
Contents

1 Introduction 9

1.1 Motivation . 10

1.2 Related Disciplines . 12

2 Relational Knowledge 21

2.1 Objects And Their Attributes . 22

2.2 Knowledge Structures . 33

3 From Data to Hypotheses 39

3.1 Representation . 39

3.2 Changing the Representation . 46

3.3 Samples . 52

3.4 Evaluation of Hypotheses . 56

3.5 Learning . 65

3.6 Bias . 67

3.7 Overfitting . 71

3.8 Summary . 72

4 Clustering 75

4.1 Concepts as Sets of Objects . 75

4.2 k–Nearest Neighbours . 77

4.3 k–Means Clustering . 80

4.4 Incremental Concept Formation 83

4.5 Relational Clustering . 88

5 Information Gain 91

5.1 Entropy . 92

5.2 Information and Information Gain 96

5.3 Induction of Decision Trees . 101

5.4 Gain Again . 107

5.5 Pruning . 109

5.6 Conclusion . 117

3

4 CONTENTS

6 Rough Set Theory 119
6.1 Knowledge and Discernability . 119
6.2 Rough Knowledge . 125
6.3 Rough Knowledge Structures . 134
6.4 Relative Knowledge . 137
6.5 Knowledge Discovery . 145
6.6 Conclusion . 151

7 Inductive Logic Learning 153
7.1 From Information Systems to Logic Programs 154
7.2 Horn Logic . 160
7.3 Heuristic Rule Induction . 170
7.4 Inducing Horn Theories From Data 178
7.5 Summary . 208

8 Learning and Ensemble Learning 211
8.1 Learnability . 211
8.2 Decomposing the Learning Problem 221
8.3 Improving by Focusing on Errors 226
8.4 A Relational View on Ensemble Learning 232
8.5 Summary . 236

9 The Logic of Knowledge 239
9.1 Knowledge Representation . 239
9.2 Learning . 240
9.3 Rough Sets . 242
9.4 Inductive Logic programming . 242
9.5 Summary . 244

10 Indexes and Bibliography 245

v. July 19, 2010(c) m.e.müller

CONTENTS 5

About this book

If you want to make it right,
make it wrong first.

What it is about

This book is about knowledge discovery. There are many excellent books on
machine learning or data mining. And there are many excellent books on the
different special aspects in these areas. Even though all the knowledge we
are concernd with in computer science is relational, relational or logic machine
learning or knowledge discovery is rather uncommon. Accordingly, there are
fewer textbooks on this issue.
This book puts a strong emphasis on “knowledge”; what it is, how it can repre-
sented, and, finally, how new knowledge can be discovered from existing knowl-
edge and some new observations. Since the our interpretation of “knowledge” is
based on the notion of “discernability”, all the methods discussed in this book
are presented along the same paradigm: Learning means to acquire the ability
of discriminating different things from each other. Since things are different
if they are not equal, equality or rather equivalence plays a major role. And
whenever there is equality or equivalence, there are certain degrees of equality:
Things can be exactly the same, the can be the same in most cases or aspects,
the can be roughly the same, not really the same, and they can be entirely
different. Sometimes, they are even incomparable.
There are several well-known approaches to describe “similarity” between sets
of objects. If we arrange all our objects by their properties, than their mutual
distance to each other reflects their similarity. And if there are two different
objects which have a zero distance we have to find another property so as to
tell one from another. If all the objects are described by a set of features, then
similarity means something like the number of features in which they agree.
The utility of a feature for finding new knowledge is its information content.
Since features induce equivalence relations, many features create many such
relations. And with intersecting them, we gain a very fine-grained partitioning
of the universe in many, many small classes of, well, equivalent or equal or
similar things. Finally, we can describe objects and concepts by logic formulas
or theories. Then, knowledge discovery means to refine our set of formulas such
that we are able to deduce something that we were not be able to infer before.

Every paradigm is dedicated a chapter on its own.

How it is organised

This book tries to illustrate the common ideas behind all those different ap-
proaches in machine learning or knowledge discovery. If you take a look at

v. July 19, 2010(c) m.e.müller

6 CONTENTS

a set of books each of which specialises in any of these areas, you will find a
different idiosyncratic notation in each of them. This does not really help in
understanding the common processes and the parts in which they differ. And it
is important to understand the differences between them in order to gain knowl-
edge about them. It is also the differences that make one or another paradigm
more suitable in a certain domain. Therefore it is important to be able to see
them clearly. As a consequence this textbook has a leitmotif: it is the example
of objects like 4, , or �—and their differences, their common properties and
how to construct different concepts like “grey boxes” or “things with at most n
corners”. If you would consider this a plus for reading this book, then you might
consider the next one as a minus: In order to stress the common characteristics
of the theories, we need a common language. As a result, I tried to find a more
or less consistent same notation or notational principle (like “a ∪ is to a ⊆ what
t is to v; and −→ is to =⇒ what ` is to |=.”). I think it is a nice idea to
use the same notation throughout a book covering several topics that usually
use different notations. But the downside is that the result is another nomen-
clature. I beg the reader’s foregiveness for the usage of greek letters, upright
and slanted function names, fraktura characters and symbols you will never see
again somwhere else (unless you attend my classes).

The language used in this book is English with a German accent. Apart from
that I tried to find a pretty delicate balance between informal written text and
a rather formal and exact notation. The text is to understand what all the for-
mulas are about—and the formulas are there to have an undisputable and solid
foundation for describing things. Additionally, there are many examples. As
mentioned above, there is the running example of geometric shapes. But there
are many other examples: some from every-day life, some famous examples, but
also some rather surprising examples that require very special knowledge in areas
not all readers will be famliar with but which I hope to be even more illustrative
if you are (did you ever notice that it takes three variables in Lambda-calculus
to define exclusive disjunction?).

Then, there are exercises. I labelled them with different numbers of marks of
different colour. Just try to solve them, and you’ll discover the knowledge that
is required to explain the system behind the labelling. . .

Finally, there are “knowledge boxes”. They are small grey boxes like this:

Box of Knowledge
A box of knowledge summarises the relevant results of a section in a punchline;
preferrably in prose. By reading them alone, you ought to be able to tell someone
else what this book is about and even to explain most important concepts in your
own words.

v. July 19, 2010(c) m.e.müller

CONTENTS 7

Thanks to:

Helmar, who taught me to ask the right questions; Ivo, who was the first to
introduce me to the beauty of formal thinking; and Bernhard with whom I
discovered the combination of both.

Alexander, Jong-Hwa, and Peter for friendship, help, and support.

All researchers I met during the past fifteen years for their inspiration, discus-
sion, clarification, and criticism.

All students who by their bravery and willingness to pass the exams contributed
to all the previous versions.

David from CUP for patience.

v. July 19, 2010(c) m.e.müller

8 CONTENTS

v. July 19, 2010(c) m.e.müller

Chapter 1

Introduction

Knowledge discovery, machine learning, data mining, pat-
tern recognition, and rule invention are all about algorithms
which are designed to extract knowledge from data and to
describe patterns by rules.

One of the cornerstones of (traditional) artificial intelligence is the assumption
that

intelligent behaviour requires rational, knowledge–based decisive and
active processes.

These processes of include the acquisition of new knowledge which we call ma-
chine learning or knowledge discovery. But when talking about knowledge based
systems we first need to explain knowledge. If we try to define learning by intel-
ligence, we need to explain intelligence, and if we want to explain intelligence,
we need to explain knowledge. Bertrand Russell has given a very precise and in
our case very helpful (and actually entirely sufficient) definition of knowledge:

Knowledge is the ability of discriminating things from each other.

As a consequence, learning means to acquire the ability to recognise and differ-
ntiate between different things. Thus, the process of knowledge acquisition is a
process that is initiated and (autonomously) run by a system that is about to
learn by itself. L. G. Valiant said that

Learning means to acquire a program without a programmer.

To us, it means:

Learning as Discovery of Knowledge
Learning means to acquire the ability of discriminating different things from each
other without being told about every single instance.

9

10 CHAPTER 1. INTRODUCTION

1.1 Motivation

Like any other computer science or artificial intelligence discipline, machine
learning research varies along many dimensions. This includes the interpretation
of the learning process as a data processing technique, a rule discovery tool or a
model of cognitive processes. Machine learning approaches can also be described
in terms of their successful application in the real world.

1.1.1 Different Kinds of Learning

Engineering and Theory: As an engineer or computer scientist who seeks for pat-
terns in data sets, one might ask how to extract knowledge from huge databases
and how to make knowledge elicitation as efficient as possible. If, on the other
hand, you are interested in the theory of computation then it would be much
more interesting to see if there are fundamental limitations of learning in terms
of complexity or in terms of the problem classes.
Data Driven Learning and Conceptual Learning: Data driven learning means to
take all data (or, rather, observations) without much further information about
the data and try to extract as much knowledge as possible. This means that
data driven learning focuses on what one can learn from the supplied data.
But quite often we already have a rather precise image of what we think the
world is like. We then use a set of known concepts that a learning algorithm
uses to describe unknown target concepts. The difference is that in data driven
learning one tries to identify clusters of similar objects from a set of observations.
Conceptual learning supplies our algorithm with background knowledge about
the world. As an example, data driven learning may help to discover classes
like mammals and birds. Using knowledge about habitat and domestication,
conceptual learning is able to describe penguins and polar bears by their habitat
and it can tell a dog from a wolf by their domestication.
Clustering or Classification and Scientific Discovery: Engineers are often con-
cerned with huge sets of data, and the larger the sets are, the less is known
about the (hidden) structures in data. In the course of developing growing data
warehouses, some system operators are in the need of handling petabytes of
data. With too much data around and too little knowledge about the data,
one needs to devise algorithms that efficiently group similar cases into the same
classes. Classification means to assign a new unseen case to one of the given
class labels, but scientific discovery is rather concerned with finding new sub-
classes or relational dependencies between such classes. If such class hierarchies
and dependencies are expressed in terms of rules, then the invention of a new
concept and its description is what we call scientific discovery.
Algorithms and Cognitive Processes: Similar to the Engineering/Theory di-
chotomy, one can also focus on the algorithmic issues in data mining or under-
stand machine learning as a metaphor for human learning. For example, many
data sets can be explained using decision trees—but using modules of artifi-
cial neural networks one can evaluate psychological models of human problem
solving, too.

v. July 19, 2010(c) m.e.müller

1.1. MOTIVATION 11

Data Mining is a multi-stage (business) process leading to the automated de-
tection of regularities in data which are useful in new situations. Especially in
the context of very large data sets or data warehousing scenarios, knowledge
can be compared to a gem that is very well hidden under a huge mountain of
rock-hard data. Knowledge discovery requires the extraction of

• implicit (but hidden), previously unknown

• and potentially useful information from

• data

or even the search for relationships and global patterns that exist in databases.

1.1.2 Applications

Apart from all the (semantic-) web applications, biological applications (“com-
putational biology”) are gaining popularity; especially in genetics or large–
array marker scans. For example, sequencing of the genetic code allows us
to understand the encoded protein—given that we can understand how tertiary
structures of proteins develop during folding. Similarly, pattern recognition
on marker arrays help to identify genomic defects or other diseases, and the
spatial properties of molecules can be expressed using a language of relations.
It would be very interesting to explain—in terms of molecule structures—why
some chemicals are carcinogenic while others are not, [Muggleton et al., 1992,
Muggleton et al., 1998].
Patterns and rules are very popular research topics: Nearly all observations
consist of complex patterns from which we try to abstract by generalisation.
Furthermore, many similar observations are mapped onto class representatives
(both a penguin and a sparrow are birds). Spam classifiers take emails as
patterns of word occurrences and use rules defined by filters to keep your mailbox
clean.
Recently, Data Mining has become one of the most important application areas
in knowledge discovery. Just recall how it was a few years ago when you tried
to find some information in data collections: The first problem was that we
did not have enough data available—i.e. we knew what kind of information we
were looking for and the amount of available data could be easily surveyed. But
the result was that we could not find the information needed simply because it
wasn’t there. The second generation information retrieval problem was slightly
different. Now there was enough data available, but the problem was to find it.
First approaches required data items to be tagged with meta-data until more
powerful indexing and search methods were developed.

Example 1.1 Information retrieval in the World Wide Web is a very lucid
example: In the early 90’s the web was so small that personal link lists (and
those of others) were sufficient for exhaustive search. The next step introduced
search engines like Yahoo (with manually tagged indices) and AltaVista and
many other services competing for the largest search indices. Today, we simply
“google” the web for information.

v. July 19, 2010(c) m.e.müller

12 CHAPTER 1. INTRODUCTION

With an ever increasing amount of available data, the next question became how
to integrate all the data in order to find the desired information. The answer was
data warehouses. In 2005, Yahoo was reported to maintain a 100 PetaByte data
warehouse and AT&T uses two data warehouses with together 1.2 ExaByte of
data. The question that arises now is: what kind of information is hidden within
all this data? And this is what knowledge discovery is all about. Commercially,
it is referred to as data mining—because this is what we do in order to find
some “gems”, i.e. important pieces of information, in the huge pile of data.
There is a small difference, though: we use the term “knowledge discovery” to
describe the process of extracting new knowledge from a set of data about a
set of data. This means that the acquisition of new knowledge requires us to
build a new model of the data. “Data Mining” mostly refers to the extraction
of parts of information with respect to a given model. One crucial problem is
the interpretation of correlation: If two things correlate, it does not neccessarily
mean there exists some kind of causal dependency between them. This is where
relational knowledge discovery enters the game: Here, the primary interest is in
the relations between relations and not the relations between objects.

Last but not least, knowledge discovery, data mining and machine learning are
tools that can be used in any situation where the problem we are faced with
is ill–posed. So if we are not able to devise an efficient deterministic algorithm
that solves our problem within a predefined instance space, we simply give it a
try and let the machine learn itself.

In quite many cases, the results are surprisingly good. In other cases they are
not. But then, we could at least blame the machine for being a bad learner
rather than blame us for being a bad programmer.

1.2 Related Disciplines

To us, machine learning means to learn how to discriminate different objects.
There are many other disciplines which have a slightly different view on the
same problem.

1.2.1 Codes and Compression

The idea behind coding is to represent a meaningful message by a suitable
sequence of symbols. The representation process is called encoding and maps
plain text (symbols) or (source) messages onto codes which are symbol strings,
too. A one-to-one substitution of source symbols onto code symbols is called
encipherment ; the result a cipher. The reverse processes of reconstructing the
original message from a code (cipher) is called decoding (deciphering).

We assume the reader to be familiar with the sequence of Fibonacci numbers.
Yet, if being asked, no one will ever reply by saying “Fibonacci numbers? Sure:
1, 1, 2, 3, 5, 8, . . .”. So even if you were able to memorize the entire sequence of

v. July 19, 2010(c) m.e.müller

1.2. RELATED DISCIPLINES 13

Fibonacci numbers, you have not learned anything about them because learn-
ing would require the ability of (intensionally) explaining a concept.1 This also
relates to data compression: The less compressible our data, the more infor-
mation it contains and the harder it is to learn and compress it further. Any
good learner needs to be able to compress data by giving a rule that is able to
describe the data.

Example 1.2 RLE-Compression. One of the simplest methods to
encode and compress a stream of symbols is run length encoding. Consider the
alphabet Σ = {2,©}. Then, strings will contain repetitive occurrences of each
symbol. For example:

22©2©©©©©2222©©2©©©222© · · ·

A reasonable way to compress such a sequence would be to precede each symbol
by the number it occurs until the other symbol appears. And if we assume that
each sequence starts with a 2 we can even drop the symbol itself since on every
sequence of2s there can only be a sequence of©s and vice versa. So, the above
string can be compressed to

2.1.1.5.4.2.1.3.3.1. · · ·

which certainly is much shorter but requires a larger alphabet of symbols and
a special delimiter symbol “.”.

Finding (optimal, shortest) codes (that is, encoding functions) without the need
for delimiters or any additional symbols is the topic of coding theory.
The notion of compression enters the game at two different points: First, a mes-
sage that cannot be compressed further is free of any redundancies. Then, the
message string itself must have maximum entropy and all the symbols occurring
in the message are more or less of the same probability. However, they do not
encode the same “amount of information”: changing one symbol can result in
just a small change after decoding, but it can also scramble the entire encoded
message into a meaningless sequence of symbols. Second, a strong concept re-
quires a complex representation language which basically is the same as finding
a good code.
One example that we shall encounter is the encoding of messages (or hypothe-
ses) into strings of symbols (“genomic codes”). The field of coding theory and
compression has become a huge discipline of its own, which is why we refer to
[MacKay, 2003]. If you are more interested in coding and cryptography, con-
sult [Welsh, 19xx]; and for the advanced reader we recommend [Chaitin, 1987,
Kolmogorov, 1965] and [Li and Vitanyi, 1993].

1Mind the difference between intentional and intensional. Explaining something intention-
ally means to explain something with a certain intention in mind. But explaining something
intensionally (as opposed to extensionally) means to explain something by abstracts concepts
instead of concrete examples.

v. July 19, 2010(c) m.e.müller

14 CHAPTER 1. INTRODUCTION

Example 1.3 It is a crucial difference to encode the numbers 0, 1, 2, . . . 255
using the sum of four integers w + x + y + z (with 0 ≤ w < 64 and 0 ≤
x, y, z ≤ 128) or by using a binary representation with eight bits. Changing
one symbol in each representation creates an error of at least 1; but using the
decimal representation the maximum error is 64 while the maximum error for
the binary representation is 128.

It is clear that a sequence of symbols which can be compressed pretty well
(e.g. by RLE), obviously contains some kind of redundancy. If we know that
the next five symbols we receive are 2s, then the sender’s effort in transmitting
22222 is simply a waste of time (and, as we shall see, a waste of bandwidth).

Machine Learning and Coding
Learning means to find an optimal code to describe observations.

Coding and its role in cryptography are far beyond the scope of this book, but
they are indispensable for information theory as well. The basic idea behind
information theory is that the average randomness of a sequence (and thus, its
reverse redundancy) is a measure of the complexity of the system that emits
the messages.

1.2.2 Information Theory

There is much confusion about the term of “information”. Together with en-
tropy, complexity or probability, terminology often gets in the way of a proper
understanding. To avoid misconceptions from the very beginning, we first and
foremost need to make clear one crucial point:

Information
Information is not so much about what is being said, but rather what could be said.

As we will discover in detail later on, there exists a measure of information
content of a message expressed in terms of entropies:

Hmax(S) = log2 ω and H(S) = −
ω∑
i=1

pi log2 pi

The first formula describes the “information content” of a system in terms of it’s
complexity: it is determined by the number ω of possible states an element of the
system can take (the log will be explained later). Since in communication theory
not all possible messages are equally probable, Shannon introduced the second
formula: It measures the information that is hidden in the probabilities that an
element of the system takes a certain value. This can easily be explained by a
coin flipping game: Note, that a coin can take only two states—heads (1) or tail
(0). This means that ω = 2. Therefore, Hmax(coin) = log2 2 = ln 2

ln 2 = 1. In other
words, any situation in which all possible outcomes are equally probable are
situations of maximum entropy. The magnitude 1 of this measure of information
is usually interpreted as the number of bits required to encode the information

v. July 19, 2010(c) m.e.müller

1.2. RELATED DISCIPLINES 15

contained in one single element of the domain (here: one single coin). After
flipping two different coins 50 times, we find

H(01001111101000010010111110101010010011110101001000)

= −0.5 log2 0.5− 0.5 log2 0.5 = 1

and

H(000000001000)

= −0.02 log2 0.02− 0.98 log2 0.98 = 0.14

Obviously, the first coin is rather fair, while the second is not. As one can see,
the (expected) probability of the outcome of an experiment (or, an observation,
or the probability of a message) crucially defines the information content and
therefore describes the complexity of such a system (or the information content
or the bandwidth required). Cheating means to reduce the information content
of a game: it reduces the uncertainty of the outcome. As we all know we can
cheat the better the more we know (and vice versa). As we shall see later on,
knowledge about the domain can be expressed in distributions on the domain.
From the viewpoint of information theory we conclude:

Machine Learning and Information Theory
Machine learning means to organise our concepts in a way that minimises the entropy
of the system.

[Shannon and Weaver, 1949] is the original publication; for a more recent and
gentle introduction we recommend [Ash, 1965].

1.2.3 Minimum Description Length

The idea behind the Mdl-principle is quite similar to the old law of parsimony—
usually known as Ockham’s razor :

Frustra fit per plura quod potest fieri per pauciora, [of Ockham, 1323]

i.e. there is no point living with many explanations if just a few suffice. There
are hundreds of (modern) interpretations of this principle; but only few know
that Aristotle already stated that

Nature does nothing in vain.2

A modern explanation of the principle can be found in [Barron et al., 1998]. In
machine learning, we can assume a hypothesis h to represent (a part of) a theory
K which is to explain a set s of observations. The description length is a measure
of the complexity of h with respect to s in terms of the costs for transmitting
knowledge about s. As we shall see later, s is a set of entities together with
a label that describes whether it belongs to the (unknown) target concept or

2[Anima iii 12 434a31-2]. Aristotle also used the attributes random and superfluous in
similar contexts.

v. July 19, 2010(c) m.e.müller

16 CHAPTER 1. INTRODUCTION

not. The Mdl-principle seeks to find the shortest possible description of a
set K of observations. For two competing descriptions h and h′, one assumes
the shorter one to be the better description. The Mdl-principle does not try
to explain as many (unknown) objects of our domain as possible. It rather
tries to minimize of the amount of knowledge that is required to classify an
object correctly. The problem here is to define what it means for a theory or
hypothesis to be better (i.e. shorter) than another. Any theory is to explain a
set of observations, therefore the quality of our hypothesis depends at least on
two properties concerning our observations:

• which subset s do we have to learn from, and

• what is the nature of the set of objects that we want to describe?

As we shall see at the end of this book, one usually needs more examples to learn
concepts from more complex domains. But even if we have sufficiently many
and good examples to find a hypothesis that fits our data, the result crucially
depends on the randomness of the sender, too.

Machine Learning and MDL
Machine Learning means to find the shortest description or the simplest explanation
of our observations.

Yet, it remains to explain what it means for a theory to be simpler than another
one.

1.2.4 Kolmogoroff Complexity

Kolmogoroff complexity is an algorithmic measure of expressiveness. It is one
of the most important concepts in the theory of computation after Turing’s and
Gödel’s work. The idea behind algorithmic complexity has been independently
developed by three scientists: Ray Solomonoff, [Solomonoff, 1964], Andreji Kol-
mogoroff, [Kolmogorov, 1965], and Gregory Chaitin, [Chaitin, 1966].
The general idea behind the measure of Kolmogoroff complexity is to measure
the expressiveness of a system by the length of a program that generates such
a system: The simpler the system, the shorter the description. But if there are
some parts of huge complexity in the system it could be that the plan for this
part only would require much more space than the object itself! In such a case
it seems reasonable to transmit the object rather than a description of it.
A special case is when we divide a description which we know to produce wrong
results into several parts: Then, the incorrect program together with informa-
tion about where it produces wrong output and what the correct output would
be, could still be much shorter than the smallest correct program. In terms of
the Mdl-principle we try to find the ideal trade-off between program complexity
(length) and the length of a file of exceptions.3

3The problem is to determine the length of the smallest program with a certain output (or
rather, to prove that it is the shortest program).

v. July 19, 2010(c) m.e.müller

1.2. RELATED DISCIPLINES 17

Example 1.4 Consider the set s = {1, 2, 3, 4, 5, 6, 7, 8, 9} and the target
concept c = {x ∈ U : x mod 3 = 0}. Let h describe the set of all odd numbers
in s: h = {1, 3, 5, 7, 9}. Imagine, the program for h would be represented as
2n + 1. Then, h is wrong on the set {1, 5, 6, 7}. The description length of h
would be the length of h plus the encoding of this set. Imagine it was [2, n,

+, 1, !, 1, 5, 6, 7]. Then, h is a non-compressing description of char(c)
because the length of the description string equals the cardinality of c.

The Kolmogoroff-complexity C(~x) of a sequence ~x of symbols is the length of
the shortest binary program π that generates ~x and then halts. Here, “shortest
binary program” means the shortest binary string that represents a program
that can be interpreted by a universal Turing machine. This enables us to review
the notion of compressibility: ~x is close to being incompressible, if C(~x) ≈ |~x|.
It definitely cannot be compressed any further, if C(~x) > |~x| and the degree
of compressibility (or information loss) increases with the term f(~x) in C(~x) ≈
|~x| − f(~x).

Machine Learning and Complexity
Machine Learning is the task to find a program π with least C(π|~x) for any ~x in our
problem class.

An excellent introduction into Kolmogoroff complexity for the advanced reader
is [Li and Vitanyi, 1993]. For those interested in the theory of machine learning,
we also recommend [Valiant, 1984] and [Anthony and Biggs, 1997, Kearns, 1990,
Kearns and Vazirani, 1994].

1.2.5 Probability Theory

Probability theory mostly deals with urns and marbles.

Machine Learning and Probabilities
Machine Learning means to:

1. approximate an unknown probability distribution on our set of objects

2. by learning from statistical observations such that

3. the error probability is minimised

Let there be the following objects in our universe:

U = {N,2, •,�, ◦,4}

Each of these objects obviously has two properties: They have certain shape and
colour. In probability theory, such features are represented by (not so) random
variables S and C. Shape and colour of objects are independent from each other;
and so are the random variables S and C. If we now assume the probability
of picking any of these objects from our urn to be uniformly distributed (also

v. July 19, 2010(c) m.e.müller

18 CHAPTER 1. INTRODUCTION

called an independent identical distribution, or iid for short), then:

µ({x ∈ U : S(x) = triangle}) =

µ({x ∈ U : S(x) = square}) =

µ({x ∈ U : S(x) = circle}) =
2

6
=

1

3
and

µ({x ∈ U : C(x) = black}) =

µ({x ∈ U : C(x) = white}) =
3

6
=

1

2

People quite often use a different notation and abbreviate Pr[S = c] := µ({x ∈
U : S(x) = c}). Then,the probability of picking a black triangle from the urn is

Pr[S = triangle] · Pr[C = black] =
1

3
· 1

2
=

1

6
=

|{N}|
|{N,�, ,�,#,4}|

Things become more complicated the more they depend on each other. Accord-
ingly we usually assume most things to be independent even if they are not.
This is a wise decision from a computational point of view—but in true life,
most observations depend on something else. Consider the concept form (F)
which describes whether an object is angular or round. Of course, the colour
has no influence on the general geometric form, but the shape certainly has.
This leads us to the notion of conditional probabilities and Bayes’ Rule. As an
example consider the question: What is the probability of picking a triangle
given the object is angular? We count:

|{x ∈ D′|x is a triangle}|
|{x ∈ D′|x is angular}| =

|{N,4}|
|{N,�,F,�,4, }| =

2

5

Bayes’ law offers much more to the Bayesian learner: Supposing that we have a
sequence of observations described by a set of n attributes together with some
information about the classes c ∈ c they belong to. Then, we can easily estimate
the probability of some element’s properties given that it belongs to some class:
we simply scan our case library for each of the classes c and store all information
concerning

Pr[X1 = v1 ∧ · · · ∧Xn = vn|Xc = c]

Similarly, we can also estimate the prior probabilities

Pr[X1 = v1 ∧ · · · ∧Xn = vn] and Pr[Xc = c]

Together, we can for any new case X1 = v′1 ∧ · · · ∧Xn = v′n determine the value
of

Pr[Xc = c|X1 = v′1 ∧ · · · ∧Xn = v′n]

for each c ∈ c—and by reporting the c for which the above term delivers the
largest value we have built a so–called maximum a posterior classifier.

v. July 19, 2010(c) m.e.müller

1.2. RELATED DISCIPLINES 19

1.2.6 Approximation and Search

Learning from examples can also be interpreted as an approximation problem.
Whether or not the world we live in is continuous, a classification is just the
value a classifier function delivers when given an object of the domain. In
many classification scenarios, the function is binary—it decides whether some
x belongs to a concept c or not: t : U → 2 with t(x) := char(c)(x). Inability
to discern two objects x and y where one belongs to c and the other does not
requires to learn: Our knowledge k is not precise enough to tell the objects from
each other because K(x) = K(y).
Function approximation means to take a set of supporting points and fit a
function through them. Linear regression is one (simple) example; and we shall
discover several more.
Imagine that t : R→ R and we are given a set of support points s = {〈xi, tc(xi)〉 :
i ∈m}. We now need to find a function h which equals t on s, or, more realistic,
which comes as close as possible to each point. There are simple approximations
like linear functions and there are more complex ones like polynomials of grade
k. We can even combine sets of such functions. But to find such a function, we
need to search for it.

Machine Learning as Search
Machine Learning means to search for a function which approximates the target as
close as possible.

Conclusion

Now that we have briefly described the influences of other (neighboring) disci-
plines we can try a first working definition of machine learning and knowledge
discovery.
In most cases the data from which we want to extract knowledge is represented
in information systems. Roughly speaking, an information system is just a
table with all the rows representing entities and columns describing the objects’
properties. The knowledge we want to acquire consists of rules describing a
model which we can use to explain the data set and its structure.

Knowledge Discovery by Machine Learning
In general, we will use the term machine learning to denote a method by which ...

• a set of data stored in an information system

• is analysed and transformed

• to extract (new) knowledge from it and to refine our model of the world in
order to

• increasingly precisely discriminate more concepts.

While inference and analysis tries to find out more about (less) things, learning is
concerned with the task to find out (less precise) about more things.

v. July 19, 2010(c) m.e.müller

20 CHAPTER 1. INTRODUCTION

v. July 19, 2010(c) m.e.müller

Chapter 2

Relational Knowledge

Talking about the discovery of knowledge requires us to un-
derstand “knowledge” first. In the last chapter we already
defined knowledge to be what it takes to discriminate dif-
ferent things from each other.
In this chapter, we will develop a more formal framework
of knowledge structures which enables us to describe the
process of discovery of new knowledge.

Information is something that may change knowledge, and knowledge is the
ability to relate things by putting a structure on them. Knowledge is not made
from the things we put into order and information does not change the things
themselves. It is rather that knowledge is a set of relations to describe things
and that information helps us to describe a relation’s utility in classifying things.
But then, how come people assume information to be describable by a set of
entitites each of which can take a certain number of different states—if we do
not know whether there are entities we have never seen before nor how many
states they can possibly take? How come people explain causality by means of
probabilistic dependence?

There are many definitions of what knowledge could be, and there are many
approaches to knowledge representation formalisms. There appears to be know-
ledge of different qualities: factual knowledge, weak knowledge, procedural
knowledge, hard knowledge, motor knowledge, world knowledge, behavioural
knowledge are just a few. Our idea of knowledge is, sloppily and circulary de-
fined, what we want to acquire by learning. Even when talking about motory
skills it is all about discriminating things from each other: bad moves and good
moves. This is a very blunt and vague generalisation—but for our purpose the
following definitions of knowledge shall be sufficient.

21

22 CHAPTER 2. RELATIONAL KNOWLEDGE

2.1 Objects And Their Attributes

We now examine a few concepts from which we can build a simple theory of
knowledge — without making too much assumptions about our world.

2.1.1 Collections Of Things: Sets

A set is usually considered to be a collection of discernible objects. Since a and
a seem to be indistinguishable, we all agree that {a, a} = {a}. There is a very
special collection of things, that which is empty: ∅ = {}. Sets can be defined by
naming all their members or by giving a description which all members of this
set have in common:

{m, i, s,p} = {x : x occurs in mississippi}

The left side of the equation shows an extensional set definition while the right
side is an equivalent intensional description. Just as we can put a number of
bags with different collections of objects into a larger bag, sets can contain other
sets.

Example 2.1 Imagine the set r of those sets x , which do not contain
themselves:

r := {x|x 6∈ x} (2.1)

The set r seems to be quite an interesting collection of objects (some of which
may contain other objects or collections thereof). This gives rise to the question
whether r belongs to it itself: Is r ∈ r or not? ⊕

This is known as Russell’s paradox. It showed that Cantor’s näıve set theory
had a serious flaw — which cost many researchers sleepless nights. The smiles
returned to the faces of those who were satisfied with a proper axiomatiza-
tion of set theory after Skolem had finalized Zermelo and Fränkel’s set theory.
But those who remained sceptic could not but resent accepting Gödel’s proof
that axiomatic systems rich enough to describe integer arithmetic can describe
problems that cannot be proven to be true or false within this system.

People tend to collect things in an ordered way, which is why many sets have
some structure, too. So, for example, the set {a,b, c, . . . , z} together with a
reflexive, transitive and antisymmetric relation forms a partially ordered set.
Such a relation is usually known as an ordering relation ≤ (here, lexicographic
ordering). However, some collections appear to have no structure, others seem
to have a stronger than just an ordered structure.

For the remainder of the chapter, we assume the reader to be aquainted with
basic set operations such as ∪,∩ and −. Consider the following recursive set

v. July 19, 2010(c) m.e.müller

2.1. OBJECTS AND THEIR ATTRIBUTES 23

definition starting with the empty set:

0 := ∅ = {}
1 := 0 ∪ {0} = ∅ ∪ {∅} = {∅}
2 := 1 ∪ {1} = {∅, {∅}}

...

Even though ∅ trivially has no structure at all, the subsequent sets (and the set
of all these sets) do have a structure. Hence, the following properties hold: ⊕

0 ≤ x⇐⇒ 0 ⊆ x and x < y ⇐⇒ x ∈ y x ≤ y ⇐⇒ x ⊆ y

Exercise 2.1 ♦ Prove! ⊕
So if the cardinality of some enumerable set s is |s|, s can be mapped one-to-one
on the set s. This way, we have constructed the basis for integer arithmetics,
and, by the way, gained a set (usually referred to as N) of index sets.
To continue our work on sets we need to be able to describe a set of sets made
up from a fixed (finite) repertoire of objects. We call ℘(x) the powerset of x,
the set of all subsets of x:

℘(x) := {y : y ⊆ x} (2.2)

It is clear that |℘(x)| = 2x which equals the number of functions from x to 2.
So, in general, there are yx functions f : x→ y. Therefore, we sometimes write
2s := ℘(s).
But what is so special about integers and why do we insist on this issue in a
textbook on knowledge discovery? The reason is quite simple: Knowledge has
been described as the ability to discriminate different things from each other.
We now know how to speak about collections of entities: we can represent any
(countable) set of such entites by a set with a certain structure. The structure
comes for free, and the relation defined by this structure allows us to relate any
pair of entities to each other. Furthermore, it even allows us to relate any pair
of collections of entities to each other:

Collections of different things
Any (countable) collection of x things can be represented by a set x using a one–to–
one mapping f : x → x. On x, we have relations ⊆ (≤) and ∈ which allow to order
(and, thus, discriminate) different objects. Furthermore we can even relate sets of
entities (“classes”) to each other.

Exercise 2.2 ♦� Prove that Peano’s axiomatisation of integer arithmetic is satisfied
by our definition of N in the last section:

∃0 ∈ N (2.3)

∀n ∈ N : ∃succ(n) ∈ N (2.4)

∀n ∈ N : succ(n) 6= 0 (2.5)

∀m,n ∈ N : succ(m) = succ(n)→ m = n (2.6)

∀x ⊆ N : (0 ∈ x ∧ ∀n : n ∈ x→ succ(n) ∈ x)→ x = N (2.7)

where succ denotes the successor function.

v. July 19, 2010(c) m.e.müller

24 CHAPTER 2. RELATIONAL KNOWLEDGE

⊕

2.1.2 Properties Of Things: Relations

In the last section, we already spoke of “order relations”—but what is a relation
anyway? To keep things simple, we will stick to binary relations. For two sets
s0 and s1, the cartesian or cross product is defined as:

s0 × s1 := {〈x, y〉 : x ∈ s0 ∧ y ∈ s1} (2.8)

〈x, y〉 is called an ordered pair or tuple. It is clear, that in general s0×s1 6= s1×s0.

Definition 2.1 — Binary Relation.Binary Relation

A binary relation R is an arbitrary subset of a cross product of one or two base
sets R ⊆ s0 × s1 and write

xRy :⇐⇒ 〈x, y〉 ∈ R. (2.9)

To indicate a left–to–right reading of the relation R we also write R : s0 ⇁ s1.
We call s0 = dom(R) the domain and s1 = cod(R) the codomain.

R needs not to be total; tuples may be defined only for a subset of the domain
and codomain. The according subsets are called the preimage pR and image (or
range) Rq:

pRs = {x : xRy, for all y ∈ s ⊆ s1}
sRq = {y : xRy, for all x ∈ s ⊆ s0}

If s = {x}, we also write pRx and xRq (called a fibre) and if si = s we simply
write pR and Rq. Finally, we define two further very important operations on
relations:

Definition 2.2 — Converse, Complement.
Converse,
Complement

For any R we call R` the converse (or inverse) relation iff xR ỳ :⇐⇒ yRx.1

The complement R of R is defined as xRy :⇐⇒ ¬(xRy).

There are two important binary relations: The empty relation ⊥ := ∅ = {} =
{〈x, x〉 : x ∈ s ∧ x 6= x} ⊆ s0×s1 and the universal relation> := {〈x, y〉 : x ∈ s0 ∧ y ∈ s1} =
s0 × s1.

A natural way of a visual representation of two-dimensional data is a map.
Binary relations are subsets of (binary) cross products and can be represented
by matrices. For any binary relation R ⊆ s0×s1, we denote by M(R) a relation

1“Iff” means “if and only if”.

v. July 19, 2010(c) m.e.müller

2.1. OBJECTS AND THEIR ATTRIBUTES 25

matrix (called a coincidence matrix) describing R:

M(R) :=


c〈0,0〉 c〈0,1〉 · · · c〈0,y〉
c〈1,0〉 c〈1,1〉 · · · c〈1,y〉

...
...

c〈x,0〉 c〈x,1〉 · · · c〈x,y〉

 with c〈x,y〉 =

{
1 iff xRy
0 else

(2.10)

2.1.3 Special Properties of Relations

A very important class of binary relations are called endorelations. Such rela-
tions share the same set s as domain and codomain; i.e. R ⊆ s× s.

Definition 2.3 — Homogenuous Relations. Homogenuous
Relations

A binary relation R ⊆ s0×s1 is called an endorelation or a homogenuous binary
relation iff s0 = s1.

In addition to ⊥ and > there is a third very important relation which is defined
for endorelations only: 1s := {〈x, x〉 : x ∈ s}. The identity relation relates things
to themeselves (and only to themselves). Subsets of 1s are called subidentities.

Relations can have several special properties:

Definition 2.4 — Properties of Relations. Properties of
Relations

We call a binary relation R ⊆ s× s:

reflexive iff xRx
symmetric iff xRy → yRx
antisymmetric iff xRy ∧ yRx→ x = y
transitive iff xRy ∧ yRz → xRz
difunctional iff xRy ∧ zRy ∧ zRa −→ xRa.

for all w, x, y, z ∈ s.

Reflexivity means to be able to “reflect” an object onto itself hence a relation
R is reflexive, iff 1 ⊆ R. Symmetry means that something is the same no
matter from where we look at it. Accordingly, there is no difference between
pre-image and image and the relation between objects in them. This means
that R ⊆ R .̀ Antisymmetry is non-symmetry except reflexivity: If there are
symmetric pairs in our relation, then the pairs must be reflexive, i.e. 〈x, x〉.
Transitivity means that we are able to append tuples from the relation whenever
one image can be taken as a pre-image. The element “inbetween” is called a
witness. Finally, difunctionality is a very important property in the way that
it expresses correspondence between pre-images and images of subsets of the
domain. Whenever two objects share one object in their image, then the entire
images of both objects are the same: xRy ∧ zRy =⇒ xRq = zRq.
A binary relation is called a partial ordering relation, iff it is reflexive, transitive
and antisymmetric.

v. July 19, 2010(c) m.e.müller

26 CHAPTER 2. RELATIONAL KNOWLEDGE

Exercise 2.3 ♦� Prove that ⊆ on ℘(s) forms a poset!⊕
Equivalently, ⊆ is a partial order on index sets and ≤ is a partial order on N.
Another very important property of some endorelations is their power of being
able to group objects into disjoint subsets of the base set.

Definition 2.5 — Equivalence Relation.Equivalence Relation

An equivalence relation is a binary relation R ⊆ s× s that is symmetric, tran-
sitive and reflexive: xRy → yRx, xRyRz → xRz, and xRx.

So why is an equivalence relation called an equivalence relation? Reflexivity
states that every object is related to itself. Symmetry means, that if x is-in-R-
relation to y, then y is-in-R-relation to x, too. For example, ≤ is not symmetric,
since 2 ≤ 3 but not vice versa. In other words, to be equivalent two objects need
to be somehow “the same”. Finally, transitivity requires that if x is equivalent
to y and y is equivalent to z, then x is equivalent to z, too.

Example 2.2 Let

A = {a, b, . . . , z} and x = {x0x1x2 : xi ∈ A, i ∈ 3}. (2.11)

Imagine three relations Ri with x0x1x2Riy0y1y2 iff xi = yi. Then, Ri are equiv-
alence relations which group all three letter strings by their i–th component:
abcR0abb and abcR1abb but not abcR2abb.

Note, that for symmetric (and thus, for every equivalence relation) R, pRx = xRq.
For equivalence relations it also holds that either xRq = yRq or that xRq ∩ yRq =
∅. In other words, Rq is a union of pairwise disjoint sets called (R)–equivalence
classes.
For a class xRq we call x a representative and write xRq = [x]R := {y : xRy}.
This class can be identified by each of it’s elements, such that xRy implies
y ∈ [x]R = [y]R 3 x.

Example 2.3 Let us consider a set of black and white geometric figures:

s = {◦,♦,2, •,�,�}.
We define two relations C, S ⊆ s× s:

xCy iff x and y are of same colour

xSy iff x and y are of same shape

Then, •C� and ♦C◦ but not 2C�. On the other hand, �S2 and ♦S� but not
◦S2.

The set {[x]R : x ∈ s} is called a partition of s; it is the set of all R-equivalence
classes of R–indiscernible objects. A partition induced by some relation R is
also called a quotient set :

s/R = {[x]R : x ∈ s} (2.12)

v. July 19, 2010(c) m.e.müller

2.1. OBJECTS AND THEIR ATTRIBUTES 27

Example 2.4 The equivalence class [•]C is the set of all objects x ∈ s
which are C–related to •: It is the set of all black objects:

[•]C = {•,�,�}.

The relation C creates the following quotient or partition on s:

s/C = {◦,♦,2, •,�,�} /S
= {{◦,♦,2} , {•,�,�}} /S

The elements of s/S often are referred to as classes; here the classes of black and
white objects S generates three such classes, usually called roundish, squarish
and rhomboid : s/S = {[x]S : x ∈ s} = {{2,�} , {♦,�} , {◦, •}}.

Exercise 2.4 (♦♦)

♦ Is there a relation that is both an order relation and an equivalence relation?

♦ What does it take to make a difunctional relation an equivalence relation?

2.1.4 Information systems

Information systems basically are what we all know as relational databases, or,
even simpler, just tables or feature-value maps:

Definition 2.6 — Information system. Information system

An information system I = 〈s,F, VF〉 consists of a base set of objects s, a set
F = {fi : i ∈ n} of n features which to each object in s assign a value of the
feature’s codomain Vi. An information function I delivers for some object x ∈ s
and feature f ∈ F the value f(x):

I : s× n→ VF with I(x, i) = fi(x) (2.13)

All f ∈ F are (partial) functions.

Features create partitions in a rather natural way: The set {x ∈ s : f(x) = y}
is the set of all objects in s which share the same value y ∈ Vf . If f is a total
function (i.e. pf = dom(f) = s), then all classes together form the quotient

s/f := {[x]f : x ∈ s} (2.14)

Therefore, a total function f induces an equivalence relation Rf as follows:

x0Rfx1 :⇐⇒ f(x0) = f(x1) = y (2.15)

Equivalence relations Rf which are induced by functions f are also known as
kernel relations.

Example 2.5 The information system

v. July 19, 2010(c) m.e.müller

28 CHAPTER 2. RELATIONAL KNOWLEDGE

s color shape
0 • black circular
1 2 white square
2 ♦ white rhombus
3 � black rhombus
4 � black square
5 ◦ white circular

represents the knowledge shown in example 2.3.

The kernel relations can be represented in kernel matrices where all 1–entries
in M(Rf) are replaced by f(x):

K(Rf) = (o〈x,y〉) :=

{
f(x) = f(y) iff xRfy
⊥ otherwise

(2.16)

Example 2.6 For S, K(S) is

S 0 1 2 3 4 5
0 circular circular
1 square square
2 rhombus rhombus
3 rhombus rhombus
4 square square
5 circular circular

(2.17)

We have seen that the features in an information system induce equivalence
relations on the base set. We also know that all objects of some class [x]Rf

are
indiscernible using information of f . Therefore, the class [x]Rf

is often called
the concept of all f(x)–ish things. Given a set F of features we build a set
R = {Rf : f ∈ F} of equivalence relations on s. We then define a discernability
matrix D(F) as follows:

D(R) = (d〈x,y〉) = {R ∈ R : y 6∈ [x]R} (2.18)

The entries d〈x,y〉 of the matrix D(F) consist of the names of all relations by
which x can be discriminated from y. Clearly, d〈x,x〉 = ∅, because

d〈x,x〉 = {R ∈ R : x 6∈ [x]R} = ∅.

In terms of common sense reasoning, any object x is indiscernible from itself;
hence there are no equivalence relations or features which deliver varying infor-
mation about x.

v. July 19, 2010(c) m.e.müller

2.1. OBJECTS AND THEIR ATTRIBUTES 29

Example 2.7 The discernability matrix for examples 2.3 and 2.5 looks as
follows:

D(F) =

• 2 ♦ � � ◦
• ∅
2 S,C ∅
♦ S,C S ∅
� S S,C C ∅
� S C S,C S ∅
◦ C S S S,C S ∅

(2.19)

The concept of discernability will become of great importance when discussing
the issue of a varying granularity of knowledge: If there are different objects
that cannot be distinguished from each other (i.e. their according entry in a
discernability matrix is ∅) then we need to learn by acquiring knowledge in
form of new relations.

2.1.5 Structured Sets

Posets. A set s with a partial order relation v is called a partially ordered set
〈s,v〉 or poset. The dual 〈s,w〉 with w= v` is a poset, too.

Exercise 2.5 (♦) Show that For two posets 〈si,vi〉, i ∈ 2, the product 〈s0× s1,v×〉
is a poset with a product partial order relation v× on s0 × s1 defined as follows:

〈x0, x1〉 v× 〈y0, y1〉 if xi vi yi

For any two elements x and y of a set s, x and y are called incomparable, if
neither x v y nor y v x. If all x and y are comparable, then 〈s,<〉 is a total
order. Let there be two posets 〈si,vi〉, i ∈ 2. Suppose there is an isomorphism
f : s0 → s1 which preserves the ordering relation such that:

x v0 y ⇐⇒ f(x) v1 f(y).

Then, if x and y are incomparable in s0, f(x) and f(y) must be incomparable
in s1, too.
An element > of a poset s is called a maximal element of s if there is no y ∈ s
such that > v y and ⊥ is called a minimal element of s if there is no y ∈ s
such that y v ⊥. Minimal or maximal elements need not neccessarily exist or
even be unique. If there is exactly one maximal (minimal) element x of a set s,
x is called the greatest (least) element. If there is a greatest element, it is often
called a unit element denoted by >; a least element is also called a zero element
denoted by ⊥.
For a subset s′ ⊆ s, an element x ∈ s is called an upper (lower) bound of s′, if
for all x′ ∈ s′: x′ v x (x′ w x). We call x ∈ s a least upper (greatest lower)
bound of s′ ⊆ s, if x is an upper (lower) bound of s′ and if for any other upper
(lower) bound y of s′ it holds that x v y (x w y). The dual concepts of upper
and lower bounds carry over to dual posets.

v. July 19, 2010(c) m.e.müller

30 CHAPTER 2. RELATIONAL KNOWLEDGE

Lattices. A poset 〈s,v〉 is called a lattice if every subset {x0, x1} ⊆ s has a
greatest lower and a least upper bound in s. The least upper bound of x0 and
x1 is denoted x0 t x1 and is called the join of x0 and x1. The greatest lower
bound of x0 and x1 is denoted x0 u x1 and is called the meet of x0 and x1.

Example 2.8 For any finite set s, 2s is a lattice with ⊆ as order relation
and ∪ and ∩ as join and meet.

The following equivalences show how order relations are connected to meet and
join operators:

x t y = y ⇐⇒ x v y and x u y = x ⇐⇒ x v y (2.20)

Meet and join are idempotent, commutative, associative and absorbing. Lat-
tices which have a greatest and a least element are called bounded. and every
finite lattice is boundedAs we have seen in the axiomatisation if integer arith-
metic through set theory, the correspondence to sets and integers is trivial. We
conclude this section on set theoretic structures with a small but very important
example:

Example 2.9 We consider the set z of the first z natural numbers (including
0). There exists a natural bounded lattice, which looks as follows:

0 ⊆ 1 ⊆ 2 ⊆ · · · ⊆ z

where x v y :⇐⇒ x ⊆ y. We define x t y := x ∪ y. Then,

x t y = y ⇐⇒ x v y
Similarly, we define x u y := x ∩ y. If we read the set names x, y as natural
numbers (including 0), t corresponds to the max operator and u to the min
operator. From this we can conclude that 〈z,t,u〉 is a distributive lattice with
least element 0 and largest element z. Next, we define a complement operation
x ∪ x = z ⇐⇒ x + x = z. So x is the set of elements missing to make x equal
to z. In other words, y complements x with respect to z. One can easily verify
that x u x = 0.2

This example motivates the definition of a Boolean algebra:

Definition 2.7 — Boolean Algebra.Boolean Algebra

The structure 〈s,u,t, 〉 is called a Boolean Algebra, if 〈s,u,t〉 is a lattice which
satisfies

x u (y t z) = (x u y) t (x u z) and x t (y u z) = (x t y) u (x t z),
there exist a least element 0 ∈ s and a greatest element 1 ∈ s and for every
x ∈ s there exists x with

x u x = 0 and x t x = 1.

