

__

Markov (or normal) algoithms

In the early 1950's the Russian mathematician A. A. Markov proposed what he termed “normal
algorithms” to attack the problem of transforming strings of symbols from one string to another in a
mechanical way. We call them Markov algorithms. This transformation is an abstraction from many of
our common problems. For example adding two numbers x and y can be considered the problem of
transforming the string “x + y” into the string “z” where “z” represents the sum of x and y. As another
example the problem of information storage and retrieval can be thought of as the problem of
transforming strings representing queries for documents into strings representing the documents
satisfying the query.

A couple of basic guidelines to keep in mind when working with Markov algorithms are:
1. When transforming a string, we shall generally not want to operate on the entire string

(which may be arbitrarily long) at once, but rather only a small contiguous part of it.
2. Assume that the device which is to utilize these algorithms is capable of recognizing the

occurrences of a given substring within a given string. The occurrences may be several in
number and may overlap.

3. A particular occurrence of a substring may be distinguished by marking it with an asterisk (*).

Example:

The word ratatattat contains three successive occurrences of the string tat, namely

ra*tat*attat rata*tat*tat ratatat*tat*
The first two of these three occurrences overlap by one letter.

We shall consider these occurrences as numbered, and shall refer to the left-most occurrence of a string A
in a string B as the first occurrence of A in B. One special string, the empty string, contains no symbols. It
plays a role analogous to the empty set. If a given string A contains n symbols, the empty string W is
considered to have n+1 occurrences in A: before the first symbol (the first occurrence of W), after the last
symbol, and between every two adjacent symbols.

The transformations of which a Markov algorithm is composed are those that replace the first occurrence
of a specified string A in the given string by another specified string B. Markov algorithms consist of a
sequence of such transformations.

Definition - Let us consider strings of symbols from a given finite symbol set, called the alphabet. We
suppose that the alphabet does not contain the symbols “→” and “•”.

 A simple (Markov) production is a string A →B, where A and B are strings in the alphabet. A
conclusive (Markov) production is a string A →•B, where A and B are strings in the alphabet.
In the production A →B (A →•B) the antecedent is A and the consequence is B.

Definition - Let A →B (or A →•B) be a Markov production where A and B are strings in the alphabet. Let
S be a string of symbols in the alphabet. The production is applicable to S when there is at
least one occurrence of A in S. Otherwise the production is not applicable to S.

Examples:

Let the alphabet be the English alphabet a,b,...,z. Let the string S be “abactababrstc”

- applying the production act →bbb to S, we obtain “abbbbababrstc”
- applying the production ba →•one to S we obtain “aonectababrstc”
- applying the production tab →W to S we obtain “abacabrstc”

CSE4403 3.0 & CSE6002 - Soft Computing

Fall Semester, 2013

CSE 6390E Computational Linguistics

2

The production abc →rst is not applicable to S.

Definition - A Markov Algorithm is a finite sequence P1, P2,...,Pn of Markov productions to be applied to
strings in a given alphabet according to the following rules. Let S be a given string. The
sequence is searched to find the first production Pi whose antecedent occurs in S. If no such
production exists, the operation of the algorithm halts without change in S. If there is a
production in the algorithm whose antecedent occurs in S, the first such production is
applied to S. If this is a conclusive production, the operation of the algorithm halts
without further change in S. If this is a simple production, a new search is conducted using
the string S' into which S has been transformed. If the operation of the algorithm ultimately
ceases with a string S*, we say that S* is the result of applying the algorithm to S.

Example:

Take the alphabet to be {a, b, c, d}. The algorithm is given below.

Algorithm M1
M11: [conclusive] a d → •d c
M12: [simple] b a → W
M13: [simple] a → b c
M14: [simple] b c → b b a
M15: [simple] W → a

 Taking S = “dcb” we apply the algorithm
 by M15 dcb becomes adcb
 by M11 adcb becomes dccb and halts.

 Taking S = “dbc” we apply the algorithm
 by M14 dbc becomes abba
 by M12 abba becomes db
 by M15 db becomes adb
 by M11 adb becomes dcb and halts.

 Taking S = “bdc” we apply the algorithm
 by M15 - abdc, by M13 - bcbdc,
 by M14 - bbabdc, by M12 - bbdc,
 by M15 - abbdc, by M13 - bcbbdc,
 by M14 - bbabbdc, by M12 - bbbdc,
 by M15 - abbbdc, ...

The operation of the algorithm has not ceased at this point, and it is rather evident that the algorithm
when applied to bdc will operate without ceasing, producing longer and longer strings of the form b...bdc.

The algorithm in the example above has no purpose. But if the concept of a Markov algorithm is to be
useful, we must show that we can accomplish meaningful tasks with these algorithms.

Example:

Let the alphabet be unspecified, and let A be a fixed string in this alphabet. We wish to transform the
arbitrary string S into the string AS. This is easily accomplished with the following.

Algorithm M2
M21: [conclusive] W → •A

Not all tasks are as easy to accomplish. Suppose, for example, that we wished to transform S not into AS,
but rather into SA. We cannot use algorithm M2, for successive applications of this will produce the
strings AS, AAS, AAAS, ... Nor can we write the algorithm as S →•SA, for there would need to be infinitely
many productions with no first production. In fact because the productions are always applied to the first
occurrence of A in B, there is difficulty any time we wish to operate with the second, third, or last
occurrence. We overcome this difficulty by introducing the use of special marker symbols which are not a
part of the given alphabet. By use of these markers we can mark a particular point with a string and
operate on them at that point.

