output
layer we can’t calculate these directly (because we don’t have a
Target), so we Back Propagate them from the output layer (hence
the name of the algorithm). This is done by taking the Errors from
the output neurons and running them back through the weights to
get the hidden layer errors. For example if neuron A is connected as
shown to B and C then we take the errors from B and C to generate
an error for A.

Error, = Output , (1 - Output ,)(Errorg W,g + ErrorC W)
Again, the factor “Output (1 - Output)” is present because of the
sigmoid squashing function.

5. Having obtained the Error for the hidden layer neurons now proceed
as in stage 3 to change the hidden layer weights. By repeating this
method we can train a network of any number of layers.

CSE4403 3.0 & CSE6002E - Soft Computing g

A& Fall Semester, 2013

Neural Networks — Back Propagation Algorithm

This may well have left some doubt in your mind about the
operation, so let’s clear that up by explicitly showing all the
calculations for a full sized network with 2 inputs, 3 hidden layer
neurons and 2 output neurons as shown below. W+ represents the
new, recalculated, weight, whereas W represents the old weight.

5
3 ’f CSE4403 3.0 & CSE6002E - Soft Computing
A& Fall Semester, 2013

Neural Networks — Back Propagation Algorithm

1. Calculate errors of output neurons
5, = out, (1 - out,) (Target, - out,)
53 = outs (1 - outg) (Target; - outg)

2. Change output layer weights
W as=Wa,+ S, outy W ag= Wag+ ndgouty
W Ba= Waa+ NS outs Wss= Wpg+ nSp outs
Wea=Wea+ nd,; oute Weg= Weg+ ndpoute

3. Calculate (back-propagate) hidden layer errors
5a= outa (1 — outa) (8aWaa+ 53Wag)
Sg = outg (l - Outa) (Sawﬂa+ Spra)
Sc= oute (1 —outc) (5,Wea + 5gWep)

4. Change hidden layer weights

Wha=Wa+ ﬂs.x?na Woa=Whoa+ ﬂs.x_inn
W= W;g+ ndpin; Was= W g + ndging
wc=Wic+ nécim, W ac=Wac+ nécing

The constant 7 (called the leaming rate, and nominally equal to one) is put in to speed
up or slow down the leaming if requured.

7 CSE4403 3.0 & CSE6002E - Soft Computing

20
‘i& Fall Semester, 2013

Neural Networks — Back Propagation Algorithm - worked example

Consider the simple network below:

Loput
A=035

Assume that the neurons have a Sigmoid activation function and

(1) Perform a forward pass on the network.
(11) Perform a reverse pass (traming) once (target = 0.5).
(11) Perform a further forward pass and comment on the result.

Answer:

»

Input to top neuron = (0.35x0.1)+(0.9x0.8)=0.755. Out = 0.68.

Input to bottom neuron = (0.9x0.6)+(0.35x0.4) = 0.68. Out = 0.6637.
Input to final neuron = (0.3x0.68)+(0.9x0.6637) = 0.80133. Out = 0.69.

(w)
Output error 5=(t-0)(1-0)o = (0.5-0.69)(1-0.69)0.69 = -0.0406.

8

Neural Networks — Back Propagation Algorithm - worked example

CSE4403 3.0 & CSE6002E - Soft Computing
Fall Semester, 2013

New weights for output layer
wl™ = w1+ x input) = 0.3 + (-0.0406x0.68) = 0.272392.
w2™ = w2+(5 x mput) = 0.9 + (-0.0406x0.6637) = 0.87305.

Errors for udden layers:
51=5xwl =-0.0406 x 0.272392 x (1-0)o =-2.406x10"
52=5x w2 =-0.0406 x 0.87305 x (1-0)o=-7.916x107

New hidden layer weights:
w3=0.1+(-2.406 x 10~ x 0.35) = 0.09916.
wd™=0.8+(-2.406 x 10~ x 0.9) = 0.7978.
w3 =04+ (-7916 x 10° x 0.35) = 0.3972.
w6 =0.6+(-7.916x 10° x 0.9) =0.5928.

(1)
Old error was -0.19. New error 1s -0.18205. Therefore error has reduced.

X

| CSE4403 3.0 & CSE6002E - Soft Computing

‘i& Fall Semester, 2013

Neural Networks — Back Propagation Algorithm

Back-propagation learning

Qutput layer: same as for single-layer perceptron,

W.. — ”:,., t+a xXa; X A;

where A, = Err; x ¢'(in;)
Hidden layer: back-propagate the error from the output layer:

A; =d'(in;) S WA, .

Update rule for weights in hidden layer:
Wi — Wi+ axap x A;

(Most neuroscientists deny that back-propagation occurs in the brain)

CSE4403 3.0 & CSE6002E - Soft Computing

£§ Fall Semester, 2013
Neural Networks — Geoff Hinton’ s Lecture

Please view the 59 minute video at

http://www.youtube.com/watch?v=AyzOUbkUf3M

: B P

‘8 & ~
’f' CSE4403 3.0 & CSE6002E - Soft Computing g
A& Fall Semester, 2013 §

Concluding Remarks

TT.T.

Put up in a place

where it's easy to see

the cryptic admonishment
TT.T.

When you feel how
Depressingly slowly you climb,
it's well to remember that
Things Take Time.