A Boolean algebra is a distributive lattice with complement.
2Note that this is true in Boolean algebras only. For any other algebra our definition of

complementation satisfies the definition of the reltive pseudo-complement.

v. July 19, 2010(c) m.e.müller

2.1. OBJECTS AND THEIR ATTRIBUTES 31

Exercise 2.6 (♦) Give a fourth interpretation of this algebra along the definitions of
v,⊆, and ≤ from the previous example!—Hint: Think logic.

Exercise 2.7 (�) Look up “Heyting algebra” in literature and relate the definition
of relative pseudocomplements to example 2.9 ! Focus on the sentence that “x is the
set of elments in z that are missing to make x equal to z”!

2.1.6 Relation Algebra

Without notifying the reader we implicitely introduced some ideas from relation
algebra. An abstract algebra of relations is a structure of relations on a base
set and operators on these relation that satisfy certain properties. So, for the
sake of completeness, we now define what we already presumed earlier:

Definition 2.8 — Relation Algebra. Relation Algebra

An algebra of relations is a structure

R =
〈
R,t,u, ◦, ,`,⊥,>, 1

〉
(2.21)

with a base set R, binary operators t,u and ◦, unary operators and ` and
special elements ⊥,> and 1 for which hold:

1. R together with u and form a boolean algebra,

2. R together with ◦ and 1 forms a monoid,

3. it holds that (R)̀
`

= R, (R ◦ S)
`

= S`◦R`

4. ` and ◦ distribute over u

5. and deMorgan’s laws are satisfied.

The base set in relation algebra is the set of all binary endorelations over a base
set: ℘(s2). The zero- and one-element in an algebra of relations are, of course,
the empty relation ⊥ and the universal relation >.

It is very important to be able to speak about objects and sets of objects. For
example, 5 ∈ N and N ⊂ R. But as we are interested in relations we want to
talk about the properties of different relations. So if R ⊆ N×N and S ⊆ N×N,
what is the difference between R and S? Or, simply speaking, it is nice to know
that Clarabelle is a cow and that Pluto is a dog. It is even nicer to know that
dogs are descendants of wolves and that cows are tame bovinae. But the nicest
thing is to know that dogs are to wolves as cows are to bisons: they are the
domesticated versions.

Example 2.10 Let R,S ∈ N2 and xRy :⇐⇒ x < y and xSy :⇐⇒ x ≤ y.
In other words, R =< and S =≤ (it may look a bit odd the first time you read
this). But whenever x < y, we also know that x ≤ y. Therefore—and this
might look even odder—we can state that <⊂≤.

Let us take a look at a two–valued propositional logic again:

v. July 19, 2010(c) m.e.müller

32 CHAPTER 2. RELATIONAL KNOWLEDGE

Example 2.11 Imagine a set VarPL = {a,b, c, . . .} which we call the set of
propositional variables. Suppose there is total function α : VarPL → 2. Since
0 ⊆ 1 we know that for any x, y ∈ VarPL

α(x) = 0 =⇒ α(x) ⊆ α(y) (2.22)

Similary, we know that if α(x) 6= α(y), it holds that

α(x) ∪ α(y) = 1 and α(x) ∩ α(y) = 0 (2.23)

We then define operators ∨,∧,−→ and ¬ on Σ with the following properties:

α(x ∧ y) := α(x) ∩ α(y)

α(x ∨ y) := α(x) ∪ α(y)

α(¬x) := {y : y ∈ 2− {α(x)}}
α(x −→ y) := α(¬x) ∪ α(y)

This way, we have defined syntax and semantics of propositional logic in only
four lines. 2 is called the set of Boolean truth–values, written as 2 := {0,1}.

Exercise 2.8 (�) Define a three-valued propositional logic!

What is the benefit of relation algebra? Take a look at the definition (2.4) of
properties of relations. All the properties were defined element- or pointwise.
For example, to show that R is reflexive we have to show that xRx for all
x ∈ dom(R). This might become a rather cumbersome task with large or even
unknown domains. Instead of examining a relation elementwise, we can simply
express its properties by equations in relational calculus. So if R is reflexive,
then it holds that 1 ⊆ R ⇐⇒ 1 ∪ R = R. Symmetry means that R = R` and
transitivity that R ◦R ⊆ R.

So whenever we can prove that for some relation R the three equations are true
we know it is a equivalence relation—without taking a closer look at a single
object of our domain. As an example, consider the following proposition:

A reflexive, difunctional relation is an equivalence relation.

Exercise 2.9 (�) Prove the proposition using the standard set-theoretic properties!⊕
Using the laws of relation algebra, the proof is very simple: Let R be difunc-

tional and reflexive. Then, it holds that 1 ⊆ R and R ◦ R` ◦ R = R. In order
to show it is an equivalence relation, we have to show that it is also symmetric
R ⊆ R` and transitive R◦R ⊆ R. We assume transitivity (Exercise!) and show
that symmetry follows:

R = R ◦R`◦R
⊇ 1 ◦R`◦ 1 {| by reflexivity |}
= R` {| by identity law |}

v. July 19, 2010(c) m.e.müller

2.2. KNOWLEDGE STRUCTURES 33

Therefore, R ⊇ R .̀ Similarly,

R` = (R ◦R`◦R)
`

⊇ (1 ◦R`◦ 1)
` {| by reflexivity |}

= R`
` {| by identity law |}

= R {| by converse |}

which means R ⊆ R` and completes the proof.3 Once we understood the
general laws of relation algebra, we are not only able to talk about things, but
also about the relations between them. Then, the set of all relations again is a
set with relations of objects—so we can examine relations between relations, and
so on. This is achievement is not just art for art’s sake but it is a fundamental
requirement for knowledge discovery:

Relations and Knowledge
If knowledge is defined by relations, then learning is about reasoning with relations
on relations.

A relational view on knowledge is a view that delivers a vocabulary to speak
about it for free.4

2.2 Knowledge Structures

We now examine families P,Q,R of equivalence relations over a base set s.

2.2.1 Concepts, Equivalence Relations, and Knowledge

Consider a set s and relations C, S as in example (2.3). The knowledge repre-
sented by these relations can be used to answer several questions:

1. What colour is a 2?
Hence, we examine K(C) and find fc(2)’s value: 2 is white!

2. What shape is a 2?
We examine the kernel matrix for S and find that fs(2) = square.

3. But the interesting thing is that a 2 is a white square:

2 ∈ [2]C ∩ [2]S

3As you can see, this proof is very, very simple. It is, in terms of notational and logic effort,
much simpler than the proof on the previous page. But in order to find such a simple and
short proof, it takes a human a few years of experience. The biggest advantage of all is that
this proof can be carried out mechanically using an automated theorem proving system. Since
such a system lacks all the intuition and experience, the proof takes about 75 steps there -
but it is carried out in less than a quarter of a second.

4With all of its implications: While Boolean algebras are still decidable, relation algebras
are undecidable.

v. July 19, 2010(c) m.e.müller

34 CHAPTER 2. RELATIONAL KNOWLEDGE

We answered the question for white and squarish objects by intersecting the
respective equivalence classes. How can we use our knowledge of the according
equivalence relations? One approach is to create an overlay of the respective
matrices.

C ♦ • � � ◦ �
♦ w w w
• b b b
� b b b
� w w w
◦ w w w
� b b b

and

S ♦ • � � ◦ �
♦ r r
• c c
� s s
� s s
◦ c c
� r r

The overlay of the kernel matrices K(C) and K(S) then is:

C ⊕ S ♦ • � � ◦ �
♦ wr w w r
• bc b c b
� b bs s b
� w s ws w
◦ w c w wc
� r b b br

Finally, we consider the relation R := C ∩ S which discriminates objects by
colour and shape and draw the according equivalence classes as M(C ∩ S) (left
matrix). We then identify colour and shape information by selecting only those
entries in K(C)⊕K(S) for which the left matrix carries 1 and obtain the result
in the right matrix:

R ♦ • � � ◦ �
♦ 0 0 0 0 0
• 0 0 0 0 0
� 0 0 0 0 0
� 1
◦ 0 0 0 0 0
� 0 0 0 0 0

⋂
♦ • � � ◦ �

♦
•
�
� ws
◦
�

This means that 2 is a white square.

2.2.2 Operations on Equivalence Relations

A corollary from the observation that every equivalence relation induces a par-
tition (the quotient) and vice versa is that two relations are equal, iff their

v. July 19, 2010(c) m.e.müller

2.2. KNOWLEDGE STRUCTURES 35

quotients are equal. Let R,S ∈ R be two equivalence relations. Then,

R = S ⇐⇒ xRy ←→ xSy

⇐⇒ {〈x, y〉 : xRy} = {〈x, y〉 : xSy}
⇐⇒ {[x]R : x ∈ s} = {[x]S : x ∈ s}
⇐⇒ s/R = s/S

Therefore, the intersection of equivalence relations can be defined in terms of
intersections of equivalence classes:

Definition 2.9 — Intersection of equivalence relations.
Intersection of

equivalence relations
For n equivalence relations Ri ∈ R,

⋂
i∈nRi is an equivalence relation, too:⋂

i∈n
Ri = R0 ∩R1 ∩ · · ·Rn−1

= {〈x, y〉 : xR0y} ∩ {〈x, y〉 : xR1y} ∩ · · · ∩ {〈x, y〉 : xRn−1y}
= {〈x, y〉 : xR0y ∧ xR1y ∧ · · · ∧ xRn−1y}

It also holds that

[x]R0∩···∩Rn
= {y : x(R0 ∩ · · · ∩Rn−1)y}
= {y : xR0y} ∩ · · · ∩ {y : xRny}
= [x]R0

∩ · · · ∩ [x]Rn

By intersecting equivalence relations we obtain further, smaller equivalence re-
lations with finer classes. This is worth a second thought: what does it mean
for a certain equivalence relation to be a subset of another? Let us take a closer
look:

R0 ⊆ R1 ⇐⇒ {〈x, y〉 : xR0y} ⊆ {〈x, y〉 : xR1y}
⇐⇒ xR0y −→ xR1y

Example 2.12 Consider the following equivalence relation R3 on our
example set:

R3 ♦ • � 2 ◦ �
♦ 2 2
• 4 4
� 3
� 2 2
◦ ©
� 4 4

=

 〈0, 0〉2, 〈0, 3〉2, 〈3, 0〉2, 〈3, 3〉2,
〈1, 1〉4, 〈1, 5〉4, 〈5, 1〉4, 〈5, 5〉4,
〈2, 2〉3, 〈4, 4〉©



v. July 19, 2010(c) m.e.müller

36 CHAPTER 2. RELATIONAL KNOWLEDGE

If we recall the definition of C we can easily verify that R3 ⊂ C:

C ♦ • � � ◦ �
♦ w w w
• b b b
� b b b
� w w w
◦ w w w
� b b b

C = R3 ∪
{
〈1, 2〉, 〈2, 1〉, 〈1, 4〉, 〈4, 1〉,
〈2, 5〉, 〈5, 2〉, 〈3, 4〉, 〈4, 3〉

}

In other words, R3 is finer than C, and C is coarser than R3; or, more formally,
R3 ⊆ C ⇐⇒ xR3y → xCy.

This important result deserves a theorem:

Theorem 2.1 (Granularity of equivalence relations) Let there be two equiva-
lence relations R0 and R1. Then:

1. R0 ⊆ R1 ⇐⇒ xR0y −→ xR1y

2. R0 ⊆ R1 =⇒ [x]R0
⊆ [x]R1

Exercise 2.10 ♦� Prove!

There are, of course, more operations on (equivalence) relations than just inter-
sections (i.e. conjunction): For equivalence relations R,R0, R1 ⊆ s× s,

1. R is not an equivalence relation, but R ∪ 1s is.

2. R` is an equivalence relation.

3. R0 ∪R1 is not an equivalence relation.

4. R0 ◦R1 = {〈x, z〉 : ∃y : xR0yRz} is not an equivalence relation.

So far, we talked about objects, sets or classes of objects and their relations to
each other. But knowledge is made of relations, not of collections of things.
Therefore, we call 〈s,R〉 a knowledge base. To conclude this chapter on know-
ledge structures, we finally discuss the relations between different knowledge
bases.

2.2.3 Indiscernability and Knowledge

Two objects x and y are indiscernible with respect to an equivalence relation
R, if xRy. As a special case, if x = y are equal, because = is an equivalence
relation: Two things that are the same are indiscernible from each other. With a
set R of equivalence relations,

⋂
R, is an equivalence relation, too. We find that

if
⋂

R ∈ R, it is a minimal element: ∀R ∈ R :
⋂

R ⊆ R. It creates the finest
partition on the base set s. If xRy for all R ∈ R, then x and y are indiscernible
with respect to R and it also holds that x(

⋂
R)y. The higher the resolution

of our knowledge R on the objects of our domain, the less indiscernible objects
there are—and the coarser our knowledge, the more indiscernible objects we
have.

v. July 19, 2010(c) m.e.müller

2.2. KNOWLEDGE STRUCTURES 37

Definition 2.10 — Indiscernability relation. Indiscernability
relationLet there be a set of equivalence relations R. Then, we call

¯̄R =
⋂
R∈R

R =
⋂

R

the indiscernability relation over R.

Elements of s/R for any R ∈ R are called elementary categories. They corre-
spond to R–equivalence classes and can be identified by appropriate kernels. El-
ements of s/ ¯̄R are called basic categories. Elementary categories (R–equivalence

classes) are unions of basic categories (¯̄R–equivalence classes), and a basic ca-
tegory is always a subset of exactly one R–equivalence class.

Exercise 2.11 ♦ Compute ¯̄R for R = {Ri : i ∈ 3} as defined in example 2.2!

In other words, elementary categories are equivalence classes generated by some
equivalence relation R ⊆ R. Given an information system 〈s,F, VF〉 we have
a knowledge base R with R = {Rf : f ∈ F}. Every elementary category [x]Rf

then has a “name”, which is x’s value under f or, simply speaking, the entry in
Rf ’s kernel matrix, f(x). Basic classes are sets of objects that are not discernible
by any of the Rf ∈ R. So if x and y are elements of the same basic class then
f(x) = f(y) for all f ∈ F.

Example 2.13 Let R = {C, S} as in example 2.5. Then, ¯̄R =
⋂ {C, S} =

C ∩ S is:

C ∩ S =



〈0, 0〉b, 〈3, 3〉b, 〈0, 3〉b,
〈3, 0〉b, 〈3, 4〉b, 〈4, 3〉b,
〈0, 4〉b, 〈4, 0〉b, 〈4, 4〉b,
〈1, 1〉w, 〈2, 2〉w, 〈5, 5〉w,
〈1, 2〉w, 〈2, 1〉w, 〈2, 5〉w,
〈5, 2〉w, 〈1, 5〉w, 〈5, 1〉w


R0

∩



〈0, 0〉c, 〈5, 5〉c,
〈0, 5〉c, 〈5, 0〉c,
〈1, 1〉s, 〈4, 4〉s,
〈1, 4〉s, 〈4, 1〉s,
〈2, 2〉l, 〈3, 3〉l,
〈2, 3〉l, 〈3, 2〉l


R1

=

{
〈0, 0〉bc, 〈5, 5〉wc, 〈1, 1〉ws,
〈4, 4〉bs, 〈2, 2〉wl, 〈3, 3〉bl

}
C∩S

= 1s

Equivalently, we can take a look at the partitions instead:

s/R0 = {{0, 3, 4}, {1, 2, 5}}
s/R1 = {{0, 5}, {1, 4}, {2, 3}}

s/(R0 ∩R1) = {{0}, {1}, {2}, {3}, {4}, {5}}

Neither R0 nor R1 are capable of discriminating all object; whereas their inter-
section is. ⊕

⊕
Whenever the indiscernability relation equals the identity, s/ ¯̄R = {{x} : x ∈ s},
then knowledge R is maximal in a sense that we cannot have any more knowl-
edge because we can already discriminate any two differents objects from each

v. July 19, 2010(c) m.e.müller

38 CHAPTER 2. RELATIONAL KNOWLEDGE

other. But what happens if we chose different sets P and R of equivalence
relations? It could well be that s/ ¯̄P = s/ ¯̄R. Then, the information content of
P and R seems to be the same as they create the same quotients. It could also
be, that one knowledge base is finer than the other: If there is some x ∈ s for
which

[x] ¯̄P ⊂ [x] ¯̄R

then, P creates a smaller basic category including x than R does. There-
fore, there are less objects that are P–indiscernible from x than there are R–
indiscernible objects of x.

Definition 2.11 — Equivalent Knowledge.
Equivalent
Knowledge

Let there be two knowledge bases with a base set s and families of equivalence
relations P and R. P and R are equivalent, if:

P ∼= R :⇐⇒ ¯̄P = ¯̄R⇐⇒ s/P = s/R (2.24)

R is called coarser (more general) than P, if

P � R :⇐⇒ ¯̄P ⊆ ¯̄R⇐⇒ [x] ¯̄P ⊆ [x] ¯̄R (2.25)

If R is more general than P, then P is finer than R.

Knowledge representation is a research discipline on its own, and so is relational
concept analysis.
Yet, there is still much more to knowledge. Human knowledge and human skills
are no entities but rather processes that are massively parallel and unsynchro-
nised. Accordingly, we have artificial neural networks as a simulation and we
have, e.g. backpropagation for learning such networks. Our knowledge of the
world is not very crisp, either. Concepts are vague, and rules are fuzzy, too.
And many observations and conclusions drawn from them are probabilistic. This
has lead to a multitude of different knowledge representation and inferencing
methods. And, accordingly, to many different learning methods as well.
We now have a proper understanding of the required concepts and we have
acquired the neccessary skills to study knowledge and representations thereof
more detailed.

v. July 19, 2010(c) m.e.müller

Chapter 3

From Data to Hypotheses

No software without a program, no program without an
algorithm. No algorithm without a theory and no theory
without a clear syntax and semantics. In this chapter we de-
fine the fundamental concepts that we need to speak about
machine learning in a clear language without too much con-
fusion.

If we try to put all important information about machine learning in just a small
box, it would look like this:

Machine Learning
Machine learning is concerned with the problem to induce a concept from a sample
of instances of our domain. Given a classification, the task is to define a mapping
that approximates an unknown target function which assigns to each object a target
class label.
The outcome is a hypothesis h of a certain quality; and the process of inducing such
a hypothesis crucially depends on the representation of our domain.

This rather rough picture is described in detail in the following sections.
First of all we need to specify what we will be talking about and which terms
we shall use so as to avoid too much confusion.

3.1 Representation

Machine Learning and Knowledge Discovery is concerned with:

• grouping objects (like entities, processes, atoms, complex structures, etc)

• from a domain (i.e. a set of such objects)

• into target concepts

• with respect to their properties and/or the classes they belong to

39

40 CHAPTER 3. FROM DATA TO HYPOTHESES

First of all, we need to ask ourselves how to represent our knowledge about the
world. The part of the world that we live in and which we shall reason about is
called the domain. In order to be able to talk about objects of the domain we
need to have representations thereof (and their properties).1

Definition 3.1 — Domain, Universe, Representation.
Domain, Universe,
Representation

Let D denote our domain which is the part of the world that we are interested
in. A representation is a morphism from the domain into a structure of objects
called representation space or universe U:

ρ : D→ U (3.1)

The base set of U is denoted as U .

Note that for x, y ∈ D, x = y does not imply that ρ(x) =U ρ(y): First, it can
be that ρ(x) 6= ρ(y). And second, even if ρ(x) = ρ(y), it is not necessarily the
case that ρ(=) = ρ(=U).

Example 3.1 Let D = Q and U = N. One possible representation
of rational numbers as natural numbers is defined by ρ(x) = d|x|e. Then,
e.g. ρ(−6.81) = ρ(20

3) = ρ(
√

48).

Exercise 3.1 (♦) (a) Define two more (reasonable) representation functions! (b)
Define a reasonable ρ : R → N. (c) Find a reasonable representation for the complex
numbers C by more simple structures!

Exercise 3.2 (�) Discuss the properties of the representations you defined in the
previous exercise. Are order relations preserved? What about operations?

Of course, our world D has much more structure than just a set and, of course,
so has U.

Definition 3.2 — Concept, Class.Concept, Class

A concept is a meaningful subset C ⊆ D of objects in our domain. A (represen-
tation) class is a subset c ⊆ U .

It is very important to understand that we defined a representation class inde-
pendently from concepts. If we had defined a representation class c to be C’s
image under ρ, we would have to have knowledge about D and ρ. It might occur
a bit odd to the reader, but we do not know what D looks like:

Representation Gap
Any representation or any model is an image of the domain, and the way the image
is drawn, is always a lossy process as we shall see later. More importantly, knowledge
discovery means to discover rules by looking at the data we are provided with. It
means that all we have is U, we do not even know anything about ρ. Knowledge
discovery takes place when we interpret the result (a description of a class c) back in
D.

Accordingly, C 6= D does not imply that ρ(C) 6=U ρ(D).

1Actually, we never ever talk about domains but always about our model of parts of the
world which we assume to be “true”.

v. July 19, 2010(c) m.e.müller

3.1. REPRESENTATION 41

Example 3.2 Imagine D = R and U = N. Let there be two concepts in
R: the set of non-natural rational numbers Q = Q−N ⊂ R and the set of non-
natural real numbers R = R − N ⊂ R. We now define a partial representation
ρ : R→ N by

ρ(x) =

{
x, if x ∈ N
undef else

Then, Q ⊂ R but ρ(Q) = ρ(R) = ∅.

We already stated that concepts usually have a meaning. This is why we are
able not only to collect all blue things and call the set of all blue things blue.
Instead, we can also explain or describe the abstract property of something being
blue. This is similar to having a general idea of “blueishness” and the ability to
communicate this idea to someone else. This idea does not refer to all instances
of the set of things that share the property of being blue, but to the intensional
meaning of the concept “blueishness” itself. This is why we need to discriminate
concepts from representation classes and intensional meaning from extensional
enumeration.

Example 3.3 In his Tractatus Logico-philosophicus, the philosopher Ludwig
Wittgenstein tried to establish a logically sound theory of meaning. In this case,
human language was the representation space he examined. First, he defined
the “world” to be everything “that is the case”. His “world” corresponds to
what we call domain. He also stated that models (“logical pictures”) are based
on elementary propositions about things (which correspond to characteristic
functions of classes). Of course, he also came to the conclusion that there are
things in the world that cannot be expressed in terms of our language. This
left him speechless for a long time. Then, after several years more he finally
concluded that meaning of a word is its use.
Linguists and especially those people dealing with lexical semantics (i.e. the
meaning of the words or the units of language) face a similar problem. They
eventually agreed that the meaning of the word “scooter” is scooter’ (pro-
nounced “scooter-prime”).

But still, there is more to concepts than just sets: Concepts obviously contain
more information than sets of objects which are represented by representation
classes. Therefore, we define concept representations:

Definition 3.3 — Representation of a concept.
Representation of a

concept
A concept C ∈ D is represented by classes of objects:

ρ : C 7→ c where c =
⋃
i

⋂
j

ci,j (3.2)

with ci,j ⊆ U .

The idea behind joins of class intersections was discussed in the last chapter on
knowledge representation already; here it demonstrates the difference between

v. July 19, 2010(c) m.e.müller

42 CHAPTER 3. FROM DATA TO HYPOTHESES

the structure of representation space U and the mere set of representable ob-
jects U . While all the classes ci,j ⊆ U simply are representation classes, the
complex expression

⋃⋂
ci,j ∈ U requires a structure that allows us to oper-

ate on classes to yield a description of a concept representation.2 Of course,
when evaluating the complex expression c, its value becomes a simple subset
of U , too. Nevertheless, the difference is important even though all the impor-
tant processes of knowledge discovery take place in representation space only
where concepts from D don’t matter and expressions are inherently evaluated.
Hence, we also use the words “concept representation”, “representation class”,
and “class” interchangeably when clear from context.

Example 3.4 The concept C =“white square” subsumes many different
objects, some of which can be represented as 2,2,♦. The representation class
{2,2,♦} can be described by the concept

{
2, ◦,♦,2,©,♦

}
∩ ({�,�,2,2}∪{

�,♦,�,♦
}

), i.e. all squares or rhomboids that are white. With U = s as in
example 2.3, we have ρ(“white square”) = {2}.

Now that we have different classes, we can define sets of classes. For example,
the set {r, g, b} with r, g, and b being classes of red, blue and green objects,
respectively would be a classification of objects with respect to their colour.

Definition 3.4 — Classification, c.Classification, c

A classification c of objects from a set s ⊆ U is a family of k classes ci ⊆ s:

c = {c0, c1, . . . , ck−1} (3.3)

with ci ⊆ s and
⋃
ci = s, i ∈ k.

For each ci, we can define χ(ci) : s→ 2 which for each x delivers 1 if and only
if x ∈ ci (note that χ(ci) is not total on U). Usually, it is implicitly assumed,
that:

s = U =
⋃

1≤i≤k

ci and ci ∩ cj 6= ∅ −→ ci = cj . (3.4)

which makes all classes of a classification mutually exclusive and their respective
characteristic functions total on U . Of course, concepts are not disjoint; quite
often they overlap. Even if they did not overlap, disjointness would be hard to
determine as concepts usually have rather vague boundaries (recall that concepts
have a meaning).
The disjointness assumption is very popular since a classifier then becomes a
function:

Definition 3.5 — Classifier.Classifier

2Of course, c is a class too—but readers familiar with logic will have noticed that the
definition of a concept representation simply corresponds to the conjunctive normal form
of a propositional logic formula with the propositional variables defined by the elementary
categories.

v. July 19, 2010(c) m.e.müller

3.1. REPRESENTATION 43

A classifier is a function fc : s→ k such that

fc(x) = i ∈ k :⇐⇒ x ∈ ci ⇐⇒ χ(ci)(x) = 1 (3.5)

In many cases we will consider binary classification problems with k = 2. Then,

c = {c, c}

and we abbreviate

fc(x) := χ(c)(x) (3.6)

Simply speaking, a classifier is a function that implements a characteristic func-
tion of a representation class.

The problem is that we want to find such a function which shall be “correct” on
object representations that we do not know while learning this function. Now
that we have a rather clear language to talk about our domain and its elements
and relations between them, we can reformulate our first working definition of
machine learning into:

Concepts & Learning Classifiers
Concept learning means to answer the questions:

What is the common property of a set of objects? What makes them
different from all other objects? Which yet unknown concept do the
objects belong to?

Learning a classifier means to answer the question:

Given several classification examples, what are the underlying rules that
we need to correctly classify new and unseen cases? How can we find a
function that approximates a perfect classifier?

To answer this question and solve the problem, we

1. represent the problem domain D in representation space U with least pos-
sible loss through a representation function ρ

2. try to describe all object representations ρ(xi) in terms of representation
classes c ⊆ U

3. and hope we can find some representation concepts that have some proper
meaning when interpreted with respect to D.

To satisfy the requirement of a “proper” meaning, our learning process should
deliver a hypothesis for the classifier such that the following is true:

1. all known and most unknown objects x1, x2, . . . , xm ∈ U , to which we
would attribute the property C, are represented by members of the concept
representation.

2. For all non-C-ish objects yi their respective representations ρ(yi) do not
fall into c

v. July 19, 2010(c) m.e.müller

44 CHAPTER 3. FROM DATA TO HYPOTHESES

Then, with some luck, the description of concept representations c in U has a
reasonable concept C ′ as preimage in D. Let us briefly summarise what we have
learned so far:

The Data Mining Process
Take a look at figure 3.1. We build a model U with a base set U to describe entities
and relations of our domain D. Representation classes are used to define concepts
and with characteristic functions and a subset of objects (s) we learn a hypothesis
h that shall approximate some concept c. The big question is, whether h actually is
reasonable at all when interpreted in D.

D U U

s

{��χ0(x), χ1(x), . . .� , χt(x)� : x ∈ s}

c0, c1, . . .
χ0, χ1, . . .

χ
t
:
s→

2

χt : s→ U

ctC?
t

χt(x) := h(χ0(x), χ1(x), . . .)

ρ

with

learning

Figure 3.1: Domain, universe, representation

Example 3.5 Let the domain be the world of our solar system and the
concepts and names that we have for all the objects and phenomena that occur
there. There are objects like mars and jupiter and io and pluto, venus, halley
and so on. There are concepts, too: Planet, Morningstar, Moon, or Asteroid.
We now represent every single object of our solar system by the name of the
object it is orbiting, the mean orbit radius (in AEs), the time it takes for one
rotation around the center of the orbit (in days) and the mass of the object (in
earth masses). For the sun, ρ delivers a representation as follows:

〈sun, 0, 25, 333 · 103〉

which means that it only rotates around itself in 25 days and it is 333,000 times
heavier than the earth. The earth itself would be represented as: 〈sun, 1, 365, 1〉.
There are two concepts in D that usually map onto the same representation:

ρ(Morningstar) = ρ(Eveningstar) = ρ(venus)

= 〈sun, 0.7, 225, 0.8〉

v. July 19, 2010(c) m.e.müller

3.1. REPRESENTATION 45

So once we talk about venus, we cannot determine whether we speak about the
concept MorningStar or the EveningStar (except we had extra knowledge about
the current time of the day). To make things even more complicated, there is
another planet,

ρ(mercury) = 〈sun, 0.05, 88, 0.8〉

which can be seen both at dusk and dawn, too. So if we invent a new represen-
tation concept

c := {〈sun, 0.7, 225, 0.8〉 , 〈sun, 0.05, 88, 0.8〉} = {ρ(mercury)} ∪ {ρ(venus)} ,

c can be interpreted as the concept of PlanetsOneCanSeeAtDuskOrDawn.

Exercise 3.3 (♦) The unknown concept Planet could be learned, if we compare all
the object representations of mars, jupiter, pluto and earth and try to find a feature
that discriminates this set from the set of moon, io, or triton. How?

Exercise 3.4 (♦�) Modify the ρ such that each object’s representation also includes
some knowledge about its mean surface temperature. Then, develop two different
classifiers fh and f ′h for the binary representation concept MostlyHarmless where the
earth shall be the only instance.

Usually, several representation processes are concatenated or intertwined with-
out being noticed. But as we are used to explain new observations in terms of
our already existing model of the world, we sometimes fail to recognise some-
thing new as being new (and sometimes we don’t even recognise it at all). Our
tendency to put things into relation already makes us to represent things in a
way they are comparable (even if they are not). Very popular formal analo-
gies to such processes is the application of discretisation and quantisation in
measuring or interpreting data. The problem with forgetting about such biases
is that they may lead to a situation in which a theoretical result is carelessly
transferred back into the domain (this is called confirmation bias). Doing so is
very tempting as we are seemingly able to say even more about more things.

But the need for learning often arises from the need of abstraction and com-
pression, which is why a certain loss of detail is desirable. We will discover that
deliberate sub-optimality is necessary in order to guarantee a certain degree
of accuracy, too. Therefore, learning could be interpreted as pruning away as
much irrelevant knowledge as possible without losing the ability to discriminate
important observations.3

3In fact, the human being also first needs to learn how to ignore before he can learn more.

v. July 19, 2010(c) m.e.müller

46 CHAPTER 3. FROM DATA TO HYPOTHESES

3.2 Changing the Representation

It is very important to understand that the world we live in, our domain D, can
be represented in many different ways:

D

ρ1
vvnnnnnnnnnnnnnnn

ρ2~~}}}}}}}

ρn
&&NNNNNNNNNNNNN

U1 U2 Un

When working with information systems, the representation space U is struc-
tured by a set F of features. Then, ρ maps D on a feature space on the base
set U :

ρ : D→ I with ρ(x) = 〈f0(x), f1(x), . . . , fn−1(x)〉 (3.7)

where I = 〈U,F, VF〉. This is quite easy—but it is not easy to find a “good”
representation. Whether a representation is good or not depends on its expres-
sive power (are we able to formulate sufficiently precise hypotheses at all?), its
computational complexity, and, last but not least, on its readability. Due to one
or another problem with these requirements it sometimes is necessary to change
a representation system into a more suitable one:

Example 3.6 Some things appear to be indistinguishable. For example,
sequences of numbers: Are the following two numbers equal?

646942834178564068362

175483462854068362649

Of course, they are not. But are they equal in a sense that the number of
occurrences of all the digits are the same? Without a lot of counting, the
question cannot be easily answered. But if we change our point of view, the
representation may change into

122334444566666788890

122334444556666788890

and it is easy to see that in the second sequence one 6 has changed into a 5.

Exercise 3.5 (♦) Compare the two representations from the previous example (ran-
dom digit distribution versus sorted appearance) with respect to the computational
complexity of tests for equality!

So what we need to do is to find an appropriate representation ρ′ or a transform
(shift) τ : ρ 7→ ρ′:4

D

ρ′

&&MMMMMMMMMMMM

ρ

xxrrrrrrrrrrrr

U
τ

<<
U′

In Example 3.6, τ simply was the sorting function.

v. July 19, 2010(c) m.e.müller

3.2. CHANGING THE REPRESENTATION 47

Definition 3.6 — Representation Transform.Representation
Transform

We call a mapping τ (in literature: ϕ) a representation transform (shift, change):

~x = 〈x0, x1, . . . xn−1〉 7−→ ~τ(~x) = 〈τ0(~x), τ1(~x), . . . , τN−1(~x)〉 (3.8)

If N < n, τ is an operation that reduces dimensionality. A simple example could
be feature selection, where τ(F) = F ⊂ F. Sometimes, it is useful to choose
N > n.

Exercise 3.6 (�) Find example where n < N . Find examples where N > n is
appropriate! Where do fn, fn+1, . . . , fN−1 come from?

Example 3.7 � Compare the random digit distribution (ρ) versus sorting
and comparison (ρ ◦ τ) with respect to the computational complexity of tests
for equality in Example 3.6.

Representation Change
A change of representation is a mapping from one representation system into another
to make the representation or the learning problem less complex.

Example 3.8 Suppose, we want to learn the concept c of multiples of
π; i.e. c = {nπ : n ∈ N} ⊆ R. It is not easy to describe the concept of π
on the ray of real numbers if you try to mark every nπ without any other
tool (such as dividers). But if we transform the representation on the ray R
into τ : R → (R × R), things become easier supposed that we find a suitable
definition of τ . We choose

τ : x 7→ 〈x, sinx〉
Then, x ∈ c ⇐⇒ sinx = 0 ⇐⇒ τ(ρ(x)) = 〈x, 0〉, i.e. we found a rather simple
characteristic function for the target concept: It is the set of all points where the
curve intersects with the x-axis or the set of all tuples whose second argument
is 0.

Another concrete example is the following description of Newton’s law of gravity:

Example 3.9 Given two bodies of mass m0 and m1, Newton’s law describes
the gravitational force f : R3 → R between them:

f(m0,m1, r) = c
m0m1

r2

where r is the distance between two objects. If we were to represent objects in
space we usually do so by defining their x, y, z–coordinates. Together with its
mass m, we need eight real numbers to represent two objects:

ρ : D→ R8 with ~x = 〈x0, x1, y0, y1, z0, z1,m0,m1〉
4Caution! Each arrow in this diagram may produce information loss.

v. July 19, 2010(c) m.e.müller

48 CHAPTER 3. FROM DATA TO HYPOTHESES

This is a nice representation, but it does not really help in applying the function
f as we need to know the distance r between m0 and m1 rather than the objects’
positions. Therefore, we change the representation by mapping the position data
of m0 and m1 onto their Euclidean distance; i.e. τ : R8 → R3 with

τ(~x) =

〈√ ∑
p∈{x,y,z}

(p0 − p1)2 ,m0,m1

〉
∈ R3

If f would be interpreted in the first representation (using the 8-tuples), we
would have to evaluate the following expression:

f(x0, x1, y0, y1, z0, z1,m0,m1) = c
m0m1∑

p∈{x,y,z}(p0 − p1)2

By using τ (and the inverse) we can now shift the definition of f into the
representation or outwards (leaving the work to the one who has to interpret
the data).5

Exercise 3.7 (�) Give a second transform τ ′ : τ(ρ) → ρ′′ where all arithmetic
operations we need are + and −.

We now go a bit into detail using an example that has become famous for two
reasons: It was used as an argument against the omnipotence of perceptrons
and introduced the notion of linear separability into machine learning.

3.2.1 Linear separability

Consider the following linear equation f∧ : 2×2→ {1,−1} which shall describe
the logical “and”:

f∧(x, y) =

{
1, vx+ wy + b > 0
−1, vx+ wy + b < 0.

(3.9)

Then, we need to find v, w such that f∧(x, y) = sgn (vx+ wy + b) satisfies
equation (3.9). The hypothesis space can be illustrated by truth tables:

y
1 0 1
0 0 0
∧ 0 1 x

This problem can be described by three different representations: First, as the
problem of defining a separating plane, secondly by defining exclusive conjunc-
tion in terms of other operators, and, finally, by a quick look at Church’s en-
coding of Boolean operators.

5Another representation of Newton’s law is given in [?]: “Yakka foob mog. Grug pubbawup
zink wattoom gazork. Chumble S̈puzz.”.

v. July 19, 2010(c) m.e.müller

3.2. CHANGING THE REPRESENTATION 49

The logic of exclusive disjunction

In order to define f∧ we choose as parameters 〈v∧, w∧〉 :=
〈

1
2 ,

1
2

〉
and b∧ = − 3

4
which gives

f∧(x, y) = sgn

(
1

2
x+

1

2
y − 3

4

)
. (3.10)

Using the same method, we define disjunction and Nand:

f∨ : 〈v∨, w∨〉 :=

〈
1

2
,

1

2

〉
and b∨ = −1

4
(3.11)

f∧̄ : 〈v∧̄, w∧̄〉 :=

〈
−1

2
,−1

2

〉
and b∧̄ =

3

4
. (3.12)

But the exclusive disjunction f∨̇ cannot be expressed in terms of a linear func-
tion, since we need at least two cuts through the plane in order to separate all
0s from all 1s:

x1

1 1 0
0 0 1
∨̇ 0 1 x0

To solve this problem logically, one transforms ∨̇ as follows:

x0∨̇x1 ⇐⇒ (x0∧̄x1) ∧ (x0 ∨ x1)

Logically, this is a simple trick—but if we understand logical operators as a
special kind of functions it becomes clear why ∨̇ poses a tricky problem. Our
definition

f∨̇(x, y) := f∧(f∧̄(x, y), f∨(x, y))

shows that we run into a problem with operator scopes: we first evaluate the
∧̄-expression, then the ∨-expression and then pass their results to the out-most
∧-expression.

A brief digression to λ-calculus

The Church-encoding of Boolean operators in λ-calculus explains the problem
in a beautifully concise way: Lambda calculus requires to reformulate such a
definition with “inline” definitions of anonymous unary functions. For example,
f∧(x, y) becomes a function that upon receiving x delivers a new function with
a parameter y. Any variable is a λ-expression and a variable itself evaluates
to its own value. We represent a Boolean variable by a pair x = (t, f) where
the first argument represents 1 and the second one 0. The function 1 :→ {t, f}
then can be defined as

1 := λt. λf. t = t (3.13)

v. July 19, 2010(c) m.e.müller

50 CHAPTER 3. FROM DATA TO HYPOTHESES

i.e. 1 is a function that always returns t (the first argument of the Boolean value
tuple). Similarly, 0 := λt. λf. f = f . We now define ∧ and ∨ for two Boolean
variables x and y by

∧ := λx. λy. xyx (3.14)

∨ := λx. λy. xxy (3.15)

Example 3.10 Let x = 1 and y = 0. Then

x ∧ y = λt. λf. tft = λt. λf. (λt. λf. t)(λt. λf. f)(λt. λf. t)

{| Evaluate first (λt. λf. t) with two arguments and resolve by Def. of 0 |}
= λt. λf. (λt. λf. f) = λt. λf. f

{| Again, by Def. of 0 |}
= f = 0

Exercise 3.8 (�) For x = 1 and y = 0, compute x ∨ y.

Now begins the fun: Let us consider negation. Negation means that if x, ¬x is
false, but if x is false, ¬x is the case. The simplest method to define negation is

¬ := λx. λt. λf. xft (3.16)

Example 3.11 Let x = 0. Then

¬ = λx. λt. λf. xft = λt. λf.0ft

{| Defn. 0 and Evaluation |}
= λt. λf. (λt. λf. f)ft = λt. λf. t

{| Defn. 1 |}
= t = 1

Exercise 3.9 (♦) Compute ¬1!

Exercise 3.10 (�) Define ∧̄!

Now, the trouble begins: The attentive reader will have noticed that we needed
three variables to model the unary negation operator, while the binary operators

v. July 19, 2010(c) m.e.müller

3.2. CHANGING THE REPRESENTATION 51

∧ and ∨ needed only two. So what does it look like with ∨̇?

x∨̇y ⇐⇒ ((¬(x ∧ y)) ∧ (x ∨ y)), hence:

∨̇ := ∧((¬(∧(xy)))(∨(xy)))

= ∧((¬λx.λy.xyx)(λx.λy.xxy))

= ∧((λn.λx.λy.(xyx)ft)(λx.λy.xxy))

= λe.(λn.λx.λy.(xyx)ft)(xxy)(λn.λx.λy.(xyx)ft)

= λe.λn.λx.λy.((xyx)ft)(xxy)((xyx)ft)

Obviously, ∨̇ requires more variables to be evaluated than ∧ or ∨.

Exercise 3.11 (��) Compute the truth table for ∨̇ using the definition above.

Computing a separating hyperplane

With this result in mind, we return to our functional view in representation
space 22. Using the definitions from equations (3.10) and (3.11) we derive
f∨̇(x, y) :=

sgn

(
1

2
sgn

(
−1

2
x− 1

2
y +

3

4

)
+

1

2
sgn

(
1

2
x+

1

2
y − 1

4

)
− 3

4

)
(3.17)

We now shift our representation space U by a transform τ : 22 → 23 with
τ(f(x, y)) = f ′(x, y, x∧̄y)) for all binary logical operators f . Then, we can
define:

f ′∧(x, y, z) := (x∧̄y)∧̄(x∧̄y)

f ′∨(x, y, z) := (x∧̄x)∧̄(y∧̄y)

f ′∨̇(x, y, z) := (x∧̄z)∧̄(y∧̄z).

In order to to define conjunction and disjunction, we need two (x and y) vari-
ables, but for exclusive disjunction we need all three variables — i.e. once we
represent our logic operators in 23, we do not need any additional variables to
compute the result of ∨̇, but we could not do it with only two variables in 22.
Thus, we found a simple solution by shifting the problem into a more complex
space. The idea behind a transform into higher dimensional spaces is nearly
trivial: Figure 3.2 shows that the Xor-problem cannot by solved with a single
cut through a plane. If you want to realise two cuts by one slice, then you have
to fold the paper sheet. But folding requires a third dimension. ⊕

Example 3.13 Another representation change is that of rule extraction
from decision trees which we will discuss in section 5.5 in detail. Imagine that a
tree represents a conjunction of literals along each path leading to a conclusion
in the leaf. Representing this tree as a set of implications allows us to weaken
each single rule by dropping individual literals. The same operation on trees
could result in syntactically incorrect hypotheses (i.e. trees with missing edges).

v. July 19, 2010(c) m.e.müller

52 CHAPTER 3. FROM DATA TO HYPOTHESES

f∧̄(x, y) = − 1
2x− 1

2y + 3
4

f∨(x, y) = 1
2x+ 1

2y − 1
4

f∧(x, y) = 1
2x+ 1

2y − 3
4 f∨̇(x, y) = f∧(f∧̄(x, y), f∨(x, y))

Figure 3.2: Linear Separability

Simplifying the Framework (Figure 3.1)
In knowledge discovery we cannot try derive new knowledge about objects from obser-
vations in the real world. All we can do is to ground our enterprise on representations
of objects. Since this is the case in every setting, we simply identify objects by their
representations:

〈χ(c0)(x), χ(c1)(x), . . .〉 ≡ρ x
The set of objects (or rather their representation) we work on is a subset s of all the
objects U we can talk about; that is, U is the base set of our representation space
U. The examples we have are representations of observations—and the information
whether an object x belongs to an unknown concept is provided by a teacher signal

χ(ct) =ρ t

The hypothesis h is a function extrapolating t on U .

From now on, we will speak of objects x ∈ s, target functions t : s → 2, and
hypotheses h : U → 2. Nevertheless, the reader shall always keep in mind, that
one of our fundamental assumptions is that ρ is appropriate.

3.3 Samples

In general, we learn from a sequence of observations of examples.

v. July 19, 2010(c) m.e.müller

3.3. SAMPLES 53

Samples
A sample s is a set or sequence of observations or instances from which we shall learn.
Usually, each example in a sample is labelled. Understanding this label as a target
function t’s value, a sample is a set of support points. Machine learning means to
approximate t through these points.

A sequence can be transformed into a simple set when we assume an im-
plicit assignment of the position of an object to the object itself (i.e. [a, a] =
{〈a, 1〉 , 〈a, 2〉}). Additionally, all objects in s are examples for something. This
means that every example is labelled with a so-called teacher signal that ex-
plains what this object is a proper example for:

Definition 3.7 — (Labelled) sample, s, t. (Labelled) sample, s,
t

A sample s is a set of m objects of the universe together with one out of k
different labels defined by a teacher t:

s ⊆ U × k (3.18)

s := {〈x0, t(x0)〉 , 〈x1, t(x1)〉 , . . . , 〈xm−1, t(xm−1)〉} (3.19)

with xi ∈ U , i ∈m and t : U → k. t is also referred to as target function.

If cod(t) = 2, we sometimes speak of the positive and negative sample, written
sy := {〈x, y〉 : 〈x, y〉 ∈ s} for y ∈ 2.
But where do s and t come from? We consider t first. The aim in machine
learning is to induce new concepts c. Therefore, we need a set of examples that
belong to this yet unknown example. The target function t can be seen as the
characteristic function of the unknown concept—but since it is unknown, we
cannot define it as such. Actually, t is as unknown as c but we will try to learn
a hypothesis h that approximates t.
The sample itself is, as suggested by the name, sampled from the universe. It
contains a subset of all objects and the choice is subject to a sampling function.
But there is even more to it: It seems reasonable to assume an (unknown)
distribution µ over D which is preserved by ρ:6

Example 3.14 It is much more likely to observe birds that can fly than
birds that cannot; especially if the sample is drawn from the rain forest. In
Antarctica, things are quite different.

Therefore, we define a sample to be the result of a sampling function that picks
elements from our domain with respect to their “probabilities”.

Definition 3.8 — Sµ(m, t), sampling function, s, sample.
Sµ(m, t), sampling
function, s, sample

A sampling function S generates a sample as a set s of m elements x ∈ U with
a target label t(x):

s = Sµ(m, t) = {〈x0, t(x1)〉, 〈x1, t(x1)〉, . . . , 〈xm−1, t(xm−1)〉} (3.20)

Due to the nature of µ, Sµ(m, t) is not a function but rather a procedure: It
draws m times an x from U w.r.t.7 µ with replacement.

6Note that “which is preserved by ρ” is a fundamental assumption.
7with respect to

v. July 19, 2010(c) m.e.müller

54 CHAPTER 3. FROM DATA TO HYPOTHESES

Accordingly, it holds for two samples delivered by the same sampling method
that

s1 6= s2

Now we can reformulate the assumption that we only mentioned in footnote 6
until now:

Theorem 3.1 (Sampling Assumption) Let there be n samples s0, . . . , sn−1

generated by repeated and independent execution of Sµ(m, t). Then for i ∈ n,

lim
n→∞

|{si : 〈x, t(x)〉 ∈ si}|
n

= φ(x).

where φ(x) denotes a normalised version of µ({x}) such that
∑
x∈U φ(x) = 1.

The sampling assumption can be verbalised as follows:

Sampling Assumption
When drawing samples of objects from a base set with respect to an underlying
distribution, then the probability that an object occurs in a sample is proportional
to the “mass” of the object.

Accordingly, if we have enough (say, at least m) observations, then the proba-
bility of making a certain observation about x corresponds to the frequency of
occurrences of x in the samples.8

But if we don’t have a teacher around who could give us a teaching signal t we
need to learn all by ourselves.

Definition 3.9 — (Un-)supervised Learning.
(Un-)supervised
Learning

(Un-)supervised Learning means to learn from a (un-)labelled sample. An unla-
belled sample is a sample where t(x) = ? (which is a constant symbol denoting
that t is not defined for x).

Supervised learning means that we have some evidence for and against an un-
known concept c in U given by t : U→ 2 but we have no intensional description
of t. Unsupervised learning means that we even have no information about pos-
sible targets. Since there is no knowledge about t, the target function remains
undefined. It is even unclear how to choose a proper codomain for t since we do
not have any information about the target concept. In such a case we need to
learn how to group objects together such that they form “meaningful” groups
which might correspond to some concepts.
But even if we have a teacher, the teacher might give us incorrect information.

Example 3.15 Imagine a binary classification problem on D = {a, e, b, c}
and U = 2. Let the target concept be vowel = {a, e}. Now we apply ρ with
ρ(a) = ρ(b) = 0 and ρ(e) = ρ(c) = 1. Let t = id2. Then we have the
representation of e and c labelled as vowels and the representation of a and b as
consonants.