CSE 6390E Computational Linguistics

3

Example:
Let β be a marker not in the alphabet. If S is a string in the alphabet, the result of applying algorithm M3
to S is the string SA.

Algorithm M3
M31: [interchange] βδ → δβ δ, A ∈ member of alphabet
M32: [conclusive] β → •A
M33: W → β

 Since S initially does not contain β, the third production is then used to move β past the
symbols in S. If S contains n occurrences of symbols, then after n steps we obtain the string
Sβ. At this point the first production no longer applies, and the second production produces
SA. Since this production is conclusive, the string SA is then the result.

In the preceding example, we have introduced a new notation. Namely, in the first production we have
used the variable δ which ranges over the symbols in the alphabet. Thus the first line is not really a
production, but rather a production schema, denoting all the productions which can be obtained by
substituting symbols of the alphabet for δ.

Because of the manner in which the Markov algorithms are used, the order in which the productions are
written is vital. If the first two lines of algorithm M3 were interchanged, the result would be to transform
S into AS, rather than into SA, and the productions represented by βδ → δβ would never be used. Within
production schema the order is not critical. A little thought should convince you that the production
schema represents sections of the algorithm in which the order of the individual productions applies and
they will all do the same thing, in different contexts.

We conclude this section with several examples of tasks which can be accomplished by Markov
algorithms. The development of this subject goes far beyond this introduction. In particular, any task
which can be accomplished by the use of algorithms in a liberal sense can be accomplished by a Markov
algorithm.

In the following examples the alphabet will be left unspecified except that it contains none of the markers
or special symbols which are explicitly stated.

Example:

This algorithm transforms every string into the empty string.

Algorithm M4
M41: [production schema] δ → Wδ δ ∈ member of the alphabet

In operation this algorithm successively picks off the first letters of a string, as long as any
letters remain. When the string becomes the empty string, the process halts since there is not
transformation whose antecedent is the empty string.

Example:

This algorithm leaves the empty string unchanged but deletes the first letter of any non-empty string and
halts. Marker: β.

Algorithm M5

M51: [prod. schema] βδ → •W δ ∈ member of the alphabet
M52: β → •W
M53: W → β

Example:

Often it is useful to know the number of symbols in a string. This is easily accomplished in tally notation
by replacing every symbol by a tally marker. Special symbol: 1.

Algorithm M6
M61: [prod. schema] δ → 1 δ ∈ member of the alphabet

CSE 6390E Computational Linguistics

4

Since “1” is not an element of the alphabet, the operation ceases when every symbol has been transformed.

Example:

At times one wishes to discard a portion of the symbol string, as one would discard data after computing
the answer. The following algorithm discards everything to the left of the special symbol β.

Algorithm M7
M71: [prod. schema] δβ → β δ ∈ member of the alphabet
M72: β → •W

Example:

In almost every problem there is some point of which a decision must be made, dependent on the results
of a calculation up to that point. We now present a Markov algorithm for making such a decision. An
arbitrary string in the given alphabet is examined to determine whether it is a specified string A. If it is,
the entire string is replaced by the string B; otherwise the entire string is replaced by the string C. Marker:
ß.

Algorithm M8

M81: δβ → βδ δ ∈ member of the alphabet
M82: βδ → β
M83: β → •C
M84: Aδ → β
M85: A → β
M86: A → •B
M87: W → β

If the given string, P, does not contain an occurrence of the string A, the last production introduces a β,
and then the second and third production schema erase P and replace it with C. If P contains an
occurrence of A, but is not A, either the fourth or fifth production schema is used to introduce the β; the
first schema moves the βto the left end of P and then the second and third operate as before. Finally, if the
string P is actually A, the sixth production applies and P is transformed into B. Notice that the
productions in M8 refer directly to the string A, which might be quite long. Since A is known a priori, this
is permissible: we could always replace such a reference by a letter for letter search for A.

Example:

Another procedure which is quite common is that of doubling or duplicating a string. Often we wish to
perform transformations which destroy a string, but which are only tentative in nature: at some point we
may decide that the transformations are wrong and we wish to begin anew. Thus we must be able to save a
copy of the original string to which we can return. Given a string P, the following algorithm produces the
string PP and halts. Markers: §, β, σ

Algorithm M9

M91: [prod. schema] ƒδβ → δβƒ δ, ƒ ∈members of the alphabet
M92: [prod. schema] §ƒ → ƒβƒ§
M93: β → σ
M94: σ → W
M95: § → •W
M96: W → §

Example:

Another procedure which is quite common is that of reversing a string of characters. We do this by
moving the first character to the end as before, then moving the next character down to the position just
preceding the first character, and so on. Markers: §, β

Algorithm M10
M101: §β → •W δ, ƒ ∈ members of the alphabet
M102: §δβ → βδ

CSE 6390E Computational Linguistics

5

M103: §δƒ → ƒ§δ
M104: §δ → βδ
M105: W → §

Illustrating this algorithm on the string “ABCD” we have

 by M105 => § A B C D
 by M103 => B § A C D
 by M103 => B C § A D
 by M103 => B C D § A
 by M104 => B C D ß A
 by M105 => § B C D ß A
 by M103 => C § B D ß A
 by M103 => C D § B ß A
 by M102 => C D ß B A
 by M105 => § C D ß B A
 by M103 => D § C ß B A
 by M102 => D ß C B A
 by M105 => § D ß C B A
 by M102 => ß D C B A
 by M105 => §ßD C B A
 by M101 => D C B A