8So if m is big enough, then the approximate value for the probabilities does not change
significantly for increasing k.

v. July 19, 2010(c) m.e.müller

3.3. SAMPLES 55

The problem behind (lossy) representation functions is that they generate two
kinds of noise on our example sets: 5

Definition 3.10 — Noisy sample. Noisy sample

A sample is called noisy if the teacher’s label does not agree with the actual
characteristic function of the sought for concept.

• Let x, y ∈ D and x 6= y. Let ρ be lossy such that ρ(x) = ρ(y). Then,
because t is function, it holds that t(ρ(x)) = t(ρ(y)). But if χ(c)(ρ(x)) 6=
χ(c)(ρ(y)), t disagrees with the meaning of c.

• Let there be two samples s and s′. If 〈x, y〉 ∈ s and 〈x, z〉 ∈ s′ and y 6= z,
then t is obviously inconsistent.9

Now that we have seen there is a huge difference between the domain and our
representation, we need to make a large simplification: From now on, we forget
about the domain and target concepts—all we have is the data we are given.
The data we have is just a representation of the domain and so there might
be a lot of information loss involved. We need to rely on the fact that U is
a sufficiently precise representation of D and that t : U → 2 is a sufficiently
precise representation of t. Any results we will achieve, are results modulo the
underlying ρ. And any such result may be pretty “accurate” on U, but whether
it is a reasonable hypothesis only (and entirely) depends on our interpretation
of the result back into D.

Essential Stipulations for Learning

1. The concept we want to learn is representable.

2. The data we have appropriately represents the domain.

3. If a concept representation is meaningful on a sufficiently large subset of data,
it is true on all objects.

The last stipulation is commonly known as the inductive assumption. Finally, we
assume that we can evaluate the quality of a hypothesis within U.

So far, we have derived the notion of t from the characteristic function of a set
of objects. Therefore, t always was a binary function t : U → 2. There are
many more paradigms of describing concepts; there are, for example, fuzzy sets
or complex concepts with more than just two possible values. In such cases,
the codomain of t is a more complex set or even structure. For binary learning
tasks, dom(t) = 2; if the target concept shall discriminate k different values
then dom(t) = k. A target function with fuzzy descriptions over k linguistic
variables requires Rk as codomain. Since most learning problems are binary or

9The reasons for this are manifold. One possible source of noise is that t is not a function
as assumed but rather a relation. An example are classifications whose classes are not pairwise
disjoint.

v. July 19, 2010(c) m.e.müller

56 CHAPTER 3. FROM DATA TO HYPOTHESES

can be reduced to such problems we usually assume dom(t) = 2 unless noted
otherwise.

Now that we have defined what we are talking about and what the examples we
are given look like, we can again reformulate our working definition of machine
learning into a first description that we can safely call a “definition”:

Definition 3.11 — Machine Learning Algorithm, Alg.
Machine Learning
Algorithm, Alg

A machine learning algorithm Alg receives a sample s of representations of
objects of our domain and computes a hypothesis h. The goal is to approximate
the unknown target function t : U → by h : U → cod(t) using the teaching
signal χ(c) : s→ cod(t):

Alg(s) = h ≈ t (3.21)

where s = Sµ(m, t) and c is the unknown concept we want to learn. Note that
χ(c) is a partial, extensionally defined function whereas h is a total function
that approximates t on the entire base set of the representation space.

Machine learning is a search procedure for an approximation h of the repre-
sentation of a target concept in a (possibly very large) hypothesis space. This
space cannot be searched exhaustively which is why the search requires heuristic
guidance. Hence the solutions of the search process can be more or less accurate
w.r.t. our representation of the target concept.
With Alg generating some h on U, we have a gained a hypothesis on our repre-
sentation space. What needs to be done is to interpret h on D. Since ρ is not
necessarily injective, there might not be a clear definition of an interpretation
function ρ

`
, and so it is not always clear how to interpret a hypothesis in the

real world D.

Definition 3.12 — Evaluation of h.Evaluation of h

Usually, the interpretation step ρ
`

is omitted. The hypothesis h is learned from
data from U and it is evaluated within U.

This is a quite strong assumption, because it presupposes that our representation
space suffices to describe everything we want to be able to describe. We shall
come back to this when discussing biases in section 3.6.

3.4 Evaluation of Hypotheses

Whatever we learn may be “correct” or “wrong”. Similarly, a hypothesis h =
Alg(s) may or may not agree with t on the sample or any other subset of U .
However, we can define some kind of relative correctness of h as follows.

Definition 3.13 — Correctness of h.Correctness of h

We call h 〈s, f〉-correct, if h agrees with f on s:

∀x ∈ s : h(x) = f(x) (3.22)

where s is an arbitrary subset of U .

v. July 19, 2010(c) m.e.müller

3.4. EVALUATION OF HYPOTHESES 57

So if Alg has learned h from s, h is 〈s, t〉–correct if and only if h agrees with
t on the sample. Being able to discriminate agreement from disagreement, we
can determine sets of instances on which h agrees with t or not. The set of
examples on which we find an agreement is the set of objects that are learned
correctly, the set of objects on which t and h disagree is the error set of h.

Evaluation of hypotheses (I)
The error set of a hypothesis h is the subset of instances on which a test of h disagrees
with t. The relative size of such an error set (together with a probability distribution)
can be used to describe the magnitude of the error of h on a set.
Since we usually do not know the exact probability distribution and since we have
only a subset of the entire domain for testing, we approximate the error by precision
and recall and their respective generalisations accuracy and coverage.

3.4.1 Error Sets and Error Measures

Definition 3.14 — Error set of h. Error set of h

The error set of h on s is the set of all objects in s for which h delivers a wrong
prediction:

errsets(h, t) := {x ∈ s : h(x) 6= t(x)} (3.23)

The size of the error set in relation to the size of the set is a numerical measure
of the error of h on s:

Definition 3.15 — Error Rate err(h, s) of h. Error Rate err(h, s)
of h

The error rate of h on s is defined as

errs(h, t) :=
|errset(h, s)|

|s| (3.24)

So far we have considered “binary” decisions only: an object x can be classified
correctly or incorrectly. But for more complex domains, misclassification may
have a quantitative measure, too: For example, � is not so different from �
than it is from ◦. Orange is not as much different from red than blue. In
order to define quantitative measures of errors, we require a distance measure
(which in the example of color classification could be satisfied by different spatial
representations of colours like the RGB or YUV models). A very simple idea is
to use the numerical difference between possible values of t as such an error:

Example 3.16 Learning intervals on rays: Imagine t : R → 3, where the
target classes represent the intervals [. . . ,−5), [−5, 5] and (5, . . .]. It is clear that
the observation 6 is a positive example for class 2; i.e. t(6) = 2. We compare
two hypotheses: h(6) = 1 and h′(6) = 0. Since t(6) = 2 is closer to class 1, the
error of h should not be as big as the error of h′.

v. July 19, 2010(c) m.e.müller

58 CHAPTER 3. FROM DATA TO HYPOTHESES

h

c

The ellipsoid area is
the target concept c for
which χ(c)x = 1; the
rectangle represents the
hypothesis h.

The set of positive ex-
amples is the set of all
black dots; the white
dots denote an example
in s with t(x) = 0.

Figure 3.3: A Hypothesis

More formally, we define:

Definition 3.16 — (dist)-Error, errors(h, t) w.r.t. dist.
(dist)-Error,

errors(h, t)
w.r.t. distLet s ⊆ U and dist(x, y) be a distance function on cod(t). Then, the dist-error

of h on s with respect to t is

errors(h, t) =
∑
x∈s

dist(h(x), t(x)) (3.25)

The definition of the metric dist depends on the structure of cod(t). Usually,
one defines

• for continuous, numeric cod(t):

dist(h(x), t(x)) := (h(x)− t(x))2 (3.26)

• for cod(t) = 2,

dist(h(x), t(x)) :=

{
0, h(x) = t(x)
1, otherwise

(3.27)

• for nominal cod(t) = k one usually also chooses a simple binary distance
measure.

errors(h, t) can be normalised by a factor 1
|s| assuming an independent identical

distribution.

Exercise 3.12 (♦♦) Determine errsets(h, χ(c)), errs(h, χ(c)), and errort(h, χ(c)) for
the example in figure 3.3. — Determine errsets(h, t), errs(h, t), and errors(h, t) for the
example in figure 3.3. What is the difference?

v. July 19, 2010(c) m.e.müller

3.4. EVALUATION OF HYPOTHESES 59

h

c

The ellipsoid area is
the target concept c for
which χ(c)x = 1; the
rectangle represents the
hypothesis h.

The set of positive ex-
amples is the set of all
black dots; the white
dots denote an example
in s with t(x) = 0.

Figure 3.4: A hypothesis for a noisy sample

Exercise 3.13 (♦) Take a look at figure at figure 3.4 and compare it to figure 3.3.
Explain errors and noise!

Now, the error measure has been parametrized by some kind of the magnitude
of the error—some misclassifications are worse than others. But there is a
second issue in error measures: A single “large” error that happens only once in
a million times is not as disturbing as a nearly constant small misclassification
error. Accordingly, one should take into account the probability of the event that
causes an error: Since the occurrence for x ∈ s it usually holds that φ(x) 6= 1

|s| ,

we can define the true error as the dist-error with respect to µ:

Definition 3.17 — True error, errorµs (h, t).
True error,
errorµs (h, t)

The true error of h on s w.r.t. t is

errorµs (h, t) := Eµ (errors(h, t)) (3.28)

=
∑
x∈s

(µ({x}) · dist(h(x), t(x))) (3.29)

where Eµ denotes the expected value. With our inductive assumption we can
approximate µ by φ. This results in

errorµs (h, t) :≈
∑
x∈s

(φ(x) · dist(h(x), t(x))) (3.30)

Since µ is unknown by definition, we usually use the error measure as defined
in equation (3.30).

Let us examine the difference between all those error measures by example:
Consider the set s = {0, 1, . . . , 10} and functions denoting prime numbers, even

v. July 19, 2010(c) m.e.müller

60 CHAPTER 3. FROM DATA TO HYPOTHESES

and odd numbers, multiples of 3 and 4 and the Fibonacci-numbers:

x ∈ s 1 2 3 4 5 6 7 8 9 10
prm(x) 0 1 1 0 1 0 1 0 0 0
evn(x) 0 1 0 1 0 1 0 1 0 1
odd(x) 1 0 1 0 1 0 1 0 1 0
f3(x) 0 0 1 0 0 1 0 0 1 0
f4(x) 0 0 0 1 0 0 0 1 0 0
fib(x) 1 1 1 0 1 0 0 1 0 0
g(x) 3 2 1 2 2 1 2 2 1 2

µ1({x}) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
µ2({x}) 0.1 0.2 0.25 0.1 0.01 0.1 0.05 0.08 0.1 0.01
µ3({x}) 0.015 0.05 0.1 0.07 0.12 0.028 0.08 10−9 0.031 0.01

Then, for example,

errsets(odd , prm) = {1, 2, 9}
errsets(odd ,fib) = {2, 7, 8, 9}
errsets(prm, g) = {1, 2, 4, 5, 6, 7, 8, 9, 10}

The according error rates are:

errs(odd , prm) = 0.3, errs(odd ,fib) = 0.4, errs(prm, g) = 0.9

which is quite easy to see because m = 10. The value of errors(h, t) depends
on δ, of course. We define δ1 as in (3.27) and δ2 as in (3.26). Then, the
corresponding results are:

δ1 δ2
errors(odd , prm)) = 0.3 errors(odd , prm)) = 3.0

errors(odd ,fib)) = 0.4 errors(odd ,fib)) = 4.0
errors(prm, g)) = 0.9 errors(prm, g)) = 26

It is clear, that with δ1, the dist-error equals the error rate. It is also clear that
using dist2 we obtain proportional values to δ1 on binary learning problems:
the term (h(x) − t(x))2 delivers 0 if and only if h(x) = t(x) and 1 if and only
if h(x) 6= t(x). Therefore errors(h, t) with δ1 simply delivers |errsets(h, t)|. But
what if we take into account different distributions on U? Then,

µ2 µ3

dist h t errorµs (h, t) errorµs (h, t)
1 odd prm 0.40 0.096
2 odd prm 0.40 0.096
1 odd fib 0.43 0.161
2 odd fib 0.43 0.161
1 prm g 0.75 0.404
2 prm g 2.12 0.764

v. July 19, 2010(c) m.e.müller

3.4. EVALUATION OF HYPOTHESES 61

Exercise 3.14 (♦) When computing errµ1,δ2(prm, s) with t = g, the result is 2.6,
but all other values remain unchanged. Explain!

Exercise 3.15 (♦��) Write a program that computes all the error measures with
arbitrary definitions of δ and µ and run it on the example data above.

Error Measures
Given s = Sµ(m, t) and Alg, the true error of h = Alg(s) can only be estimated. The
reason for this is that s ⊆ U , that µ is unknown, that t may be noisy, that dist can
be chosen arbitrarily and that φ is just an approximation of µ.

In knowledge discovery, representation and error the definition of error measures
are no less important than the induction process itself.

3.4.2 Precision, Accuracy, and Others

Since µ is unknown we need to estimate the error that h will produce on the
data we shall fed into the system later on. But once we derived a hypothesis
the following questions can help to draw a clearer picture of its error-behaviour:

1. How many x ∈ s that h predicts to be y actually are y according to t?
Simply speaking, it is the same as the number of predictions that are
correct.

2. And how many x ∈ s that are y according to t are predicted to be y by
h? This question addresses the coverage of our hypothesis, i.e. it describes
the number of objects that the hypothesis is able to classify.

These values are usually defined in terms of so–called confusion matrices. If
the target function is a binary classifier, the according confusion matrix is a
2× 2–matrix:

t(x)
h(x) 0 1
0 h and t agree that x ∈ c0 h and t disagree
1 h and t disagree h and t agree that x ∈ c1

If cod(t) = k > 2 we need to count the cases for each pair of predicted and
actual target values. Then, we obtain a k × k–matrix:

Definition 3.18 — Confusion Matrix. Confusion Matrix

A confusion matrix for a learning problem with k classes is defined as follows:

t(x) =
h(x) = 0 1 · · · k − 1

∑
0 v00 v10 · · · v(k−1)0 s1

1 v01 v11 · · · v(k−1)1 s2

...
. . .

...
k − 1 v0(k−1) v1(k−1) · · · v(k−1)(k−1) sk−1∑

t0 t1 · · · tk−1 m

v. July 19, 2010(c) m.e.müller

62 CHAPTER 3. FROM DATA TO HYPOTHESES

where:

1. vij is the number of objects for which t predicts class i and h predicts
class j:
vij = |{x ∈ s : t(x) = ci ∧ h(x) = cj}|

2. sj is the number of objects that h classifies as cj :
sj = |{x ∈ s : h(x) = cj}| =

∑
l∈k vlj

3. ti is the number of objects that t classifies as ci:
ti = |{x ∈ s : t(x) = ci}| =

∑
l∈k vil

We use the index i to denote the columns of the matrix (fixed target) and j to
denote rows (fixed hypotheses).

Exercise 3.16 (♦�) Write down the confusion matrices for the graphical example in
figure 3.3.

We introduced confusion matrices as a means to count the cases in which our
hypothesis agrees or disagrees with the teacher signal. The first measure one
usually is interested in, is “preciseness”. Preciseness means not to make an
wrong prediction in the first place:10

• How many x ∈ s that h predicts to be y actually are y according to t ?

This leads us to the definition of precision and accuracy :

Definition 3.19 — Precision of h.Precision of h

The precision of h is the fraction of the correct y-predictions in relation to all
y-predictions on s. It is a “local” measure as it is defined in terms of a feature’s
value j ∈ cod(f) and not for the entire feature distribution:

prcs(h = i) :=
|{x ∈ s : h(x) = t(x) = j}|
| {x ∈ s : h(x) = j} |

=
vjj∑
i∈k vij

=
vjj
sj

(3.31)

The first definition is quite lengthy and argues with error sets, whereas the last
one uses the entries from a confusion matrix. The definition of precision can be
visualised by confusion matrices: It is, for a given row j, the number in the j-th
column (i.e. the entry on the diagonal) divided by the sum of all entries in the
j-th row.

Definition 3.20 — Accuracy of h.Accuracy of h

The accuracy of h is a generalisation of the precision measure. There exist

10Being overly precise often results in making too few predictions so as not to risk a wrong
prediction.

v. July 19, 2010(c) m.e.müller

3.4. EVALUATION OF HYPOTHESES 63

several slightly different versions. However, they all share the property that
accuracy shall describe the whole feature’s precision. We define:

accuracys(h, t) :=
|{x ∈ s : h(x) = t(x)}|

|s|

∑
i∈k vii

m
(3.32)

This value is simply the sum of the diagonal entries in the confusion matrix
divided by the sum af all entries, m.

Since most classifier learning problems are binary (or are reduced to binary
problems), we give a final example with much less notational effort: Any 2× 2–
confusion matrix of a binary classification problem (c = {c,−c}) has the form

t(x)
h(x) c −c
c A B
−c C D

Then,

1. prc(h(x) = c) = A
A+B and prc(h(x) = −c) = D

C+D

2. accuracys(h, t) = prcs(h(x) = −c) = accs(h) = A+D
m

Example 3.17 Imagine the following confusion matrix:

t(x)
h(x) c0 c1 c2
c0 5 1 2
c1 2 4 2
c2 0 1 7

The accuracy of h is accuracys(h, t) = (5 + 4 + 7)/24 = 2
3 . h delivers the most

precise predictions on c2, while c1 is worst (2
3 precision).

Our second question was:

2. How many x ∈ s that are y according to t are predicted to be y by h?

The answer is given by measures called recall and coverage:

Definition 3.21 — Recall of h. Recall of h

The recall of h is the fraction of the correct y-predictions in relation to all desired
y-predictions on s:

rcls(h = j)

:=
|{x ∈ s : h(x) = t(x) = j}|
|{x ∈ s : t(x) = j}| (3.33)

=
vjj∑
j∈k vji

=
vjj
tj

(3.34)

v. July 19, 2010(c) m.e.müller

64 CHAPTER 3. FROM DATA TO HYPOTHESES

It is the dual concept to precision. Therefore, it is simply the number in the
j-th row of the j-th column divided by the sum of entries in the -th column.
One might say that coverage is to recall what accuracy is to precision. But since
accuracy is the “mass” of the diagonal line to the entire matrix weight, there is
no rotation or translation that is sensible and/or delivers a meaningful result.
Therefore, we define coverage as the average recall.

Definition 3.22 — Coverage of h.Coverage of h

The coverage of h is defined as the average recall:

coverages(h, t) :=
1

k

∑
j∈k

rcls(h = j) (3.35)

=
1

k

∑
j∈k

vjj
tj

(3.36)

=
1

k

∑
j∈k

| {x ∈ s : t(x) = h(x) = j} |
| {x ∈ s : t(x) = j} | (3.37)

Exercise 3.17 (♦) Why don’t we define

covs(h) =
1

m

∑
i∈k

ti · rcls(h(x) = ci) ?

Again, we consider a 2×2–confusion matrices for an illustration with simplified
notation:

t(x)
h(x) c0 c1
c0 A B
c1 C D

where rcls(h = c0) = A
A+C and rcls(h = c1) = D

B+D . covs(h) is 1
2 (A
A+C + B

B+D).

Example 3.18 Imagine the following confusion matrix:

t(x)
h(x) c0 c1 c2
c0 5 1 2
c1 2 4 2
c2 0 1 7

The recall values are 5
7 ≈ 0.71, 4

6 ≈ 0.67 and 7
11 ≈ 0.64. Recall is best for class

c0 and worst for c2. Therefore, covs(h) = 1
3 (5

7 + 4
6 + 7

11) which is approximately
0.67.

v. July 19, 2010(c) m.e.müller

3.5. LEARNING 65

As one can see from the last example, there is a loose relation between precision
and recall or accuracy and coverage: The more detailed our information, the
greater the chance to be wrong on more general cases. As a rule of thumb: The
higher precision, the lower recall—and vice versa. The same holds for accuracy
and coverage. Accordingly, a more detailed evaluation takes into account both
or a combination of them (known as f–measure in information retrieval).
One could also define

accs(h) = min
i∈k

prc(h(x) = ci) (3.38)

such that the overall hypothesis quality is determined by the weakest local
predictive preciseness (coverage can be defined analogously). Furthermore, it is
quite common to test the quality of h on a set s that is disjoint from the sample
s that we used to learn h. Only then we can evaluate h’s quality in terms of
generalization: is h’s predictive competence on new evidence as good as it is
on the cases Alg has already used to build h? Therefore, one usually splits a
provided sample s into two disjoint subsets for learning and evaluating h:

Definition 3.23 — Training set, Validation set, strain, sval.
Training set,

Validation set,
strain, svalWe split s into two disjoint samples strain and sval. Only the training set strain is

used for learning. We then evaluate Alg(strain) against its predictions on objects
from the evaluation set sval.

11

A this point, a student usually claims he has understood accuracy and coverage
measures. However, there are hundreds of different quality measures around—
some have small “corrective” parameters, others are computed on specially cho-
sen subsets of the training or validation set and so on. Therefore, one always has
to be very, very careful when comparing the results of different evaluations—
accuracy may not always be the same.
A detailed analysis of the predictive power of h always requires a decent amount
of statistical evaluation including κ–analysis or Roc/Auc analysis. However,
this is beyond the scope of this book. For the interested reader we recommend
[?].

Evaluation of hypotheses (II)
Learning takes place in representation space. Therefore, evaluation of h must be
carried out in U as well. It is impossible to determine the true error of some h which
is why we have to make do with error estimates and functions thereof (like accuracy,
coverage, etc). To increase the accuracy of these estimates one divides the given
sample into two disjoint subsets; one for training and one for evaluation.

3.5 Learning

In the last section we have introduced many methods and measures to evaluate
hypotheses delivered by a machine learning algorithm given a set of examples.

11In many books on Machine Learning strain is called a test set (with subscript t). This may
lead to confusion, especially since some algorithms use a part of strain for internally testing
(stest ⊆ strain) by some validation bias.

v. July 19, 2010(c) m.e.müller

66 CHAPTER 3. FROM DATA TO HYPOTHESES

But aren’t the properties of hypotheses delivered by Alg given s properties of
Alg as well (if we assume Alg to be deterministic)? The general idea leads to
computational learning theory which is concerned with the question of learn-
ability.
For now, we simply need to understand that from the input/output behavior of
an algorithm one can infer several properties. Therefore, we ask:

• Given which data (sample), what kind of hypotheses are generated?

The definitions of correctness can be expanded to Alg as follows:

• Alg is called s–correct, if it generates a 〈t, s〉–correct h:

h(x) = t(x),∀〈x, t(x)〉 ∈ s and Alg(s) = h

• Alg is called correct, if it is 〈t, U〉–correct h.

But the big question is: Are there correct Alg at all? Are there “nearly” correct
Alg? Practically, this depends on the learning problem. But generally, answers
to these questions or answers that even include an estimate of the degree of
correctness are subject of learning theory again. Nevertheless, without going
too much into detail here, we always assume that given some example we can
gather at least a rough picture. This is the fundamental inductive hypothesis
which is the only bias that is inseparably connected to any approach to machine
learning:

Definition 3.24 — Inductive hypothesis.Inductive hypothesis

If h approximates t sufficiently well on a sufficiently large sample s, it will
approximate t on U , too.

Based on the inductive hypothesis, machine learning algorithms try to deliver
“good” hypotheses. Practically, this creates the problem to solve how one can
find a good approximation h of target concept t. Theoretically, it is the easy
part: All one has to do, is to:

1. Collect all possible (representable) hypotheses

2. Arrange (order) them in a nice way

3. and then ... search for the best !

To get it done efficiently, some systematics might be quite helpful. But sys-
tematic search requires a guided search, which in turn needs a guide. Then,
machine learning becomes a classical search problem: We need to find a good

1. representation space that can be navigated,

2. distance measure which helps us to compare alternatives and choose the
most promising ones using a suitable

3. heuristics.

v. July 19, 2010(c) m.e.müller

3.6. BIAS 67

This not overly impressive insight makes a nice working definition of machine
learning but does not suffice to replace definition 3.11. Therefore, we simply
conclude:

Machine Learning as Search
Machine Learning means to search for a suitable hypothesis in a hypothesis space.

3.6 Bias

When concerned with search, one has to deal with two fundamental problems.
First, if there are solutions, one should be able to find at least one. Second,
if there are solutions, one should be able to find the “best” one as quickly as
possible. To do so, it is a good plan not to search in places where we know we
can not find a solution. It is also a good idea to look for solutions in places
where we expect them to be. In other words:

• One would like to restrict the search space.

• One would like to define a threshold.

• One would like to determine bounds in a lattice.

• One needs a suitable bias in the search process.

By ordering the set of hypotheses, by restricting the search space or heuristi-
cally guiding the search thorough the space, we also predetermine whether we
find a certain hypothesis at all and if so, when we will find it. By ruling out
impossible cases, we deliberately introduce bias as additional knowledge for a
better control. But at the same time we restrict ourselves in representation,
abstraction and the degrees of freedom in the search for a solution. The more
we reduce the expressiveness of the representation language (the complexity of
representation space), the smaller the language becomes and, accordingly, the
smaller the hypothesis space.

Example 3.19 Imagine we chose full predicate logic as the hypothesis
space. By restricting ourselves to Horn logic we consider only a subset. A
further language bias could be to restrict the number of different variables that
may occur within a formula.

This kind of language bias is very effective, but it is very likely that by simpli-
fying U we cannot represent a hypothesis that explains our learning target in D
any more.

Exercise 3.18 (♦) Explain the danger of losing too much expressiveness by language
bias! Build your arguments on the definitions of D, U, ρ, and τ !

Exercise 3.19 (�) If you are familiar with Prolog, consider the following definition
of the membership predicate:

member(X, [Y |Z]) :- X = Y.

member(X, [Y |Z]) :- not(X = Y), member(X,Z).

v. July 19, 2010(c) m.e.müller

68 CHAPTER 3. FROM DATA TO HYPOTHESES

Redefine the predicate with a minimal number of variable names. Why is such a
definition more desirable?

Now that we have chosen an (already biased) representation space we need
to think about how to quickly navigate through space in order to find a good
solution as quickly as possible. By guiding the search we apply search bias: First
of all, the general principle of search determines the behaviour of Alg finding a
solution. Imagine how breadth-first search or depth first search would deliver
different solutions on the same graph in hypothesis space. But since hypothesis
space usually is very large one needs to utilise some kind of intelligent, heuristic
search rather than exhaustive search. But then, the accuracy of the heuristic
measure also determines the search result.

Example 3.20 Consider we want to learn intervals of real numbers on the
ray. Then, choosing the step size by which we increase the interval boundaries in
relation to the numbers given in s can be used as search bias; the longer we try
to adjust our interval boundaries it occurs reasonable to reduce the step width
in order to avoid some oscillation behavior—which would be another good idea
for search bias.

Example 3.21 In the domain of logic expressions, consider the following
two observations: p = I have seen lots of black crows and q = I have never seen
a white crow. Now, which of the following inductive generalisations appears
most suitable to you: h = There are no white crows or h′ = All crows are black.
The problem is that p |≈ q but q 6|≈ p. And since entailment is not always easy
to show, one would opt for an easier measure (heuristic) to determine which
hypothesis to chose.

Finally, a very important kind of bias is validation bias. Simply speaking, vali-
dation bias defines our tolerance threshold that tells us when to stop searching
and return the current best hypothesis as solution. There are many such biases
possible. A simple example is that h has to reach a certain degree of accu-
racy or coverage on a validation set. One could also define a validation bias in
conjunction with search bias as follows:

Example 3.22 Consider a search routine that delivers as solution the first
local maximum of accuracy using a gradient descent search. Then, it would be
a reasonable idea to decrease step size with decreasing gradient and, once the
gradient has fallen below a predefined threshold, we simply abort and return
the current hypothesis.

Exercise 3.20 (�) Explain search and validation bias using s = {〈x, t(x)〉 : x =
1, 2, . . . n} where t is the characteristic function of the subset of all prime numbers in
U = {1, 2, . . . n}. Assume that µ({x}) = 1

n
for all x ∈ U .

(Hint: Choose several and some very large n!)

Figure 3.5 shows an abstract learning algorithm that utilises all three different
kinds of biases: In lines 3 and 6 validation bias is applied. Non-deterministic

v. July 19, 2010(c) m.e.müller

3.6. BIAS 69

01 H = init();
02 C = {};
03 WHILE (!(stop crit(C, t, stest))) DO;
04 {
05 h := choose(H); H := H − {h};
06 IF (good(h)) THEN
07 C := filter(C ∪ {h});
08 ELSE

09 H := H ∪ refine(h);
10 ENDIF

11 }
12 return(C)

Figure 3.5: A biased Learning Algorithm

choice in line 5 usually is biased by search and filtering and refinement as in
lines 7 and 9 require search and language bias.

Bias
Bias is a crucial concept in machine learning. On the one hand, bias makes learning
feasible. But on the other hand, any kind of bias (may it be deliberate bias or
unwanted bias such as noise) may cause accidental pruning of better results from
hypothesis space.

Talking about deliberate bias, we also need to discuss unwanted biases. The
most important ones are sampling bias and selection bias.

Any sub set of entities that is drawn from a larger set is a biased sample, if
the probability of the entities being drawn is not independently identically dis-
tributed. In other words, any sample is biased by µ. But then, it would be
rather good to have a similar, not independent identical distribution (i.i.d.) in
the sample. The only problem is that, since µ is unknown, we just can’t prove,
whether our sample is biased in a way that corresponds to µ.

Definition 3.25 — Biased samples. Biased samples

A sample is biased if some members of the domain are more likely to be chosen
in the sample than others. The larger the sample, the more the distribution φ
on s approximates the distribution µ on D. It is clear that any s = Sµ(m, t) is
biased to a certain degree since we can only draw finitely many finite samples
(see theorem 3.1).

Selection bias is used to control sampling bias. If we know of a subset that
preserves µ, then we choose just this subset as a sample. One famous example
for “representative samples” is a small town in the North of Germany which

v. July 19, 2010(c) m.e.müller

70 CHAPTER 3. FROM DATA TO HYPOTHESES

was a nearly unbiased estimator for nationwide elections in Germany. Another
important application of deliberate selection bias is learning by boosting.
Confirmation Bias is more a cognitive bias than a phenomenon that is observed
in learning machines. Therefore, it plays a central role during the representa-
tion process: knowledge engineers usually represent data in a way that is already
structured with respect to an intended meaning or a supposed model. Since a
knowledge engineer does not realise that his understanding of the data already
determines what kind of unknown information can be extracted, confirmation
bias is a very important, hidden unwanted bias. Also, learning algorithms are
susceptible to confirmation bias in a very interesting way. If we consider a learn-
ing algorithm as in figure 3.5, then it becomes obvious that the choice of some
h in line 5 determines the behaviour of the algorithm in the next WHILE-loop.
As a consequence, the sequence of examples and the sequence of hypotheses as
generated play an important role in the selection of the next example and the
choice of a next hypothesis.12

So far, we have seen that there is always hidden noise and hidden bias—and
still hypothesis space is too big to be searched efficiently without any further
deliberate bias. In fact, we shall discover that results can always be optimised
or fine–tuned to a certain degree. But “cutting-edge” optimisation always tends
to become optimisation with respect to a fixed set of observations—which will
lead to overfitting. The reason for this is beautifully explained by the no-free-
lunch-theorem.

The No Free Lunch Theorem

There Ain’t No Such Thing As A Free Lunch

R. A. Heinlein, The Moon Is A Harsh Mistress, 1966

This means, that in any system (society) no-one can get anything by the price
of nothing. Even if there is a happy hour—you (or somebody else) always pays
for the loss (usually through higher regular prices). More formally, we define:

Theorem 3.2 (No-Free-Lunch Theorem (NFLT)) All algorithms from a set
of search algorithms looking for an optimal solution using a (local) cost func-
tion perform exactly equally well when averaged over all possible cost functions
(i.e. problems). [Wolpert and Macready, 1997]

If we assume the average to be constant, a higher peak performance means a
lower average performance as shown in figure 3.6: The solid graph is a hypothesis
with very high accuracy in just a small region and a less than average accuracy
everywhere else. The dotted line represents a simple hypotheses that in average
performs equally well—but without areas of excellent expertise or complete
failure. This puts us in a quite embarrassing position somewhere between pride
and prejudice: When being biased, one seeks to optimize a concept that is based

12There are many interesting results for so-called online-learning algorithms which for ev-
ery single example they receive deliver a hypothesis which then becomes refined with every
additional example. For example, some artificial neural network architectures and learning
algorithms are very error prone in such cases, which is why sample sequences are shuffled.

v. July 19, 2010(c) m.e.müller

3.7. OVERFITTING 71

Figure 3.6: The No Free Lunch Theorem

on prejudice. Once we have found such a “optimal” concept, it is announced
with quite inappropriate pride. But one consequence of the Nflt is that the
better your peak performance on known cases, the worse your performance on
unknown cases.

Biases
There are numerous biases involved in learning. Many of them are wanted, others
are unwanted. The most important bias in learning is inductive bias. If we want
to learn by examples, we must assume that from a small set of observations we can
inductively conclude to all observable cases.

3.7 Overfitting

In terms of the no-free-lunch-theorem, overfitting refers to the phenomenon of
peak performance on training data strain but a dramatic loss of accuracy on the
remaining data in stest or sval.
How come we find ourselves in such a situation? Usually, we try to learn by
adapting as precisely as possible. But learning to solve a specific task as accurate
as possible does not necessarily help to improve our abilities in solving a similar
task. So again with the no-free-lunch-theorem in mind, it appears more suitable
to solve a few tasks somewhat better than solving one perfectly and being an
utter failure on the remaining cases. Therefore:

Overfitting
In order to be able to learn, one should risk to perform locally suboptimally.

It is very nice if h agrees with t on s, but if h disagrees with t on all remaining
x ∈ U − s, h is useless: First, U usually is much larger than s. And second,
the reason to learn is to achieve knowledge from s which explains an entire
concept we can use to describe arbitrary sets of new objects! The phenomenon
of generating some h that precisely explains s and is useless otherwise is known
as overfitting. Since t is defined on s only, it is hard to determine whether h is
overfit. Therefore, s is split into disjoint strain and sval. Then,

v. July 19, 2010(c) m.e.müller

72 CHAPTER 3. FROM DATA TO HYPOTHESES

Definition 3.26 — Overfitting, overfit h.Overfitting, overfit h

A hypothesis h overfits on t on s if there is another hypothesis h′ such that:

errorµstrain(h, t) ≤ errorµstrain(h′, t)

errorµsval(h, t) > errorµsval(h
′, t)

h is overfit, if there is another hypothesis h′ no better than h on the training
sample but better on unseen cases.13

In other words, if h is overfit there is no real generalisation progress and hence
no learning.

3.8 Summary

If you got this far, the rest of the book is a piece of cake.
This section gave an introductory overview into the scenario where knowledge
discovery takes place. We are simply concerned with a set of data that is
represented in an information system. Our task is to understand and formulate
a general concept that is supported by a set of examples that may be labelled
with some additional information from a teacher.
We have seen that machine learning can be related to compression, to function
approximation, or information theory. We have learned, that there is a funda-
mental source of noise and information loss in the process of representation—but
we also have seen that the change of representation may result in much easier
learning problems and that some further deliberate bias may help to find better
hypotheses even quicker.
In the following chapters we will discover the exciting research discipline of ma-
chine learning with many different algorithms from different approaches. The
difference between all those approaches can be described by the primary moti-
vation behind machine learning:

• Scientific Discovery vs. Data Mining
Am I interested in the discovery of new knowledge that has not been
discovered yet? Then, we will need a lot of background knowledge to
describe our data in an appropriate representation space and we need to
interpret the resulting hypothesis in our domain.
Data Mining is more focused on the facts: What kinds of patterns are
there in the data and what can be inferred from these patterns?

• Symbolic vs. Sub-symbolic
Most people believe we think rationally, and most people assume that
rational thinking means logical thinking. This is not the case. However,
we like to think we think logically. And, undoubtedly, terminological
representations have been proven means for communication knowledge.

13The choice of the actual error measure is subject to our own deliberate validation bias.

v. July 19, 2010(c) m.e.müller

3.8. SUMMARY 73

Accordingly, one might consider implementing learning as process that
takes place in a space of logics with symbols of determined semantics.
On the other hand, the human brain, which we can safely assume to be
the place where learning takes place, is neither a discrete, nor a logical
apparatus. Instead, if there is information at all, it is distributed.

• Engineering vs. Cognition
Finally one can be interested in machine learning simply out of the need
for handling or describing or explaining huge sets of data. Then one
takes the data, and applies appropriate algorithms until the results appear
reasonable. That would be an engineer’s approach. A psychologist might
be interested in a human’s learning behavior and in order to test his theses
he might want to simulate his model of human learning using a machine.
If a machine then shows similar learning progress than a human does this
might support the thesis that human learning works similar to the method
implemented.

But whatever the objectives are when concerned with machine learning, one
always has to keep in mind that:

Knowledge Discovery & Machine Learning
Knowledge discovery has nothing to do with knowledge—and Machine learning has
nothing to do with learning. All we can do is to identify patterns and give them
names or analyse their correlations. The process of knowledge discovery or machine
learning has nothing to do with intelligence, either: Knowledge is represented by
symbols, and reasoning about knowledge is simulated by simple rules for symbol
manipulation. Machine Learning means to find such rules for symbol manipulation,
and, therefore

Knowledge Discovery and Machine Learning are simple calculus.

If there is any intelligence or knowledge involved in these processes at all, then it is
only in our representation of the problem and our interpretation of the outcome.

v. July 19, 2010(c) m.e.müller

74 CHAPTER 3. FROM DATA TO HYPOTHESES

v. July 19, 2010(c) m.e.müller

Chapter 4

Clustering

If we are given five pebbles, three marbles, four dice and
two keys, then we have 14 little objects of four different
kinds. We also have 8 objects made of stone, four made
of wood and two made of metal. And we have seven toy
objects, two office tools and five things we have collected
during our last walk at the beach.

In the previous chapters, we have seen that relations can be used to represent
knowledge about sets of things. We also discovered that learning means to
find a suitable set of relations with which we can describe or define concepts
(see Definition 2.11). Now, we describe a first approach to efficiently discover
relational concept descriptions. Our starting point is an information system
with a feature-based representation of the objects in our domain.

4.1 Concepts as Sets of Objects

Our working hypothesis is that knowledge is the ability to discriminate things
and learning is knowledge acquisition. Therefore,

learning means to acquire the ability to discriminate different objects
from each other.

There are, in general, two different methods to group similar objects together
and distinguish them from other groups of entities:

• building sets or classes of objects which we assume to share certain prop-
erties by grouping them into the same cluster

• or by inducing a concept that serves as a description of a representation
class in terms of properties of objects.

75

76 CHAPTER 4. CLUSTERING

The problem is that the latter requires more knowledge about the world and
the entities, while the former just requires some kind of “distance” measure that
reflects similarity of objects.

Exercise 4.1 ♦Find several classifications of the set

{�,♦,�, ,�,♦, ◦,2, •,�,�,�}

by clustering the elements! — Do the same using conceptual descriptions of the
objects!

To form groups of similar objects or in order to classify a certain (new or un-
known) object as a member of one of the classes, we must be able to:

1. to tell which group of objects a new object belongs to

2. form cluster sets based on some information concerning their similarities

3. form clusters based on a teacher’s information and conceptual descriptions

The first action means to classify objects with respect to their similarities to
other objects. It is assumed that there already exists a classification and that it
can be expressed in terms of the similarity measure. The latter two actions are
processes by which we learn to group objects to form elements of a classification,
i.e. classes. The first one is done by unsupervised learning and the second one by
supervised learning. To illustrate the idea behind similarities and feature–based
indiscernibility, consider the following example:

Example 4.1 Imagine we have four objects {♦,�, ◦, •}. They are described
by the features shape and fillstyle which yields an information system as follows:

shape fillstyle
◦ round hollow
• round solid
♦ polygon hollow
� polygon solid

So, • is similar to ◦, because they are both round, and ♦ is similar to ◦, because
they are both hollow. But ◦ and � have a maximum dissimilarity because
they do not share any feature values. Geometrically, this yields the following
diagram:

♦

f

��

�

√
f2+s2����������

◦ •
s

oo

where the diagonal entries represent maximum dissimilarity if we assume the
two features to create an euclidean two–dimensional space (with fillstyle creating
the horizontal and shape defining the vertical dimension).

Exercise 4.2 �You might be surprised why this simple questions earns a black ♦:
In the last example a fundamental assumption was not mentioned. Which one?⊕

v. July 19, 2010(c) m.e.müller

4.2. K–NEAREST NEIGHBOURS 77

4.2 k–Nearest Neighbours

Nearest neighbour classification is a very simple and human thing to do: Imagine
90 percent of the people from a city block anywhere in the world speak, say,
French. Someone else living in this neighbourhood will speak French with a very
high probability, too. Reversely, if most of your neighbours live, for example, in
Paris then the probability that you live in Paris too, is very high.

k–NN
k–NN is simply a majority voting method for classification: Assign to an unknown
entity the same label as most of the most similar entities have.

Assume we arrange all objects of our domain in a space that is defined by
the features we use to describe our entities. There can be two, three or many
more such dimensions and they can be discrete or continuous. Then, we add
knowledge concerning the target class of each object by assigning it an according
label, we will receive a more or less coherent distribution of target labels in this
space. If we now encounter a new instance, we simply put it on its proper place
in this space and assign it the most common target class label among the k
nearest instances.
To classify an object using information from its neighbourhood, we simply assign
to it the class label most of the k–nearest neighbours share: Let U = Rn,
i.e. |F| = n. Then, every ~x ∈ U has the form

~x = 〈f0(x), f1(x), . . . , fn−1(x)〉

The euclidean distance between two object ~x and ~y is

dist(~x, ~y) =

√∑
i∈n

(fi(x)− fi(y))
2

(4.1)

Given an information system I = 〈U,F ∪ {t}, VF ∪ c}〉, the classification for an
unknown object x ∈ U works as follows: First, using F, x is represented as ~x.
Let t : U → c be a classifier for c. Then t(x) = ?. Next we collect a set of ~y ∈ U
as follows:

kNN (~x) := {~y ∈ U : dist(~x, ~y) ≤ r} (4.2)

where r is the smallest value such that N contains k elements. The k–nearest
neighbour classifier then predicts that x belongs the same class that most of the
k neighbours belong to: In other words, x has the “most common value”. This
concept is important enough to deserve a definition on its on:

Definition 4.1 — Most common values, mcv.
Most common

values, mcv
Let s be a set and f a total function. We define the most common value of f
on a set s as the value c ∈ fq with the largest preimage pfc:

mcvf (s) := argc max
{
|pfc| : c ∈ fq

}
(4.3)

v. July 19, 2010(c) m.e.müller

78 CHAPTER 4. CLUSTERING

Defining a function that determines the most common value is rather cumber-
some (and it is difficult to formalise it in a way that is easy to understand).
Maybe this is why in most textbooks mcvf (s) is defined in prose only. But
now that we have a proper definition, we can happily carry on with a satisfying
definition of a k–nearest neighbour hypothesis.

Definition 4.2 — k–nearest neigbhour classification hypothesis.
k–nearest neigbhour
classification
hypothesis Using the most common value, we define

hkNN
c (x) := mcvt(kNN (x))) (4.4)

As already mentionend this is a simple voting approach: x is assigned the value
that most eligible voters have.

?

Figure 4.1: k-nearest neighbours

Figure 4.1 shows a k = 12 case where the radius around the unknown object
in the center is just the right size for the sphere to cover 12 cases in space. In
this sphere, most objects are white (7), which is why we would assign white as
class label to ~x as well. Accordingly, the k–nearest neighbour algorithm can be
defined as follows:

Definition 4.3 — k–nearest neighbour Algorithm.
k–nearest neighbour
Algorithm

The following procedure predicts t(~x) ∈ k for some ~x ∈ U:

00 kNN := ∅; r = 0; t0 = t1 = · · · = tk−1 = 0;
00 WHILE (|kNN | < k) DO

00 {
00 r := r + ε;
00 kNN := {~y : dist(~x, ~y) ≤ r}

v. July 19, 2010(c) m.e.müller

4.2. K–NEAREST NEIGHBOURS 79

00 };
00 FOREACH (i ∈ k) DO
00 {
00 ti = |{y ∈ kNN : t(y) = i}|;
00 };
00 return arg maxi∈k ti

where ε is the step width with which we increase the radius of the sphere.

It is important to understand, that this classification here is simply due to
the number of black or white dots in the sphere, but not to the location of ~x
in relation to all other dots—it is a pure incident that ~x appears to belong a
diagonal “milky way” of black dots entities.
Taking into account the spatial distribution of objects of each classes, we will
find a centre of gravity for each class which also represent the “average” or
prototypical representative of this cluster. This is depicted in figure 4.2. The

?

Figure 4.2: Clusters and Cluster Centers

diamonds represent the center of the classes of dots of according colour. Note
that these points do not have to exist as actual data points but only represent the
clusters that are formed by the objects. For an unclassified object ~x (labelled
with a question mark) we then predict its class by the class of the nearest
centroid—in this case the class of light grey objects. Note further that using a
standard kNN -methods the result would be quite different!
So once we have a spatial representation of objects described by an information
system, there are many different ways to model different metrics or to define
different methods for classifiers all of which focus on different aspects in clas-
sification: While k–nearest neighbours is rather a majority voting approach,
a distance measure rather refers to prototypes of clusters. Classifying an un-
known object by computing its distance from or degree of membership to certain
clusters or cluster centroids requires us to

v. July 19, 2010(c) m.e.müller

80 CHAPTER 4. CLUSTERING

1. have an extensional cluster description and/or

2. an intensional cluster description with boundaries and/or centre and ra-
dius information.

Classification itself is not the main issue in machine learning; machine learning
is rather concerned with the problem of finding the clusters.

4.3 k–Means Clustering

Trying to learn clusters in an extensional distance–measure setting again offers
several general methods. The two most important ones are to generate clusters
on a set of data where we are given the number of clusters we want to obtain.
The second clustering method divides the data set into clusters until the objects
grouped together have a minimum mean distance but a maximum mean distance
to all other objects.
We first discuss clustering with a fixed number of target clusters.

k–means Clustering
The idea behind k–means clustering is to randomly define k cluster centroids. Then,
every object in our domain is assigned the cluster id of the closest cluster centroid.
The actual dynamic means clustering now repeatedly recomputes the center of each
cluster. Since the center “moves”, it is quite likely the cluster itself moves, too: The
bigger the step, the more likely some entities will be assigned different cluster id’s
in the next step—most likely those from boundary regions. If the centroids do not
move any further, we are done.

If we want to discriminate k clusters, we randomly chose k initial cluster cen-
troids ~ci ∈ Rn, i ∈ k. Then, every point ~x is assigned a class label i where

h(~x) = i := arg min
i∈k

dist(~x,~ci)

such that ci := {x ∈ U : h(~x) = i}. The first step means to randomly distribute
some cluster centroids (which correspond to the diamonds in figure 4.2) over
the entire representation space. In the second step, each object is assigned the
target value of the nearest such centroid as defined above. In most cases, the
initial cluster centroids are distributed without any correspondence to actual
clouds in the data distribution of the representation space. In order to make
the cluster centroids move to where the actual data clouds are, we repeatedly
redefine class centroids by

~ci :=
1

|ci|
∑
~x∈ci

~x

until the classification is “good enough”. Every redefinition step causes all the
centroids to move towards the center of the sets of points that were classified
as objects of the corresponding class in the previous step. But since the set of
objects that belong to this center is redefined in each iteration too, the center can
move across the whole set. This yields an algorithm called k–means clustering :

v. July 19, 2010(c) m.e.müller

4.3. K–MEANS CLUSTERING 81

Definition 4.4 — k–means Clustering. k–means Clustering

The following procedure generates k clusters on a set of multidimensional data
U ⊆ Rn:

00 FOREACH (i ∈ k) DO { ~ci := randomelement(Rn); ci := ∅; } DONE
00 WHILE (1) DO
00 { FOREACH (~x ∈ U) DO h(~x) := arg mini∈k dist(~x,~ci) DONE
00 FOREACH i ∈ k DO

00 { ci := {~x ∈ U : h(~x) = i};
00 ~ci := 1

n ·
∑
~x∈ci ~x;

00 ~δ := |~oi − ~ci|;
00 } DONE
00 } DONE
with scalar multiplication · and component-wise addition.

A closer look reveals that this method depends on the initial distribution of
centroids.

Exercise 4.3 ��Discuss the k–means clustering algorithm on the following example:

a b c

d x f

g h i

u y v

m n o

p z r

s t l

Consider k = 2 with u and v or x and u being initial centroids.—Consider k = 3 with
x, y and z or u, y and v being initial centroids.—Consider k = 2 and k = 3 with initial
centroids u, v and u, v, z where point y is absent.

Exercise 4.4 (��) Write a program that performs k–means clustering on n–dimen-
sional data.

The problem with membership is that regions are not always defined by crisp
boundaries. Just as we consider distances in space here and a centroid as a
prototype of concept, some things more or less belong to a class or a concept.
Similarly, an object that is close to the center of a cluster appears to be more
like the prototypical element of the cluster than one object in the boundary
region. As soon as boundaries are blurred, there is some kind of fuzzification
involved. The idea is more than simple: Let cod(f) = Vf = {v0, v1, . . . , vm−1}.
Then, f̃(x) = 〈dist(x, c0),dist(x, c1), . . .dist(x, cm−1)〉. So instead of assigning
x a single value f(x), it is assigned a vector of distances to each of the value’s
representative centroid. If the all vectors are normalised such that the sum of
their arguments becomes 1, then each argument expresses the probability that
x takes value vi.

v. July 19, 2010(c) m.e.müller

82 CHAPTER 4. CLUSTERING

Definition 4.5 — Probabilistic (Fuzzy) Classification.Probabilistic (Fuzzy)
Classification Let c = {c0, c1, . . . ck−1} be a classification. We define a fuzzy classification by

assigning to each object a vector of k probability values each of which describes
x’s degree of membership to the according class:

χ̃(ci) : U → [0, 1]

χ̃(ci)(x) := φ({x} ∩ ci) := n · dist(~x,~ci) (4.5)

where n is a normalisation factor such that
∑
i∈k dist(~x,~ci) = 1.

Exercise 4.5 (�) Let there be a fuzzy classification c with a fuzzy membership
function χ̃(c). Define a method for defuzzification which takes χ̃(c) and returns k
characteristic functions for each class in c (see definition 3.5).

Exercise 4.6 (��) Let there be two binary fuzzy classifications c = {c,−c} and
c′ = {c′,−c′}. Give a definition for χ(c ∩ c′)(x) in terms of χ̃(c) and χ̃(c′)! Define the
truth value of the expression x ∈ c ∨ x ∈ −c′! — Congratulations! You now know
everything one needs to know about Fuzzy Logic.

Using this fuzzy membership and the distance measure, one can easily define a
fuzzy k–means clustering algorithm:

Definition 4.6 — Fuzzy k–means Clustering.
Fuzzy k–means
Clustering

The following procedure generates k fuzzy clusters on a set U = Rn of data:

00 FOREACH (i ∈ k) DO { ~ci := randomelement(Rn); ci := ∅ } DONE

00 WHILE (1) DO
00 { FOREACH (~x ∈ U) DO
00 { ~c(~x) := 〈dist(~x,~c0),dist(~x,~c1), . . . ,dist(~x,~ck−1)〉;
00 h(~x) := arg mini∈k dist(~x,~ci);
00 } DONE
00 FOREACH i ∈ k DO

00 { ci := {~x ∈ Rn : c(~x) = i};
00 ~ci := (

∑
~x∈ci(dist(~x,~ci) · ~x))/(

∑
~x∈ci dist(~x,~ci));

00 } DONE
00 } DONE

The only difference to non-fuzzy clustering is that the centroids do not move to
the center to the objects but to the distance-weighed center.

There are hundreds of different improvements on these base algorithms. First of
all, the validation bias (i.e. the stopping criterion; in our case 1) can be defined in
relation to other (dynamic) parameters, i.e. maximum intra–cluster distances.
One can also introduce different distance measures like quadratic functions or
other non–euclidean measures. It is also possible to have different dimensions of
the vectors weighted differently. [?] discusses several more advances in cluster-
ing and many other probabilistic approaches. But with increasing demands of
machine learning towards the induction of conceptual or “semantic” hypotheses,
one wants to go a step beyond, say, “descriptive” clustering. For example, it

v. July 19, 2010(c) m.e.müller

4.4. INCREMENTAL CONCEPT FORMATION 83

Shape

Rhomboid

Circle

Ellipse

Rectangle

Polygon

TetragonTriangle

Square
Rhombus

Figure 4.3: A Concept Hierarchy of Geometric Shapes

appears that if a human begins to cluster observations, he does so by grouping
similar objects into few clusters and then recursively clusters each group with
respect to an increased amount of detail in (dis-)similarity. At a certain (rather
early) level, dogs and cats belong to the same cluster of pets. Only with more
detailed knowledge, one can discriminate cats from dogs—and generalise cats
and dogs to carnivore pets (as opposed to hamsters).

4.4 Incremental Concept Formation

In the last section we learned how to classify a new object into a given classifi-
cation of clusters in space by using an euclidean distance measure as a measure
of similarity. In the next step we discovered two algorithms to discover a clas-
sification based upon unsupervised clustering of multidimensional data. If we
now understand multidimensional data points as entries in an information sys-
tem, the task ahead is unsupervised learning of concepts from examples that are
described by an information system. Just to recall the difference behind classes
and concepts: Of course, concepts in U are sets. Therefore, they are classes as
well. But the classes originate from classifications which in turn correspond to
elementary categories. They are sets of things that share a certain property. A
concept is a description of properties in terms of elementary categories (building
basic categories): Being a “white square” means to be an element of the set of
white things and of the set of squares.

Again, our goal is to group similar projects into one class but this time by
generating hierarchies of concepts: Rhomboids are a special kind of tetragons,
but squares are even more special. An they are all different from triangles, but
even more different from circles. The relationships between geometric figures is
shown in figure 4.3.

v. July 19, 2010(c) m.e.müller

84 CHAPTER 4. CLUSTERING

Circle

Ellipse

Rectangle

Rhomboid

Shape

Tetragon

Polygon

RhombusTriangle

Figure 4.4: Hierarchical Incremental Clustering

Incremental Concept Formation
In contrast to classification with given classes or clustering given a fix number of
target classes, concept formation seeks to build hierarchies of concepts that reflect
partitions of objects at different levels of granularity. We can clearly discriminate
parrots from robins and dogs from cats—but together they form the concepts of
birds and mammals.
Incremental Concept Formation seeks to find a hierarchy of such concepts such that
(1) the similarity of all objects in a class is maximised, (2) the dissimilarity of all
concepts is maximised, and (3) the conceptual structure is as simple as can be.

The process of incremental (top–down refinement) clustering is depicted in fig-
ure 4.4: the basic classes correspond to the smallest clusters on the first level
of abstraction. Here different objects of the same kind are grouped together:
Triangles, Rhomboids, Rectangles, and Circles. On the second level, the clus-
ter of Tetragons is made up from Rhomboids and Rectangles, while Circles are
generalised to Ellipses. On third level, Triangles and Tetragons form Polygons,
and all together finally form the concept of Shapes.
But the human cognitive apparatus does not really work in one direction only:
When learning concepts, we simultaneously learn by abstraction (bottom–up,
generalisation, unifying) but also by differentiation (top–down, specialising, dis-
criminating). So, for example, the concept Squares can be defined as the inter-
section of Rectangles and Rhombuses. The point to start with in hierarchical

v. July 19, 2010(c) m.e.müller

4.4. INCREMENTAL CONCEPT FORMATION 85

clustering actually is “somewhere in the middle”:

Example 4.2 The concept Bird (Hammer, Car) can be learned quicker
than Animal (Tool, Mobile) or Robin (Sledge hammer, van). This is because
the more general concepts (e.g. Insect) subsume subconcepts that may differ
significantly (like Flies and Beetles) and because the rather detailed concepts are
quite homogeneous (Ants) but not always clearly distinguishable from brother
concepts (Bees and Wasps).1

The key to the right level of abstraction is homogeneity. Homogeneity within
a class and separation between classes are expressed in terms of intra– and
inter–class similarities respectively. Since we need probabilities to express the
similarity measures, we observe:

Theorem 4.1 Let g : U → k such that g(x) = i :⇐⇒ x ∈ ci where ci ∈
c = U/g. Let F = {f0, f1, . . . , fn−1} and ~x = 〈f0(x), f1(x), . . . , fn−1(x)〉. Then,
every f ∈ F is a random variable that assigns a value v ∈ cod(f) to x. We write

Pr[F = v] := φ({x ∈ U : f(x) = v}) (4.6)

=
| {x ∈ U : f(x) = v} |

|U | .

Then, the probability that an object has a certain property given it belongs to
a certain class is

Pr[F = v | C] = Pr[F = v ∧ C]/Pr[C] (4.7)

=
φ({x ∈ U : f(x) = v} ∩ {x ∈ U : χ(c)(x) = 1})

|c|/|U|

=
| {x ∈ U : f(x) = v} ∩ c|

|c| (4.8)

for f ∈ F, c ∈ c and v ∈ cod(fi).

Exercise 4.7 (�) Determine the probability that x belongs to a class c given that
for some f ∈ F, f(x) = v.

Definition 4.7 — Intra/Inter–Class Similarity.
Intra/Inter–Class

Similarity
The intra–class similarity of a class c ∈ c is the probability that object repre-
sentations are similar given the information they belong to the same class:

sim(c) :=
1

|F|
∑
f∈F

 1

|cod(f)|
∑

v∈cod(f)

Pr[f(x) = v|C]

 (4.9)

The inter–class dis-similarity is the reverse: It is the probability that an object

1They are clearly distinguishable for experts but quite many people cannot tell the differ-
ence between a wasp, a bee, a bumble bee or harmless hover flies.—In fact, wasps are closer
related to ants than to bees.

v. July 19, 2010(c) m.e.müller

86 CHAPTER 4. CLUSTERING

belongs to a certain class given it has a certain probability:

disim(c) :=
1

|F|
∑
f∈F

 1

|cod(f)|
∑

v∈cod(f)

Pr[C|f(x) = v]

 (4.10)

Exercise 4.8 (�) Explain, why Pr[C|F = v] expresses “dissimilarity” rather than
Pr[¬C|F 6= v]!

So, the more homogeneous a class, the higher its intra–class similarities: Given
they belong to the same class, the have many similar properties. The more
a class can be discriminated from another one, the higher the probability a
property determines the class membership. There are many different ways to
define cluster homogeneity or heterogeneity and we presented just one based
on our metaphor of distances in representation space. The general idea behind
these two measures is illustrated in figure 4.5. The double-headed arrows (cluster
radiuses) shall illustrate an intra-cluster similarity, while the lines connecting all
the centroids represent the inter-class dissimilarities. A clustering appears to be

Figure 4.5: Intra– and Interclass Similarities

more adequate, the higher the intra-class similarity and inter-class dissimilarities
which means we have to find an ideal trade-off between both class similarities:
The clusters shall be as homogeneous as possible and yet discriminating enough.
Therefore, our task is to find f ∈ F which induces a partition that has maximal
intra-class similarities and inter-class dissimilarities. In order to find such a
good partition, we need a measure to describe the utility of such a partition;
i.e. the feature f .
A straightforward way to define such a measure is to multiply the product of
similarity and dissimilarities as induced by f with the prior probability of the
according feature-value combinations:

v. July 19, 2010(c) m.e.müller

4.4. INCREMENTAL CONCEPT FORMATION 87

Definition 4.8 — Partition Utility. Partition Utility

The utility of a partition is described by

utility(c) :=
∑
c∈c

|c|
|U |

∑
f∈F

∑
v∈cod(f)

Pr[F = v|C] · Pr[C|F = v] (4.11)

This is equivalent to evaluating a feature (hypothesis) h’s utility in partitioning
the universe (U/h = c).

To conclude the chapter on clustering methods, we examine an approach to
incremental hierarchical clustering:

• incrementally means that we successively develop and refine a partition
over a set of data with.

• hierarchically means that we do not create flat clusters but that we want
to merge or split clusters if the data encountered suggests such operations
of generalisation or specialisation.

In order to define an appropriate procedure, four different operators are required.
These are in detail cluster refinement, cluster introduction, cluster join and
cluster split. A refinement is required each time we encounter an object that
shall belong to an already existing cluster. This can change the cluster form (just
recall the k–means principle). If an object does not belong to any of the already
existing clusters is taken to form a new cluster. It is easy to imagine that such
an action would be chosen if the resulting intra–class similarities would decrease
once the object is forced into one of the old clusters. Sometimes, objects bridge
a gap between between two disjoint clusters. This means that the point belongs
to both clusters to the same degree—and the result is, that the point is pretty
well located in the centre of the joined clusters. Therefore it seams reasonable
to induce a new cluster that subsumes this object and all the clusters that are
similar to this object for more or less the same degree. Finally, whenever a
cluster grows too large (in terms of the number of its members or a poor intra-
class similarity in relation to other clusters), it seems a good idea to divide
the cluster into more special subclasses. Another criterion is that whenever
an object “disturbs” the balance of a cluster with already pretty low intra-class
similarity, there mus exist several subgroups. Putting these operations together,
one yields an abstract description of a hierarchical clustering algorithm that
is both agglomerative and divisive; which means it builds a cluster hierarchy
bottom-up and top-down for generalisation and specialisation, respectively.

Example 4.3 Consider our domain of geometric shapes as shown in
figure 4.3. Recall at this point that in the picture “similarity” corresponds to
“distance”—even though the vector representation of the objects can be much
more complex: For the set of all these objects x which have at most 4 corners,
we define:

~x := 〈x0, y0, . . . , x3, y3, xc1 , yc1 , xc2 , yc2 , r1, r2〉

v. July 19, 2010(c) m.e.müller

88 CHAPTER 4. CLUSTERING

Two arguments xi, yi define the x- and y-coordinates of the i-th corner, the two
last pairs define a the center and r1, r2 the radiuses. Then a triangle is defined
by a vector with only the first six arguments instantiated and the rest filled with
zeros.
Suppose we begin incremental bi-directional hierarchical with known classes
Triangles, Tetragons and Ellipses. Note that each of these classes appear on
a different level in our target concept hierarchy. A closer look at each of the
three sets shows that the cluster of Tetragons divides into two sub-clusters.
At the same time, all the tetragons are closer to the triangles than to ellipses.
Therefore, we would join the clusters to form a new one. The resulting clusters
are Rhomboids, Rectangles, and Polygons.
A further analysis of Ellipses shows that there are two kinds: one for which the
two center coordinates and radii are the same and one for which they are dif-
ferent. We therefore identify a sub-cluster Circles. Similarly, we find a subclass
of Rhomboids; those whose four sides have the same length—Rhombuses.
Finally, there is huge difference between the three different clusters we have so
far: Ellipses have 6 zero entries at the beginning, and Triangles and Tetragons
have four zeroes at the end. Accordingly, we join the latter two and obtain
Polygons.

We do not need to define an algorithm that implements this behaviour here:
Top-Down construction (i.e. divisive clustering) will be discussed in the next
chapter—and agglomerative methods fall into the category of generalisation
operators which will be discussed in another chapter, too.

4.5 Relational Clustering

This chapter was concerned with a lot of distance measures, similarities, and
vectors in high dimensional spaces. One might ask what this kind of clustering
actually has to do with relational knowledge discovery. The answer is very
simple.
Every object in space is represented by a vector. This vector comprises of
arguments each of which corresponds to a function. Recall that sim and disim
were defined by way of random variables. And random variables are functions—
and each object representation can be formulated as the same vector where each
component holds the corresponding value of a random variable.
Either way, representation space is a feature space. And this again means that
all the object in this approach can be described by an information system. Now
recall that every single feature of an information system induces an equivalence
relation—and any clustering of a set of objects is a classification. This means
that hierarchical clustering is simply repeated classifier learning. In other words:
Hierarchical clustering means to find a family of equivalence relations

R0 ⊆ R1 ⊆ · · · ⊆ Rk−1 (4.12)

such that
⋂
i∈kRi induces a partition with classes whose elements are most

v. July 19, 2010(c) m.e.müller

4.5. RELATIONAL CLUSTERING 89

similar. The less relations we choose and the coarser they are, the less clusters
we can describe—and the more general our classification.
Clustering is nothing else than unsupervised classification—it’s just that we
assume (or define) some distance measure in order to describe similarity and to
help ourselves get over the missing teacher signal.

v. July 19, 2010(c) m.e.müller

90 CHAPTER 4. CLUSTERING

v. July 19, 2010(c) m.e.müller

Chapter 5

Information Gain

Describing objects by features is a very common thing to
do. Similarly, many decision support systems use a tree–
like representation of cases, where every branch in the tree
corresponds to a feature and its observed value. But which
features can be used to model a certain concept? What
would be the shortest and most meaningful rule with which
we can describe a distinct set of objects using our features?

In the previous section we have seen how similarity measures can be used to
group objects into (hopefully) meaningful clusters. Given an information sys-
tem I, we now want to describe a feature’s utility with respect to an object’s
classification t(x). Relationally speaking, we need to recursively apply those
features fi ∈ F which generate a partition on U that is similar to U/Rt to learn
a compressing classifier this way. It appears a good idea to start with a feature
that appears to be most “similar” to t. A feature being quite similar to the
target function can be assumed to carry relevant information with respect to t.
And this leads us to the information theoretic notion of entropy.

Information Gain Driven Classifier Learning
While Clustering tries to find hierarchies of groups of objects, so-called decision trees
represent a hierarchy of feature induced partitions. Unlike (unsupervised) similarity
measures in clustering, one uses a target-specific information measure called entropy.

People often try to explain Shannon and Weaver’s information theoretic measure
of entropy by the laws of entropy in thermodynamics. In fact, this approach
is much more demonstrative than the original works of Shannon and Weaver.
However, both measures were develepoded independently from each other and
with completely different motivation and background.

91

92 CHAPTER 5. INFORMATION GAIN

5.1 Entropy

In 1865, Rudolf Clausius introduced the notion of entropy into physics by de-
scribing a closed system of constant temperature T and the result of applying
energy (i.e. heat) onto it (∆Q). A common sense picture of this situation is that
all particles in the system now move more vigorously; i.e. it becomes harder to
tell “where” they are. The amount of applied energy becomes visible in the
particle’s movement: Moving faster creates heat - and more frequent and more
violent bumping into the walls creates pressure. The entropy increase (∆S) is
proportional to the amount of energy invested:

∆S =
∆Q

T

Then, in 1877, Boltzmann stated that the entropy S of a system can be described
by the number Ω of possible states consistent with its thermodynamic properties:

S = k · ln Ω

where k is known as the famous Boltzmann constant.
In 1948, Shannon and Weaver described the entropy of a system as the probability-
weighed sum of bits of information needed to describe the system state:

H(S) = −
ω∑
i=1

pi log2 pi (5.1)

Obviously, entropy and information are related somehow, and they are used to
describe a ratio of measures that shows an additive behavior for exponential
growth (hence the log).

Entropy and Information
The entropy H(s) of a set s is a measure of the complexity of a system: Given all
possible states of the system and their respective probabilities, the entropy describes
the average length of the shortest description specifying an arbitrary system state.

In the 1940s Shannon and Weaver were working on the question of how much
channel capacity one needs to securely transmit a message with a certain amount
of noise involved. This gave rise to two questions:

1. How does one measure the amount of information?

2. How does one measure the capacity of a communication channel?

First of all, it is very important not to confuse the two different terms informa-
tion and meaning: Meaning usually denotes the semantic content of a message,
while information is rather a measure of the complexity of the message source:

[...] information must not be confused with meaning. [...] Informa-
tion [...] relates not so much to what you do say, as to what you
could say. That is, information is a measure of one’s freedom of
choice when one selects a message.

v. July 19, 2010(c) m.e.müller

5.1. ENTROPY 93

[Shannon and Weaver, 1949]

Even a meaningful message loses information when repeated over and over again.

Now that information is compared to degrees of freedom, it is clear why in-
formation theoretic entropy can be related to the definition of entropy as it
is known in thermodynamics: The number of possible system states increases
with the degree of freedom of each particle in it. To give you a very brief but
demonstrative example, see figure 5.1.

1. (↖) Initial state. Temperature and pres-
sure in the right box is higher. The
entropy of the whole system is mini-
mal, because all particles are ordered.

2. (↑) Pressure equalisation and diffusion

3. (←) Temperature and pressure and proba-
bility of picking a circle or a diamond
is the same everywhere in the system:
maximum entropy.

Figure 5.1: Entropy Change of a Closed System

But before we start defining a measure of information, it is a good idea to
understand which properties we will require from this measure. These are:

• First, the more “usual” an event or message, the less is its information
content. Or, the other way round: the less the probability we observe
some event, the higher its information.

v. July 19, 2010(c) m.e.müller

94 CHAPTER 5. INFORMATION GAIN

• Second, the information of a joint observation of two independent messages
should be the sum of the information of the individual messages.

Let us reconsider our example from the introduction:

Example 5.1 When flipping a fair coin the probability for heads is the
same as for tail: it is fifty percent in both cases. We have a maximum degree
of freedom, a maximum degree of uncertainty and a maximum of information.
A biased coin predestines the outcome of a throw: it decreases the degree of
freedom, it introduces certainty and loses information.
Cheating makes the game more predictable: the probability of throwing heads
is much lower than tails. Accordingly, we already expect tails and the number of
throws where our expectation is not met and we make an erroneous prediction
is rather small.
Playing a fair game increases the amount of information in a throw: Since all
throws are conditionally independent it is clear that for each throw we have
a fifty-fifty chance of either outcome. So the information in a message string
generated by a source that is playing a fair game is much higher than that of a
biased sender (a simple but true observation we make in our everyday lives as
well).

In the last example we have seen how the probability of a signal in a message
determines the information content; we also saw that information of several
events are summed up. We now examine how likeliness of a sequence of events
in relation to the number of possible events changes. This time, it is easier to
examine the issue in the light of thermodynamics: Let there be a system with
ω entities each of which can take n states. Then, the system can take one out
of Ω = nω different states.

Example 5.2 Consider

Number of
Entities n states ω System states nω

7 2 27 = 128
2 10 102 = 100

By adding one entity we can increase the number of possible system states by
the factor n = n1:

Entities n states ω System states nω

7+1 = 8 2 27+1 = 28 = 256
2+1 = 3 10 102+1 = 103 = 1, 000

and adding m entitites results in

Entities n states ω System states nω

7+m 2 27+m = 27 · 2m = 128 · 2m
2+m 10 102+m = 102 · 10m = 100 · 10m

v. July 19, 2010(c) m.e.müller

5.1. ENTROPY 95

So the number of system states increases exponentially in the number of entities.

Exercise 5.1 ♦ For a fixed n, what happens if we add different numbers σ1, σ2 of
states to ω? — Relate the growth rates of adding entitites and states!

So if we increase the number ω of entities (atoms, symbols) by the factor of a,
then the possible number of system states (or messages) increases exponentially
in a. Since Ω = nω, we have

Ω′ = na·ω = n(ω)a = Ωa (5.2)

with ω′ = a · ω. If we take the number of entities as the length of a message
and the number of states as the number of different symbols, Ω is the number
of possible messages. If we add to the length of the message, we have a factor in
information content — and this is exactly the origin of the logarithm in Shannon
and Weaver’s measure of information.
Now that we have gained a pretty detailed idea of how entropy as a property of
physical entities works, it is about time to consider information systems again.
Here, we do not deal with particles, but with events that are described by
variables or with objects that are described in information systems. First, we
consider events that are described by several discrete1 random variables: Let
there be a set F = {F0, . . . , Fn−1} of random variables where Fi corresponds
to elementary events represented by fi ∈ F. Then, all Fi can take values from
Vi = cod(f)i. For every elementary event there is a measure µi describing the
probabilities that for some x ∈ U , fi(x) = v.2 Events are described by sets of
elementary events; in our case a vector of all values Fi. There is also a measure
µn describing the probability of events:

µn({x ∈ U : fi(x) = vi)

= Pr[F0 = v0 ∧ F1 = v1 ∧ · · · ∧ Fn−1 = vn−1]

= px

Usually, the probability of the co-occurence of two mutually independet events
with two different probabilities results in the product of the probabilities. It is
very important to understand that the assumption of mutual independence is a
fundamental bias. Even worse, the sequential ordering of symbols as they appear
in the sequence of a message is not independent! Information theoretic entropy
makes an assumption that is true only in the context of thermodynamics, but
not in the context of meaningful sequences.3 Nevertheless we need to live with
certain biases if we want our algorithms to perform sufficiently efficent.

1The discussion of continuous signals is beyond the scope of this lecture. The interested
reader should consult the original article [?]; a modern book on information theory, coding
and cryptography, [?], or the more recent textbooks on information, probability and statistics
in knowledge and knowledge discovery, [?] and [?].

2We omit indices here to avoid overly extensive subscripting (vji). It is assumed that for
fi(x) = vj it always holds that vj ∈ cod(f)i.

3This has been shown by an impressive counterproof given by the work of Bletchely park
in breaking the enigma of Shark.

v. July 19, 2010(c) m.e.müller

96 CHAPTER 5. INFORMATION GAIN

In order to make the probabilities to behave additively when occuring together
we now apply a simple trick: Instead of multiplying probabilities, we add the
logarithms, and so get exactly what we were looking for:

Definition 5.1 — entropy(x), Shannon’s Entropy Measure.
entropy(x),
Shannon’s Entropy
Measure Shannon’s measure of information content describes the information content of

some observation that fi(x) = v:

entropy(fi(x) = v) := log2

1

Pr[Fi = v]
(5.3)

It is the negative logarithm of the probability that this observation is made. We
also write entropy(v) = log2

1
pv

when clear from context.

But what about sets? Whenever we talk about several messages we always
should weight each one by its own probability of occurence. This leads to a
preliminary definition of information theoretic entropy as a probability weighed
sum of information content: The entropy of a source (“sender”) is the expected
information content of a message being sent by this system:

entropy(s) = −
ω∑
i=1

pi log2 pi (5.4)

So the entropy of a set s of possible messages is the probability weighted sum
(i.e. “expected” or average value) over the information content of each symbol.
The base 2 of the logarithm originates from the assumption that we deal with
“particles” that can take only two different states. It can be easily computed
using the following transformation:

entropy(s) = −
ω∑
i=1

pi log2 pi = −
ω∑
i=1

pi
ln pi
ln 2

In other words, information is a dimensionless measure just as entropy, but
we agree to write “x bit” instead of “x 1

ln 2”. Sadly, many arguments involving
entropies are often written down in a rather sloppy notational way. But after a
brief digression in the next section, we will give formally satisfying definitions
and examples.

Exercise 5.2 (♦�) Explain why the three actions described in figure 5.2 increase the
entropy of a system using (a) Clausius’s notion of entropy and (b) Boltzman’s formula.

Exercise 5.3 (��) Describe three actions on information systems that are equivalent
to those shown in figure 5.2 and explain the increase of entropy using Shannon’s
measure of information.⊕

5.2 Information and Information Gain

Relational knowledge discovery is the same all the time: We want to create
a method with which we can construct aets of relations that we can use to

v. July 19, 2010(c) m.e.müller

5.2. INFORMATION AND INFORMATION GAIN 97

1. Initial state

2. Add particles

3. Add energy

4. Increase volume

Clockwise, starting top left.

Figure 5.2: Three Ways to Increase a System’s Entropy

describe a concept. The problem is just to guide the search in order to speed
up the learning process:

Entropy and Information Gain
When learning classifiers, we will always refer to entropies in relation to a target
classification. Given a set of observations with different target labels assigned, the
entropy with respect to the target label describes the complexity of the learning prob-
lem. If we manage to partition the set into disjoint subset that have a lower entopy,
then we have gained some information: The cuts performed during partitioning are
correlated to the boundaries of the target classes. The idea behind information gain
methods is to recursively partition the set using features which produce maximal
information gain.

5.2.1 Entropy

We start right off with a definition:

Definition 5.2 — Entropy of a set s. Entropy of a set s

We define the (f–relative–) Entropy of a set to be

entropyf (s) = −
∑

v∈cod(f)

|{x ∈ s : f(x) = v}|
|s| log2

|{x ∈ s : f(x) = v}|
|s| (5.5)

When f = t, we also write entropyt(s) = entropy(s).

Since the true distribution is unknown, we use the relative frequency of obser-
vations to approximate the probabilities of symbols.4 Furthermore, information

4Knowing µ means to have knowledge about what the sender is going to say. Such knowl-
edge is used in source-coding compression methods.

v. July 19, 2010(c) m.e.müller

98 CHAPTER 5. INFORMATION GAIN

content is always determined in relation to a certain property f of objects (which
are, again, equivalence classes).

Example 5.3 Imagine the following set of six different symbols each in a
white or black version:

{◦,�,♦,�,�,4, •,�,�,I,J,N}

Then, the information content of message that reads ♦ •♦2♦• is determined as
follows:5

1. the set of symbols used is {♦, •,2}

2. the message length is 6, so the approximate probability of the three sym-
bols are p♦ = 3

6 = 1
2 , p• = 2

6 = 1
3 , and p2 = 1

6

3. We assume this approximation of probabilities to be sufficiently precise
and compute the information content as follows:

entropy∈({♦, •,♦,2,♦, •}) = −
∑

x∈{♦,•,2}

px log2 px

= −1

2
log2

1

2
− 1

3
log2

1

3
− 1

6
log2

1

6

But actually, we could also determine the information of such a message with
respect to colour or shape of each symbol:

Example 5.4 We now want to determine the entropy of the message
set with respect to each object’s colour which we assume to be described by a
feature c ∈ F:

entropyc({♦, •,♦,2,♦, •})
= −

∑
c(x)∈{white,black}

pc(x) log2 pc(x)

= −|{♦,♦,2,♦}|
6

log2

2

3
− |{•, •}|

6
log2

1

3
≈ 0.92

Just to be absolutely sure that information theoretic entropy of a set s is always
a measure with respect to some property of objects, we give a last example:

5We assume all the symbols to be subscripted by a running index;
i.e. {♦0, •1,♦2,23,♦4, •5}. Multiple occurences of a symbol in a set actually means
multiple observations of the symbol.

v. July 19, 2010(c) m.e.müller

5.2. INFORMATION AND INFORMATION GAIN 99

Example 5.5 Let us consider the entire set s and determine its entropy
with respect to the number of vertices an object has.

entropyv({◦,�,♦,�,�,4, •,�,�,I,J,N})
= entropyv({0, 4, 4, 3, 3, 3, 0, 4, 4, 3, 3, 3})
= −

∑
v(x)∈{0,3,4}

pv(x) log2 pv(x)

= −1

6
log2

1

6
− 1

3
log2

1

3
− 1

2
log2

1

2
≈ 0.597

Exercise 5.4 Here are a few exercises to get a feel for entropies:

♦ Give an example of an arbitrary set of the symbols with maximum entropy with
respect to colour.

♦� Determine entropyf ({J,♥,�,�,�,�,I,J,�,♦,4,N}) for three different f !

♦� Determine entropyf (s) for all features f ∈ F in figure 5.3(left).

♦�� Determine entropyf (s) for all features f ∈ F in figure 5.3(right).

s t f g t′ id c
1 1 1 1 1 1 1
2 1 1 1 1 2 1
3 1 2 1 1 3 1
4 0 2 1 2 4 1
5 0 3 2 2 5 1
6 0 3 2 2 6 1

s f0 f1 f2 f3 t
0 1 • ♥ c 0
1 0 • ♠ b /
2 2 • ♣ b 1
3 1 • ♣ c /
4 1 • ♥ a 1
5 2 • ♣ b 1
6 2 • ♠ b /
7 0 • ♠ a 1

Figure 5.3: Two Information Systems

5.2.2 Information

Recall that our idea was to select some f ∈ F which is most informative with
respect to t. The set of our objects or observations has a certain entropy (mea-
sured with respect to an arbitrary property). Usually, we define the entropy
with respect to the target classification t. This is why we agreed to drop the
index in this case: entropyt(s) = entropy(s).
But the big question is: what is the information in a feature? It is, so to say,
a measure of its entropy in relation to the entropy of s with respect to some
property. In other words, there are two features involved here.

v. July 19, 2010(c) m.e.müller

100 CHAPTER 5. INFORMATION GAIN

And this leads us to the definition of feature entropy or feature information:

Definition 5.3 — entropyf (g, s), Feature Entropy (Information).
entropyf (g, s),
Feature Entropy
(Information) The information of a feature g ∈ F on a set s with respect to a feature f ∈ F

is

entropyf (g, s) =
∑

v∈cod(g)

|{x ∈ s : g(x) = v}|
|s| entropyf ({x ∈ s : g(x) = v})(5.6)

which is the (relative class size weighed)–entropy of g on the quotient s/Rf . As
usual, we drop the index if f = t and write entropy(g, s) := entropyt(g, s).

Exercise 5.5 � Determine the value of entropyf (f, s)!

Exercise 5.6 � Determine the information of all features relative to t in figure 5.3.

Now that we want to learn how to approximate t it appears to be a good idea to
partition s into classes induced by a feature with most information. This would
reduce each class entropy and, therefore, create a partition that is closer to t
than the partition induced by any other feature.

Reducing the entropy of a set means a loss of predictive uncertainty—that is,
a loss of indeterminacy, a reduced number of degrees of freedom or, simply,
information gain. Accordingly, we define:

Definition 5.4 — Information Gain.Information Gain

We define the information gain obtained by a feature g on s with respect to f
as:

gainf (g, s) := entropyf (s)− entropyf (g, s) (5.7)

The gain is the difference of the current entropy on s minus the information we
gain by application of knowledge g. Again, we drop the index for f = t; i.e. we
abbreviate gaint(g, s) := gain(g, s).

The larger gainf (g, s), the more entropy is lost, the greater is the information
content of g and the larger is the information gain by using g to partition s.⊕
Exercise 5.7 Let’s practise some gain computations:

� Compute gaint(f, s), gaint(g, s), gaint(id , s) from the left part of figure 5.3.

♦� Compute gaint(fi, s) with i ∈ 3, from the right information system in figure 5.3.

�� Compute gainfi(fi+1, s) for i ∈ 2 from the right information system in figure
5.3.

Exercise 5.8 (�) Prove or disprove: gaing(f, s) = gainf (g, s).

Exercise 5.9 (��) Write a small program that for an input string s determines H(s).

v. July 19, 2010(c) m.e.müller

5.3. INDUCTION OF DECISION TREES 101

5.3 Induction of Decision Trees

Decision Trees
A decision tree is a classifier representation which allows to classify an object with
increasing accuracy by asking a sequence of questions about the values thos object
takes under a certain feature.
Learning such a classifier means to build such a tree in a way that its leaf nodes
represent sets of objects that are more or less contained in (subsets) of equivalence
classes induced by the target feature. We can stop building a tree if at a current node
all objects covered fall into the same target class—which means that its entropy is
zero. If we can’t reduce the entropy any further or if we run out of features, then we
have to stop growing the tree, too.

As we have already mentioned and as we shall see in detail later, any feature
f induces an equivalence relation Rf on s. Also, the binary target function
t(x) = χ(c)x induces an equivalence relation Rt such that s/Rt = {s1, s0}. The
entropies in s1 and s0 are 0. In order to approximate t we can also try to
approximate s/Rt. We do so by hierarchically partitioning s using Rf0 , Rf1 , . . .
until t-entropies in the resulting classes are 0. This is equivalent to building
a tree with s as root node and all elements of a quotient induced by f as the
successor nodes of the node f until the leaves are subsets of either s1 or s0. Such
a tree is called a decision tree. But how can one build such a tree efficiently
and how can one keep a tree as small as possible so as to guarantee a maximum
compression? Not surprisingly, we will use the information theoretic entropy
measure in order to guide our search.

5.3.1 Hunt’s Classifier Trees and Quinlan’s ID3

Decision trees are a widely accepted method for classifying objects. Most de-
cision support systems make use of “flow-charts” in order to quickly identify a
certain class (for example in medicine where a structured sequence of tests for
symptoms quickly leads to a diagnosis).
Accordingly, the induction of such trees is still one of the most popular tech-
niques in knowledge discovery. Because of their relative high efficiency and wide
acceptance they are a standard method provided by nearly every Data Mining
tool.
The rise of decision tree induction started with a system called Id3, [?]. Suc-
cessors like C.45 and See5 (or C5.0) provided additional functionality such as
dealing with continuous features values, or pruning and boosting [?, ?, ?, ?, ?].
The idea of hierarchical clustering was not new—it was the entropy measure of
information that turned out to be the real knack. Cobweb, [?], and Unimem,
[?], were about the first systems for clustering objects without a teaching sig-
nal. ClassIt, [?], added the idea of incremental concept formation while Clus-
ter/2, [?], and its successor Cluster/S, [?], are non–incremental variants. We
already learned about them in the previous chapter on clustering.
Then, Aq, [?, ?], and Cn2, [?], finally made use of a teaching signal to allow for
supervised concept formation. But the idea of decision tree induction actually
dates back to 1966, when [?] introduced classifier trees and developed he system

v. July 19, 2010(c) m.e.müller

102 CHAPTER 5. INFORMATION GAIN

Cls. The pseudo-code of Cls is shown in figure 5.4. The idea behind this

01 proc class (s)
02 {
03 IF (∀x, y ∈ s : t(x) = t(y)) THEN

04 { return (s) }
05 ELSE

06 {
07 IF (F = ∅) THEN return (⊥)
08 ELSE

09 { f := choose(F); F := F− {f};
10 return (〈 class({x ∈ s : f(x) = v0}),

. . . ,
class({x ∈ s : f(x) = v|cod(f)|})〉);

11 } FI
12 } FI
13 }

Figure 5.4: Hunt’s Algorithm for Finding Classifier Trees

algorithm is to divide and conquer until all examples can be classified (see the
recursive call on all induced classes in line 10). But the problem with it is that it
involves a non-deterministic choice in line 9. Different features usually differ in
their feature entropy relative to t so it seems a good idea to choose the feature
with maximum information gain. Therefore, the idea behind Tdidt is simply
to take Cls and add an information gain heuristic:

1. The root of the decision tree subsumes all entites x ∈ s.
We choose the f ∈ F from which we expect a maximum information gain
and create successor nodes for each f(x) ∈ fq.

2. Now check the nodes left to right:

(a) If all entities subsumed by the current node either belong to s+ or
to s−, label the node 1 or 0 respectively.

(b) Otherwise, recursively choose the next f ∈ F which does not occur on
the path from the current node back to the root and create successor
nodes for each f(x) ∈ fq. If there is no attribute left, stop and report
“Unsuccessful attempt”.

Exercise 5.10 (�) In the algorithm above, only features that have not been used
yet are taken into account in step 2.(b). This sure makes the algorithm more efficient,
but will the result change if we consider all features? Why?

Figure 5.5 shows the most famous decision tree: A decision tree is built to
describe a large set of observations whether one should go for playing tennis

v. July 19, 2010(c) m.e.müller

5.3. INDUCTION OF DECISION TREES 103

depending on the current weather conditions. The data used for inducing this
tree is are weather reports for the past two weeks:

Day Forecast Temperature Humidity Wind t
1 sunny high high no 0
2 sunny high high yes 0
3 overcast high high no 1
4 rainy med high no 1
5 rainy low high no 1
6 rainy low low yes 0
7 overcast low low yes 1
8 sunny med high no 0
9 sunny low low no 1

10 rainy med high no 1
11 sunny med low yes 1
12 overcast med high yes 1
13 overcast high high no 1
14 rainy med high yes 0

As one can easily see, s+ = {3, 4, 5, 7, 9, 10, 12, 12, 13} and s− = {1, 2, 6, 8, 14}
which makes 9 instances for t(x) = 1 and 5 instances for t(x) = 0. In figure 5.5,
every node is labelled with a tuple

〈
p
n

〉
with p being the number of positive and

n being the negative instances in this node.

GFED@ABC9
5

f=s

xxrrrrrrrrrrrrrrrr

f=o

��

f=r

&&LLLLLLLLLLLLLLLL

GFED@ABC2
3

h=l
��

h=h

��:::::::::
GFED@ABC4

0
GFED@ABC3

2

w=y

�����������

w=n

��
GFED@ABC2

0
GFED@ABC0

3
GFED@ABC0

2
GFED@ABC3

0

f is the forecast (sunny, rainy or overcast), h is the humidity (low
or high) and w is the wind (yes or no).

Figure 5.5: The Famous Golf Player’s Example

All the sum of all positive numbers and all negative numbers in successor nodes
equals the numbers in their parent node. In leaf nodes, either p = 0 or n = 0,

v. July 19, 2010(c) m.e.müller

104 CHAPTER 5. INFORMATION GAIN

and the sum of all numbers in all leaf nodes is 14. So every node N in a decision
tree subsumes a certain subset of elements.
Let us now take a more formal look at decision trees. We define:

Definition 5.5 — Decision Tree.Decision Tree

A decision tree consists of decision nodes and leaf nodes (class node). A
decision node Nf carries the name of a feature and edges to a set of successor
nodes; one for each possible value of f :

Nf := 〈f, {Ni : i ∈ |cod(f)|}〉 (5.8)

We call a node N a leaf node, if it has no successors. It represents the set of all
objects which take a value y as defined by the edge from its parent node under
the feature defined by its parent node:

Ny := 〈y, s〉 (5.9)

where s ⊆ U (see definition of coverage). Note that this definition is entirely
descriptive and that it does not give a recipe to build a decision tree.

For a better reading, we denote leaf nodes by simple capital letters like N
and decision nodes Nf with indices denoting the feature f that determines its
sucessor nodes. For a decision node Nf we refer to its successor nodes by Ni
where i ∈ |cod(f)| or Ny with y ∈ cod(f).
So whenever a decision tree has more than just one leaf node, it must have
at least one decision node. Then, the topmost decision node is the decision
tree’s root node. The tree for the golf players’ example in figure 5.5 is formally
represented as:

〈
f,



〈
h,

{
〈cst, {x ∈ U : f(c) = s ∧ h(x) = t}〉
〈csh, {x ∈ U : f(c) = s ∧ h(x) = h}〉

}〉
,

〈co, {x ∈ U : f(x) = o}〉 ,〈
w,

{
〈cry, {x ∈ U : f(c) = r ∧ w(x) = y}〉
〈crn, {x ∈ U : f(c) = r ∧ w(x) = n}〉

}〉

〉

(5.10)

Obviously, a node in a decision tree “contains” a set of objects x ∈ U . The case
is clear for leaf nodes—they do not possess successor nodes but only a subset
s ⊆ U . But none of its elements occurs in any other set of any other leaf. As
far as decision nodes are concerned, we simply define the set of objects in them
as the set of all objects in all the leaf nodes under this decision node. Let us
turn this simple idea into a satisfying definition:

Definition 5.6 — Node Coverage.Node Coverage

A decision node Nf covers or subsumes all elements covered by all of its suc-
cessor nodes: Let Nf be the root node of a tree. Then,

cvr(Nf) = cvr(〈f, {Ni : i ∈ |cod(f)|}〉) (5.11)

:=
⋃

y∈cod(f)

cvr(Ny) = U (5.12)

v. July 19, 2010(c) m.e.müller

5.3. INDUCTION OF DECISION TREES 105

where for leaf trees,

cvr(Ny) = cvr(〈y, s〉) = s ⊆ U. (5.13)

We use cvr to determine the (sub-) set of elements that satisfy the conditions
formulated along the edges of the tree.

Note that the coverage sets of all leaf nodes (and all nodes on the same layer of
the tree) are pairwise disjoint and that their union always equals U . As we will
discover later, a decision tree is simply a layered representation of partitions of
increasing granularity.

Example 5.6 The decision tree in figure 5.5 has five leaf nodes and three
decision nodes. The root node is Nf , with cvr(Nf) = s and three successor
nodes Ns, No, and Nr. No happens to be one of the leaf nodes with cvr(No) =
{3, 7, 12, 13}. Ns = Nh and Nr = Nw are decision nodes with cvr(Nh) =
{1, 2, 8, 9, 11} and cvr(Nw) = {4, 5, 6, 10, 14}. They are all leaf nodes.

Exercise 5.11 ♦ Determine the coverage of the remaining four leaf nodes.

There is an extended graphical notation that adds information about the number
of subsumed objects with respect to their classification: We agree on denoting
all values

|cvr(Nf) ∩ c|

for all c ∈ c. In figure 5.5, for example, each node is labelled GFED@ABCp
n where p

is the number of elements of U subsumed by Nf and for which t(x) = 1 and
n is |cvr(Nf) ∩ {x ∈ U : t(x) = 0}. This comes in quite handy in binary
classification tasks; for larger cod(t) one has to specify the labelling carefully
(see the examples on page 5.9).

Finally, we need to define the semantics of a decision tree: what is the hypothesis
defined by a node?

Definition 5.7 — Decisive tree hypothesis.
Decisive tree

hypothesis
Every node Nf in a decision tree represents a hypothesis hNf

:

hNf
(x) = mcvt(cvr(Nf)) (5.14)

This means that every node is labelled with the majority of target classifications
(see figure 5.6) and every decision node inherits the majority vote from the sum
of its successors.

Example 5.7 The leaf node hypotheses of the tree in figure 5.5 are, reading
the front from left to right: hNl

= 1, hNh
= 0, hNo = 1, hNy = 0, and hNn = 1.

Exercise 5.12 ♦ Determine the hypotheses represented by the decision trees!

v. July 19, 2010(c) m.e.müller

106 CHAPTER 5. INFORMATION GAIN

Top-Down Decision Tree Induction
Inducing a decision tree means to recursively partition the set of all objects by equiv-
alence relations represented by the features of the underlying information system. In
each step, the feature chosen for partitioning is the one with maximum information
gain.

From section 5.1 we know that the best feature to choose in each step is the
one with maximum information gain. Accordingly, we can now formulate an
algorithm for decision tree induction as shown in figure 5.6: Starting with the

00 proc tdidt(s,F)
00 {
00 IF (entropyt(s) = 0) THEN % c.f. Defn. (5.5)
00 { return (s) };
00 ELSE

00 {
00 f = arg max{gaint(f, s) : f ∈ F} % c.f. Defn. (5.15)

00 s′′ := {}
00 FORALL (v ∈ cod(f)) DO
00 {
00 s′ := tdidt({x ∈ s : f(x) = v} ,F− {f});
00 s′′ := s′′ ∪ {〈f, v, s′〉};
00 } DONE
00 } ENDIF
00 return (s′′)
00 }

Figure 5.6: Top Down Induction of Decision Trees

root node (i.e. a top decision node) F that covers all objects described by our
sample, we recursively choose the feature with maximum information gain to
split the current node into successor nodes where each one represents an equiv-
alence class of objects with respect to this feature. We continue from left to
right until we have classified all objects (i.e. all leaf nodes have zero t-entropy or
until we run out of features). Finally, we can define the hypothesis represented
by a tree Nf . For known elements x of our universe, the case is simple: we
take all the leaf trees and determine the one which contains x. There is exactly
one such leaf node N and we then apply a majority voting to assign a target
label to x. If all the leaves Nc only contain subsets of target classes (formally
spoken: if for all Nc it holds that Nc ⊆ c ∈ c) then the majority is always 100
per cent. Things are a bit more complicated if we want to determine h(x) for
some x /∈ cvr(Nf). Then, we simply determine x’s value under f and stuff it
into the cover set of the according successor node. We repeat this until x arrives
in a leaf node—and then we return the majority vote again of this leaf.

v. July 19, 2010(c) m.e.müller

5.4. GAIN AGAIN 107

This algorithm already motivates an idea towards decision tree pruning: If the
error of a majority vote does not dramatically increase when pruning away all
successors of a decision node, then why keep them at all?

Exercise 5.13 (♦) In definition 5.7, the hypothesis is defined by the sum of the
majorities of the successors. The set of subsumed nodes is defined via set union. Why
can we safely define the hypothesis equationally whereas |s ∪ s′| ≤ |s|+ |s′|?
Exercise 5.14 (�) Reproduce the decision tree in figure 5.5 by computing all neces-
sary entropies and gains for all the given features.

Exercise 5.15 (♦�) Build a decision tree from the following information system:

s f g h t s f g h t

◦ h 0 0 1 � s 4 0 1

� h 4 45 0 4 h 3 0 0

I s 3 90 1 � h 3 90 1

� h 3 270 1 J s 3 270 0

• s 0 0 1 � s 4 315 0

♦ h 4 180 0 N s 3 0 0

Yet, there remain a few open questions: We will not always be able to create
leaves that are subsets of either s+ or s−. What shall we do then? And, even if
we do have enough different features, is it always a good idea to fully grow the
tree? After all, a tree with one hundred per cent accuracy is likely to be overfit
and a tree with leaves that cover only one element each surely is nonsense. But
before considering to grow smaller trees only or cut large trees down we consider
a few improvements of the gain function.

5.4 Gain Again

The problem with keys is that they are unique. It certainly is not a problem
for your door key, and it is not a problem for keys as they are used in database
systems. Keys help to quickly get access to a unique item.
A feature f ∈ F is called a key feature, if it is injective: f(x) = f(y) =⇒ x = y.
In such a case, s/Rf is a set of singletons, and a singleton set is trivially a set
with no entropy in it. As a consequence, applying a key feature f always results
in maximum information gain.
But key features are rather identifiers than properties that carry information:
Passport numbers do not correlate to names or the places the according person
lives; and course numbers do not always correlate to the course contents. Ob-
jects can be identified by keys, but they are not described by them. In other
words, they have no meaning.
So if the gain function delivers a maximal value for key features, it simply
over-estimates the amount of information in them. In fact, the more values a
feature has, the more the gain function as defined in equation (5.7) tends to
over-estimate its information. It seems a good idea to penalise features with
“too many” values. This leads to the following definition:

v. July 19, 2010(c) m.e.müller

108 CHAPTER 5. INFORMATION GAIN

Definition 5.8 — Normalized Gain, gainnorm
t (f, s).

Normalized Gain,
gainnorm

t (f, s)
Normalized gain is defined as the gain function gain weighed with the expected
amount of information of f as estimated by the number of its values:

gainnorm
t (f, s) =

gaint(f, s)

log2 |cod(f)| (5.15)

So gainnorm
t (f, s) can be understood as normalised version of gaint(f, s) with

respect to f ’s expressiveness.

It is only very rarely the case that f actually takes all the values with equal
probabilities: Even if there are many values, f will most likely have a non-
uniform distribution, otherwise it would be a not very informative feature. As
a consequence, gainnorm

t (f, s) now tends to underestimate a feature’s utility.

Example 5.8 Let s = {x ∈ N : 1 ≤ x ≤ 100} be the set of the first 100
natural numbers and t(x) = 1 if and only if x is odd. Considering 1 (x) = x,
s/R1 is {{x} : x ∈ s} and cod(1) = s. Let prime(x) be 1 if and only if x is a
prime. Then, cod(prime) = primeq = 2 = {1,0} and

s/Rprime =

{
{x ∈ s : x = a · b ∧ a 6= b ∧ a, b ∈ s} ,
{x ∈ s : (x = 1) ∨ (x = a · b ∧ prime(a) = 1 ∧ a, b ∈ s− {1})}

}
Since there are 25 primes in the first 100 natural numbers, We calculate entropyid(s) =
0 < entropyprime(s) < 1 = entropyt(s). Next, entropyt(1 , s) = 0 < entropyt(prime, s) ≈
0.473 < 1 = entropyt(s). The gain functions then deliver

gaint(1 , s) = entropyt(s)− entropyt(1 , s) = 1− 0 = 1

gaint(prime, s) = entropyt(s)− entropyt(prime, s) ≈ 0.527.

Clearly, the gain by 1 is 1, because 1 induces a partition of singletons. The gain
by prime however is much less: The set of primes contains one even number and
24 odd numbers; the other class 49 even and 26 odd numbers. We now compute
the normalised gain:

gainnorm
t (1 , s) =

gaint(1 , s)

log2 |s/Rid|
=

1

log2 100
≈ 0.151

gainnorm
t (prime, s) =

gaint(prime, s)

log2 |s/Rprime |
=

1− entropyt(prime, s)

log2 2
≈ 0.527

Now, the primes appear to be a much better predictor for odd numbers.

There is a huge problem with codoamin size weighted information gain: If a
feature f has a very large codomain but takes only very few different values,
then gainnorm

t (f, s) underestimates. Supposing that |cod(f)| � |fq| it holds that

gaint(f, s)

|cod(f)| <
gaint(f, s)

log2 |fq|
.

v. July 19, 2010(c) m.e.müller

5.5. PRUNING 109

Therefore it seems much more reasonable to take the cardinality of the range
of f as a normalising factor. Thinking a bit further we can find an even better
normalisation. Consider fq = {x, y} and suppose |pfx| = 1 and |pfy| = |s|−1. In
such a case f helps to discriminate only one single object from all the others: its
information content is poor. So instead of statically penalizing a feature f by
the size of its codomain or range, it appears much more reasonable to take into
account the distribution of the feature values—and this is again is measured in
terms of entropy:

Definition 5.9 — Gain Ratio. Gain Ratio

We define the gain ratio of a feature f ∈ F as its gain in relation to its split-
ting information. We compute the gain ration as a fraction of the actual gain
gaint(f, s) (with respect to t) and the information of f :

gaininfo
t (f, s) =

gaint(f, s)

entropyf (s)
(5.16)

One can, of course, define many different gain functions; one for every problem
domain. But one must always be aware of the biased introduced by the defini-
tion. For example, gaininfo

t (f, s) is just the same as gaint(f, s), if we assume the
entropies of all features to be 1. Also, if all features have the same number of
possible values, then gainnorm

t (f, s) is the same as gaint(f, s). If we know that
a certain assumption is true on our data then we can speed up the learning
process considerably. If our knowledge of the domain is rather limited, every
bias also limits the possible knowledge we want to discover.

Exercise 5.16 (♦-�) Solve exercises 5.7, 5.8, 5.14, and 5.15 using all the different
gain functions we have defined! — You might want to voluntarily solve exercise 5.9
first.

But even the most sophisiticated gain measure will not help to overcome the
biggest problem: the “better” a tree for classification, the bigger the chance for
overfitting. We pick up again the idea from the end of the previous section:
With a highly accurate or simply huge tree we want to know whether we shall
prune the tree—and, if so, how we can prune it.

5.5 Pruning

[?] describes an observation he made during a test run:

[... Given] an artifical [random] data set with 10 [binary] attributes
[...] with equal probability. The [target] class was also binary, 1 with
probability 1/4, 0 with probability 3/4. One thousand randomly
generated test cases were split into a training set of 500 and a test set
of 500. From this data, C4.5’s initial tree building routine produces
a nonsensical tree of 119 nodes that has an error rate of more than
35% on the test cases.

v. July 19, 2010(c) m.e.müller

110 CHAPTER 5. INFORMATION GAIN

It is clear that learning from random noise is nearly impossible.6 Yet, the most
interesting fact is that the resulting tree consists of 119 nodes and only reaches
an accuracy of 65%. Since learning also requires some compression, it could be
that a much smaller tree does not produce significantly worse results. As we
already know it is reasonable to return a suboptimal hypothesis rather than an
overfit one.

Pruning
Exhaustive decision trees tend to be (1) too big in relation to their accuracy, or (2)
they even overfit (i.e. perform worse on test data). Accordingly, one would like to
restrict tree growth or prune a fully grown tree afterwards. This way, the predictive
accuracy/tree complexity can be increased and overfitting decisions can be cut off.
Prepruning uses error/complexity measures to stop the recursive deepening of a tree
while postpruning allows to transform a tree into rules and prune individual rules or
even only parts of rules.

An overly specific tree can be pruned by two different methods: First, during
tree growth (that is, we stop the inductive tree building process prematurely),
and second after exhaustive tree construction. These two methods are called
pre– and postpruning, respectively:

• Pre–Pruning means to abort the tree induction process as soon as some
criterion is fulfilled (it is a bit like growing Bonsai) whereas

• Post–Pruning requires exhaustive growth and post-mortem pruning (which
is a bit like clearing the rain-forest).

In both cases the pruning methods can fail to produce a proper tree–cut.
When pre–pruning, one can stop growing the tree if an added branch would not
result in some information gain that is beyond a certain threshold (which again
can be chosen statically or dynamically). Other simple heuristics are based
on maximumn number of nodes or leaves, branches per (sub-) tree or simply
leaf size. [?] proposes a χ2–test for significance of further branching a node.
A completley different method of prepruning is some kind of a validation bias
which tells us when a growing tree is considered to be good enough. Either way,
prepruning is always myopic: Since information gain decreases with tree depth,
we can be sure not to lose more information as gained in the last step but it
could be we stop just a few steps too early.
Postpruning means to first grow a tree and then prune it. It can be regarded
to as a generate-and-test method with all its advantages and disadvanteges:

[...] but this cost [of postpruning] is offset against benefits due to
a more thorough exploration of possible partitions. Growing and
pruning trees is slower but more reliable. ([?])

In the following sections we will present two kinds of post pruning: Reduced
error pruning defines an error estimate on decision trees (or rather their nodes).
Then it prunes away leaves until an error threshold is reached. A completely

6Still, some people try, [Müller, 2008].

v. July 19, 2010(c) m.e.müller

5.5. PRUNING 111

different approach first disassembles the tree into an unordered set of rules.
Then, rule post pruning tries to drop irrelrevant rules or rule antecedents in
order to generalise the rule set.

5.5.1 Reduced Error Pruning

Reduced error pruning cuts off subtrees (leaves or entire subtrees for internal
nodes) to reduce the error of the hypothesis represented by that tree. In order
to evaluate a node’s error, one uses the following error estimate:

Definition 5.10 — Leaf/Node error rate. Leaf/Node error rate

Let N be a node in a decision tree.

1. If N is a leaf node, then

err(N, t) :=
|errset(N, t)|
|cvr(N)| (5.17)

where errset(N, t) := {x ∈ cvr(N) : hN (x) 6= t(x)}.

2. If Nf is a decision node, then it has a set of successor nodes N :=
{Ni : 0 ≤ i < |cod(f)|}. Similarly, we define:

errf (N,) t = γ(Nf)

∑
Ni∈N |errset(Ni, t)|

cvr(Nf)
(5.18)

γ(Nf) is a weight function with which the error estimate can be adjusted to the
branching factor (i.e. the cardinality of cod(f)), the depth of Nf , or any other
additional costs or benefits.

For now it suffices to take err(N, t) as an error measure that increases from root
to leaves (we will come back to this later). This is somehow counterintuitive,
but the reason for it is in the pruning algorithm we shall describe now. From
the monotonicity it follows that if we prune away a subtree, the error measure
overestimates the error in the remaining leaf by at least the depth of the pruned
tree. A top-down pruning algorithm is shown in figure 5.7.

Example 5.9 Recall our example domain as shown in figure 4.3. Now let
there be a a set s with |s| = 50 different geometric objects. We want to classify
them into four different classes: Diamonds, triangles, rhomboids, and ellipses;
i.e. cod(t) = 4. Let F = {v, l, c} where the features describe the number of
vertices of an object, the number of edges with equal length and curvatures7,

7With cod(c) = {1, 2, 3} we describe shapes with constant curvature, non-negative curva-
ture and arbitrary curvature.

v. July 19, 2010(c) m.e.müller

112 CHAPTER 5. INFORMATION GAIN

respectively. Now imagine tdidt(s, {v, l, c}) delivers a tree N as follows:

gfed`abc5 15
5 25

v(x)=4

xxrrrrrrrrrrrrrrrr

v(x)=3

��

v(x)=0

%%KKKKKKKKKKKKKKK

gfed`abc0 0
4 20

l(x)≥3

����������

2

��

l(x)=2

��::::::::

gfed`abc0 14
1 0

_^]\XYZ[5 0
0 5

c(x)=1

����������

2

��

c(x)=3

��8
8888888

_^]\XYZ[0 0
4 0

gfed`abc0 0
0 10

gfed`abc0 0
0 10

_^]\XYZ[2 0
0 1

_^]\XYZ[3 0
0 0

_^]\XYZ[0 0
0 4

The four quadrants in each node represent the number of objects for which:

t(x) = gfed`abc2 �
♦ ©

We assume γ(N) = 1. Then, all leaves except two nodes have zero error:

errs(_^]\XYZ[2 0
0 1

, t) =
1

3
errs(gfed`abc0 14

1 0
, t) =

1

15

The error estimates for the second layer of the tree are,

errs(_^]\XYZ[0 0
4 2

, t) =
4

24
=

1

6
errs(_^]\XYZ[5 0

0 5
, t) =

5

10
=

1

2

For the root node we obtain 5+15+5
50 = 25

50 = 1
2 .

Exercise 5.17 � Determine the node errors for the tree in figure 5.5!

We apply the pruning algorithm from figure 5.7 on the tree from example 5.9
and call prune(N) with N being the root node. Since 1

2 > ϑ, we call prune
recursivly on all of the root node’s successor nodes. For f(x) = a, the error is
1
6 ≤ 1

5 . Therefore, its successor nodes are pruned away. For f(x) = b it is 1
15 ,

too. But since it is a leaf node, there is nothing left to be pruned away. For
f(x) = c it is still 1

2 which is why we need to call prune recursively on all of its

v. July 19, 2010(c) m.e.müller

5.5. PRUNING 113

01 proc prune(N,ϑ)
02 { IF (errs(N, t)) ≤ ϑ) THEN

03 { return(N) };
04 ELSE

05 { FOREACH Ni ∈ sucessors(N) DO

06 { Ni := prune(Ni, ϑ) };
07 DONE

08 return (N);
09 } ENDIF
10 }

Note that when returning N
in line 8, its value has changed
since the procedure call be-
cause of the reassignment of
Ni in line 6.
Simple improvements include
a dynamic change of ϑ in line
6 or an adaptation of γ used
in errs(N, t)).

Figure 5.7: Top-Down Reduced Error Pruning

successor nodes. The resulting tree after reduced error pruning is

gfed`abc5 15
5 25

v(x)=4

��~~~~~~~~~~

v(x)=3

��

v(x)=0

%%KKKKKKKKKKKKKKK

gfed`abc0 0
4 20

gfed`abc0 14
1 0

_^]\XYZ[5 0
0 5

c(x)=1

����������

2

��

c(x)=3

��8
8888888

_^]\XYZ[2 0
0 1

_^]\XYZ[3 0
0 0

_^]\XYZ[0 0
0 4

Another method for reduced error pruning is to start at the leaf nodes, prune
a node and all of its brothers, if the error in the parent node does not increase
by more than a certain threshold. The advantage of this algorithm is that we
do not recompute error measures as in algorithm shown in figure 5.7.
There are many related error measures and according algorithms; the presented
error complexity measure is used in Cart, [?]. [?] and [?] describe a minimal
error pruning method and [?] gives a empirical comparison of different such
pruning methods.

5.5.2 Rule-Based Post-Pruning

A completely different idea is to translate a tree into a set of rules and then
prune the rule set. This method has a huge advantage: one can delete entire
rules from a set of rules and rules can be weakened by pruning their antecedents.

v. July 19, 2010(c) m.e.müller

114 CHAPTER 5. INFORMATION GAIN

Rule Representation of Decision Trees
A decision tree can be expressed by a set of rules where each rule represents a path in
the tree. The premises of each rule is a conjunction of all the feature–value restrictions
along the edges and the conclusions consist of the hypotheses represented by the leaf
nodes.

Decision trees can be translated into a set of rules very easily. As a tree is a
hierarchical partitioning with respect to increasingly fine grained equivalence
relations, tree traversal from root to leaf is simply a conjunction of predicates
derived from the intersections of the equivalence relations induced by the re-
spective features.

Example 5.10 Consider the following binary decision tree:{
�, ,2,3,2, •,�

}
vertices(x)=4

wwnnnnnnnnnnnn
vertices(x) 6=4

%%LLLLLLLLLL

{
�,2,3,2,�

}
colour(x)6=w

zzuuuuuuuuu
colour(x)=w

((PPPPPPPPPPPP
{•, }

{
�,�

}
{2,3,2}

This tree can be interpreted as a set of four rules:

(vertices(x) = 4) −→ tetragon(x)
(vertices(x) = 4) ∧ (colour(x) = black) −→ rhombus(x)
(vertices(x) = 4) ∧ (colour(x) = white) −→ square(x)
(vertices(x) 6= 4) −→ cirlce(x)

The root node represents the fact that everything in our domain is a geometric
object: object(x).

Formally, every leaf in a decision is connected to the root along a path through
several decision nodes along edges that define an object’s value for the decision
node’s feature:

Definition 5.11 — Rule Representation of Decision Trees.Rule Representation
of Decision Trees

Let Nf be the root node of a decision tree. As hypothesis it always returns the
most common class value. We define

ϕ(Nf) :=
{

(h(x) = hNf
(x))

}
(5.19)

This set, when read as a set of literals, is a Horn clause with an empty premise:

1 −→ h(x) = hNf
(x)

Every successor node has the feature–value restrictions along its path as premises.
Let Mj be the j-th successor of Ni so that Mj subsumes all those objects covered

v. July 19, 2010(c) m.e.müller

5.5. PRUNING 115

GFED@ABCNf

v0
~~}}}}}}}}}

vi

��
vnf

!!CCCCCCCCC

GFED@ABCN0
··· GFED@ABCNi

w0

~~}}}}}}}}}}}
wj

��
wng

!!CCCCCCCCCCC
··· ONMLHIJKNnf

GFED@ABC?>=<89:;Mj

1 −→ (h(x) = hNf
(x))

(f(x) = vi) −→ (h(x) = hNi
(x))

(f(x) = vi) ∧ (g(x) = wj) −→

(h(x) = hMj
(x))

Figure 5.8: Converting a decision tree into a set of decision rules

by Ni for which g(x) = wj . Then,

ϕ(Mj) := ϕ(Ni) (5.20)

−{(h(x) = hNi(x))}
∪
{
¬(g(x) = wj), (h(x) = hMj (x))

}
This expression adds the literal g(x) = wj to the set of premises and changes
the tree hypothesis to hypothesis represented by Mj .

An example is shown in figure 5.8. Let us consider the tree from figure 5.5
again.

Example 5.11 We build the tree from beginning at the root node all the
way down to the leaves:

ϕ(Nt) = {(h(x) = hNt
(x))}

The root node is divided by forecast into three successor nodes. The first one
is Ns with

ϕ(Ns) = ϕ(Nt)− {(h(x) = hNt(x))} ∪ {¬(forecast(x) = s), (h(x) = hNs(x))}
= (forecast(x) = s) −→ (h(x) = mcvt(cvr(Ns)))

= (forecast(x) = s) −→ (h(x) = 0)

The next step is to partition Ns by humidity :

ϕ(Nl) = ϕ(Ns)− {(h(x) = hNs
(x))} ∪ {¬(humidity(x) = l), (h(x) = hNl

(x))}
= (forecast(x) = s) ∧ (humidity(x) = l) −→ (h(x) = mcvt(cvr(Nl)))

= (forecast(x) = s) ∧ (humidity(x) = l) −→ (h(x) = 1)

Now the rule set {ϕ(Ns), ϕ(Nl)} obviously is inconsistent. But as long as we
can’t prove that the weather is sunny with low humidity, we could still try

v. July 19, 2010(c) m.e.müller

116 CHAPTER 5. INFORMATION GAIN

and prove sunny forecast only. The first, more general rule represented by
Ns recommends not to play golf if it’s sunny. The second, more specific rule,
specifies an exception: Even if we shan’t play golf because it is too sunny (i.e. in
any case covered by the Ns) we may go though and play golf—but only if the
air is not too humid.

Exercise 5.18 � Determine the rule set representing all paths in the tree in figure
5.5!

In oder to apply rule post pruning to a decision tree, we:

1. Induce a full tree (unbiased)

2. Translate the tree into rules

3. Prune the rules instead of the tree

4. Sort and/or translate rules back into a tree

With rule-based postpruning we are able to rune away subtrees just as we did
in prepruning. In addition, we can also delete parts of paths which, graphically,
does not result in a tree any more but rather in a forest. To give you an idea,
we first examine geometric shape domain again.

Example 5.12 Recall the decision tree from example 5.10. Obviously, the
feature colour is sufficient to discriminate squares from non-squares but it is not
sufficient to tell circles from tetrangles in general (and specifically, rhombuses):
All the squares are white (�,2,2) and none of the other shapes are white. On
the other hand, and � or � are black but only the former one is a circle whilst
the latter two shapes are rhombuses. So whenever discriminating squares from
non-squares we can safely drop the restriction to tetragons (vertices(x) = 4).
Let us take at the leaf nodes. From

(vertices(x) = 4) ∧ (colour(x) = black) −→ rhombus(x)
(vertices(x) = 4) ∧ (colour(x) = white) −→ square(x)
(vertices(x) 6= 4) −→ cirlce(x)

we delete the first premise of the second rule and obtain

(vertices(x) = 4) ∧ (colour(x) = black) −→ rhombus(x)
(colour(x) = white) −→ square(x)

(vertices(x) 6= 4) −→ cirlce(x)

The result is a tree that is not a proper decision tree anymore! And if x ∈
{2,3,2} =⇒ t(x) = 1, then we can drop the entire root decision tree:

White −→ Square

¬White −→ ¬Square

v. July 19, 2010(c) m.e.müller

5.6. CONCLUSION 117

{
�, ,2, �,2, •,�

}
vertices(x)=4

wwoooooooooooo
vertices(x)6=4

��

{
�, ,2, �,2, •,�

}

colour(x) 6=w

��

{
�,2, �,2,�

}
colour(x)=w

��

{•, }

{
�,�

}
{2, �,2}

Figure 5.9: Rule Pruning results in a forest of trees

This example shows that rule-based postpruning—despite its increased compu-
tational effort due to full tree expansion—has at least three important advan-
tages over ordinary (pruned) decision trees:

• Even though trees are a very simple and scrutable representations of hy-
potheses, small rule sets are better suited for conceptual descriptions.

• Based on rule sets and appropriate operators (rule and literal dropping)
we can formulate both more specific and generic hypotheses with lesser
error.

• With rule sets we can express that are not representable by a single deci-
sion tree at all

The “forest” of trees corresponding to the rule sets from the previous example
is shown in figure 5.5.2. After the second pruning step, the forest in figure 5.5.2
finally implodes to {

�,2, �,2,�
}

colour(x)=w

��
{2, �,2}

5.6 Conclusion

This chapter presented a purely relational view on a popular machine learning
method, namely decision tree induction. The various algorithms are nothing
else than a heuristically driven search for a partitioning of the base set with
respect to a decision attribute (i.e. the target function). The relational view
makes it much easier to understand several interesting properties of decision
trees. ⊕

v. July 19, 2010(c) m.e.müller

118 CHAPTER 5. INFORMATION GAIN

There remain a few open questions.
First, we have not explained how to deal with (quasi–) continuous feature values.
If, for example, the humidity in figure 5.5 is not described by three qualitivative
linguisitic variables but by an integer from the interval [0, 99], then we would
have to split a node in up to 100 successor nodes which is not really informative.
Instead, on applies a quantisation algorithm like binning first. This yields a
“discretised” set of few linguisitic variables each of which represents an interval
over the domain. This actually is a lossy representation shift—and, in fact, one
can observe quite often that results improve from deliberate information loss
through quantisation. But this will be discussed later.
To conclude this section on decision trees, we summarise:

1. decision trees are a very simple and, thus, widely accepted method for
representing classifiers.

2. Objects of the domain are described by attribute–value pairs

3. All features have discrete codomains. This can be forced by quantisation.

4. Tdidt can cope with noisy training data due to its entropy based measure
of information

5. An exhaustive search for smallest, s–consistent tree is NP–complete as
shown by Hyafil and Rivest in 1976, but an information gain guided search
is a very quick greedy approach.

Finally, we again stress the fact that entropy usually assumes an uniform dis-
tribution over all possible system states. This is taken into account by a prob-
ability weighted sum in Shannon’s measure. In thermodynamics we operate
with mutually independent states of closed systems. In a domain of informa-
tion processing, it is hardly the case that messages in a sequence are mutually
independent—and it is not clear what it means for an information system to be
closed (an issue that might point to the frame problem in Ai again). Therefore,
decision tree induction is an efficient but biased tool for relational knowledge
discovery.

v. July 19, 2010(c) m.e.müller

Chapter 6

Rough Set Theory

Any algorithm we have come across so far makes several (se-
vere) assumptions on the domain. Together with the knowl-
edge we feed into our learning systems, the representation
itself and the implementation of algorithms may result in
heavy biases. But what if we just look at the objects we are
given and their relational properties? Why should we try
to discriminate indistinguishable objects instead of inter-
preting indiscernability as “being–of–the–same–breed”—
whatever our current knowledge of different existing breeds
is?

At the beginning of the last chapter we discovered that features induce equiv-
alence relations and that equivalence relations create blocks of indiscernible
objects; i.e. “small blocks of similar, equal, or equivalent things”. Any two ob-
jects in an equivalence class cannot be distinguished from each other, but two
objects from different classes can be well discriminated. For our informations
systems usually provide a large number of features, we also have many equiva-
lence relations. Furthermore, any intersection of any subset of such equivalence
relations forms a new equivalence relation, too. And since equivalence relations
are relations, and since relations are sets, it appears an interesting idea to con-
sider the intersection of equivalence relations as a much finer and more detailed
partitioning of our base set.

6.1 Knowledge and Discernability

For an arbitrary set of equivalence relations R = {Ri : i ∈ n}, the intersection⋂
i∈n

Ri (6.1)

is an equivalence relation, too.

119

120 CHAPTER 6. ROUGH SET THEORY

Exercise 6.1 That early already? Yes, that early! Prove that the intersection of
two equivalence relations is an equivalence relation! — Since you have read the first
chapter, this exercise is not even worth a single ♦.

Now that the intersection of two equivalence relations somehow corresponds to
a logical conjunction, it is clear that the blocks get smaller since the premises
become more special (we already discovered this fact at the end chapter 5).
Accordingly, the most detailed knowledge we can get from R is

⋂
R:

Definition 6.1 — Indiscernability Relation.Indiscernability
Relation

For a set R of equivalence relations over s we call

¯̄R =
⋂
R∈R

R =
⋂

R (6.2)

the indiscernability relation over R. Of course, ¯̄R is an equivalence relation.

Sometimes, we shall write x
R
= y :⇐⇒ x ¯̄Ry ⇐⇒ ∀f ∈ F : f(x) = f(y).

With given knowledge R we can examine s in terms of different partitions,
blocks and blocks of different partitions:

• Elements of s/R for any R ∈ R are called elementary categories.
They correspond to R–equivalence classes and determine the sets of ob-
jects that share the same value under the feature that induced R.

• Elements of s/ ¯̄R are called (R–) basic categories (wrt. R).

Any element of the quotient s/ ¯̄R is a set of objects which are indiscernible
using all the relations in R.

Since basic categories include the knowledge of several relations, they usually
are finer than elementary categories while elementary categories are coarser.

Exercise 6.2 � Prove that elementary categories are unions of basic categories, and
that a basic category is always a subset of exactly one basic category.

The finest partition of s—which is induced by ¯̄R—is what we call the (indis-
cernability) knowledge about s. More technically speaking, it forms a knowledge
base.

Definition 6.2 — Knowledge Base.Knowledge Base

For an information system I = 〈s,F, VF〉, we use R to denote the set of equiv-
alence relations induced by F:

Ri ∈ R⇐⇒ fi ∈ F and xRiy ⇐⇒ ∀x ∈ s : fi(x) = f(y)

Then, we call

K =
〈
s,R ∪

{
¯̄P : P ⊆ R

}〉
(6.3)

the knowledge base (of R on s).

Exercise 6.3 (�) Show that ¯̄R =
⋂{

¯̄P : P ⊆ R
}

!

v. July 19, 2010(c) m.e.müller

6.1. KNOWLEDGE AND DISCERNABILITY 121

Figure 6.1: A universe and two equivalence relations on it

A knowledge base does not contain any more information than the information
system from which it is derived—the only thing that makes knowledge from
information is that we are able to express the information in several ways. We
now shall see why.

Example 6.1 Figure 6.1 shows a set of objects and two equivalence relations
on it. Each equivalence class of the color- or shape relation forms an elementary
category. The left illustrutiona shows the equivalence classes with respect to
colour, the other one shows the shape-elemtary classes.

Indiscernability
An indiscernability relation describes all objects of the universe by means of all the
relational knowledge we have. Different objects that belong to the same equivalence
class of such an indiscernability relation are not distinguishable by any piece or the
entirety our knowledge.
If we are able to describe all the objects well enough, then we are interested in minimal
sets of knowledge that still suffice to distinguish different things from each other.

By intersecting the shape and colour-relation from figure 6.1 we obtain a much
finer partition of the set: we can, for example, discriminate dark squares from
white squares (which we could not without the knowledge of colours) and gray
circles from gray diamonds squares (which we could not without the knowldege
of shapes). This is shown in figure 6.2. Let us take a look at a further equiv-
alence relation: Imagine a feature vertices : U → N that describes the number
of corners of an object. The induced equivalence relation would then partition
our base set into three blocks: One containing all the circles (vertices(x) =
0), one containing all the diamonds, squares, rhombusesm and quadrangles

v. July 19, 2010(c) m.e.müller

122 CHAPTER 6. ROUGH SET THEORY

Figure 6.2: An Indiscernability Relation

(vertices(x) = 4), and one containing all the triangles (vertices(x) = 3); see
figure 6.3. As one can see, every block of the shape–partition is a subset of a
block of the vertices–partition. In other words, all elementary vertice–classes
are subsets of elementary shape–classes and speaking in terms of equivalence
relations, Rshape is a subset of Rvertices .

Exercise 6.4

� Prove that Rshape ⊆ Rvertices !

� Define the according knowledge base for the information system underlying the
examples in figures 6.1– 6.3.

Whenever we have more detailed knowledge (here: shape) that allows us to for-
mulate more accurate concepts, we usually say that the additional information
contributes to our knowledge by refining our previously rather rough conceptu-
alisations.1 This leads us to the following definition:

Definition 6.3 — Refinement.Refinement

For two sets P,R of equivalence relations we say that P is coarser (more gen-
eral) than R,

R � P if and only if ¯̄R ⊆ ¯̄P (6.4)

If P is coarser than R, then ¯̄R refines ¯̄P.

1An extreme case is where s/ ¯̄P = {{x} : x ∈ s}. Then, ¯̄P creates a set of singleton equiv-
alence classes and all objects x ∈ s are pairwise discernible using knowledge P.

v. July 19, 2010(c) m.e.müller

6.1. KNOWLEDGE AND DISCERNABILITY 123

Figure 6.3: Another equivalence relation (left)

The choice of � as a symbol for refinement is, as one can see in the definition,
motivated by the fact that the refined induced equivalence relation, when viewed
as sets of tuples, in fact is a subset of the coraser relation. This becomes
clear when representing the relations graphically in coincidence M(¯̄R) or kernel

matrices K(¯̄R) (see section 2.2.1). In order to have the reader become more
familier with the formal aspects (rather than just painting Venn-diagrams), we
shall now apply our definitions to a subproblem of our graphical example:

Example 6.2 Let K = 〈s,R〉 be an information system as follows:

s = {•,�,N, •,�,N, •,�,N, }
R = {Rcolor, Rshape, Rpolygon}

We choose P = {Rshape, Rpolygon} ⊂ R. Then,

s/ ¯̄P

= s/(
⋂

P)

= πshape · πpolygon
= {{•, •, •}, {�,�,�}, {N,N,N}} � {{•, •, •}, {�,�,�,N,N,N}}
= {{•, •, •}, {�,�,�}, {N,N,N}}
= πshape = s/Rshape

As one can see, the shape partition is finer than the polygon–partition.2

2The circled dot ’�’ stands for pairwise intersection: s0 · s1 :=
{
s′0 ∩ s′1 : s′0 ∈ s0, s′1 ∈ s1

}
.

v. July 19, 2010(c) m.e.müller

124 CHAPTER 6. ROUGH SET THEORY

So what if two sets of equivalence relations of a knowledge base have exactly
the same degree of coarsesness in the sense that one refines the other and vice
versa? From x ≤ y and y ≤ x we usually infer that x = y. Similarly, mutual
refinement defines equivalence of knowledge:

Definition 6.4 — Equivalence of Knowledge.
Equivalence of
Knowledge

R and P are called equivalent, if:

R ≡ P :⇐⇒ ¯̄R � ¯̄P ∧ ¯̄P � ¯̄R⇐⇒ ¯̄R = ¯̄P (6.5)

Then, s/R = s/P.

Note that P = R implies P ≡ R but not vice versa. This is a very simple
fact, but an important observation though: It expresses the fact, that the same
information contains the same knowledge, but that the same knowledge can be
expressed in different terms!

Keep in mind that ¯̄R = R!
Note that whenever we speak of a set R of equivalence relations, ¯̄R is an equivalence
relation, too. Therefore, if we consent to denote by R an arbitrary equivalence rela-
tion, there is no difference between P ≡ R or P = R, since P = ¯̄P = ¯̄R = R.
Nevertheless we will carefully distinguish between sets R of relations and relations
R. Therefore ¯̄R is a single relation (e.g. R := ¯̄R), but for a single relation R, ¯̄R is

not defined (whereas {R} = R is well-defined).

Example 6.3 Recall example 6.2: As one can see, Rshape � Rpolygon such
that πshape · πpolygon = πshape. We chose P = {Rshape, Rcolor} ⊂ R. Then,

s/ ¯̄P

= πshape · πcolor
= {{•, •, •}, {�,�,�}, {N,N,N}} · {{•,�,N}, {•,�,N}, {•,�,N}}
= {{•}, {�}, {N}, {•}, {�}, {N}, {•}, {�}, {N}}

Then,

{�,�,�} ∪ {•,�,N}
= {�} ∪ {�} ∪ {�} ∪ {•} ∪ {N}
= {�,�,�, •,N}

is the P = {Rshape, Rcolor}–category of squarish or dark objects.

We shall end this introductory section with a small remark: In most books on
rough set theory there are Venn-diagram-like examples for the concepts pre-
sented in this chapter. They all differ slightly from the figures 6.1- 6.4 in this
book. Take figure 6.1: The boundaries of the different equivalence relations do
not coincide, not even in cases where they create the same line of distinction
between discernible objects. The reason for this is that relations carry inten-
sional knowledge while discernability on object level carries information about

v. July 19, 2010(c) m.e.müller

6.2. ROUGH KNOWLEDGE 125

memberships; i.e. extensional knowledge. So if two collections of things (called
a set) are equal, then an object belongs to one of these collections if and only if
it belongs to the other collection as well. This called (elementwise or pointwise)
equality of sets. But if we understand sets as collections being defined in terms
of relations, the sets are defined by their meaning which is not the same as
their content. Accordingly, a set can be a subset of another when looking at it
elementwise—but it may also have an “empty” region outside the superset (see
figure 6.4 in the next section).

6.2 Rough Knowledge

Let us briefly recall the definition of a knowledge base: A knowledge base con-
tains all intersections of all subsets of our set of relations R. Accordingly,
R ∈ R → ¯̄R ⊆ R and all pairwise intersections of relations are elements of
K = 〈s,R〉, and so are the elements of the closure under intersections. The set
of equivalent relations is not closed under set union, but we can still a whole
lot of equivalence relations to our knowledge base: Let there be two elementary
classes from possibly different relations:

[x]P and [y]R

Then, χ([x]P ∪ [y]R) induces an equivalence relation of index 2. If we iterate this
process, we can construct equivalence relations for any union of basic categories
of ¯̄R. By using intersections to derive basic classes from elementary ones and
unions to form groups of basic categories we can define and describe a huge set of
subsets of s. This set is the set of concepts we can express—and it corresponds
to what we have called hypothesis space.

Data, Information and Knowledge
Information helps us to discriminate objects from each other. Knowledge, on the
other hand, allows us to operate on elementary categories to describe concepts by
conjunctions (intersection) and disjunctions (union) of basic properties. So

• Data is a set of representations of observations,

• information is what we need to define a structure on the data, and

• knowledge is the toolbox we have in order to define such a structure.

So data are instances of concepts, information is what tells us whether an object
belongs to a concept or not and knowledge is what allows us to define a concept.
Usually, there are different ways to describe the same concept.

6.2.1 Rough Approximations

We use these relations to define a set or concept c ⊆ s:
Definition 6.5 — Definability. Definability

A concept (i.e. a set) c is called R–definable, if there exists a set ċ ⊆ s such that
c equals the union set of all R-equivalence classes of all objects in ċ:

c is R−definable :⇐⇒ ∃ ċ ⊆ s : c =
⋃
x∈ċ

[x] ¯̄R.

v. July 19, 2010(c) m.e.müller

126 CHAPTER 6. ROUGH SET THEORY

Otherwise, c is called R–undefinable.
The dot notation ċ is an allusion to the point-wise definition of sets.

The set ċ is called a set of representatives and, of course, every element of an
equivalence class is a representative of its class: Let there be a classification
c = s/R. Then, a set ċ is a set of representatives for c (or, equivalently, for R),
if: ⋃

x∈ċ
[x]R = s and ∀x, y ∈ ċ : x 6= y −→ [x]R 6= [y]R

This allows us to reduce the amount of data required to store the information
from our underlying information system in two different ways:

1. Reduction by knowledge:
We already discovered that ∀R ∈ R : ¯̄R � R. Accordingly, the informa-
tion in I can be reconstructed by ¯̄R. We can extend I to K by adding all
possible concept descriptions using all possible subsets of relations in R.

2. Reduction by representatives:
Using the knowledge of K, a concept can be represented by “examples”
which stand for equivalence classes. By unison of the equivalence classes
represented by them the concept can be reconstructed

Example 6.4 (On the complexity of knowledge) Let us assume there is
a base set s with m elements in it. There are 2|s| subsets of s, so there can be
2m different classes. We want to describe one out of 2m concepts by using a
set of equivalence relations. Usually, we are given such a set of, say n, different
relations R = {Ri : i ∈ n}. But how many possible equivalence relations are
there on a base set of size m? The number of equivalence relations is the n-th
Bell number; in our case

B(n) =
∑
k∈n

(
n

k

)
B(k)

The Bell numbers increase at a truly exorbitant rate; for considerable small
sets s of size n = 20 one can already define more than 5 trillion (!) different
equivalence relations.
Let us examine the set of basic categories we can use to define a concept c ⊆ s
using a set R of relations: The number of basic categories equals the index of ¯̄R.
If we assume c to be definable at all there must exist a union of basic classes (or,
equivalently, a union of intersections of elementary classes) that equals c. This
expression needs not to be unique; even for fixed c and R there can be many
different ways to define c. The number of possible hypotheses that can be built

by union sets of basic categories is 2|s/
¯̄R|, i.e. 2 to the power of the index of ¯̄R.

Of course some of the unions sets will be the same but it does not affect the fact
that there are so many different ways to compute union sets. Let us call the set
of all these union sets Φ. To describe c in terms of some ϕ = c1 ∪ c2 ∪ · · · ∪ ck

v. July 19, 2010(c) m.e.müller

6.2. ROUGH KNOWLEDGE 127

(and recall, that c may be definable by a huge number of such unions) we can
pick a representative for every basic category ci in any of these descriptions.
This means in turn that there are

∏
i∈k |ci| different sets of representatives on

can use to describe ϕ.
These few number should demonstrate the infeasability of an uninformed brute
force method to discover knowledge. But they also demonstrate the vast amount
complexity hidden in knowledge—or, vice versa, it demonstrates that with rel-
atively little additional knowledge one can cover information of immanely addi-
tional complexity.

But what if our knowledge is not sufficient to describe x exactly? If x is only
nearly R–definable, we speak of approximate definitions:

Definition 6.6 — Lower/Upper Approximations, Rough set.
Lower/Upper

Approximations,
Rough setLet there be a concept c ⊆ s and an equivalence relation R. We define the lower

and upper R–approximation of c as follows:

[[R]]c := {x : x ∈ s ∧ [x]R ⊆ c} (6.6)

〈|R|〉c := {x : x ∈ s ∧ [x]R ∩ c 6= ∅} (6.7)

The R–boundary of a concept c is the set defined by the difference of the upper
and the lower approximation:

(|R|)c := 〈|R|〉c− [[R]]c (6.8)

The narrower this region, the closer our approximation to c. For a given set c,
the (R-)-rough (c-)set is defined as the tuple 〈[[R]]c, 〈|R|〉c〉.

We can define a rough characteristic function χR : ℘(s)→
{
0,1/2,1

}
as follows:

χR(c)(x) :=

 1, if x ∈ [[R]]c
1/2, if x ∈ (|R|)c
0, if x /∈ 〈|R|〉c

(6.9)

Lower and Upper Approximations
A set or a concept c usually has crisp boundaries: An object belongs to it or not.

But if there are two indiscernible objects x
R
= y, and one of them (say, x) is element

of c—is then y ∈ c, too?

• Yes it is,
. . . if all elements of [x]R are in c; i.e. if [x]R ⊆ c.

• Perhaps it is,
. . . if some elements of [x]R are in c; i.e. if [x]R ∩ c 6= ∅.

An equivalent definition of lower and upper approximations is:

[[R]]c :=
⋃
{c′ ∈ s/R : c′ ⊆ c} (6.10)

〈|R|〉c :=
⋃
{c′ ∈ s/R : c′ ∩ c 6= ∅} (6.11)

v. July 19, 2010(c) m.e.müller

128 CHAPTER 6. ROUGH SET THEORY

Figure 6.4: Lower and upper approximations of a concept

Quite obviously, it holds that:

[[R]]c ⊆ c ⊆ 〈|R|〉c. (6.12)

The lower approximation of a set is the union of all basic categories that are
fully included in c. This means, that if a basic category [x]R is a proper subset
of c, then x and all objects that are indiscernible from x are instances of c.
So whenever an object falls into the category [x] ¯̄R, then it must be an element
of c.3 The upper approximation of a concept c is the set of all objects that
belong to classes that intersect with c. So if some x ∈ c, then all objects y
which cannot be distinguished from x, belong to the upper approximation as
well. The reason is that we know that x is an instance of c. Then one might
induce that all other object that are indiscernible from x also may belong to
c. Since we are talking equivalence relations here, objects can be equivalent or
not—but there is nothing inbetween. This might make the idea behind upper
approximations a bit harder to grasp. It might be easier to understand when
weakening the notion of equivalence to similarity:4 If x belongs to c and y is
similar to x, then y could be an element of c, too. Figure 6.4 shows the lower
and upper approximations of a concept c in our running example.

Example 6.5 Again, consider K as in example 6.2. Let the (unknown)

3This why we use the notation [[R]] instead of R: x being an element of the lower approxi-
mation of a concept c neccessarily implies that x belongs to c. In modal logic, such operators
are denoted by boxes (2) or box-like symbols. The dual construction, a sufficiency criterion,
is represented by diamonds (�) which is why we shall use 〈|R|〉 for upper approximations.

4Which, formally, can be achieved by dropping the requirement of transitivity.

v. July 19, 2010(c) m.e.müller

6.2. ROUGH KNOWLEDGE 129

concept be defined in terms of the following objects:

c := {N,�,N, •} .

Then,

[[Rcolour]]c =
⋃
{s′ ∈ s/Rcolour : s′ ⊆ c} = {�,N, •}

[[Rshape]]c = [[Rpolygon]]c =
⋃
{s′ ∈ s/Rshape : s′ ⊆ c}

=
⋃
{s′ ∈ s/Rpolygon : s′ ⊆ c} = {}

It means that whenever an object is equivalent to �, N or • with respect to its
colour, then it definitely belongs to c—while information about shape does not
suffice to give a clear definition. On the other hand, the upper approximations
result in supersets of c:

〈|Rcolour |〉c =
⋃
{s′ ∈ s/Rcolour : s′ ∩ c 6= ∅ ⊆ c}

= {�,N, •} ∪ {�,N, •}
〈|Rshape |〉c = 〈|Rpolygon |〉c =

⋃
{s′ ∈ s/Rshape : s′ ∩ c 6= ∅ ⊆ c}

=
⋃
{s′ ∈ s/Rpolygon : s′ ∩ c 6= ∅ ⊆ c} = s

So the upper approximation of the colour relation will classify any gray or
black object as a member of c (which is wrong for � and •), but the upper
approximations of the remaining relations do not deliver any helpful information:
whichever shape an object has, it may or may not belong to c (because c contains
representatives of all possible shapes).

Now recall that ¯̄P for any set of relations P ⊆ R is a relation itself: Since
Rshape ⊂ Rpolygon , we know that ¯̄P ∩ {Rshape} ⊆ ¯̄P ∩ {Rpolygon}. So let P1 :=
{Rcolour , Rshape} and P2 := {Rcolour , Rpolygon}. Then,

[[¯̄P1]]c =
⋃{

s′ ∈ s/ ¯̄P1 : s′ ⊆ c
}

= {N} ∪ {•,�,N} = c

whereas

[[¯̄P2]]c =
⋃{

s′ ∈ s/ ¯̄Ps : s′ ⊆ c
}

= {•,�,N} ⊂ c

and

〈| ¯̄P2|〉c =
⋃{

s′ ∈ s/ ¯̄Ps : s′ ∩ c 6= ∅
}

= {N,�} ∪ {•,�,N} ⊃ c

Not surprisingly, finer relations contribute to more accurate approximations.

v. July 19, 2010(c) m.e.müller

130 CHAPTER 6. ROUGH SET THEORY

In the preceding example, we already made use of a fact that, even if it seems
obvious, deserves a lemma:

Theorem 6.1 (Inclusion of Relations carries over to Refinement) For any
P ⊆ R and R,R′ ∈ R it holds:

R ⊆ R′ ⇐⇒ ¯̄P ∩ {R} � ¯̄P ∩ {R′} ⇐⇒ P ∪ {R} ⊆ P ∪ {R′} (6.13)

Exercise 6.5 (�) Prove the “⇐=”-direction of the first equivalence in equation (6.13)!

We have already understood what it means for a concept to be definable using
an equivalence relation R. Now, upper and lower approximations provide us
with a tool for rough definability.

Definition 6.7 — Rough Definability.Rough Definability

We say that

1. c is R-definable, iff [[R]]c = 〈|R|〉c.
2. c rough wrt R, iff [[R]]c 6= 〈|R|〉c.

Exercise 6.6 (�) Is it true that if [[R]]c = c, then [[R]]x = 〈|R|〉c = c?

To complete this introductory section on the basic concepts of rough set data
analysis we need to explain what it means to deliver an approximation of a
classification rather than a single class. The definition is straightforward.

Definition 6.8 — Rough approximations of classifications.
Rough
approximations of
classifications Let there be a classification c = {ci : i ∈ k}. The (R-) rough (c-) approximations

are defined as the sets of all R-approximatinos of all ci:

[[R]]c := {[[R]]ci : i ∈ k} (6.14)

〈|R|〉c := {〈|R|〉ci : i ∈ k} (6.15)

The (R)-rough (c-) classification is the set of all R-rough classes:

{〈[[R]]ci, 〈|R|〉ci〉 : i ∈ k} (6.16)

As we have seen in example 6.5 already, upper and lower approximations can
be defined for indiscernability relations and, therefore, for sets of relations. We
write

[[R]]s := [[¯̄R]]s and 〈|R|〉s := 〈| ¯̄R|〉s (6.17)

in order to avoid notational overhead.

Rough Approximations
Concepts c can be approximated by lower and upper bounds using knowledge R. An
object is element of the lower approximation, if all its R–equal objects are in c, too.
An object is element of the upper approximation, if there it has an R–equal object
that belongs to c.
A rough set is a tuple consisting of the lower and upper approximation; and a rough
classification is the set of all rough classes.

v. July 19, 2010(c) m.e.müller

6.2. ROUGH KNOWLEDGE 131

6.2.2 Degrees of Roughness

We already discovered that [[R]]c ⊆ 〈|R|〉c. It follows immediately that |[[R]]c| ≤
|〈|R|〉c|. So there exists a natural way of comparing the roughness of two equiv-
alence relations P and R with respect to a reference set c by comparing their
relative sizes of the boundary regions: If

|[[P]]c|
|〈|P |〉c| ≤

|[[R]]c|
|〈|R|〉c| (6.18)

then it appears that R is more accurate than P . This leads us to a numerical
measure of roughness:

Definition 6.9 — Sharpness, Roughness.
Sharpness,
Roughness

The sharpness or accuracy of the R-approximation of c is defined as

sharpR(c) =
|[[R]]c|
|〈|R|〉c| (6.19)

We define roughnessR(c) = 1− sharpR(c).

As already motivated by definition 6.8, the interesting part is to make a mean-
ingful statement concerning the quality of classifications instead of single classes.
Accordingly, we define:

Definition 6.10 — Sharpness (Classification).
Sharpness

(Classification)
The sharpness or accuracy of the R-approximation of a classification c is

defined as

sharpR(c) :=

∑
i∈k |[[R]]ci|∑
i∈k |〈|R|〉ci|

(6.20)

utilityR(c) :=

∑
i∈k |[[R]]ci|
|s| (6.21)

While sharpR(c) describes the ratio of sure knowledge to vague knowledge,
utilityR(c) describes the percentage of correctly R–classifiable objects in s wrt
c.

Where there are rough boundaries, there is vague membership, too: Let there
be a concept c ⊆ s and an object x ∈ s. Then, “∈” is a family of equivalence
relations. This becomes clear when defining membership through characteristic
function (instead of the other way round): If the characteristic function χ(c) is
a feature in F then ∈c is an equivalence relation induced by it.5 It is clear that
rough membership is always membership with respect to R–approximations.
We write:

x ∈[[R]] c :⇐⇒ [[R]]c.x ⇐⇒ x ∈ [[R]]c
x ∈〈|R|〉 c :⇐⇒ 〈|R|〉c.x ⇐⇒ x ∈ 〈|R|〉c (6.22)

5The entire family of ∈-relations then is the set of relations induced by all {χ(c) : c ∈ ℘(s)}.

v. July 19, 2010(c) m.e.müller

132 CHAPTER 6. ROUGH SET THEORY

This way, we can reformulate the relation between approximations pointwise

[[R]]c ⊆ c ⊆ 〈|R|〉c if and only if [[R]]c.x =⇒ x ∈ c =⇒ 〈|R|〉c.x

and it follows immediately that

x ∈[[R]] c =⇒ x ∈ c =⇒ x ∈〈|R|〉 c (6.23)

Example 6.6 Let us take another look at our example world in K as defined
in example 6.2:

s = {•,�,N, •,�,N, •,�,N}
c = {N,�,N, •}

with relations R = {Rcolor, Rshape, Rpolygon}. Using our results from example
6.5, we find that

〈|Rcolour |〉c.� because � ∈ 〈|Rcolour |〉 {N,�,N, •}
but ¬[[Rcolour]]c.� because � /∈ [[Rcolour]] {N,�,N, •} = {�,N, •}

Similarly,

〈|Rshape |〉c.• because • ∈ 〈|Rshape |〉 {N,�,N, •} = s
but ¬[[Rshape]]c.• because • /∈ [[Rshape]] {N,�,N, •} = {}

Similar considerations apply to rough set inclusion: The usual set notation c′ ⊆ c
means that if some x ∈ s is c′-ish, then it is c-ish, too: x ∈ c′ =⇒ x ∈ c. so if
some x is R–roughly c′–ish, it means that x is an element of an R–approximation
of c′–ish objects.

c′ ⊆[[R]] c :⇐⇒ [[R]]c′ ⊆ [[R]]c (6.24)

c′ ⊆〈|R|〉 c :⇐⇒ 〈|R|〉c′ ⊆ 〈|R|〉c (6.25)

Exercise 6.7 (♦) Does this mean that every roughly c′-ish x is R–roughly c–ish, too?

Example 6.7 In our example world, it holds that

[[Rcolour]]c′ = [[Rcolour]] {�,N, •} = {�,N, •}
⊆ [[Rcolour]] {N,�,N, •} = {�,N, •}
= [[Rcolour]]c

and

〈|Rcolour |〉c′ = 〈|Rcolour |〉 {�,N, •} = {�,N, •}
⊆ [[Rcolour]] {N,�,N, •} = {N,�,N, •}
= [[Rcolour]]c

v. July 19, 2010(c) m.e.müller

6.2. ROUGH KNOWLEDGE 133

By mutual inclusion we can define rough equality: Upper and lowerR-approximations
of sets allow for a definition of at least two rough equality relations:

c =[[R]] c
′ :⇐⇒ [[R]]c = [[R]]c′ and c =〈|R|〉 c

′ :⇐⇒ 〈|R|〉c = 〈|R|〉c′ (6.26)

Again, R-rough equality is rather a property of R than a property of two rougly
equal objects x, y ∈ s. The interesting thing about inclusion is not set inclusion.
Of course it is nice to know, that some x is c-ish because it is c′-ish. But the
really interesting thing is what it means for different relations to define such
dependencies: Imagine that [[P]]c ⊆ [[R]]c. Then, obviously, R is able to identify
more objects to be c-ish than P . In other words R appears to have more
information about c.

Example 6.8 Recall example 6.7. Now we shall compare different relations
instead of different sets. For more interesting results we chose another target
concept c with

c := {�,�,�, •}
Then,

[[Rshape]]c = [[Rshape]] {�,�,�, •} = {�,�,�}
⊇ [[Rpolygon]] {�,�,�, •} = {}
= [[Rpolygon]]c

As one can see here, the finer and smaller relation based on knowledge about
shape has a larger lower approximation of c than the lower approximation by
way of polygon. Intuitively the reason is that a larger relation (such as Rpolygon)
creates less equivalence classes. Since Rshape ⊆ Rpolygon , we know that ev-
ery shape-basic category is a subset of a polygon-basic category. Therefore,
the polygon-knowledge is coarser than the shape-knowledge. And the finer the
knowledge, the smaller the steps we can make to approximate a concept. The
polygon-knowledge is not fine enough to describe basic categories that are fully
included by c, but shape is. For upper approximations, we obtain:

〈|Rshape |〉c = 〈|Rshape |〉 {�,�,�, •} = {�,�,�, •, •, •}
⊆ 〈|Rcolour |〉 {�,�,�, •} = {•, •, •,�,�,�,N,N,N} = s

= 〈|Rcolour |〉c
For the upper approximation, the converse is true: The finer the knowledge, the
smaller the upper approximation.

We can conclude:

Knowledge and Concept Approximations
The finer a relation, the more basic categories. The more basic categories, the smaller
the equivalence classes. The smaller the equivalence classes, the higher their de-
scriptive power. The higher the descriptive power, the more knowledge. The more
knowledge, the smaller the boundary region.

Exercise 6.8 (♦– �) Confirm all the examples! Determine [[P]]c and 〈|P|〉c for several
P ⊆ R and various c ⊆ s.

v. July 19, 2010(c) m.e.müller

134 CHAPTER 6. ROUGH SET THEORY

6.3 Rough Knowledge Structures

The most important issue when understanding machine learning as compres-
sion is to delete redundant information. In most data collections there is
redundancy—i.e. there is data which does not contribute to the information
content of the entire set of data. However, redundancy has a huge advantage
in every day life: Redundant data can be used to reconstruct information that
would be lost given that a certain datum is missing.6

Example 6.9 Let us take a look at our standard example using the
underlying information system I with the target concept c as defined in example
6.6:

x ∈ s id fcolour fshape fpolygon χ(c)
N 1 4 1 1
• 2 ◦ 0 1
� 3 2 1 0
N 4 4 1 1
� 5 2 1 0
• 6 ◦ 0 0
• 7 ◦ 0 0
� 8 2 1 1
N 9 4 1 0

Now, through the eyes of a database engineer, why do we store so–called oids
in the id–column, if all the objects are unique anyway? Why do we store the
fpolygon–information if it contains less information than fshape? And why don’t
we just drop all the columns and use idinstead?

Exercise 6.9 Compare the utility of all the features:

♦ Determine Hc(f, s) for all f ∈ {id, fcolour , fshape , fpolygon}!
� Determine Hc(f, s) for f := fcolour × fshape !

�� Determine utilityPi
(c) for: P1 = {Rcolour} ,P2 = {Rshape} ,P3 = {Rpolygon} ,P4 =

P1 ∪P2 and P5 = P1 ∪P3

Let us now reconsider the knowledge base K. We concluded that knowledge (and
the ability to discriminate different things from each other) can be considered

to be an equivalence relation ¯̄R. Some concepts are definable, others are only
roughly definable - and in some cases out knowledge is maximal in the sense
that we can discriminate every single object from every other single object:

s/ ¯̄P = {{x} : x ∈ s}

In any case, there may be many different ways to define some P ⊆ R all of
which create the same quotient set. But as soon as P is a proper subset of R
and the quotient sets are the same, then it seems it did not hurt to drop some
“information” from R.

6Can you reconstruct a text from an ASCII-file where one byte is missing? Can you do
the same for the same text in zipped form?

v. July 19, 2010(c) m.e.müller

6.3. ROUGH KNOWLEDGE STRUCTURES 135

Relations that do not add to the knowledge are dispensable, and, in fact, they
are even redundant. So if ¯̄R does not change when removing R from R, then
R does not contribute any elementary class that is not already describable in
terms of intersections of basic categories from R − {R}. It is, in other words,
redundant knowledge.

Definition 6.11 — Dispensability, Reducibility.
Dispensability,

Reducibility
We call R ∈ R dispensable in R, if

¯̄R = R− {R} (6.27)

Otherwise, R is indispensable. R is called irreducible, if R is indispensable in R
for all R ∈ R, otherwise R is called reducible or redundant.

Irreducibility of R means that there is no R ∈ R, which we can remove from R
without changing ¯̄R (i.e. losing “crispness”). Redundant sets of knowledge are
reducible by deleting dispensable relations.

Example 6.10 In our example world,
P = {Rshape , Rcolour} ⊂ R is irreducible, since both Rshape and Rcolour are
indispensable:

s/ ¯̄P = {{•} , {N} , {�} , {•} , {N} , {�} , {•} , {N} , {�}}
s/Rshape = {{•, •, •} , {�,�,�} , {N,N,N}}
s/Rcolour = {{•,N,�} , {•,N,�} , {•,N,�}}

Since s/ ¯̄P 6= s/Rshape and s/ ¯̄P 6= s/Rcolour , both relations are indispensable in
P. Hence, P is irreducible.
In contrast to this, R is redundant:

s/ ¯̄R = = {{•} , {N} , {�} , {•} , {N} , {�} , {•} , {N} , {�}}
= s/ ¯̄P

Exercise 6.10 � For the example above, let x = {N,N,�}.—Determine 〈|R|〉colorx,
〈|R|〉shapex, [[R]]colorx, and [[R]]shapex.

There are relations that seem to be dispensable since they do not contribute to
our ability to discriminate things (i.e. our knowledge). Thus it seems a good idea
to reduce a knowledge base by discarding all dispensable relations. Accordingly,
what remains after deleting redundant knowledge is a reduct :

Definition 6.12 — Reducts. Reducts

We call P (P ⊆ R) a reduct of a set of relations R, if P is irreducible and carries
the same indiscernability knowledge as R. We write:

P ∈ Red(R) :⇐⇒
{

P is irreducible
¯̄P = ¯̄R.

(6.28)

In general, reducts are not unique.

v. July 19, 2010(c) m.e.müller

136 CHAPTER 6. ROUGH SET THEORY

Since the uniqueness property does not hold in general, there may exist several
reducts for a given family R of equivalence relations.

Example 6.11 Let us first take a look at our standard example K: For
R = {Rshape , Rcolour , Rpolygon}, P = {Rshape , Rcolour} ∈ Red(R). However,
it is the only reduct: Red(R) = {P}. For the information system I and the
induced knowledge base K′, we have R′ = R ∪ {1}. Then R′ has two reducts:

Red(R′) = {{Rcolour , Rshape} , {1}} (6.29)

Exercise 6.11

♦ Prove equation (6.29) in example 6.11!

� Show that R and {Rcolour , Rshape , 1} are not reducts of R!

� Prove that if |Red(R)| > 1, then
⋃

Red(R) /∈ Red(R).

� Show that for Red(R) = {Pi : i ∈ n} and ∀i, j ∈ n : Pi = Pj −→ i = j, their
union Q := {R : ∃i ∈ n : R ∈ Pi} =

⋃
Red(R) is not a reduct: Q /∈ Red(R)!

So if there are several reducts for R, say, P and Q, the knowledge in R can be
expressed by different subsets of knowledge (recall example 6.4). Usually, we
would expect the knowledge in our knowledge base to consist of three different
kinds of knowledge regarding their “importance”: There is ...

• some kind of “basic” knowledge without which we were hopelessly lost,

• some kind of “detail” knowledge which, when present, suffices to speak
about the world up to a desired level of detail,

• and additional, abundant knowledge that increases our eloquence to speak
about the world but which actually does not contribute to the level of
detail (and, hence, is redundant).

To decide whether a relation belongs to one or another set of knowledge depends
on what we want to be able to express and which other parts of knowledge we
already have. This is why there are reducts and why they are not unique.
Arguing from the point of view of cenceptual knowledge modeling, we would
assume there is some fundamental knowledge that all semantically equivalent
formulations of the knowledge should share. If there is such core knowledge, it
should be contained in all reducts: There seem to be relations that are simply
absolutly indispensable and they occur in every reduct—even though they may
not provide sufficient knowledge on their own.

Definition 6.13 — Core.Core

The set of relations in R which occur in every reduct P ∈ Red(R) is called the
core of R:

Cor(R) := {R ∈ R : P ∈ Red(R) −→ R ∈ P} (6.30)

=
⋂

P∈Red(R)

P =
⋂

Red(R) (6.31)

v. July 19, 2010(c) m.e.müller

6.4. RELATIVE KNOWLEDGE 137

If the core is not empty, then there exist relations that are indispensible in any
attempt to describe a concept. If the core is empty, it is so because there do
not exist any reducts, or because there are several disjoint sets of relations one
of which must appear in any reduct (see example 6.11).

We conclude: For any Q ∈ Red(R) it holds that Cor(R) ⊆ Q ⊆ R and if Q is
irreducible, then any P ⊆ Q is irreducible, too.

Rough Knowledge Structres
Rough knowledge is what one has if one is able to roughly describe new concepts in
terms of old ones. The roughness of the description depends on the knowledge.
Knowledge discovery means to reduce data by discarding redundancy. Some parts of
the knowledge are dispensable in general, others are not because they are required in
any reduct. A small part of knowledge may be essential and absolutely irreducible.

Example 6.12 Consider the set s of differently coloured geometric shapes
and the set of relations as in example 6.11. We examine subsets Pi ⊆ R:

i Pi s/ ¯̄Pi

1 R {{•} , {N} , {�} , {•} , {N} , {�} , {•} , {N} , {�}}
2 {1} {{•} , {N} , {�} , {•} , {N} , {�} , {•} , {N} , {�}}
3 {Rcolour , Rshape , Rpolygon} {{•} , {N} , {�} , {•} , {N} , {�} , {•} , {N} , {�}}
3 {Rcolour , Rshape} {{•} , {N} , {�} , {•} , {N} , {�} , {•} , {N} , {�}}
4 {Rcolour , Rpolygon} {{•} , {N,�} , {•} , {N,�} , {•} , {N,�}}
5 {Rcolour} {{•,N,�} , {•,N,�} , {•,N,�}}

P1,P2,P3 and P4 are reducts of R; P4 and P5 are not. The core is the
intersection of reducts: Cor(R) =

⋂
Red(R) = {Rcolor}.

Reducts and Cores are powerful concepts, but what we need is a method to
compare expressiveness of relations with respect to (i.e. relative to) a given
classification. Since we agreed that classes of a classification are disjoint, a
classifiction is just another partition—which in turn can be considered to be
the result of building the quotient of another equivalence relation.7 Therefore,
relative expressiveness is something that we can measure for any pair of (sets
of) equivalence relations.

6.4 Relative Knowledge

A special kind of structured knowledge
It depends on the concept which parts of knowledge are redundant and which parts
are required or essential. Usually, we are given such a concept c or a classification c.
Much more interesting are the following two questions:

• If there are several approximations of a concept by several different reducts:
which one shall we choose?

• Given two sets of relations, how can we describe their potential to describe the
knowledge in their respective counterpart?

Do different parts of knowledge somehow depend on each other?

7And, of course by any other set S of equivalence relations and the quotient s/¯̄S.

v. July 19, 2010(c) m.e.müller

138 CHAPTER 6. ROUGH SET THEORY

For a given information system or knowledge base all we did so far was to fish for
subsets of knowledge satisfying conditions of necessity or sufficiency. This pro-
cess was the first step away from a pointwise characterisation of data towards
a relational one: Knowledge is indispensable if it is required to tell different
objects from each other—or, conceptually, if it cannot be reduced without in-
creasing coarseness.
We shall now examine the relationship between two different sets of knowledge
with respect to their expressive power: Is one part of knowledge sufficient to
describe another part of knowledge?

Example 6.13 Let there be a concept c ⊆ s. Then, we can assume
there is an equivalence relation Rc (of index 2) induced by the characteristic
function χ(c). It creates a classification c = {c, c} := s/Rc. Now imagine a
set P ⊆ R. In machine learning χ(c) is called the target function tc which we
want to approximate. Of course, lower and upper approximations come in quite
handy at this point.
In order to pick the best fitting hypothesis from hypothesis space, we need to
find a set P such that we can construct c from s/ ¯̄P as accurate as possible.

The first thing we need then is to determine the region in c (and thus, the
subdomain of Rc), for which P delivers correct predictions.

Definition 6.14 — Relative Positive Knowledge.
Relative Positive
Knowledge

Let there be two equivalence relations P and Q. The P -positive region of Q
(on s) is the union set of all P -elementary classes that belong to Q-elementary
classes.

[[P � Q]]s :=
⋃

q∈s/Q

[[P]]q =
⋃
q

[[P]]qi (6.32)

= [[P]]q0 ∪ [[P]]q1 ∪ · · · ∪ [[P]]qk−1 (6.33)

where s/Q is a partition or a classification of objects in s with respect to knowl-
edge Q: q = {q0, q1, . . . , qk−1} = s/Q. The P -positive region is the set of objects
for which by P we can positively confirm their membership to Q-elementary
classes.

If rough set theory is new for you (or if you are already familiar with rough set
theory and the additional symbol � occurs a bit odd to you), then try to read
it out loud as the word “for”:

Relative Positive Knowledge
Technically speaking, the P -positive region of Q, [[P � Q]]s, is the (disjoint) union
set of all P -lower approximations of all c ∈ s/Q.
Its meaning is that [[P � Q]]s is the set of all objects where P–knowledge suffices for
modelling Q–knowledge.

Let us take a closer look at this: We always considered approximations with
respect to a given or otherwise somehow predefined concept c or a set c of such
classes. By comapring P with Q we examine P–approximations with respect to

v. July 19, 2010(c) m.e.müller

6.4. RELATIVE KNOWLEDGE 139

“dynamically defined” classifications q = {q0, q1, q2, . . . , qk−1} = s/Q as defined
by Q.

Exercise 6.12 (♦) In most textbooks on rough sets, [[P � Q]]s is denoted PosP (Q).
Let there be an arbitrary classification c of s. Show that

PosP (Q) =
⋃
c∈c

[[P � Q]]c

to prove that our definition allows a more detailed usage and relative usage of the term
“P -positive region of Q”.

Exercise 6.13 (♦-��) Prove the following equations:

[[P � Q]]s =
⋃
i∈k

{x : [x]P ⊆ qi}

=
⋃
i∈k

{x : [[P]]qi.x −→ [[P]]qi ⊆ qi}

The last equation of the preceding exercise appears to be trivial: if something
is element of a lower set approximation, then it is an element of this set. But
it is not that easy. qi is defined in terms of Q while [[P]]qi is defined in terms
of P (or, to be precise, “in terms of P in terms of Q”). Herein, P and Q are
independent in the sense that they do not “know” about each other. Take a
look at figure 6.5: Let the regions defined by the paraxial rectangles be the
equivalence classes induced by P and the rotated rectangles be the Q-classes.
Now, a single object x ∈ s can be an element of [[P � Q]]s, [[Q � P]]s, both or
none of them. We take a closer look at these cases:

Example 6.14 What does it mean for some x (not) to be member of a
positive region?

(a) x ∈ [[P � Q]]s means that x can positively be classified into a Q-class by
P -knowledge. This means that [x]P must be a subset of [x]Q. In figure
6.5, this is true for all the black dots •.

(b) The dual case is [[Q � P]]s.x; i.e. it is the set of all Q-equivalent objects
that are R–equivalent, too. These are the grey objects •.

(c) There are objects which belong to both sets: an example is ••. the paraxial
class is a subset of a rotated class whih in turn is a subset of a paraxial
class again.

(d) Finally, there is the set of all objects (◦) for which neither P– nor Q–
knowledge is sufficient to describe the corresponding counterpart.

At this point, it becomes clear why we introduced the dotted membership no-
tation. The equation

[[P]]c.x −→ [[Q]]c.x

v. July 19, 2010(c) m.e.müller

140 CHAPTER 6. ROUGH SET THEORY

(c)(b) (a)(d)

Figure 6.5: The P -positive region of Q, [[P � Q]]s

reads: “if x is c-ish according to our knowledge P , then it is c-ish acording to
Q, too”. If this implication is true for some x, x is element of the P -positive
region of Q and so are all objects y ∈ s that are P -equivalent:

[[P � Q]]c.x ⇐⇒ [[P]]c.x −→ [[Q]]c.x (6.34)

Of course, we can lift the above definitions from simple sets s to classifications
c:

[[P � Q]]c :=
⋃
c∈c

[[P � Q]]c (6.35)

But what if P is an indisernability relation built from a set P of relations?
And, similarly, what if Q = ¯̄Q? Can we lift our defintion to sets of relations
as well?—Yes! Again, we generalise our idea to sets of equivalence relations by
using their respective indiscernability relations:

[[P � Q]]s := [[¯̄P � ¯̄Q]]s (6.36)

Then again, [[P � Q]]s is the set of objects where P can be used for describing
Q-knowledge. The direction of “�” is motivated by the following equivalent
definition:

[[P � Q]]s :=
{
x ∈ s : ∃q ∈ s/ ¯̄Q : [x] ¯̄P ⊆ q

}
; (6.37)

v. July 19, 2010(c) m.e.müller

6.4. RELATIVE KNOWLEDGE 141

i.e. � is defined in terms of ⊆.

Exercise 6.14 (�) Prove the equivalence of equation (6.37) and equation (6.36)!

Now we can try to lift the definition of dispensability to relative dispensability:
A relation R in P is dispensable with respect to Q, if the ¯̄P positive region of
¯̄Q remains the same for P− {R}:

Definition 6.15 — Relative Indispensability.
Relative

Indispensability
Let there be two families of equivalence relations P and Q. A relation R ∈ P
is called Q–dispensable, if:

[[P � Q]]s = [[P− {R} � Q]]s (6.38)

Otherwise, it is called indispensable.

Considering the knowledge defined by the indiscernability relation on equiva-
lence relations Q, we examine a set of equivalence relations P. If the set of
objects that can be correctly ¯̄Q–classified by ¯̄P remains the same if we dis-
card R from P, then R is redundant in our attempt to Q–classify objects using
knowledge P. The notion of dispensability motivated the concept of depedence
(c.f. definition 6.11). Therefore, relative dispensability gives rise to relative ir-
reducability. If a relation is indispensable in a set P with respect to a set Q,
P cannot reduced any further without losing information. Speaking in terms of
objects in our universe, reducing P implies loss of knowledge with respect to Q,
if [[S � Q]]s ⊂ [[P � Q]]s for any S ⊂ P.

Definition 6.16 — Relative Implication. Relative Implication

Let there be three sets of relations, P,Q and R. P is called Q–irreducible, iff
every R ∈ P is Q–indispensable:

∀R ∈ P : [[P � Q]]s ⊂ [[(P− {R}) � Q]]s (6.39)

P Q–implies R, if the R-positive region for Q is included in the P-positive
region for Q.

[[R � Q]]s ⊆ [[P � Q]]s (6.40)

We then write P
Q
⊃ R. Note the inverted notation: The positive region of R is

smaller than (i.e. included in) the positive region of P. This means, that P can
explain more than R or that R is weaker than P. Therefore, P implies Q.

Note that relative implication is not defined in terms of a subset relation be-
tween P and R but rather on their respective positive regions with respect to
Q. Therefore, and this is why it is called implication, ⊃ is a property of the
knowledge encoded in sets of relations where the amount of knowledge is mea-
sured extensionally by the sets of objects that can be classified correctly. In
literature on Rough Sets there is no such thing as implication but dependency.
It is written ⇒ and defined as follows: P⇒ Q :⇐⇒ ¯̄P ⊆ ¯̄Q and spoken as “Q
depends on P”.

v. July 19, 2010(c) m.e.müller

142 CHAPTER 6. ROUGH SET THEORY

Exercise 6.15 (�) Prove that P⇒ Q ⇐⇒ P
>
⊃ Q !

Since P � P−{R}, it holds that [[P− {R} � Q]]s is a proper subset of [[P � Q]]s
if and only if P is Q–independent.

Exercise 6.16 (♦) Prove.

Example 6.15 Let us, again, consider the knowledge base from example
6.9. Then, for s′ = {•,N,�} ⊆ s we find:

[[Rcolour � Rshape]] s =
⋃
q∈s/Rshape

[[Rcolour]]q

= [[Rcolour]] {•, •, •} ∪ [[Rcolour]] {N,N,N}∪
[[Rcolour]] {�,�,�} =

= {} ∪ {} ∪ {} = ∅

[[Rcolour � Rshape]] s′ = [[Rcolour]] {•} ∪ [[Rcolour]] {N} ∪ [[Rcolour]] {�}
= {•} ∪ {N} ∪ {�} = {•,N,�}
= s′

[[Rpolygon � Rshape]] s = [[Rpolygon]] {•, •, •} ∪ [[Rpolygon]] {N,N,N}∪
[[Rpolygon]] {�,�,�}

= {•, •, •}
[[Rpolygon � Rshape]] s′ = [[Rpolygon]] {•} ∪ [[Rpolygon]] {N} ∪ [[Rpolygon]] {�}

= {•,N,�}
= s′

[[Rshape � Rpolygon]] s = [[Rshape]] {•, •, •} ∪ [[Rshape]] {N,N,N,�,�,�}
= {•, •, •,N,N,N,�,�,�} = s

[[Rshape � Rpolygon]] s′ = [[Rshape]] {•} ∪ [[Rshape]] {N,�}
= {•,N,�}
= s′

Example 6.16 Let us take a closer look at dependent sets of knowledge:

[[{Rshape , Rcolour} � 1]]s = s
⊃

{•, •, •} = [[{Rpolygon , Rcolour} � 1]]s

This shows that {Rshape , Rcolour} 1 –implies {Rpolygon , Rcolour}:

{Rshape , Rcolour}
1⊃ {Rpolygon , Rcolour} .

And, again, dependency and indispensability gives rise to the definition of
reducts:

v. July 19, 2010(c) m.e.müller

6.4. RELATIVE KNOWLEDGE 143

Example 6.17 In our running example, it holds that

[[R � 1]]s = [[R− {Rpolygon} � 1]]s (6.41)

This means that Rpolygon is 1 -dispensable and since 1 � R for all R ∈ R,
Rpolygon is dispensable. Equivalently, there exists a reduct of R without Rpolygon

in it.

Accordingly, we define:

Definition 6.17 — Relative Reducts and Relative Cores. Relative Reducts
and Relative Cores

Let there be three sets of equivalence relations P,Q,R and R ⊆ P. R is called
a Q–relative reduct of P, if and only if:

1. [[R � Q]]s = [[P � Q]]s

2. R is Q–independent

The set of all Q–reducts of P is denoted Red(P � Q). Then,

Cor(P � Q) :=
⋂

Red(P � Q) (6.42)

is called the Q-relative core of P.

The above definition can be broken down as follows: A Q-relative reduct is a
subset R of P such that the expressivenness of P with respect to Q does not
suffer from the loss of relations missing in R.
First, it is said that [[R � Q]]s = [[P � Q]]s. That’s quite simple—R has the
same positive region of Q as P has. They are, pointwise, equivalent with respect
to Q: an object of s belongs to the P–positive region of Q if and only if it belongs
to the R–positive region of Q. Speaking in terms of extensional set definitions it
does not matter at all whether we choose P or R: both have the same expresive
power and even if they do not suffice to describe all the Q-knowledge, they can
correctly describe exactly the same subset of objects in s.
Secondly, Q–independency of R requires that we cannot drop any relation R ∈
R ⊆ P ⊆ R without losing information relative to Q-knowledge: R is Q–
independent, if every R ∈ R is Q-indispensable. It means that for all R ∈ R,

[[R � Q]]s 6= [[R− {R} � Q]]s

In other words, R cannot be reduced any further and it is a smallest subset of
P still capable of describing Q to the same extent as P.

Exercise 6.17 (�) Show that Red(P � P) = Red(P).

It should have become clear that rough set theory is concerned with relations
and their expressive power on actual data rather than sets of objects with ter-
minologic information. We can define a relation’s dispensability or utility with
respect to a given classification, we can define reducts and cores with respect to
given classification information. In other words, our toolbox of rough set oper-
ators is now complete and we can describe what we need to learn new concepts
in a supervised learning setting:

v. July 19, 2010(c) m.e.müller

144 CHAPTER 6. ROUGH SET THEORY

Given a target classification ct defined by an unknown target funtion t : s→ k
and its induced equivalence relation Rt, we want to extract knowledge in terms
of cores and reducts relative to this classification from a dependent knowledge
base. But there is still an open issue here: What does it mean for K that t is
unknown? It means that the intensional definition of t is not known. All we
have is that for some s ⊆ U , we know a family of characteristic functions

χ : ℘(s)→ (s→ 2)

which for every x ∈ s determines whether x ∈ c ∈ ℘(s), i.e. χ(c)(x) = 1 ⇐⇒
x ∈ c. These functions provide us with the labels in our sample we can use for
a learning task. Accordingly, we would pick a sample s from K of the form

s = {〈x, 〈χ(c0)(x), . . . χ(ck−1)(x)〉〉 : x ∈ s′ ⊆ s} (6.43)

If k = 2, then c = {c0, c1} = {c, c} and χ(c)(x) = 1⇐⇒ χ(c)(x) = 0. Therefore,
binary learning problems result in much simpler sample structures:

s = {〈x, χ(c)(x)〉 : x ∈ s′ ⊆ s}

Similary, samples for k-ary classifications can be represented by samples of tuples
〈x, i〉 if χ(ci)(x) = 1. For nominal learning problems, there is no difference
between a multi-valued domain of the target function or a an according sparse
vector of 0’s with only one 1. Things are a bit different for ordinal target
values, because the ordering on cod(t) has to be preserved in a binary vector
representation.
s′ is a subset of s—and it is so for a good reason:

Learning by Rough Sets
Knowledge Discovery by rough sets means to find smallest subsets of relations that
are capable of describing presented data and which can be used to (roughly) describe
whether any object belongs to a certain class or not.

We are now able to compare sets of relations to other sets of relations with
respect to their expressive power concerning a new/unknown concept based
upon observed data:

• The more knowledge we have, the finer (”crispier”) is our view on the
domain.

• We can build specific (basic) concept descriptions from elementary con-
cepts by intersections and complex concepts by unions of basic concepts.

• We can identify dispensable relations, reducts and cores.

• We have a set of arithmetic measures we can use to quantitatively estimate

With a few more arithmetic measures of sharpness and utility, we can:

1. Identify redundant relations.

v. July 19, 2010(c) m.e.müller

6.5. KNOWLEDGE DISCOVERY 145

2. Discover unknown concepts.

3. Find minimal, sufficently accurate approximations of known concepts.

And this is what we need to learn by finding knowledge that has been lost in
too much information.

6.5 Knowledge Discovery

Given a knowledge base K with R = {Rfi : i ∈ n} ∪ {Rt}, we call t a deci-
sion attribute which describes a new (unknown) concept c = {x ∈ s : t(x) = 1}.
Whenever t is binary, it is the charcteristic function of the target oncept c; for
nominal t, s/Rt is a target classification c = {{x ∈ s : t(x) = i} : i ∈ k}. The
information system I 〈s,F, VF〉 then has a special feature t called the decision
attribute; and, accordingly, the table representing I together with t is called a
decision table:

s 0 1 · · · n− 1 ft
x0 f0(x0) f1(x0) · · · fn−1(x0) 1

x1 f0(x1) f1(x1) · · · fn−1(x1) 0

...
...

...
...

...

But using our newly acquired relational language of (rough) concepts, we can
reformulate what it means to be concerned with new knowledge about unknown
concepts c:
We call c a new or unknown concept, if there is no relation Rf ∈ R for which
f is a characteristic function of c (or, at least, approximately equal). Still, c

is (roughly) learnable by K, if c can be (roughly) described by ¯̄R. Then, the
characteristic function of this (rough) set in terms of unions of basic classes is, in
fact, new terminologic knowledge. The mere (rough) pointwise approximation of
a concept c does not make any knowledge. To learn c means to find a description
of t in terms of knowledge R. And this brings us back to approximations of c.
At the same time, learning means to be able to compress data. We already do
so by giving intensional definitions of sets of objects. But compression and espe-
cially generalisation could not take place without dropping knowledge. Lossless
compression means to drop redundant knowledge only: It means to find reducts.
Generalising also asks for dropping knowledge that at first glimpse weakens the
sharpness of a concept description. In order to avoid over-generalisation we
sopuld discard only those parts of knowledge whose utility appears rather weak.

Knowledge Discovery by Rough Sets
Knowledge discovery means to define a new relation Rh for which s/Rh ≈ s/Rt. Rh
is defined in terms of ¯̄P–elementary classes where P ⊆ R is as small as possible and
[[Rh � Rt]]s s big as possible.

Actually, knowledge discovery means to discover dependencies of knowledge in
relation to (newly) observed data. Therefore, we need to ask the following
questions:

v. July 19, 2010(c) m.e.müller

146 CHAPTER 6. ROUGH SET THEORY

• Reasoning about knowledge:

1. Are there redundant relations?

2. Are there similar relations?

3. Are there redundant or similar complex concepts?

4. Is there (in)dispensable knowledge around?

• Reasoning about new observations:

1. Can the new concept be described by existing relation?

2. Can it be approximated?

3. If so, to which extent and accuracy?

So what we do is to analyse our knowledge and decide which elements we shall
keep and which we shall discard so as to yield a minimal set of relations that
induces an optimal approximation of the target partition. An exhaustive search
in hypothesis space is infeasible. But we are lucky: Our framework allows us to
define a few measures that help to heuristically guide our search for promising
hypotheses. There are basically two issues in relational knowledge discovery
that correspond to unsupervised and supervised learning:

Identifying potentially interesting sets of objects. If there are sets of
objects which cannot be distinguished by ¯̄R (that is, all the blocks in s/ ¯̄R)
then each of these sets may represent an unknown concept—simply because of
the fact that we are unable to describe them. This case, however, is rather
rare; usually, we collect and store data model so as to be able to explicate the
information therein. On the hand this implies a (possibly strong) bias because
strict modelling prevents learning beyond what our preconception expects. It
requires an expert to understand whether s/ ¯̄R represents a reasonable break-
down of the structure of our domain. Finding such sets is, theoretically, simple:
All we have to do is to compute s/ ¯̄R. For the expert who is expected to inter-
pret our findings this may not be helpful at all. Most likely he will ask for a
simpler representation of the domain structure. Then we are facing the problem
of (efficiently) finding reducts. Since there may be many such reducts the next
problem is to chose the one which is most explanatory to the expert.

Circumscribing a new property in terms of present knowledge. Let
there be some knowledge, say, Q. Imagine we can use Q to describe a certain
classification c. This means that some c is (roughly) definable by Q. What does
it mean to learn then? It means to acquire some new knowledge to describe
Q. Since Q ⊆ R, a new “chunk” of knowledge P ⊆ R can be considered to
be a hypothesis describing Q if it is able to describe c suffciently well. In this
case, Q provides a teacher signal t, and we are searching for a set P ∈ ℘(R) to
approximate Q. There are several methods to determine whether P is a good
candidate to describe Q. An ideal hypothesis P should satisfy the following
requirements:

v. July 19, 2010(c) m.e.müller

6.5. KNOWLEDGE DISCOVERY 147

1. P should be small ; ideally, it should be smaller than Q and much smaller
than R.

2. P should be novel. If P is more or less the same than Q, then there seems
no reason to consider P as newly discovered knowledge.
A first idea towards modelling novelty is that P should not share signifi-
cantly more than Cor(R � Q) relations with Q.

3. P should not be much less accurate than Q; i.e. Q should (at least to a
certain degree) depend on P.

4. Finally, P should be more general than Q.

Generality of knowledge chunks can be determined with respect to different
parts of our universe: Let R be the set of all relations we can use to describe
our domain. Then, all expressions over elements of R form the representation
space. A target concept (or classification) c is given by an (unknown) function
t. It is represented by a (partially defined) decision attribute. Now, let there be
two hypotheses P and Q to describe c. Both P and Q can be assumed to be
(proper) subsets of R. In order to be able to compare both hypotheses we need
to estimate their respective accuracy. For this, we have a measure as defined
in definition 6.10. In terms of searching a subsumption lattice of hypotheses
we need an according order relation modelling generality. We can compare two
sets P and Q of knowledge according to their generality by comparing their
respective positive regions for a “reference” set: So P is more general than Q,
if

[[Q � R]]s′ ≈ [[P � R]]s′ and [[Q � R]]s ⊆ [[P � R]]s (6.44)

for s′ ⊆ s. It means that knowledge P is able to positively correct classify more
objects of the domain than Q.

Exercise 6.18 (♦) The last definition of generality is not to be confused with cover-
age. — Explain!

Again, the question is where to start searching, how to proceed—and when to
stop.

Searching for the best Hypothesis
Rough Set Data Analysis allows us to identify potentially interesting sets of objects.
This is what we refer to as unsupervised learning.
Rough Set Data Analysis also allows us to acquire new knowledge by searching for
new sets of knowledge that can describe a classification defined by a decision attribute.
This is what is called supervised learning

6.5.1 Utility

Utility is a measure that says something about the degree uf usefulness. It
describes how much a relation (or a set of relations) contributes to the ability
of describing knowledge. Definition 6.10 gave us a means to estimate a relations
usefulness with respect to a class or classification.

v. July 19, 2010(c) m.e.müller

148 CHAPTER 6. ROUGH SET THEORY

In order to quantitavely describe the usefulness of a set of relations, we could
simply determine the relative size of the positive region:

Definition 6.18 — (Relative) Utility.(Relative) Utility

We define the (relative) utility of P (on s) for describing knowledge Q to be

utilitys(P � Q) :=
|[[P � Q]]s|
|s| (6.45)

The quotient describes the the relative number of objects which by P can be
correctly clasified with respect to the classification c = s/ ¯̄Q.

In prose, the utility of a set of relations is the quotient of the number of cor-
rectly classified objects using this set of relations and the number of all objects
under consideration, |s|. When designing an algorithm to determine reducts,
the algorithm will proceed stepwise; i.e. in order to decide in eavery single step
which relation to drop or to add, we would compute the utility of a singleton
set P = {P} for Q:

utilitys(P � Q) =
|⋃ci∈s/ ¯̄Q[[P]]ci|

|s| =
1

|s|
n∑
i=0

|[[P]]ci| (6.46)

where n = |s/ ¯̄Q|. The equality holds because of the pairwise disjointness of
equivalence classes.
Usually, utility is a measure with respect to a target calssification. But since
a target classification is just a set quotient as any other quotient, we can use
utility to describe the dependencies between any arbitrary sets of equivalence
relations. And, of course, we can extend the definition of utility to classifications
rather than just sets:

utilitys/ ¯̄R(P � Q) :=
1

|s|
∑

ci∈s/ ¯̄R

|[[P � Q]]ci| (6.47)

It is clear, that if utilitys(P � Q) = 1, P is good enough for describing Q on
the entire domain. In this case it must hold that [[P � Q]]s = s and therefore,
P � Q. We can also conclude, that P implies Q: P ⊃ Q. If, on the other
hand, utilitys(P � Q) = 0 then the numerater must be 0. This can happen
only if [[P � Q]]s is empty and that means, that all lower P–approximations of

Q-classes are empty: ∀c ∈ s/ ¯̄Q : [[P]]c = ∅. In other words, P can not positively
describe anything that Q is concerned with.
The interesting case is when 0 < utilitys(P � Q) < 1. Then, the bigger the
value is, the bigger the positive region. The smaller it is, the less P seems to
be appropriate for describing Q. Another equivalent formulation is that the
average sharpness of P–approximations of Q–classes increases as the utility of
P for Q increases (and vice versa).8 Finally, it means that P implies Q not
entirely, but at least up to a certain degree.

8If we define R :=∈ P and c := s/Q, then we we can see that utilitys(P � Q) is the same
as utilityR(c) (see definition 6.10).

v. July 19, 2010(c) m.e.müller

6.5. KNOWLEDGE DISCOVERY 149

This way, we are able to order sets of relations with respect to the degree of
their ability of mutually describing each other. Then, we would want to find
a smallest set P of equivalence relations with maximum utility to escribe each
other set—thus we would reduce redundant knowledge. If such a set would also
prove to have a high utility for describing c, we would have found a beautiful,
non–redundant and concise description of our target classification.

Definition 6.19 — Partial Implication. Partial Implication

Let there be knowledge base K = 〈s,R〉 and P,Q ⊆ R. We say that P implies
P to a degree k, iff:

k = utilitys(P � Q) =
|[[P � Q]]s|
|s| (6.48)

We then write P
k⊃ Q.

So if: Every set P or Q consists of relations or attributes. Therefore, utility
or partial dependance means “utility of a set of attributes”. If we recosider
the early definition of lower and upper approximations it becomes clear, that
the utility of a set of attributes is not determined uniformly by all attributes,
but that some attributes may contribute more than others. This way, we can
deduce a measure of individual attribute significance from the definition of a
set’s utility or dependence.

6.5.2 Attribute Significance

Some attributes seem to have a greater descriptive power than others. All
machine learning methods try to find the most significant ones first so as to to
quickly converge to a solution. Decision trees utilise an information measure,
support vector machines generate separating planes. In rough set theory, we
want to find a smallest set of attributes which we accordingly may assume to
be more significant than redundant attributes.

Justy as a reminder, let us reconsider the way information gain methods tackle
this problem:

Example 6.18 Consider again the following information system:

s f0 f1 f2 f3 ft
0 1 • ♥ c 0
1 0 • ♠ b /
2 2 • ♣ b 1
3 1 • ♣ c /
4 1 • ♥ a 1
5 2 • ♣ b 1
6 2 • ♠ b /
7 0 • ♠ a 1

v. July 19, 2010(c) m.e.müller

150 CHAPTER 6. ROUGH SET THEORY

A quick analysis shows that

H(s) = −1

8
log2

1

8
− 3

8
log2

3

8
− 4

8
log2

4

8
≈ 1.406.

and that for all fi ∈ F, H(fi, s) has the following values

1. 2
8H({1, 7}) + 3

8H({0, 3, 4}) + 3
8H({2, 5, 6}) ≈ 1.293 and Gn(f0, s) = 0.113

2. 1
8H({5}) + 3

8H({0, 2, 4}) + 4
8H({1, 3, 6, 7}) ≈ 0.749 and Gn(f1, s) = 0.657.

3. 2
8H({0, 4}) + 3

8H({1, 6, 7}) + 3
8H({2, 3, 5}) ≈ 0.508 and Gn(f2, s) = 0.898.

4. 2
8H({4, 7}) + 4

8H({1, 2, 5, 6}) + 2
8H({0, 3}) = 0.75 and Gn(f3, s) = 0.656.

As one can easily see, feature f2 provides maximum information gain. One
would expect it is the feature that is most significant.

How do we extract the most significant (useful) attributes without any assump-
tions or heuristic guidelines? Let c = s/S and imagine Q is our current subset
of attributes that we want to reduce in order to find a reduct. To determine a
minimal set of attributes P ⊆ Q, R = Q − P with maximum utility, we need
to:

1. drop attributes R such that P = Q−{R} where the loss of R causes least
utility loss on c = s/S.

2. keep attributes R ∈ P that would cause most utility loss with respect to
c = s/S.

This is simply the idea behind top–down or bottom–up computation of reducts
relative to S. First, note that

utilitys(P � S) ≤ utilitys(Q � S) (6.49)

utilitys((Q−P) � S)utilitys(R � S) ≤ utilitys(Q � S) (6.50)

Then, based on relative utility we define an attribute’s significance similar to
information gain (see equation (5.7)):

Definition 6.20 — Attribute signifiance.Attribute signifiance

The significance of a set of attributes is the loss of utility caused by its removal:

significances(P � S) = utilitys(Q � S)− utilitys(Q−P � S) (6.51)

is called the (Q-relative) relative significance of P for S.

Exercise 6.19 (�) Even though Q = P ∪̇R,

significances(P � S) + significances(R � S) = significances(Q � S)

is in general not true. Prove!

The idea behind knowledge discovery by rough set then means deftly chosing

v. July 19, 2010(c) m.e.müller

6.6. CONCLUSION 151

R (top-down) such that

significances(P � S) = utilitys(Q � S)− utilitys((R) � S)

is maximised, or

P (bottom-up) such that

significances(R � S) = utilitys(Q � S)− utilitys((Q−R) � S)

is minimised

This is actually a search problem, and thus—according to Michie—a machine
learning problem.
Putting Rst into an application means to provide efficient tools to compute P
as a hypothesis to describe a target S when we start off with a given set Q of
attributes (top–down) or nothing; i.e. an empty set of relations.

6.6 Conclusion

What is rough set theory good for, you might ask? What does it offer that
entropy-based heuristially guided decision tree induction does not have? Well,
the answer is:

Less!

It definitively lacks one important property, and this is the value of a feature
for an object. If, in a decision tree, Nf is the least node subsuming two objects
x and y, then we know that Nf has at least two different successor nodes Nx
and Ny subsuming x and y respectively. We also know that ϕ(Nx) and ϕ(Ny)
differ in only one literal in the precondition. This difference is exactly in the
value of feature f : f(x) = vx 6= vy = f(y).
In rough set theory, all we know is that f(x) 6= f(y) because x 6=Rf

y. We lost
knowledge about the actual values vx and vy. But does it hurt? Not at all.
First, we can reconstruct vx by asking I about f(z) for an arbitrary z ∈ [x]Rf

.
We need to save the value for one element of this class only and know that
all equivalent objects share the same value. Second, we do not only not really
lose information—we even compressed our knowledge further: The information
that from some decision node on downwards f(z) = vx holds for all subsumed
objects, is stored in every subsumed node. Sure we can create a more efficient
data structure but at latest when we try some kind of rule based post pruning,
we need all the literals in every node again.
So there is not really a big loss here. According to our understanding of knowl-
edge as the ability to discriminate different things from each other we have not
lost anything.
Another argument could be that, of course, we lost the structure of a decision
tree. Is that true? You guessed it: No (as far as we are concerned with definable

v. July 19, 2010(c) m.e.müller

152 CHAPTER 6. ROUGH SET THEORY

classifications). Let us take a closer look at the front of a decision tree d we
induced to describe t. Of course, it represents a classification, say d = s/D with
every leaf node being an equivalence class. Then (presupposing t is definable),
it holds that

∀ci ⊆ s : ci ∈ d =⇒ ci ∈ s/Rt.
Let D ⊆ R be the set of all the equivalence relations induced by all the features
used in any of the decision nodes. It surprisingly holds that

D � D

because features cannot appear more than just once in a tree. So unless the
least subsuming node of two leaf nodes is the root node, their rule representa-
tions contain different literals. The difference becomes clear when comparing
figures 4.4 and 6.2. The first one illustrates that on every level of the tree, only
equivalence classes are further partitioned, while ¯̄R partitions the entire set s. It
is, so to say, a flat tree and ¯̄D is the equivalence relation that is used as decision
attribute in the root node. We can then simply enumerate all the classes and
for each class we find a representative for which we find all the values required
for all the features in D that define this class. Then, if

D � Rt,

D is a very good hypothesis for t. And it is not so bad, if

D
γ
⊃ Rt

for large γ.
Still one might argue that the loss of information by not entirely partitioning
the universe now is lost. Decision trees do not only express which features are
important to make a certain decision. They also express a relative dependence
of features: If a feature g appears in a decision node below Nf , then we know
that g is somehow required by f in order to approximate t. If it does not
appear in a subtree below Nf , then it is not significant or already included in
the indiscernability relation defined by all the features in literals in ϕ(Nf).
It follows that

utility corresponds to information and
significance corresponds to information gain.

The only difference is that decision trees presupposes the validity of the assumed
entropy measure, while rough set data analysis simply takes an unbiased look
at the data.

v. July 19, 2010(c) m.e.müller

Chapter 7

Inductive Logic Learning

Common sense expert knowledge usually consists of rules,
or at least, rules are used to communicate expert knowl-
edge. Such rules are represented using a suitable formal sys-
tem, that is, some kind of a (terminological) logic. Herein,
the terminology and factual knowledge can be seen as a
knowledge base; i.e. it is what we can feed into a system
which we want to induce more general and previously un-
known laws from our observations. This is what inductive
logic learning is concerned with.

Every object x of our universe actually is a pattern. Assuming that we have an
information system I = 〈U,F, VF〉 describing all elements of our domain, then
x is nothing else than a vector:

ρ(x) = ~x = 〈f0(x), f1(x), . . . , fn−1(x)〉

With a suitable representation function ρ, similar objects should be represented
by similar vectors. Similarity is not so much a property of vectors but rather a
property of an according distance measure of which there are many. We know
that assuming any of these measures in representation space is a huge bias—for
any method relying on this measure of similarity implies “natural” similarity of
objects in the real world. This is one minor motivation that led us to rough set
data analysis.
But this is not the only reason why one would like to consider another possible
solution avoiding this kind of bias. Usually, there is more to a complex domain
than just patterns. There are dependencies. If, for example the pattern � is
“similar” to the pattern 2 and if the pattern is “similar” to the pattern •,
then we often find that N is “similar” to N. As one can see, objects are similar
to each other if they have the same shape. What happened here? First, there
is a rule. If there is something like this and something like that, then there
is something like so. Second, this rule actually implements “similarity”: Two

153

154 CHAPTER 7. INDUCTIVE LOGIC LEARNING

things are of the same breed if they have the same shape. We did not presuppose
too much and are rewarded with a concept and its procedural definition.
Many people prefer rules to patterns; especially when it comes down to describ-
ing concepts. If we want to discover new concepts the knack is to find new rules
that describe our data. There are special kinds of rules which together form a
logic program. Rule discovery means to invent logic programs.

7.1 From Information Systems to Logic Programs

Let there be an information system I = 〈s,F, VF〉. Every feature fi in F is
defined as a function

fi : s→ Vi.

For I we also defined an information function, I : s × n → VF, with I(x, i) =
fi(x). But why do database managers speak of “tables” and “relations”?

7.1.1 Functions and Relations

Functions are special cases of relations such that

f : s ⇁ Vf

Therefore, every feature f is a heterogenous binary relation. In the last chapter
we took a closer look at a more generalised interpretation of f :

R : s ⇁ s where xRy ⇐⇒ f(x) = f(y)

Therefore, an information system I provides us with two sets of relations of
different kinds:

• The set F contains heterogeneous binary relations that relate objects of
our domain to some property and

• the set R contains equivalence relations on s relating pairs of objects of
our domain that share the same properties.

R defines a classification =s/R, and we know there is a set ċ ⊂ s of representa-
tives such that the union of all R-equivalence classes of elements of ċ forms the
partition c. Therefore,

∀x ∈ ċ, y ∈ s : y ∈ [x]R =⇒ f(y) = f(x)

Reformulating f : s→ Vf as a relation F : s ⇁ Vf , this becomes

∀x ∈ ċ, y ∈ s : ∀z ∈ Vf : xRy =⇒ yFf(x)

And, finally, speaking in terms of relation algebra, it holds that

R`F = F and, by symmetry of equivalence relations, RF = F (7.1)

In databases, f ∈ F are called the “columns” of a table, and all x ∈ s form the
columns.

v. July 19, 2010(c) m.e.müller

7.1. FROM INFORMATION SYSTEMS TO LOGIC PROGRAMS 155

Exercise 7.1 (♦�) The entire table is often referred to as a (single) relation. Why?
— Read up the definition of heterogeneous (binary) relations! Be sure to know about
the difference between relation algebra and relational algebra!

Relations are the algebraic counterpart of what in first order logic (FOL) is
called a predicate.

7.1.2 Semantics of First Order Logic

We assume the reader to be familiar with first order logic, but in order to
elucidate its connection to relational knowledge representation and discovery,
let us briefly recall the most important pieces from its semantics.
The syntax of FOL is defined by the construction of terms (TerΣ) and formulas
(FmlΣ) over a signature of function symbols, predicate symbols, connectives,
quantifiers and variable symbols (VarΣ). Their meaning is a mapping from into
a structure called a Σ–algebra:

Definition 7.1 — Σ–Algebra A. Σ–Algebra A

Let Σ be a signature. We define a structure A, called a Σ–algebra, as follows:

1. sA is the base set of A

2. For n > 0 and a function symbol f : sn → s ∈ Σ,
there is a function fA : snA → sA

3. For n > 0 and a predicate symbol p : sn ∈ Σ,
there is a relation pA ⊆ snA

4. For n = 0 and a constant symbol c :→ s ∈ Σ,
there is cA ∈ sa

5. for n = 0 and an atom p :∈ Σ,
there is a truth value in 2 := {0,1}

A Σ-algebra provides a structure in which we can interpret a formula. Proper
interpretation requires not only to map predicate of function symbols onto re-
lations and functions respectively. Variables need to have a value, and terms
must be evaluated:

Definition 7.2 — Assignment α, Evaluation �·�Aα.
Assignment α,

Evaluation �·�Aα
An assignment or valuation is defined by a function α : VarFOL → sa mapping
variable symbols onto elements of sA. A modified assignment

α′ := α [X0 7→ x0, . . . , Xn−1 7→ xn−1]

is defined as

α′(X) =

{
xi for X ∈ {Xi : i ∈ n}
α(X) otherwise

(7.2)

v. July 19, 2010(c) m.e.müller

156 CHAPTER 7. INDUCTIVE LOGIC LEARNING

An evaluation is a function delivering the result of resolving a term in its Σ-
algebra A based on the current variable assignment α:

�:�Aα TerΣ → sa

For variable symbols X ∈ VarΣ ⊆ TerΣ, we define �X �Aα:= α(X). Complex
terms are evaluated recursively:

�f(t0, . . . , tn−1)�Aα := fA(�t0�
A
α, . . . , �tn−1�

A
α)

So far, all we can do is to compute terms—but the interesting thing is to evaluate
formulas ϕ ∈ FmlΣ. FOL-formulas, when “evaluated”, should deliver a value
that tells us whether a formula describes a situation which is somehow “true”
or “false”. “True” and “false” are values in A, but the meaning of a formula to
be “true” is, that it is valid :

Definition 7.3 — Validity, |=.Validity, |=
Let A be a Σ-algebra and ϕ,ψ ∈ FmlFOL. We call ϕ valid in A under α
(A |=α ϕ), if:

A |=α p(t0, . . . , tn−1) :⇐⇒
〈
�t0�Aα, . . . , �tn−1�Aα

〉
∈ pA

A |=α p :⇐⇒ �p�Aα= 1
A |=α (¬ϕ) :⇐⇒ A 6|=α ϕ
A |=α (ϕ ∧/∨/→ ψ) :⇐⇒ A |=α ϕ and/or/implies A |=α ψ
A |=α ∀X : ϕ :⇐⇒ ∀a ∈ sA : A |=α[X 7→a] ϕ
A |=α ∃X : ϕ :⇐⇒ ∃a ∈ sA : A |=α[X 7→a] ϕ

Herein, α [X 7→ a] means that the function α at X is redefined so as to deliver
the value a ∈ sA.
ϕ is valid in A, if A |=α ϕ for all α, and ϕ is called valid, if ϕ is valid in every
A.

7.1.3 Deduction

Deduction or inference means to draw conclusions. So if there is an argument
which we agree to be admissible somehow, we want to be able to draw according
conclusions in A. This suggests to call A a model :

Definition 7.4 — Model, A |= ϕ.Model, A |= ϕ

A Σ-algebra A is called a model of a formula ϕ ∈ FmlΣ, iff:

A |= ϕ :⇐⇒ A |=α ϕ (7.3)

for all assignments α. For a set of formulas Φ ⊂ FmlΣ,

A |= Φ :⇐⇒ ∀ϕ ∈ Φ : A |= ϕ (7.4)

v. July 19, 2010(c) m.e.müller

7.1. FROM INFORMATION SYSTEMS TO LOGIC PROGRAMS 157

The question whether an algebra is a model depends on the interpretation of
the signature, and, of course, on the assignments.

Exercise 7.2 � Learn about a special kind of algebras and models; so-called Herbrand
algebras and Herbrand models (for example, [Mazzola et al., 2006], [Sperschneider and Antoniou, 1991]
or [Ehrig et al., 2001]).

A naturally or intuitively valid inference means that from one formula (or a set
of formulas) follows another. It means that if the first formula has a model,
the second one should be valid in this algebra as well! This makes inference a
relation between models.

Definition 7.5 — Entailment, Φ |≈ ϕ. Entailment, Φ |≈ ϕ
A set Φ ⊆ FmlΣ entails a formula ϕ ∈ FmlΣ, if and only if every model of Φ is
a model of ϕ, too:

Φ |≈ ϕ :⇐⇒ ∀A : A |= Φ =⇒ A |= ϕ. (7.5)

Usually, the entailment relation is denoted |=; in order to avoid confusion we
use |≈ instead.

The deduction rule that is most common in every day life is modus ponens. It
states that if from a certain premise we may draw a certain conclusion, and if
that premise is a valid statement, then the conclusion must be valid, too.

Modus Ponens

Thinking implies being; or, as Descartes put it: “Cogito ergo sum”. The premise is

to be thinking, and once you think, you must be. Therefore, if you think, you are. In

other words:

A |= ϕ ∧ A |= (ϕ −→ ψ) =⇒ A |= ϕ.

Entailment is simple to understand but difficult to show: One has to find all
models of Φ and then needs to check whether each model is a model of ϕ, too.
This is, for a machine, at least cumbersome if not impossible. But what is logic
for good if there is no proper way to implement entailment?
There appears to be a loophole, though: Suppose that Φ |≈ ϕ. Then,

∀A : A |= Φ =⇒ A |= ϕ
iff ∀A : A 6|= ϕ =⇒ A 6|= Φ
iff ∀A : A |= (¬ϕ) =⇒ A 6|= Φ
iff ∀A : A |= Φ =⇒ A 6|= (¬ϕ)

(7.6)

In FOL, there exist two truth values, 0 and 1. So if Φ |≈ ϕ, it cannot be the
case that Φ |≈ (¬ϕ), too. And this means that

Φ |≈ ϕ ⇐⇒ Φ ∪ {(¬ϕ)} has no model. (7.7)

or

∀A : ((A |= Φ =⇒ A |= ϕ) ⇐⇒ A 6|= (¬ϕ)) (7.8)

v. July 19, 2010(c) m.e.müller

158 CHAPTER 7. INDUCTIVE LOGIC LEARNING

This is a bit cumbersome to write down, so we define a special symbol 2 for
FOL-formulas that do not possess any model:

∀A : A 6|= 2 (7.9)

Together with equation (7.7) this gives:

Φ |≈ ϕ ⇐⇒ Φ ∪ {(¬ϕ)} |≈ 2 (7.10)

But still there are universal quantifiers involved in this definition.
First order logic is a formal system whose syntax is given by a grammar. Syn-
tactically correct symbol strings make terms and formulas. The validity of
formulas requires to inspect interpretations and so does entailment. The se-
mantics of FOL was defined in a way that allows to compute a term’s value in
an algebra, but, by a method called substitution, we can anticipate this: Let
σ = [X0 7→ t0, X1 7→ t1, . . . , Xn−1 7→ tn−1] denote a substitution such that its
application to ϕ ∈ FmlΣ, written by juxtaposition ϕσ, yields a formula ψ in
which every occurrence of variables Xi is replaced by ti ∈ TerΣ. There is a
lemma which states that it does not matter whether we carry out a substitu-
tion and then evaluate the formula or whether we evaluate the formula with a
modified assignment:

A |=α ϕ [X 7→ t] ⇐⇒ A |=α[X 7→a] ϕ (7.11)

where a is the value of t in A. This way, we can choose where to carry out
variable assignments: on syntactic level or on semantic level. The idea is to find
a similar technique to make proving entailment easier—by shifting the problem
back onto the syntactic level.
There are many such methods, and they are called calculi. They all consist of
different sets of term rewriting rules. For illustration, we give one example:

Example 7.1 For all sets Φ of well-formed FOL-formulas we define the
following rule: If a string v ∈ Φ and if there is a string (v → w) ∈ Φ, then w is
a string in Φ, too. Such a rule usually is written as follows:

v (v → w)

w

Carrying out this simple term rewriting rule we do what semantically corre-
sponds to the modus ponens.

The good news is there are some calculi which are sound and complete, like
Hilbert calculi, sequent calculi, or resolution. Whenever one can derive ϕ from
Φ, then Φ entails ϕ and whenever Φ entails ϕ, then ϕ can be derived from Φ.
The bad news is these calculi cannot be implemented to perform efficient in
all cases (the interested reader might want to learn more about Kurt Gödel’s
completeness theorem). But the worst news is that for every “interesting” set of
formulas Φ, it is in general undecidable (c.f. the famous works of Alonzo Church
and Alan Turing). Nearly all problems are “interesting”—especially, in the case

v. July 19, 2010(c) m.e.müller

7.1. FROM INFORMATION SYSTEMS TO LOGIC PROGRAMS 159

of knowledge discovery. You will not be satisfied if you had not learned anything
interesting while reading this book, for example, will you?
The question is: Is there a subset of predicate logic which still allows to formulate
most “interesting” problems and for which there exists a satisfying calculus?
Well, there is. And, together with equation (7.11) it allows us to prove things
this way:

Φ |≈ ϕ ⇐⇒ Φ ∪ {(¬ϕ)} ` 2 (7.12)

Sets of FOL-formulas can be syntactically transformed into sets of formulas all
of which have the same form. Examples are disjunctive and conjunctive normal
form where the latter one is the most important to us. The derivation calculus
to which we alluded in the previous chapter is called resolution and it is based
on the idea of proofs by refutation as defined in equation (7.12).

Definition 7.6 — FOL-Resolution. FOL-Resolution

Let there be two formulas ϕ and ψ which both consist of a disjunction of either
positive or negative atomic formulas (called literals). For a disjunction of literals∨
i∈l λi we simply write {λ0, . . . , λn−1}.

Let λϕ ∈ ϕ and (¬λψ) ∈ ψ and a unifying substitution σ such that λϕσ = λψσ.
We then define the resolution rule RES as follows:

{κ0, . . . , λϕ, κn−1} {ν0, . . . , (¬λψ), νm−1}
{κ0, . . . , κn−1, ν0, . . . , νm−1}σ

RES (7.13)

For two parent clauses ϕ and psi we denote the conclusion after applying RES
the resolvent and write ϕ uσRES ψ. A derivation in the resolution calculus is
written {ϕ,ψ} `RES χ = ϕ uσRES ψ.

We conclude:

Resolution
The resolution principle is based on the modus ponens rule. The structure of a
resolution proof is based on refutation.

Φ ` ϕ =⇒ Φ |≈ ϕ X
Φ ∪ {(¬ϕ)} ` 2 =⇒ Φ |≈ ϕ X

Φ |≈ ϕ 6=⇒ Φ ` ϕ A
Φ |≈ ϕ =⇒ Φ ∪ {(¬ϕ)} ` 2 X

We end this section with a nice observation: Let there be a function depth that
delivers the depth of a term as follows:

depth(t) =

{
0, t ∈ Var ∨ Ter0

max {depth(ti) : i ∈ n}+ 1, t = f(t0, . . . , tn−1)

The depth of of a literal is the maximum depth of all the terms in the literal;
and the depth of a clause is the maximum depth of all the literals in it. Since
resolving a literal requires the application of a substitution, the depth of the
resolvent cannot be smaller than its parent clauses. The corollary is:

depth(ϕ) > depth(()ψ) =⇒ ϕ 6|≈ ψ (7.14)

unless ψ is a tautology.

v. July 19, 2010(c) m.e.müller

160 CHAPTER 7. INDUCTIVE LOGIC LEARNING

7.2 Horn Logic

7.2.1 Logic Programs

Still, full FOL leaves us with many possible collections of positive and negative
atomic formulas which creates a problem of choice in efficient resolution proofs.
Therefore, we restrict FOL to the following subset.

Definition 7.7 — Horn Logic.Horn Logic

Horn logic HOL is the subset of FOL containing a set Φ′ ∈ FmlHOL for every
set Φ ⊆ FmlFOL such that

1. ∀A : A |= Φ⇐⇒ A |= Φ′

2. ∀ϕ ∈ Φ′ : ϕ = ((ψ0 ∧ ψ1 ∧ · · ·ψn−1) −→ ψn)

where all ψi, i ∈ n∪ {n} are atomic formulas. By simple transformation, every
formula ϕ has the form

(¬ψ0) ∨ (¬ψ1) ∨ · · · ∨ (¬ψn−1) ∨ ψn

Written as

ϕ = {¬ψ0,¬ψ1, . . . ,¬ψn−1, ψ}
it is called a clause and each element a literal. By restricting the length of the
conclusion of the rule to one atomic formula, every such clause has at most one
positive literal, also called a Horn clause, [Horn, 1951].

According to the definition above, there are three different types of Horn for-
mulas:

1. Facts are unary clauses that contain exactly one positive literal. A fact
p(t0, . . . , tn−1) is also written1

p(t0, . . . , tn−1). (7.15)

2. A rule consists of exactly one positive literal and at least one negative
literal. Rules are written as

(¬ψ0) ∨ (¬ψ1) ∨ · · · ∨ (¬ψm−1) ∨ p(t0, . . . , tn−1)

= {¬ψ0,¬ψ1, . . . ,¬ψm−1, p(t0, . . . , tn−1)}
= p(t0, . . . , tn−1):- ψ0, . . . , ψm−1. (7.16)

3. A goal consists of negative literals only:

?- ψ0, . . . , ψn−1. (7.17)

1The dot “.” belongs to the syntax definition of a fact. The reason why we write p for p
will become clear later.

v. July 19, 2010(c) m.e.müller

7.2. HORN LOGIC 161

4. The empty clause, 2, has no literal:

{} = 2. (7.18)

The huge benefit now is that SLD-Resolution is sound and complete with respect
to Horn Logic and, especially, that there is a simple and (more or less) efficient
algorithm to carry out proofs. This is a more than just fair compensation for
losing some expressiveness.

Logic Programs
A literal is a positive or a negative atomic formula. A set of literals is called a clause.
A Horn clause is a clause with at moste one positive literal. A set of Horn clauses is
a predicate definition. A set of predicate definitions is called a logic program.

7.2.2 Induction of Logic Programs

The method by which a machine acquires a logic program to describe a set of
facts (or HOL-formulas) is called inductive logic programming. By the nature of
HOL, this learning paradigm focusses on rule induction. In terms of knowledge
representation and discovery it means: The sample can be formulated as a set of
facts and the background knowledge can be formulated using a terminological
framework as it is provided by some expert. Hypotheses are formulated with
respect to the same terminology and, therefore, are easy to interpret.

Example 7.2 Here is an example of what it means for a knowledge base
to “naturally” or “intuitively” represent an expert’s knowledge. Let there be
two people, rhineheart and anderson. They both work for the same company,
metacortex, a computer firm running an expert system called the oracle. While
rhineheart is a manager, anderson is a programmer. Yet, both of them may
use the oracle. smith, who is not a metacortex employee, may not use use the
oracle program.
The question is: Who, in general, may use a metacortex program? We represent
factual knowledge Π as follows: manager(rhinehart). programmer(anderson).

employer(rhinehart ,metacortex). employer(anderson,metacortex).
runs(metacortex , oracle). program(smith).


Our sample s looks as follows: 〈may use(anderson, oracle),1〉 ,

〈may use(rhineheart , oracle),1〉 ,
〈may use(smith, oracle),0〉


Obviously, someone may operate programs of a company in which he is employed
only:

may use(Program,Person):-
runs(Company ,Program),
employer(Company ,Person).

v. July 19, 2010(c) m.e.müller

162 CHAPTER 7. INDUCTIVE LOGIC LEARNING

This rule forms terminological knowledge—if present. If it is not present in Π,
then it forms a hypothesis H which together with Π could explain s.

Exercise 7.3 (�) Prove that Π ∪H |≈ ϕ ⇐⇒ 〈ϕ,1〉 ∈ s!

Note that the rule is more general than the set of facts: First, it makes use
of variables rather than atoms and second, some knowledge appears to be dis-
pensable as it seems that it is irrelevant whether a person is a manager or
a programmer—as long as he works for the according company. Logic pro-
grams live from variables. What may sound trivial, has two crucial conse-
quences: From the computational point of view, variables are something we
would like to avoid whenever possible. But from a logic point of view, (com-
mon) variables connect literals. Literals that are not connected are indepen-
dent, and it could well be that parts of a rule containing irrelevant/independent
variables only can be pruned away. As we have seen in the previous sec-
tion, logic programs are a simple method to formalise HOL theories. So if
we use HOL as a representation language for samples and background knowl-
edge it would be desirable to make the machine learn a logic program by it
self. Russell supports the idea of induction as the origin of scientific axioms,⊕
[Russell, 1992, Russell, 1995], and Polya worked on inductive reasoning and sci-
entific discovery by analogy,[György, 1968]. Popper, on the other hand, claims
that scientific proof theory must be based on the deductive test, since induction
itself is invalid, [Popper, 2002]. We shall see later, that Popper’s claim is at
least weakly supported by our notion of induction. For now, it shall suffice to
give a common sense description of inductive generalisation:

Inductive Generalisation
Machine learning in the context of terminological knowledge means to inductively
generalise over a set of observed facts.

We know try to formulate the idea a bit more formally:

Definition 7.8 — ILP Learning Problem.ILP Learning
Problem

Let Π be a satisfiable set of Σ-formulas and Σ the signature defined by it. We
call Π the (terminological) background knowledge.
A sample is a set of atomic Σ-formulas ϕi together with a truth value that
describes their desired satisfiability conditions:

s = S(m, t)

=
{
〈ϕi, t(ϕi)〉 : t(ϕi) = �ϕi�

A
α∈ 2 for i ∈m

}
(7.20)

The learning problem is to find a H ⊆ FmlFOL for which

Π ∪H |≈ ϕi ⇐⇒ t(ϕi) = 1 (7.21)

holds.

Therein, A is the Herbrand Algebra with signature Σ defined in Π and �·�Aα is the
Herbrand interpretation. A learning problem would not be a learning problem,

v. July 19, 2010(c) m.e.müller

7.2. HORN LOGIC 163

if equation (7.21) was satisfied for H = ∅, i.e. if Π |≈ ϕi ⇐⇒ t(ϕi) = 1 already.
So we are left with the task to induce new formulas H such that XXX???XXX
er with Π we can prove what we want to be true and disprove what we want to
be wrong. We restricted ourselves to HOL, so we can reformulate: We want to
find H such that

Π ∪H `SLD ϕi ⇐⇒ t(ϕi) = 1

Note that there are a few things different here: First, S(m, t) is missing a µ.
The choice function implemented by S here is deterministic and defined by
SLD-resolution: The set of examples is a sequence of facts. Second, the union
Π∪H suggests a monotonic refinement of knowledge. We know that if Π∪{ϕ}
is unsatisfiable, so is Π ∪H ∪ {ϕ}.
Exercise 7.4 ♦ Read up about the “Compactness Theorem”.

Knowledge discovery tries to generalise in order to find new knowledge; this
means, that the deductive closure of Π should be a subset of Π∪H. Together it
means that knowledge discovery by logic induction is at most monotonic in the
sense that it preserves falsity. This observation might help mollify Sir Popper’s
objections.

7.2.3 Entailment, Generality and Subsumption

Generality comes in many flavours. An equivalence relation is more general than
another, if it is a superset. Most sets are considered to be more general than
their subsets. In Heyting algebras, any expression x t y is more general than
both x and y: The maximum of two natural numbers is greater or equal than
both, the union of two sets is greater or equal than both, and the disjunction of
two propositional variables is true under three assignments whereas each single
variable is true under only two of them.

Generality
One thing is more general than another if it is bigger in some way.

It appears just natural to define a relation of generality on sets of formulas along
the same line:

Φ is more general than Ψ :⇐⇒ Φ uΨ = Φ

What is it that remains the same for a set of formulas if we add a more special
one? It is the set of formulas entailed by it.

Definition 7.9 — Theory, Th(Φ). Theory, Th(Φ)

The theory of a set Φ of formulas is the closure of Φ under |≈:

Th(Φ) := {ϕ : Φ |≈ ϕ}

Exercise 7.5 (♦♦) Give examples for finite and infinite theories!—Think of Ter0
Σ,

sA, and function symbols in Σ.

v. July 19, 2010(c) m.e.müller

164 CHAPTER 7. INDUCTIVE LOGIC LEARNING

Exercise 7.6 (�) Just for thinking: Given a theory Θ, are there different Φi with
Th(Φi) = Θ? Is there a smallest one? Is there exactly one smallest?

Let us briefly consider what it means for one theory to be more general than
another:

Example 7.3 Let us define a relation of generality as follows: Φ is more
general than Ψ, if Th(Ψ) ⊆ Th(Φ). By equation (7.22),

Th(Ψ) ⊆ Th(Φ) ⇐⇒ ∀ϕ : Ψ |≈ ϕ =⇒ Φ |≈ ϕ

But if Φ |≈ ϕ and Ψ 6|≈ ϕ, then Ψ |≈ (¬ϕ). And since Th(Ψ) ⊆ Th(Φ),
Φ |≈ (¬ϕ), too. Hence,

Φ |≈ ϕ and Φ |≈ (¬ϕ) (7.22)

which is a rather uncomfortable situation. It seems we have been caught in a
logic trap.

The property of equivalence is unaffected, though.

Definition 7.10 — Equivalence, Φ ∼= Ψ.Equivalence, Φ ∼= Ψ

Let there be two formula sets Φ 6= Ψ. Φ and Ψ are called equivalent, written
Φ ∼= Ψ, if their corresponding theories are the same: Th(Φ) = Th(Ψ).

It is nice to compare sets of formulas—but what we have to do is to induce sets
of formulas by stepwise induction of single formulas. This requires a relation of
generality between single formulas.

Example 7.4 Let Π consist of the following facts:

Π = {colour(�, black), colour(�, black)}

Let the sample be as follows:

S = {shape(�, square), shape(�, square)}

What do we need in order to infer the examples from Π? Well, all black objects
are squares:

h0 = colour(X, black) −→ shape(X, square)

This is true in the sense that Π∪{h0} |= S. And it remains true even if we add
another observation: Π ∪ {h0} |= S ∪ {colour(©,white)}. On the other hand,
the observation of a white circle allows us to reformulate h0:

h1 = ¬colour(X,white) −→ shape(X, square)

Obviously, there are two different hypotheses both of which are compatible
with our background knowledge and both of which are able to describe all our
observations. But what happens if there appears

colour(�, light) ?

v. July 19, 2010(c) m.e.müller

7.2. HORN LOGIC 165

We observe a strange phenomenon:

Π ∪ {h0} 6|= shape(�, square) whereas Π ∪ {h1} |= shape(�, square)

By common sense it is clear that every model of h0 is a model of h1, too—but
not vice versa! And this means, that h0 entails h1:

{h0} |≈ h1

By abuse of language we abbreviate and write h0 |≈ h1.

This leads to the following definition of generality:

Definition 7.11 — Generality of FOL-Formulas, ϕ |4 ψ.
Generality of

FOL-Formulas,
ϕ |4 ψLet ϕ,ψ be formulas. ϕ is called more general than ψ (with respect to Π), if

Π ∪ {ϕ} |≈ ψ

In other words: whenever ϕ is valid, so is ψ. If ϕ is more general than ψ we say
that ϕ subsumes ψ, written ϕ |4 ψ.

Don’t be confused about the symbol |4: It does not means that ϕ is somehow
less than ψ but rather that the set of models of ϕ is a subset of the set of models
of ψ.

Exercise 7.7 (♦) Prove that

ϕ |4 ψ ⇐⇒
{
〈A,α〉 : �ϕ�Aα= 1

}
⊆

{
〈A,α〉 : �ψ�Aα= 1

}
(7.23)

⊕
Generality is a concept that can be defined in many different ways. Let us,

even though there is no such thing as a distribution in FOL, just try a little
Gedankenexperiment.

Example 7.5 Suppose there is a set Π of n Horn formulas and a distribution
µ on Π. We define a µ–relative generality of a Horn formula set Φ as

genΠ
µ (Φ) = µn({ψ ∈ Π : Φ |≈ ψ})

Then, we call a set Φ of Horn formulas more general than a set Ψ of Horn
formulas, if its generality is greater than the generality of Ψ:

Φ |4Π
µ Ψ :⇐⇒ genΠ

µ (Φ) ≥ genΠ
µ (Ψ)

This relation has an interesting property:

∀σ ∈ Π : (Φ |≈ σ −→ Ψ |≈ σ) =⇒ Ψ |4Π
µ Φ (7.29)

but Ψ |4Π
µ Φ 6=⇒ ∀σ ∈ Π : Φ |≈ σ −→ Ψ |≈ σ (7.30)

It means that |4Π
µ is complete with respect to |≈, but it is not correct.

Exercise 7.8 (�) Prove.

v. July 19, 2010(c) m.e.müller

166 CHAPTER 7. INDUCTIVE LOGIC LEARNING

What could be the motivation behind defining such a strange measure of gener-
ality? As you know, the statemant that showing Φ |≈ ϕ is not trivial in FOL is a
bold understatement. But in the example above, Π is finite and all the formulas
we are concerned with are Horn formulas. The measure µ can be considered
as a value describing a formula’s importance—be it whatever you like. It just
means that if µ({σ0}) ≥ µ({σ1}) it is more important to be able to show σ0

than it is to show σ1. To determine genΠ
µ (Φ), try to prove one σ after another;

and for each successful proof of σ, we add µ({σ}) to the generality of Φ. We
can do the same for Ψ. Even though a more general formula set may be not
correct, it allows to derive σ in most “important” cases. This way genΠ

µ is a
heuristic measure that may well help to efficiently find a theory that is able to
describe most the important cases—which quite often is good enough.2

We conclude that it is a very good idea to look out for a cheap version of |4;
some relation that we can confirm, in the best case, by syntactically means only
and from which we can more or less reliably infer whether one formula entails
another. Lucky us, there is such a subsumption relation:

Definition 7.12 — θ–subsumption, t |/ t′.θ–subsumption,
t |/ t′

Let t, t′ ∈ TerFOL and let λ, λ′ be literals from FmlFOL.
A term t θ-subsumes a term t′, iff there is a substitution θ such that tθ becomes
t (the same applies to literals):

t |/ t′ :⇐⇒ ∃θ : tθ = t′ and λ |/ λ′ :⇐⇒ ∃θ : λθ = λ′ (7.31)

A term or literal v is called a generalization over a set of terms or literals wi, iff
for every wi, v subsumes wi:

v |/ {w0, . . . , wn−1} :⇐⇒ ∀i ∈ n : v |/ wi.

Exercise 7.9 (�) Prove that for literals λ, λ′, λ |/ λ′ iff λ |≈ λ′!

θ-subsumption appears to be a very nice property that can be evaluated very
efficiently by simple term unification. But this holds for simple terms or literals
only. We are not able to decide whether for two non-unary clauses one subsumes
the other yet. Let there be two Horn clauses of equal length:

ϕ = κ0 :- κ1, . . . , κn−1

ψ = λ0 :- λ1, . . . , λn−1

Then it seems just reasonable to argue that ϕ |/ ψ, if there is a unifier such that
ϕθψ, or, in detail, if

∀i ∈ n : kappaiθ = λi

2As always, there remains to explain where µ comes from. But this is an issue that we will
come back to in the next chapter.

v. July 19, 2010(c) m.e.müller

7.2. HORN LOGIC 167

The nice thing is that Horn clauses have at most one positive literal each. This
makes two clauses of different length still look a bit like the same:

ϕ = κ0 :- κ1, . . . , κm−1

ψ = λ0 :- λ1, . . . , λn−1

Assume that m < n. Let us examine two different cases: First, we assume that

∀i ∈m : λiθ = κi (7.32)

That’s a good start, but: ψ cannot be more general than ϕ for another reason:
In order to conclude κ0 = λ0θ, ψ requires λmθ ∧ · · · ∧ λn−1θ to be true, too.
Hence ψ has stronger restrictions on λ0θ than ϕ has on κ0 which makes the set
of models of ψ a subset of the set of models of ϕ.

Second, we assume the reverse case:

∀i ∈m : κiθ = λi (7.33)

Up to m, it is again the case that ϕ subsumes ψ literalwise. Additionally,
once ψθ is satisfiable, ϕ is satisfiable, too. This is a much better concept for
describing the generality relation between two formulas.

Definition 7.13 — θ–subsumption, ϕ |/ ψ.
θ–subsumption,

ϕ |/ ψ
Let ϕ,ψ ∈ FmlHOL. ϕ θ-subsumes ψ, if for a subset of ψ, each of its literals is
subsumed by a literal in ϕ:

ϕ |/ ψ :⇐⇒ ϕθ ⊆ ψ (7.34)

Note that ϕ |/ ψ implies that ϕ |≈ ψ but not vice versa.

Exercise 7.10 (�) Show that ϕ |≈ ψ 6=⇒ ϕ |/ ψ.

Recall our hierarchical representation of the domain of geometric shapes in
section 4.4.

Example 7.6 We model a part of this concept hierarchy as a small logic
program Π:

shape(X, tetragon) :- shape(X, square).

shape(X, tetragon) :- shape(X, rhombus).

shape(X, angled) :- shape(X, tetragon).

shape(X, angled) :- shape(X, triangle).

Suppose we also have knowledge about form and colour of •,�,♦,�,4 and N.
Then, we observe the following sample:

s =
{
〈•,0〉 , 〈�,1〉 , 〈♦,0〉 ,

〈
�,1

〉
, 〈4,0〉 , 〈N,1〉

}
v. July 19, 2010(c) m.e.müller

168 CHAPTER 7. INDUCTIVE LOGIC LEARNING

which provides us with information about instances of a concept black polygon.
Let us compare three possible hypotheses:

h0 := black polygon(X):- colour(X, black), shape(X, tetragon).

h1 := black polygon(X):- colour(X, black), shape(X, angled).

h2 := black polygon(X):- shape(X, tetragon).

Then,
h2 |/ h0 but h2 6|/ h1 and h1 6|/ h0

but h2 |≈ h0 and h2 |≈ h1 and h1 |≈|/ h0.

It is nice to know that θ-subsumption is sufficient for entailement. But we
did not take into account the entirety of our background knowledge and the
provided sample. Since

Π ∪ {h0} |≈ black polygon(4)

and 4 obviously is not a black polygon, h0 is too general : It allows to infer a
proposition that S tells us to be false. h1 seems to model S pretty well:

Π ∪ {h1} |≈ black polygon(X) ⇐⇒ X ∈
{
�,�,N

}
Finally, h0 is too specific, because Π ∪ {h0} |≈ black polygon(X) ⇐⇒ X ∈{
�,�

}
, i.e.

Π ∪ {h0} 6|≈ black polygon(N).

In the last example we considered the satisfaction sets of hypotheses in order to
find a description of their generality. We already know this idea: In example 7.5
we defined the generality of a formula based on the importance of all formulas
that can be deduced. With a slight adjustment3

genΠ�s
µ ({hi}) := µn({ϕ : Π ∪ {hi} |≈ ϕ⇐⇒ 〈ϕ,1〉 ∈ s})

we obtain a measure based on the size of the satisfaction set of hi. If we assume
µ({ϕ}) = 1

|s| , then

genΠ
µ ({h0}) =

4

6
, genΠ

µ ({h1}) =
6

6
, and genΠ

µ ({h2}) =
1

6

Interestingly, gen appears rather to model an error measure than a measure
of generality. This is due to the fact that in the calculation above we did not
simply count the number of derivable formulas but rather the number of correctly
derivable formulas where correctness is expressed relative to s. We define:

Definition 7.14 — Relative Generality of FOL-Formulas, ϕ |4Γ ψ.
Relative Generality
of FOL-Formulas,
ϕ |4Γ ψ Let ϕ,ψ be FOL-formulas, Π a logic program, and Γ be a set of FOL-formulas.

ϕ is called more general than ψ relative to Γ, written ϕ |4Γ ψ, if

∀χ ∈ Γ : Π ∪ {ψ} |≈ χ =⇒ Π ∪ {ϕ} |≈ χ
3Note the �-symbol!

v. July 19, 2010(c) m.e.müller

7.2. HORN LOGIC 169

Whenever a “test case” χ is provable by ψ, so it can be proved by ϕ. If ϕ is
more general than ψ relative to Γ we also say that ϕ Γ-subsumes ψ, written
(ϕ � Γ) |4 (ψ � Γ).

Now we have a set of different working definitions of generality all of which help
forming a partially ordered set of hypotheses.

Exercise 7.11 � Show that |4 as in definition 7.11, as in definition 7.14 and |/ are
partial order relations on the set of Horn clauses.

A partial order relation can be defined equationally, too. Usually, one defines
x v y :⇐⇒ x t y = y in relation algebra. What would be the according
meet and/or join operators in a lattice with any of our partial order relations?
This question is not of academic interest only. Example 7.6 is an impressive
demonstration of what it means to overgeneralise or overspecialise. The safest
thing (and we shall see, that even this is not safe enough always) is to make
steps as small as possible. When we are looking for a formula subsuming a set
of formulas, then it would be wise to try the most specific generalisation first,
and if we want to specialise from a set of formulas, it seems a good idea to
start off with the most general specialisation. Since we are mostly concerned
with generalisation and since θ-subsumption worked quite well (it’s so easy to
compute!), we define the least general (θ-) generalisation as follows:

Definition 7.15 — Least General Generalisation (lgg), g.
Least General

Generalisation (lgg),
gLet ϕ,ψ, χ, ξ be terms, literals, or FOL-Formulas. We say that ϕ is a least

general generalsiation of χ and ξ, if every other generalisation ψ of χ and ξ as
a generalsiation of ϕ, too.

ϕ = χg ξ :⇐⇒ ϕ |4 {χ, ξ}
∧ ∀ψ : ψ |4 {χ, ξ} =⇒ ψ |4 ϕ (7.35)

For ξ0 g · · ·g ξn−1 we write
b {ξ0, . . . , ξn−1}. If |4 is defined by |/, we write O

for g, [?].

Note that the least general generalisation is nothing else than a least upper
bound. Hence the definition carries over to arbitrary subsumption relations!
For our purpose it suffices to consider two alternative versions:

1. Using θ-subsumption |/ as an order relation, the least general generalisa-
tion is denoted by O .

2. We use the notation |4 as order relation with join operator g also to
describe the subsumption with respect to implication (|≈).

The O can be considered the dual of the most general unifier µ on the set of
terms or literals.

Exercise 7.12 (♦) Prove that for ϕ,ψ in TerFOL or literals, ϕ |/ ψ ⇐⇒ {ϕ,ψ}µ = ψ.

v. July 19, 2010(c) m.e.müller

170 CHAPTER 7. INDUCTIVE LOGIC LEARNING

Least General Generalisation
Looking for new knowledge that can describe things we weren’t able to describe
before, we need to refine our theory by generalising our hypotheses of the target
concept.
Generality is a relation that is easy to describe not to determine. The trick is to
find a feasable definition of generaltiy that is sufficiently close to what our intended
measure of generality is. Since knowledge disovery is a step-wise search process, it
is very important to define operators that allow for small steps so as not to become
prone to overgeneralsiation.

7.3 Heuristic Rule Induction

Suppose there is a set of facts that we want to describe. If all these facts share
a common term structure it may be possible to find a factual representation of
a hypotheses by computing the lgg or even more general facts than the lgg. But
as we have seen in example 7.6 already we usually look for rules rather than for
facts: Sometething is x-ish, if it is y-ish and z-ish, or if it’s not an a but a b.
Quite actually, we do not look for a singe rule h but rather for a set of rules H
(see definition 7.8).
Therefore, in order to discover new (rule-based) knowledge, we start off with a
set of facts s and some background knowledge Π and an (empty) set H. We
then (repeatedly) refine H until Π ∪H describes the target sufficiently well.

7.3.1 Refinement Operators on H

Let us consider clauses first. In simplified notation, a rule clause looks as follows:

pred(~t0) :- pred1(~t1),

. . .

predk−1(~tk−1), predk(~tk), predk+1(~tk+1),

. . .

predn−1(~tn−1).

where ~ti are sequences of terms; i.e. the length `(~ti) is the arity of the i-th

predicate symbol predi. Let us assume that ~Xi is the set of (free) variables in
~ti. As we know from the definition of θ-subsumption substituting variables from⋃ ~Xi with new terms makes this rule more specific. Concerning the occurence
of literals, we observe:

- dropping a literal predk from the rule body makes the rule more general
and

- adding a literal predn from the rule body makes the rule more specific.

While literals form clauses, clauses build logic programs. Similary, we can

- generalise H by adding a rule, thus increasing the set of inferrable formulas

v. July 19, 2010(c) m.e.müller

7.3. HEURISTIC RULE INDUCTION 171

01 H := ∅;
02 WHILE (P ∪N 6= ∅) DO

03 {
04 ϕ := choose(P)
05 H := generalise(H,ϕ)
06 P := P − {ϕ}
08 ψ := choose(ψ,N)
09 H := specialise(H,ψ)
10 N := N − {ψ}
11 };

Figure 7.1: Refining H

- specialise H by deleting rules which reduces Th(Π ∪H).

This motivates a very simple algorithm for refinement of logic programs:
First, extract two sets E0 and E1 from s:

Ex := {ϕ : 〈ϕ, x〉 ∈ sx} (7.36)

E1 is called the set of positive examples; E0 the set of negative examples.
In the second step, determine all those formulas ϕ ∈ E1 which cannot be de-
duced and all formulas ψ ∈ E0 that are provable:

P :=
{
ϕ ∈ E1 : Π ∪H 6|≈ ϕ

}
N :=

{
ψ ∈ E0 : Π ∪H |≈ ψ

}
Then, P and N are the sets of formulas which are “misclassified” by our pro-
gram. Therefore, in step three, refine H by generalising until all positive exam-
ples are covered and specialising it until no negative examples are covered. For
an initially empty H, the procedure as shown in figure 7.1 can be applied: Not
surprisingly, the crucial part is hidden in implementation of the choice function
choose and the refinement operations generalise and specialise.
In the beginning we would start of with generating rules without body literals,
i.e. facts which, by finding a “suitable” generalisation should cover as many
elements of E1 as possible. Then, add literals to the rue bodies so as to minimise
the set N of mistakenly subsumed negative examples. Foil is an information
gain guided heuristical version of this algorithm.

7.3.2 Heuristic Refinement

In [Quinlan, 1991, Quinlan and Cameron-Jones, 1993, Quinlan and Cameron, 1995],
Quinlan presents an algorithm for induction of FOL-formulas, called First Order
Induction of Logic Programs (Foil). It adds the idea of information gain (see
sections 5.2 and 5.3) to the algorithm in figure 7.1. The resulting algorithm is

v. July 19, 2010(c) m.e.müller

172 CHAPTER 7. INDUCTIVE LOGIC LEARNING

01 H := ∅
02 WHILE E1 6= ∅ DO
03 h := p(~X):- .
04 WHILE (E0 6= ∅) DO
05 λ := arg maxλ FoilGn(λ, h)
06 h := h ∪ {λ}
07 E0 :=

{
ϕ ∈ E0 : h ` ϕ

}
08 DONE

09 H := H ∪ {h}
10 E1 := E1 −

{
ϕ ∈ E1 : H ` ϕ

}
11 DONE

12 RETURN H

In line 3, p(~X) with p : sn ∈ Σ and n = `(~X) is the “best predictor” for t. In line 5, λ is a
literal chosen from Σ that is added as a body literal to h in line 6.

Figure 7.2: Foil

shown in figure 7.2. Again, there remain a few open questions: First, what does
it mean to be a “best predictor”? Second, how does FoilGn work, and finally,
where do the variables ~X come from?
The best predictor is a literal with maximum support on E1, where support is
the relative number of examples subsumed by this literal:

support(ϕ,Φ) :=
| {ψ ∈ Φ : ϕ |/ ψ} |

|Φ| (7.37)

Supposing that all elements in E1 share a common predicate symbol, the case
is pretty clear.
The next two questions address the process of literal adding. Let us first briefly
discuss the origin of variables in newly introduced body literals. Consider a
clause like

pred(~t0) :- pred1(~t0),

. . .

predk−1(~tk−1), predk+1(~tk+1),

. . .

predn−1(~tn−1).

Note that the k-th literal is missing—it is the one we are about to add. Which
variables can we assume to be of interest in defining the k-th body literal?
There are different kinds of variables: If X does not occur anywhere else in the
clause, then it is a free, singleton variable. Singleton variables do not impose

v. July 19, 2010(c) m.e.müller

7.3. HEURISTIC RULE INDUCTION 173

any restrictions on the satisfaction set of the clause.4 As a consequence, such
variables are rather useless.5 Then, there are variables that appear in the head
or in the body or in both. Variables that appear in the rule head obviously
play an important role in the definition of the semantics of the predicate. Next,
variables that occur in a literal together with a variable from the head, seem to
be important, too; a bit less, maybe—but still “connected” to the head variables.
We can iterate this process to define a meausre of variable linkage. Foil does
not take into account considerations like these, but we will rediscover them when
talking about inverted entailment. Finally, the sequence of literals has a large
impact on the procedural semantics of a logic program: It does not make sense
to try proving a literal with a free variable if this variable is bound to a value
in following literals. This gives rise to the following strategy for finding useful
variable bindings: When we add

predk(X0, X1, . . . , Xnk−1)

we know that: pred must be a known predicate name with arity nk and at
least one Xj must occur somewhere in ~ti, i ∈ k.6 We can also bind a Variable
to another one using unification: Then, pred(Xj , t) actually becomes Xj = t
where Xj and all variables in t must occur in ~ti, i ∈ k.

Example 7.7 Consider again example 7.6. To make things easier, we
change our representation ρ to following unary predicates:

white(♦). white(4).
black(•). black(�). black(�). black(N).
triangle(4). triangle(N).
tetragon(�). tetragon(♦). tetragon(�).
circle(•).

Again, we want to learn black polygon using the sample s from example 7.6.
The first hypothesis according to line 3 in the algorithm (fig. 7.2) is then

h = black polygon(X):- .

It has a maximum support of 1. On the other hand, it is way to general as it
can be satisfied by σ = [X 7→ �], [X 7→ 4], or [X 7→ ♦]. Therefore, we need to
specialise h. The signature provides five different candidates with two different
variables each and the old predicates:

black(X), white(X), triangle(X), tetragon(X), circle(X),
black(Y), white(Y), triangle(Y), tetragon(Y), circle(Y),
shape(X,Y), shape(Y,X), shape(X,Z), shape(Z,X), shape(Z, Y),
colour(X,Y), colour(Y,X), colour(X,Z), colour(Z,X), colour(Z, Y),

4Which is why, when consulting a clause with a singleton variable in it, a Prolog interpreter
throws a warning message. In most cases this is due to a spelling mistake. If it isn’t, then it
is recommended to use so-called anonymous variables “ ” instead.

5There is an important exception to which we shall come back later
6In Foil, it is assumed that new literals are appended to the body; i.e. k = n.

v. July 19, 2010(c) m.e.müller

174 CHAPTER 7. INDUCTIVE LOGIC LEARNING

As one can see, the second row is entirely useless—why should we introduce a
free variable Y that is not connected to the clause head? For similar reasons,
shape(Z, Y) and colour(Z, Y) are out of question. It seems a good idea to
penalise introduction of new variables which makes the unary predicate symbols
the prime candidates.

We now have to choose between five different predicates modeling two features.
A well-known heuristical method is to chose the literal that brings about the
largest information gain. Therefore, we need to adjust the definition of entropy
(see definition 5.2) and information (see definition 5.3) to our special needs here.
The sets we examine here are sets of formulas. They can be ground facts as in
sets of examples or entire clauses as in hypotheses that we are about to refine.
Our interest lies in the proportion of things that we want to deduce and those
we don’t (or rather which we want to prove false). The Foil algorithm works its
way through the set of positive and negative examples by iteratively adding to
H and in each step delete the positive examples that are covered and negative
examples that are excluded (see lines 7 and 10 in figure 7.2). Therefore, the
entropy of s is simply the entropy of the set of examples with respect to their
target classification:

entropyt(s) :=
∑
x∈2

|Ex|
m

log2

|Ex|
m

(7.38)

where m = |s|. Using this entropy measure we can determine the information
of a single literal:

entropyt(p(~X), s) (7.39)

=
∑
x∈2

|{ϕ ∈ Ex : p(~X) |≈ ϕ}|
|Ex| entropyt({ϕ ∈ Ex : p(~X) |≈ ϕ})

Example 7.8 Let us now determine the information gain for adding the
different literals to our (initially empty) hypothesis H with black polygon being
our target predicate. First, entropyt(s) = 1. Then, we arrange s such that we
can easily compute the entropies:

X white(X) triangle(X) tetragon(X) circle(X) t(X)
♦ 1 0 1 0 0
4 1 1 0 0 0
• 0 0 0 1 0
� 0 0 1 0 1
� 0 0 1 0 1
N 0 1 0 0 1

v. July 19, 2010(c) m.e.müller

7.3. HEURISTIC RULE INDUCTION 175

We compare:

entropyt(white,
{
♦,4, •,�,�,N

}
)

= −| {♦,4} |
6

entropyt({♦,4})−
|
{
•,�,�,N

}
|

6
entropyt(

{
•,�,�,N

}
)

= −1

3
· 0− 2

3
·
(
−1

4
log2

1

4
− 3

4
log2

3

4

)
≈ 2

3
· 0.81 = 0.54

Similarly,

entropyt(tetragon,
{
♦,4, •,�,�,N

}
)

= −1

2
entropyt(

{
♦,�,�

}
)− 1

2
entropyt({4, •,N})

= −1

2

(
−1

3
log2

1

3
− 2

3
log2

2

3
− 1

3
log2

1

3
− 2

3
log2

2

3

)
= −1

3
log2

1

3
− 2

3
log2

2

3
≈ 0.92

Exercise 7.13

♦ Determine the entropies of black and triangle!

� Determine utilitys({P} � {t}) for P ∈ {white, triangle, circle, tetragon}!

� Determine significances({P} � {t}) for P ∈ {white, triangle, circle, tetragon}!

�� Determine

Red({white, black , triangle, tetragon, circle} � {black polygon})
and Cor({white, black , triangle, tetragon, circle} � {black polygon}).

In the examples above we implicitely counted the number of possible assigne-
ments of a variable to a ground term. The quality of a literal p(~X) depends on

the number of possible instantiations of ~X such that it subsumes a positive or
negative example. This is a question of subsumption rather than of entailment.
Accordingly we want to choose p(~X) to maximise the set {ϕ ∈ E1 : p(~X) |/ ϕ}
and minimise the set {ϕ ∈ E0 : p(~X) |/ ϕ}. The reason is clear: Suppose we
want to learn a binary predicate, e.g. has more edges. Then, on our domain of
six different objects, there are 62 = 36 different bindings that we would have to
check.

Example 7.9 The predicate has more edges has the following meaning:
has more edges : s2 ∈ Σ and �has more edges(X,Y)�Aα= 1 :⇐⇒ α(X)Rα(Y)

v. July 19, 2010(c) m.e.müller

176 CHAPTER 7. INDUCTIVE LOGIC LEARNING

where the relation R is defined as follows

R ♦ 4 • � � N
♦ 1 1 1 1 1 1
4 0 1 1 0 0 1
• 0 0 1 0 0 0
� 1 1 1 1 1 1
� 1 1 1 1 1 1
N 0 1 1 0 0 1

(7.40)

This simple table leads to a very interesting observation: If we fix α at the point
Y to •, i.e. α := α [Y 7→ •], then has more edges(X,Y) is true for any other in-
stantiation of X—but if we choose α := α [X 7→ •], then has more edges(X,Y)
is satisfiable only if Y = •.

The consequence is that a literal can be assigned a measure defined by the num-
ber of possible instantiations that are compatible with s. So while in equation
(7.39) the information content of p(~X) was measured in terms of entailed ex-

amples, we avoid |≈ by counting the number of instantiations of ~X that are
compatible with s. For this reason, we examine the Herbrand universe—that is,
roughly speaking—the set of all ground terms that we can build over our signa-
ture Σ and which we can substitute for variables in formulas. It is the base set A
of a Herbrand interpretation A.7 Luckily, we do not have any function symbols
here so we can’t construct terms of bigger than atomic complexity—that makes
the base set A of A the set of instances for variables. In our example, it means
that

�x�Aα= x for all x ∈
{
♦,4, •,�,�,N

}
= A

Accordingly, we define a variant of Foil-Gain to describe the utility of adding⊕
a literal λ = p(~X) to a clause h as follows:

Definition 7.16 — Foil-Gain, gainFoil
t (λ, h).

Foil-Gain,
gainFoil

t (λ, h)
The estimated gain of adding literal λ to a clause h is measured by the entropy
loss on the set of h–compatible assignments with respect to s:

gainFoil
t (λ, h) = cλ ·

(
log2

pλ
pλ + nλ

− log2

ph
ah

)
(7.41)

Herein, − log2(ph/ah) describes information of h:

ph := |
{
α ∈ AVar : �h�Aα= 1

}
|

AVar is the set of all assignments, ah = |AVar|. The expected information after
adding λ is described by:

pλ := |
{
α ∈ AVar : �h ∪ {λ}�Aα= 1

}
|

nλ := |
{
α ∈ AVar : �h�Aα= 0 ∧ �h ∪ λ�Aα= 0

}
|

7A closer look at Herbrand models is beyond the scope of this chapter; the interested reader
is encouraged to read [Huth and Ryan, 2004, Mazzola et al., 2006].

v. July 19, 2010(c) m.e.müller

7.3. HEURISTIC RULE INDUCTION 177

Finally, the term is weighted by a factor

cλ := |
{
α ∈ AVar : �h�Aα= 1 ∧ �h ∪ λ�Aα= 0

}
|

describing the “selectivity” of λ.

Example 7.10 Let the initial hypothesis be the most general description
of our target predicate:

H = {h} = {has more edges(X,Y):- .}

The question is which literal λ we shall add to the rule bude of h. We can choose
from all predicates in Σ and equality:

Σ = {white : s, triangle : s, tetragon : s, circle : s}

The Herbrand universe (the set of instances we can choose from) is s:

A =
{
♦,4, •,�,�,N

}
= s

Since the set of variabes we have to consider is {X,Y }, there are 6 · 6 = 36
different assignments α (which by the substitution lemma, equation (7.11)) cor-
respond to 36 different substitutions σ. For each of this substitutions we check
the validity of the literals with respect to s. For h = has more edges(X,Y):- .,
the matrix in equation (7.40) shows the number of correct instantiations. There
are 25 1–entries which means that there are 25 different possible substitutions
that agree with s. Accordingly, the entropy of h alone can be described by
− log2(25/36) ≈ 0.53. For all other predicate symbols, the instantiation of Y is
irrelevant. Using formula (7.41), we obtain:

λ pλ nλ cλ gainFoil
t (λ, h)

white(X) 9 3 15 1.11
triangle(X) 6 6 19 −2.84
tetragon(X) 18 0 7 9.47
circle(X) 1 5 24 −49.41

(7.42)

As a result, the biggest gain is delivered by the literal tetragon, which is quite
understandable since every tetragon has four edges and there is no object with
more than four edges. The resulting hypothesis is then

H = has more edges(X,Y):- tetragon(X).

Still, this result is far from being perfect: The fact that 4R• is not covered,
since has more edges(4, •) fails.

Exercise 7.14 (�) Complete the example! First, examine whether H = h ∪ {λ}
requires an additional body literal. Then continue with the outer loop of the algorithm
in figure 7.2, add a new clause head has more edges(~X) and continue with adding body
literals.

v. July 19, 2010(c) m.e.müller

178 CHAPTER 7. INDUCTIVE LOGIC LEARNING

Comparing the outcome of a Foil-learning process to a decision tree induction
process as described in section 5.3 is not straightforward. Here, we deal with
relations between pairs of variables—namely whether X has more edge than Y .
Every unary predicate corresponds to a single feature, but explaining a relation
between two variables requires information about both variable instantiations.
As a consequence, we need to create a table with 36 rows—where for every
feature we need two columns to represent all possible bindings of two variables.
The target feature t then is defined by

t(〈X,Y 〉) = α(X)Rα(Y)

which corresponds to all the entries in equation (7.42). So the information
system that we would have to feed into a decision tree induction procedure
would be

wht tri trg crc hme

X Y X Y X Y X Y X Y (X,Y)
1 ♦ ♦ 1 1 0 0 1 1 0 0 1
2 ♦ 4 1 1 0 1 1 0 0 0 1
3 ♦ • 1 0 0 0 1 0 0 1 1
...

...
18 • N 0 0 0 1 0 0 1 0 0

...
...

36 N N 0 0 1 1 0 0 0 0 1

The resulting tree is shown in figure 7.3

Exercise 7.15

♦ Which leaf node has a non-zero error rate?–Which assignments are wrongly
classified as a satisfying instantiation?

� Verify the decision tree in figure 7.3 by and compare to your results from exercise
7.14.

7.4 Inducing Horn Theories From Data

The general idea behind the induction of logic programs is the discovery of
relatinoal knowledge. Just as we discovered rough set data analysis to be an
abstract version of decision tree induction without a heuristic information gain
measure as in decision tree induction, we now examine an unbiased method for
inducing Horn theories from sets of examples. In section 7.2.3 we already defined
several order relations that mimick a “more-general-than”-relation. Based on
these order relation we were able to define refinement operators, g and O (see
definition 7.15). With generalising sets of terms by O , we already gained a
lot—it just requires another little representation shift.

v. July 19, 2010(c) m.e.müller

7.4. INDUCING HORN THEORIES FROM DATA 179

WVUTPQRSα(X)

/∈trg

{{wwwwwwwww
∈trg

!!BBBBBBBBB

WVUTPQRSα(Y)

∈trg
��

/∈trg

##GGGGGGGGG
?>=<89:;1

?>=<89:;0 WVUTPQRSα(X)

∈tri

{{vvvvvvvvv
/∈tri

!!CCCCCCCC

?>=<89:;1 ?>=<89:;0

♦4 •��N
X∈

xxqqqqqqqqq
X∈

&&LLLLLLLL

4 • N
Y ∈
��

Y ∈

&&MMMMMMMMM ♦4�

♦�� 4 • N
X∈

xxqqqqqqqqq
X∈

&&MMMMMMMMMM

4N �

Figure 7.3: A decision tree for example 7.10

Example 7.11 Instead of representing an object’s properties by a number
predicates, we introduce a data structure. While in example 7.8, the signature
Σ contained several unary predicate symbols we now add a function symbol
r : 24 → s to Σ′. Therein, each argument represents a predicate from Σ. For
example,

ρ(�) = r(0,0,1,0,1)

The entire set of objects together with their target function then becomes:

black polygon(r(1, 0, 1, 0), 0)
black polygon(r(1, 1, 0, 0), 0)
black polygon(r(0, 0, 0, 1), 0)
black polygon(r(0, 0, 1, 0), 1)
black polygon(r(0, 0, 1, 0), 1)
black polygon(r(0, 1, 0, 0), 1)

Then, E1 is the set of all objects whose last argument is 1 and thus indicates
that the structure in the first argument represents an instance of the target
concept.

By this trick we transformed a set of formulas with different predicate symbols
into a set of of literals with identical predicate symbols. At the same time, the
information about the properties of an object is shifted from the assignments of
variables to instantiations of a term with function symbol r. This allows us to
reason about variable instantiations by comparing ground term structures.

v. July 19, 2010(c) m.e.müller

180 CHAPTER 7. INDUCTIVE LOGIC LEARNING

Representation Shifts Revisited
Representing properties of objects by predicates requires a relation for each predicate.
The actual proposition about a concrete object then is stored a variable assignment.
Reasoning about relations between objects is then a task to be carried out on possible
variable assignments.
By shifting the meaning of predicates into term structures, the concrete objects be-
come ground terms. Ground terms can be compared syntactially whithout bothering
about variable instantiations.

At this point it becomes clear why we insisted on examining the idea behind
representation to such detail. It is very important to understand the huge
difference such a small representation change makes in inference—and, even
more, in inductive reasoning.

7.4.1 Syntactic Generalisation Revisited

Now that we transformed our knowledge into a set of unifiable literals with
identical term structures we can:

• Specialise our knowledge:
Suppose there are two unifiable clauses ϕ and ψ containing non-ground
terms. Then, there exists a µ such that χ = ϕµ = ψµ. Furthermore, we
know that ϕ |≈ χ and ψ |≈ χ.

• Generalise our knowledge:
Given two (ground) clauses χ and ξ, there exists a least general general-
siation ϕ = χO ξ and we know that ϕ |≈ χ and ϕ |≈ ξ.

Exercise 7.16 (♦) Prove that given

Π = {black poygon(X):- black(X), tetragon(X)., black(�)., tetragon(�).}

it holds that �black polygon(�)�Aα= 1.

Let us examine two positive instances of our target concept, black polygon.

χ = {black polygon(r(0,0,1,0),1)}
ξ = {black polygon(r(0,1,0,0),1)}

Then,

ϕ = χO ξ = {black polygon(r(0, X, Y,0),1)}

Next, let us examine the set of formulas ψ for which Π ∪ {ϕ} |≈ ψ: There are
22 different assignments instantiating each of the 2 variables X and Y with one
of the truth values from 2:

α
X Y r : 24 x ∈ A t
0 0 r(0,0,0,0) ? 1
0 1 r(0,0,1,0)

{
�,�

}
1

1 0 r(0,1,0,0) {N} 1
1 1 r(0,1,1,0) ? 1

v. July 19, 2010(c) m.e.müller

7.4. INDUCING HORN THEORIES FROM DATA 181

We note two interesting things: First, there are two assignments that do not
map to a corresponding constant in A, because an object cannot have two
shapes at once or none at all. Second, there is one evaluation of the term that
can be mapped onto propositions about two different objects. It means that
�black polygon(X),1�Aα is 1 for all x ∈ U for which ρ(x) = r(0, Y, Z,0) where
α(X) = ¬α(Y). And this happens to be the set

{
�,�,N

}
, which—hooray!—

is the set of all black polygons.

Exercise 7.17 (�) This maybe is a bit too much work for an exercise, but you should
try nevertheless:
Find a representation ρ that is suitable for modeling has more edges. Then, transform
the knowledge according to ρ and examine the hypotheses generated by applying O
to various (wisely chosen) subsets of E1! ⊕

After all, resolution is just another ordinary calculus. If we simply try and
“mirror” specialising operators to yield generalsiing operators, why shan’t we
try and invert the resolution rule itself?
Since the resolution rule crusially depends on unification and, thus, on substi-
tutions we need to think about inverse substitutions. There is a small problem
associated with simply reverse application of substitutions:

Example 7.12 Let ψ = p(X, a) and σ = [X 7→ a]. Then

ψσ = p(a, a).

If we now “revert” σ to σ`= [a 7→ X], we suddenly have

ϕ = p(X,X)

and ϕ |/ ψ (note that ψ 6|≈ p(b, b), but ϕ |≈ p(b, b)!). In other words, ψσσ` 6= ψ.

Exercise 7.18 Prove that ψσσ` |/ ψ but ψ 6|/ ψσσ`!
In order to avoid this problem, one needs a more technical definition of inverse
substitutions involving positions of subterms.

Definition 7.17 — Subterm positions, t 〈i〉. Subterm positions,
t 〈i〉

Let t ∈ Ter be a term with function symbol f : sn → s ∈ Σ and ti, i ∈ n its
arguments. Then, t 〈i〉 is t’s i-th argument. By recursion, t 〈i〉 〈j〉 is the j-th
argument of the i-th argument of t.
We abbreviate the composition of several position indices by simply concate-
nating them: t 〈i0, . . . , im−1〉 := t 〈i0〉 · · · 〈ik−1〉.

Let σ = [Xi 7→ ti : i ∈ n]. We then determine the positions of all Xi in t, where
each Xi may occur several times and rewrite σ as

σ = [(Xi, ~pi) 7→ ti : Xi occurs at pi in t] (7.43)

This allows us to define a position sensititve inversion of substitutions:

v. July 19, 2010(c) m.e.müller

182 CHAPTER 7. INDUCTIVE LOGIC LEARNING

Definition 7.18 — Inverse substitution, σ−1. Inverse substitution,
σ−1

Let t ∈ Ter and (Xi, ~pi) with Xi ∈ Var, i ∈ n variables occuring in t at positions
~pi. Let σ be a substitution acting on t. Then, σ` is called an inverse substitution,
if

tσσ`= t

where for every t 7→ (X, ~p) in σ−1 there exists (X, ~p) 7→ t in σ.

Exercise 7.19 (♦) For example 7.12, define σ−1.

Exercise 7.20 (♦♦) Show that any σ−1 is a subset of σ`. First, argue with the
number of occurences of variables; then give a second proof by comparing the relational
properties of σ−1 and σ`.

Exercise 7.21 Let Φ = {ϕi : i ∈ 3} with

ϕ0 = p(X, f(Y))

ϕ1 = p(g(X), f(g(X))

ϕ2 = p(a, Z)

� Determine all pairwise unifiers for all pairs of formulas in Φ

♦ Determine all unifiers for Φ.

� Determine χij = ϕi Oϕj , for all i, j ∈ 3 and
`

Φ.

�� For each lgg χij and every formula ϕ in Φ, determine σ−1 such that ϕσ−1 = χij .

If you are familiar with the Prolog programming language, you might have
learned, that clauses are nothing else than just special terms. Given a Horn
clause

λ← λ0, . . . , λn−1 = pred(~X):- pred0(~X0), . . . , predn−1(~Xn−1).

the internal representation is a binary term with function symbol :- , the first
argument being the rule head and the second argument the list of body literals:

:- (pred(~X), [pred0(~X0), . . . , predn−1(~Xn−1)]).

There remains one problem: How can we unify two lists of different length?
Again, the internal representation of Prolog helps a lot. Lists are nothing else
than recursive terms where the function symbol represents concatenation:

:- (pred(~X), [pred0(~X0), . . . , predn−1(~Xn−1)])

= :- (pred(~X), [pred0(~X0)|[pred1(~X1)|[· · · |[predn−1(~Xn−1)|nil] · · ·]]])
= ← (λ, •(λ0 • (λ1 • (· · · (λn−1 • []) · · ·))))

Now let there be two clauses ϕ = {κ, κ0, . . . , κn−1} and ψ = {λ, λ0, . . . , λm−1}.
Assuming that m = n, ϕ and ψ are unifiable, if κi and λi are unifiable. Since
the order of literals in a clause has no impact on its declarative semantics we
can reorder them to allow a match. If m > n, we simply unify the matching
subterms and then add the remaining literals of ψ with applying the unifier to
them.
One problem remains: If there are two clauses χ and ξ and their lgg ϕ = χO ξ,
it is quite likely that the deductive closure becomes incompatible with Π.

v. July 19, 2010(c) m.e.müller

7.4. INDUCING HORN THEORIES FROM DATA 183

Example 7.13 Again, we need another representation ρ for our example
domain. This time, we add predicate symbols colour : s2 and shape : s2 to
our signature; similar to the representation we chose in example 7.6. Then, Π
becomes

colour(•, black). colour(�, black). colour(♦, white).
colour(�, black). colour(4, white). colour(N, black).
shape(•, circle). shape(�, square). shape(♦, diamond).
shape(�, diamond). shape(4, triangle). shape(N, triangle).

If we now encounter two ground clauses, namely

χ = black polygon(�):- colour(�, black), shape(�, square).

ξ = black polygon(�):- colour(�, black), shape(�, diamond).

the least general generalisation becomes

ϕ = χO ξ = black polygon(X):- colour(X, black), shape(X,Y).

and via σ = [X 7→ •, Y 7→ circle] we can conclude Π∪{ϕ} |≈ black polygon(•).

This is a strong argument for including factual background knowledge into the
process of inducing generalisations. It means that we look for some ϕ = χO ξ
for which Π ∪ {ϕ} 6|≈ E0. In other words, we are looking for a generalisation
that is valid relative to E.

Definition 7.19 — Relative Least Generalisation, OΦ.
Relative Least

Generalisation, OΦ
Let Φ be a set of ground facts and κ, λ be two literals. Then,

κOΦλ := ({κ} ∪ ¬Φ) O ({λ} ∪ ¬Φ) (7.44)

The least general generalisation relative to Φ is defined in terms of ordinary
lgg where each literal is expanded to a full clause with Φ as rule body and the
original literal as rule head.

The problem with OΦ is that it is applied to clauses rather than literals. The
definition only covers unary clauses—and single literals are simple terms with
their outmost term constructor symbol being e predicate symbol rather than a
function symbol.
But the definition works even on clauses with non-empty bodies: Since clauses
are sets of literals with no ordering in them, we can rearrange them by, e.g. lex-
icographc ordering without changing their semantics. Then, the fact that two
clauses χ and ξ have a least general generalisation, means that χ and ξ have
a common subset of literals. If the positive literals in κ ∈ χ and λ ∈ ξ have
a generalsiation, then the relative least general generalsiation has exactly on
positive literal, too (otherwise it is a goal clause):

(κO λ):- (χ0O ξ0), (χ1O ξ1), . . . , (χk O ξk), ϕ0, . . . , ϕm.

v. July 19, 2010(c) m.e.müller

184 CHAPTER 7. INDUCTIVE LOGIC LEARNING

where chii and ξi are pairs of literals from χ and ξ respectively and Φ =
{ϕi : i ∈m}. If χ and ψ are unary clauses (as in the definition above) or if
they do not have any predicate symbols in their body literals in common, then
the expression from above implodes to the case of unary clauses:

(κO λ):- ϕ0, . . . , ϕm.

Example 7.14 Let us try and compute χOΠξ with χ = black polygon(�),
ξ = black polygon(�) and Π as in the previous example. Then (with some
abbreviations),

χOΠξ = ({χ} ∪ ¬Π)O ({ξ} ∪ ¬Π)

= bp(�):-
c(•, b), c(�, b), c(♦, w), c(�, b), c(4, w), c(N, b),
s(•, c), s(�, s), s(♦, d), s(�, d), s(4, t), s(N, t).

O

bp(�):-
c(•, b), c(�, b), c(♦, w), c(�, b), c(4, w), c(N, b),
s(•, c), s(�, s), s(♦, d), s(�, d), s(4, t), s(N, t).

The inverse substitution required to find the lgg of the two clauses above is
σ−1 = [� 7→ X,� 7→ X]:

χOΠξ = bp(X):-
c(•, b), c(X, b), c(♦, w), c(X, b), c(4, w), c(N, b),
s(•, c), s(X, s), s(♦, d), s(X, d), s(4, t), s(N, t).

Since X is the only variable ocuring in the clause head and the rule body, and
since all literals that do not contain X are valid ground literals anyway (because
they come from Π), we can simplify the clause to

χOΠξ = bp(X):-
c(•, b), c(X, b), c(♦, w), c(X, b), c(4, w), c(N, b),
s(•, c), s(X, s), s(♦, d), s(X, d), s(4, t), s(N, t).

This can be reduced further to

ϕ := χOΠξ = bp(X):- c(X, b), s(X, s), s(X, d). (7.45)

Finally, let us recall definition 7.13. We already found a more general rule as far
as variable instantiations are concerned by applying a the least general inverse
substitution. But we can generalise further by dropping body literals. Since ϕ
has three body literals there are 23 = 8 possible candidates for rule bodies. As
one can imagine,

h1 = black polygon(X):- colour(X, black), shape(X, square).

h1 = black polygon(X):- colour(X, black), shape(X, diamond).

are the most promising ones—and it can be found efficiently by calculating the
support of the different rules (see equation (7.41)) or the gain of involved literals
(definition 7.16).

v. July 19, 2010(c) m.e.müller

7.4. INDUCING HORN THEORIES FROM DATA 185

Exercise 7.22 (♦�) Find all eight possible candidates and compute their sup-
port, accuracy, coverage!—It is clear that if a literal occurs in all candidates (here,
colour(X, black)), is indispensable. Compute the gain expected when adding either
of the remaining literals!

Exercise 7.23 (��- �) The goal is to induce a rule for has more edges. Π consists
of the knowledge from the preceeding examples. Add to Π a set E of ground facts
stating that triangles have more edges than circles, that black squares have more edges
than triangles and that white tetragons have more edges then everything (Note: E is
a set of ground facts—i.e. a set of literals with predicate symbol has more edges and
two arguments which are objects!). Then, choose the representation of Π wisely and
apply the relative least generalisation procedure in order to induce a rule describing
the target!

Least general generalisation appears quite powerful, and relative least generali-
sations even more. But one big disadvantage of using OΠ is the possibly huge
amount of body literals—which gives rise to the need for a bias. Furthermore,
with unrestricted definite clauses as Π, OΠ is not neccessarily finite (think of
variables, function symbols and term construction!). But even if finite, exten-
sional background knowldege may become intractable: The worst case number
of literals in a relative least generalisation is (|Π|+ 1)|E|.
For the true knowledge discoverer, all the methods discussed so far lack an im-
portant skill: The hypothesis always consists of one single clause or in a set of
clauses all of which share a common clause head. Even more disappointing is
that the algorithms described cannot really induce new knowledge: New knowl-
edge means to be able to discriminate different things that we were not able to
tell from each other before, and we might have gained a small progress here.
But what it means to tell two different things from each other is more than
just saying “� has more edges than ©”.8 Knowledge means also to be able to
describe why this is the case—and new qualities usually are described by new
terms. A really knowing system should be able to say: “� has more edges than
©, because � is a polygon and © is an ellipsoid—and polygons have at least 3
edges whereas ellipsoids have no edges”.
Acquiring knowledgeable new knowledge requires the ability to invent new pred-
icates (i.e. predicates). Here we go:

7.4.2 Inverting Resolution

Wouldn’t it be nice, if whenever we encounter a sequence or set of similar,
ground facts, we could (after a while) generalise? Well, we can: Given Φ :=
{p(a)., p(b)., p(c)., p(d)} a simple application of lgg results in

b
Φ = p(X), and,

by definition, p(X) |/ Φ which implies p(X) |≈ Φ.
Sometimes, the facts we observe cannot be generalised that easily: Given Φ :=
{p(0), p(s(s(0))), p(s(s(s(0)))), . . .} a simple application of lgg results in

b
Φ =

p(X). But actually, p only describes the set of even numbers,

Φ =
{
p(si(0)) : i ∈ N ∧ i mod 2 = 0

}
.

8Note that © is an object we have not seen yet!

v. July 19, 2010(c) m.e.müller

186 CHAPTER 7. INDUCTIVE LOGIC LEARNING

The simple lgg would deliver a hypothesis p(X) that is wrong in infinite many
cases. What we would like to have is richer term syntax so we could induce
p(s2n(0)).

Very close to this problem—but solvable if we were not restricted to single
clauses with body literals from Π only—is the following: What is an even num-
ber, anyway? Wouldn’t it be great to understand that p(0) and p(s(s(X))) ←
p(X)? Similarly, if we observe

Φ = {lt(0, X), lt(s(0), s(s(0))), lt(s(s(0)), s(s(s(0)))), lt(s(0), s(s(s(0))))}

a mere generalisation would not work out well: It is not true, that every X is
less than any Y .

Finally, and this is where we stopped at in the last section, consider the following
case:

min(0, [0, s(s(s(0))), s(s(0))]). min(0, [s(s(s(0))), 0, s(s(0))]).
min(s(0), [s(s(0))), s(0), s(0)]). min(s(s(0)), [s(s(0))]).

What does it take to understand that first,

min(X, [X])

and second

min(X, [Z|Y])← foo(X,Z),min(X,Y).

Where does foo come frome, and what is its meaning? From an analysis of the
four examples above, we can deduce that foo can be defined as follows:

foo(0, s(s(0))), foo(s(s(0)), s(s(s(0)))), foo(0, s(s(s(0)))),
foo(s(0), s(0)), foo(s(s(0)), s(s(0)))

Now comes what is really intelligent knowledge discovery: From the five ground
terms above, we can induce that

foo(0, X) and foo(s(X), s(Y)):- foo(X,Y). (7.46)

In the course of trying to learn min we came across a property describing a
relation between two objects. This property, as we did not know how to name
it, was called foo. In a next step we tried to understand what foo actually means
and invented the beautiful littel recursive predicate definition above. The result
is simply terrific: We invented a definition of the less-than-relation! This way
we have discovered a new predicate and learned its definition in the same step.

We will now present three refinement operators one can apply in order to derive
new, more general clauses from old ones which hopefully represent suitable
hypotheses for the target concept.

v. July 19, 2010(c) m.e.müller

7.4. INDUCING HORN THEORIES FROM DATA 187

Truncation

Recall that resolution itself is a proof calculus that is used for inference or
deduction. Even though our proofs are kind of reverse arguments by showing a
contradiction to the negation of the goal, resolution remains a forward calculus
(hence we write “`” rather than “a”). It is clear that

:- black polygon(�). and black polygon(X):- shape(X, square).

resolves to
:- shape(�, square)

with σ = [X 7→ �]. But what if we knew there were two positive ground literals
(we restrict ourselves to literals here) such that the facts they represent are true?
Let there be two such ground literals λ and κ. Suppose that Π |≈ {λ, κ}. Then
we know that negating λ and κ allows for a derivation of the empty clause, or,
semantically speaking, that

Π ∪ {¬κ,¬λ} |≈ {}

So if this is the case, there must have been clauses which resolved with ¬κ and
¬λ—otherwise we were not able to deduce the empty clause.
Now let us try a little twist in the argument: Supposing that E = {κ, λ} but
Π 6|≈ E, the task ahead is to find H such that Π ∪ H |≈ E. So wouldn’t it be
a great idea to give it a try and guess a rule that might allow for resolving ¬κ
(and, in a second step λ, too)? The head of the rule we guess is clear: it is
a literal that unifies with κ. The definition of the rule body is not that clear
because there may be many literal candidates around in Π. The simplest way
is to take ¬λ as a body literal—since we know that λ should follow from Π∪H,
too. As a resolution diagram, this looks as follows:

:- κ

 BBBBBBBBB (κ:- λ)σ`

λ

σ`

::vvvvvvvvvv

(7.47)

Definition 7.20 — Truncation. Truncation

Let there be two ground literals κ, λ. The truncation operator induces a rule
κ0:- λ0 such that ¬κ uσRES κ0:- λ0 resolves to λ = λ0σ.

Example 7.15 As a simple example, imagine two new predicate symbols
bigger and smallereq with meaning as intended by their names. Their corre-
sponding order relations are irreflexive (strict, >) and reflexive (≤). Supposing
that we encouter the following two ground facts

κ = smallereq(♦,�)

λ = bigger(�,♦)

v. July 19, 2010(c) m.e.müller

188 CHAPTER 7. INDUCTIVE LOGIC LEARNING

we construct the following resolution scheme:

:- smallereq(♦,�)

##GGGGGGGGG (smallereq(♦,�):- bigger(�,♦))σ
`

:- bigger(�,♦)

σ`

66mmmmmmmmmmmm

Next we need to find σ ,̀ such that in

smallereq(♦,�):- bigger(�,♦)

terms are replaced with variables in a way such that after unifying the more gen-
eral rule head with κ the resolution rule delivers λ. As on can see immediately,
one possible inverse substitution is

σ`=
[
♦ 7→ X,�→ Y

]
.

Then, the resulting rule becomes:

h = smallereq(X,Y):- bigger(Y,X). (7.48)

This example, even though very simple, already demonstrates one crucial prob-
lem: The semantics of the invented rule depends on the choice of κ and λ. If,
in the example above, we had

κ = bigger(�,♦)

λ = smallereq(♦,�)

the outcome would have been

h′ = bigger(X,Y):- smallereq(Y,X). (7.49)

Rule h appears quite reasonable, but h′ is not valid in A, because

• ≤ • 6|≈ • > •.
So if there are n candidate literals on to which we could apply the truncation
operator, there are n2 (or, to be more precise, n · (n − 1)) possible pairings.
Furthermore, there is huge set of inverse substitutions we could apply:

Example 7.16 This time, let

κ = smallereq(�,4)

λ = bigger(�,♦)

Apart from the fact that there are two possible arrangements for κ and λ in the
resolution scheme—how could we determine a meaningful hypothesis by way of
σ ?̀ Even the least general generalisation via

σ`=
[
� 7→ V,4 7→ X,� 7→ Y,♦ 7→ Z

]
v. July 19, 2010(c) m.e.müller

7.4. INDUCING HORN THEORIES FROM DATA 189

leads to

h′′ = bigger(V,X):- smallereq(Y,Z).

which is far too general: If there is any pair of objects Y and Z where Y is
strictly bigger than Z, then everything (V) is smaller or equal than anything
else (X). Again, this statement is not valid in A for the same reason why h′ is
not valid (apply θ = [V 7→ •, X 7→ •, Y 7→ •, Z 7→ •]).

Truncation comes with several problems: It requires two “suitable” ground lit-
erals, it requires a lucky hand at decising which one shall be taken as resolvent,
it requires a “wise” choice of σ`—and still it is very likely to bluntly over-
generalise. Still it is very useful as it relatively quickly can generate a huge
set of hypotheses which can be tested quite efficiently as well: Given a set
H = {hi : i ∈ n} of hypotheses generated by truncation, we can determine the
support support(hi, E

1) of each of its members. Most support values will be
close to 1 because of the proneness of truncation towards overgeneralsiation. As
a consequence, other error measures or measures of accuracy (see sections 3.4)
should be considered. General hypotheses are not useless though: In section
7.3 we have learned that the Foil-algorithm deliberately generates rules with
empty bodies in order to specialise them in its inner refinement loop.

Truncation
Truncation is a very simple generalisation operator that takes two ground literals and
delivers a guess for a rule that allows to derive one of these literals from the other.
It seems not a very wise yet useful operator and it can be fine-tuned towards efficiacy
and efficiency using heuristic measures.

Exercise 7.24 (� �� ���) Let

Φ =


has more edges(�, •),
shape(�, square)
circle(•)


� Try several combinations for truncation!—Try several inverse substitutions!

�� For several hypotheses of differing generality, determine their support, error and

accuracy with respect to s =
{
♦,4, •,�,�,N

}
!

��� For several hypotheses, apply the inner loop of the Foil-algorithm to specialsie
them!

We close this section on truncation with a special case: Every successful resolu-
tion proof ends in an empty clause. If we agree to resolve exatly one literal per
resolution step (as we do in SLD-resolution), we know that one parent clause
must be a negative literal and the other one a positive literal. If there are several
facts sharing the same predicate in Π ∪ E, then there are several possibilities
to derive the empty clause. Let there be two such unary clauses, not neccessar-
ily unifiable, but sharing the same predicate symbol p(~ta) and p(~tb). Negating
them and assuming both of them appear in the last step of a resolution proof,

v. July 19, 2010(c) m.e.müller

190 CHAPTER 7. INDUCTIVE LOGIC LEARNING

this requires the existence of a fact p(~t) where ~ta and ~t are unifiable and ~tb and
~t are unifiable by most general unifiers µ and ν:9{

:- p(~ta)
}

µ

$$HHHHHHHHHH

{
p(~t)

}
µ

||zzzzzzzz
ν

""DDDDDDDD

{
:- p(~tb)

}
ν

zzvvvvvvvvvv

{} {}

Since µ is a most general unifier, we can construct a generalisation p(~t0) of p(~t):
p(~t0)σ = p(~t).10 Since tµ = taµ and t0σ = t it follows that t0σµ = tµ. Hence,
p(~t0) |/ p(~ta) (and the same for tb with ν):{

p(~t0)
}

σ

��
σµ

��

σν

��

{
:- p(~ta)

}
µ

$$HHHHHHHHHH

{
p(~t)

}
µ

||yyyyyyyyy
ν

""EEEEEEEEE

{
:- p(~tb)

}
ν

zzvvvvvvvvvv

{} {}

This special case simply states that given two (ground) facts, any generalisation
of them can be considered a candidate for a hypothesis.⊕

Intra-Construction

In order to understand the next refinement operator, intra-construction, we
first need to discuss a special method for transforming logic programs which
preserves their declarative semantics. Consider the following logic program Π
that consists of two horn clauses:

Π =

{
p(~X) :- κ0, . . . , κk−1, λ0, . . . , λl−1.

p(~X) :- κ0, . . . , κk−1, ν0, . . . , νn−1.

}
We observe that both clauses contain the same k literals κi, i ∈ k. Obviously,
κi expresses a property that is significant to both rules defining p. So why don’t
we move them outside and define a new “piece of meaning” that is shared by
both clauses? We rewrite Π:

Π′ =


p(~X) :- q(~Y), λ0, . . . , λl−1.

p(~X) :- q(~Y), ν0, . . . , νn−1.

q(~Y) :- κ0, . . . , κk−1.


9Note that this is just a proposition about the existence of p(~t). It does not say anything

about the actual value of ~t; nor does it require ~t to to be different from ~ta or ~tb.
10If ~t consists of variables only, then σ = ∅ and ~t0 = ~t.

v. July 19, 2010(c) m.e.müller

7.4. INDUCING HORN THEORIES FROM DATA 191

Then, Π and Π′ are equivalent. Similarly, we can move λi and νj outside so as
to make the definition of p look more homogenous. Accordingly, Π can be also
transformed into Π′′:

Π′′ =


p(~X) :- κ0, . . . , κk−1, r(~Y) .

p(~X) :- κ0, . . . , κk−1, r(~Y), .

r(~Y) :- λ0, . . . , λl−1.

r(~Y) :- ν0, . . . , νn−1.


Finally, we can apply both transforms to construct

Π′′′ =


p(~X) :- q(~Y), r(~Z).

q(~Y) :- κ0, . . . , κk−1.

r(~Z) :- λ0, . . . , λl−1.

r(~Z) :- ν0, . . . , νn−1.


Exercise 7.25 (♦) Explain: Is ~Y = ~X in Π′? And what is in ~Z in Π′′′?

Exercise 7.26 (�) Show that Π |≈ ϕ⇐⇒ Π′ |≈ ϕ⇐⇒ Π′′ |≈ ϕ⇐⇒ Π′′′ |≈ ϕ
By adding a generalisation step to this folding procedure11 we define the intra-
construction operator that is very suitable for inducing entirely new predicates
along with their definition:

Definition 7.21 — Intra-Construction. Intra-Construction

Given two clauses with a common set of unifiable literals, intra-construction
derives a new clause with a new body literal defined by common set of literals
in two separate clauses:

p(~X):- κk, λl. p(~Y):- κk, νn.

(q(~Y):- λl.)σ
`
λ (p(~X):- κk, q(~Y).)σ`κ (q(~Y):- νn.)σ

`
ν

with k ∈ k, l ∈ l, n ∈ n such that

(p(~X):- κk, λl.)σ
`
κ ∪ σ`λ |/ p(~X):- κk, λl. (7.50)

(p(~X):- κk, νn.)σ
`
κ ∪ σ`ν |/ p(~X):- κk, νn. (7.51)

Note that the body literals of the newly defined rules also subsume their respec-
tive instantiations in the parent clauses.

Intra-construction has generalsiation steps built in two places: First, the remain-
ing rule body κk is generalised to κkσ

`
κ and second, the respective rule bodies are

generalisations of the original body literals by application of (suitable) σ`λ and
σ`ν . A third generalisation step that can be added with just a little more effort
is motivated by the definition of θ-subsumption: As we already have discovered,

11The reverse procedure is called fanning. Both are quite common in logic programming
to speed up and (re-) structure programs. In contrast to our considerations the procedural
semantics of Prolog then plays a major role.

v. July 19, 2010(c) m.e.müller

192 CHAPTER 7. INDUCTIVE LOGIC LEARNING

literal dropping is one method of generalising Horn clauses. Intra-construction
now allows for a several options of where to drop literals. Dropping a literal
κiσ
`
κ from p(~X):- κk, q(~Y) is more general than dropping κi from both original

rule bodies—and it is, of course even more general than dropping some κi in
only one of the clauses. Dropping a literal λiσ

`
λ from (q(~Y):- λl.)σ

`
λ makes no

big difference to dropping it from p(~X):- κk, λl (except for the fact that, of

course, λiσ
`
λ |/ λi). By dropping literals from the definitions of q we can gener-

alise pretty selectively. Finally, we can try and apply more inverse substitutions
and simultaneously drop literals λi and νj until the rule bodies are equal:

p(~X):- κ0, . . . , κk−1, λ0 . . . , λl−1. p(~X):- κ0, . . . , κk−1, ν0 . . . , νn−1.

(p(~X):- q(~Y), r(~Z).)σ`κ (q(~Y):- Q.)σ`λ (r(~Y):- R.)σ`ν
(7.52)

where Q ⊆
{
κiσ
`
i : i ∈ k

}
and R ⊆ {χ : ∃i, j,σ : χσ = λi = νj}.⊕

⊕

Example 7.17 Consider the program Π that consists of the following two
clauses:

black polygon(�) :- black(�), square(�). (7.53)

black polygon(N) :- black(N), has more edges(N, •). (7.54)

First of all, the generalised clause head is

black polygon(X) =
h
{black polygon(�), black polygon(N)} (7.55)

with σ`= [� 7→ X,N 7→ X]. Both clauses share a common body literal black.
We introduce a new predicate symbol p of the same arity as the number of
common arguments and receive{

p(�) :- black(�).,
p(N) :- black(N).

}
σ` = {p(X):- black(X).} (7.56)

The next step is to move the two non-unifying literals outside. We define{
q(�):- square(�).,
q(N):- has more edges(N, •).

}
σ`

=

{
q(X):- square(X).,
q(X):- has more edges(X, •).

}
(7.57)

All in all, the resulting logic program H looks as follows:

black polygon(X) :- p(X), q(X).
p(X) :- black(X).
q(X) :- square(X).
q(X) :- has more edges(X, •).

(7.58)

At the very end we now have a set of Horn clauses that actually look like a
proper semantic definition of what it means for an object to be a black polygon.

v. July 19, 2010(c) m.e.müller

7.4. INDUCING HORN THEORIES FROM DATA 193

Exercise 7.27 (♦���)

� Determine support, accuracy and coverage of the body literals of the new rules
defining q(X)!

♦ Prove that q(X):- square(X) |≈ q(X):- has more edges(X, •).
� Can you find a program H ′ ⊂ H for which H ′ |≈ ϕ⇐⇒ H |≈ ϕ?

� Define a procedure which mechanises the process to find such subsets!

You might have realised that you were betrayed at a very small but crucially im-
portant point in the argumentation of intra-construction. Recall equation 7.57:
Given the new predicate symbol q, we silently agreed that it shall be unary—
even though in the second definition of black polygon, the second body literal
is a binary predicate has more edges. A little bit of abstraction exemplifies the
problem: Let there be two clauses again,

ϕ = (p(~X) :- κ0, . . . , κk−1, λ0, . . . , λl−1.)σϕ
ψ = (p(~X) :- κ0, . . . , κk−1, ν0, . . . , νn−1.)σψ

(7.59)

Note that σϕ acts on the entire clause ϕ just as σψ acts on entire ψ. The

consequence is that ~Xσϕ = ~tϕ 6= ~tψ = ~Xσψ. This does not hurt at all because
we want to construct a new rule head that is a generalsiation of ϕ and ψ anyway.
Similarly, we can find generalsiations of κiσλ and κiσν . Now there may happen
something very interesting:

Example 7.18 Imagine χ = p(A,B,C):- q(X,C), r(A,C) which θ-
subsumes both of the following two clauses:

ϕ = (p(A,B,C) :- q(X,C), r(A,C), u(c), v(c,B).)σϕ
= p(a, f(B), C) :- q(c, C), r(a,C), u(c), v(c, f(b)).

ψ = (p(A,B,C) :- q(B,C), r(A,C), a(V,C,B).)σψ
= p(A, f(b), C) :- q(f(b), C), r(A,C), a(a,C, f(b)).

(7.60)
with σϕ = [A 7→ a,B 7→ f(b), X 7→ c] and σψ = [B 7→ f(b), V 7→ a]. For ϕ, we
observe that the set of common variables in the clause head and in the q- and r-
literals is a prober subset of the clause head of χ—whereas all variables occuring
in χ also occur in ψ.

So if in the example above we were to generalsie from the rule heads and the
matching κ-literals in ϕ there would be no evidence that the second argment
of the rule head has any meaning at all. Fortunately, the seconde argument of
the rule head is linked to to the first argument of the q–literal in ψ, which, by
inverse construction of χ via ϕOψ forces a binding between those two places.
The second—much more important—problem occurs when we try to fold out
the remaining body literals: We want to introduce a new predicate definition
with a new predicate symbol s. Then, obviously,

s(~X) :- u(c), v(c, f(b)).σ`ϕ (7.61)

s(~X) :- a(a,C, f(b)).σ`ψ (7.62)

The first one allows for several inverse substitutions:

v. July 19, 2010(c) m.e.müller

194 CHAPTER 7. INDUCTIVE LOGIC LEARNING

• σ`ϕ = [c 7→ X] suggests a generalsiation to s(B):- u(B), V(B).

• a slightly more general approach already results in two alternative rule
heads: Assuming that C is free in ϕ, we could simply drop it from the
clause head and write s(B):- a(X), b(X,B).12 On the other hand, the
then common appearance ofX in u(X), v(X, f(b)) and p(A,B,C):- q(X,C)
suggests that the semantics of s depends on q—and the semantics of p de-
pends on the value ofX. Therefore, it would safer to induce s(B,X):- u(X), v(X,B).

• σ`ϕ = [] leaves the rule body untouched—yet we have two options to con-
struct the clause head: Both s(c,B):- u(c), v(c,B) and s(B):- u(c), v(c,B)
seem reasonable generalsiations.

Similarly, ψ offers a whole lot of optinos for generalsiations. We do not go too
much into detail, because the idea should be clear by now. Instead, we now
point out how insanely many options there are to construct a new predicate
and its definition:

• First, the empty inverse substitution leads to the same arity dilemaa as
the empty inverse substitution on ϕ. We could infer three different unary
clause heads (if we assume the ordering to be irrelevant), three different
binary clause heads and one tertiary clause head which sums up to seven
alternatives for the empty inverse substitution only.

• For all of these options mentioned before, we can now find a whole set
of inverse substitutions acting on all the subsets of terms ocuring in any
place in a(a,C, f(b)). The subterms are {a,C, b, f(b)} such that we can
conctruct sixteen (24) different substitution schemata; and for each we can
chose from any combination of variables!

Exercise 7.28 (��) From a purely semantic point of view, the safest thing would
be to carry all the variables with us all the time. This means, that any rule head
p(~X) can be expanded to p(~X~V) where ~V contains all variables occuring in all the
literals of the clause.—Redefine the intra-construction operator such that all variables
are kept at all times! Then, define a (heuristic) procedure to determine minimal
sets of “relvant” variables in order to cut down the predicate arities after the intra-
construction procedure.

It should have become clear by now that refinement via intra-construction is
well defind just as truncation is. But it is also as computationally expensive
as truncation (actually, a lot more). If we restrict ourselves to clauses with
exactly one body literal, we can at least give a simple description of an intra-
construction procedure. Figure 7.4 presents such a pseudo–code program. Even
though the restriction to single body literals is so strict that the most important
parts of the expressiveness of HOL is lost, it still illustrates our desperate need
for good heurisitc measures to guide the search for promising hypotheses.

12Or, even more general, just s(B):- u(X), v(Y,B).

v. July 19, 2010(c) m.e.müller

7.4. INDUCING HORN THEORIES FROM DATA 195

01 Π =
{
p(~Xi):- λi. : i ∈ n

}
02 λ := λ0;
03 FOR i := 1 TO n
04 λ := λOλi
05 NEXT

06 κ := q(V0, . . . , Vk−1) where: {Vj : j ∈ k} ⊆ p(⋃i∈n {σi : λσi = λi})
07 RETURN

{
p(~Xi):- κ.

}
∪ {κσi : i ∈m} for some m ⊆ n

Note three nondeterministic operations here: In line 6, a “suitable” subset of

variables has to be chosen. In the same line, the σi are not uniquely defined;

all that is required is that λ |/ λi. Finally, the new body literal κ is defined

by m new unary clauses that are chosen from n different variable assignments.

Figure 7.4: Intra-construction for binary clauses

Intra–construction
Intra-construction is a refinement operator that allows to invent new predicates. The
principle is based on two ideas: First, fold out common literals of several instances
of a rule and then generalise the resulting rule; second, invent new predicates for all
disjoint sets of body literals and generalise them.
The big problem with inventing new predicates is: Since we do not know what they
mean, we don’t know on which variables they really depend. We also don’t know
which generalsiation from a huge number of options we should apply. And sadly we
don’t even know how to call it and give it a proper name for the new predicate...

Exercise 7.29 (�) Give a rough estimate of the number of different programs that

can be induced from
{
p(~Xi):- λi. : i ∈ n

}
by the algorithm shown in figure 7.4

⊕

Absorption

There is one very important type of clauses that we already spoke of but which
we are not able to induce yet. These are clauses with multiple occurences of
literals—especialy those, where the rule head predicate symbol also appears in
the rule body. It is the class of recursive predicates like in equation (7.46).
Recursion is a simple concept—but trying to induce recursive predicates is not
that easy. Just recall the problems we have had with finding suitable inverse
substitutions. On the one hand we need not care about the set of body literals
to choose and, therefore, the solution to the problem which arguments are con-
nected to each other comes for free. The real problem we are concerned with
is recursion on recursive types of terms. But logic programs have no such thing
as a type. It is impossible for us to infer the structure of a generalisation of a
term from its “sort”: If t0 = 3 and t1 = 2.0, what is t0O t1—is it some X ∈ N
or X ∈ R? If t0 = [] and t1 = [a, b]—is t0O t1 it just a free variable X that can

v. July 19, 2010(c) m.e.müller

196 CHAPTER 7. INDUCTIVE LOGIC LEARNING

be instnatiated with whatever we like? Or is it a list? Or a list with at most
two elements? And if t1 = [X], do we want to allow some t |/ {t0, t1} where t
also can take a recursive list type like [[] , [[]] , [[] , [[]]]]?
To make things easier at the beginning, we shall consider a Horn subset of PL
first. Consider the following two propositional Horn clauses:

A:- ~B. and C:- A,~D. (7.63)

There is not much we can do in SLD-resolution, but note that in the left clause
A is the rule head (hence a positive literal) and in the right clause it is a negative
literal. So in full resolution we could infer

C:- ~B,~D. (7.64)

Let us now reverse this resultion step: Imagine A:- ~B and C:- ~B,~D were known.
Then,

A:- ~B

��;;;;;;; C:- A,~D

C:- ~B,~D

??�������

where the direction of the arrows indicates our inductive process. There is not
much of recursion in here—but before we come to it, let us lift our idea of
absorption to FOL. Since variables are enough of a hassle and since we agreed
that E consists of single literals only, simplify our inverse resolution scheme to
a version with a unary parent clause only:

p(~X0).

σ

''NNNNNNNNNNN
q(~Y1):- λ0, . . . , λk−1, p(~X1), λk+1, . . . , λn−1.

(q(~Y0):- (λ0, . . . , λn−1))θσ

θ`
33ggggggggggggggggggg

(7.65)

where σ unifies p(~X0) and p(~X1) and θ is a specialsiation of λi.

Definition 7.22 — Absorption.Absorption

The absorption operator takes a unary clause and a definite clause and returns
a generalisatin of the clause that is obtained by adding the literal of the unary
clause to the rule body:

{κ}σ ({ν} ∪ {¬λi : i ∈ n})θ
{ν} ∪ {¬λi : i ∈ n} ∪ {¬κ} (7.66)

We rewrite and change the instantiating assignments σ and θ into inverse sub-
stitutions:

κ. ν:- λ0, . . . , λn−1.

(ν:- λ0, . . . , λk−1, (κσ)̀, λk+1, . . . , λn−1.)θ`
(7.67)

v. July 19, 2010(c) m.e.müller

7.4. INDUCING HORN THEORIES FROM DATA 197

There remain two open questions: Where is recursion and how do we define
the inverse substitutions? The first question is easy to answer. Absorption can
be used to learn recursive predicates by chosing κ and ν:- λ0, . . . , λn−1 such
that both κ and ν are literals sharing a common predicate symbol! From the
resolution scheme and the absorption rule, we then know that

κ |/ ν because ν = κσθ (7.68)

The question about how to compute suitable inverse substitutions cannot be
answered that easily. Therefore, we give an example illustrating the induction
process of a recursive predicate with manual, “wise” choices of σ` and θ .̀

Example 7.19 This time we cannot give a decent example in our domain
of geometric objects as it is difficult to find a proper instance for a recursive
predicate here. Therefore, please recall the example from the beginning of this
section where we invented the less-than-relation in the course of learning the
minimum-predicate. ‘Imagine now that

κ = lt(X, s(X))

ν = lt(Y, s(s(Y)))

Furthermore, let us assume that n = 0, i.e. there are no further λi-body literals
involved. Then, the recursive rule we are about to invent has the form

(ν:- (κσ`))θ`

This becomes

lt(X, s(X))

%%JJJJJJJJJJ (lt(Y, s(s(Y))):- (lt(X, s(X)))σ)̀θ`

lt(Y, s(s(Y)).

44jjjjjjjjjjjjjjjj

By miraculuous inspiration we choose σ`= [s(X) 7→ Z]. Hence,

lt(X, s(X))

%%JJJJJJJJJJ (lt(Y, s(s(Y))):- lt(X,Z))θ`

lt(Y, s(s(Y)).

55llllllllllllll

Then, a second miracle happens and we feel like chosing θ`= [s(Y) 7→ Z, Y 7→ X]:

lt(X, s(X))

%%KKKKKKKKK
lt(X, s(Z)):- lt(X,Z)

lt(Y, s(s(Y)).

66mmmmmmmmmmmm

The result is a new, logically correct arithmetic rule: Whenever X is less than ⊕
Z, then X is less than Z + 1, too.

v. July 19, 2010(c) m.e.müller

198 CHAPTER 7. INDUCTIVE LOGIC LEARNING

00 LET ϕ := {κ}, ψ := ν ∪ {¬λi : i ∈ n}
01 Tp := {〈t, p〉 : t is a term at position p in ϕ ∪ ψ}
02 Choose T ′p ⊆ Tp
03 Find an equivalence relation ≡ on T ′p × T ′p where:
04 R ≡ S if and only if
05 a) s |/ r for all 〈s, p〉 ∈ S and 〈r, p〉 ∈ R
06 b) for all 〈s, p〉 ∈ S, s occurs in ϕ
07 c) for all 〈r, q〉 ∈ R, r occurs in ψ
08 Compute σ such that Sσ = R for all R ≡ S
09 θ`i =

[
〈r, 〈p1, . . . , pn, q1, . . . , qm〉〉 7→ V : for all r ∈ T ′p/ ≡

]
, where:

10 all V are different variables which do not occur within ϕ ∪ ψ
11 RETURN (ν ∪ {¬λi : i ∈ n} ∪ κσ)θ`

Figure 7.5: An informal description of the absorption procedure

Exercise 7.30 ��� Let there be κ = lt(0, X) and ν = lt(0, s(Y)). Find σ` and θ`

such that you can induce lt(s(X), s(Y)):- lt(X,Y).—Why is this a wonderful result?
⊕

To gain a short impression of the algorithmic formulation of absorption and all
the problems connected to it, take a look at figure 7.5. For our purpose it is not
important to really understand the algorithm outlined in figure 7.5. The inter-
ested reader can find a more detailed elaboration in [Muggleton and Buntine, 1988].
But what is interesting, is the sheer monstrous complexity of this algorithm.
It is clear that absorptaion can only be described by this algorithm—but not
implemented.

Exercise 7.31 (♦�· · ·�) Take a closer look at the algorithm in figure 7.5. Give an
estimate for the size of Tp (��). Determine the number of possible T ′p (♦). How many
relations ≡ are there (�)? For a given equivalence relation ≡, how long does it take
to examine whether it satisfies conditions a)–c) (��)?⊕

Absorption
The absorption comes with bad news and good news: It is very powerful when it
comes down to learning recursive predicates. The bad news is that it is virtually
infeasible and very hard to implement in a way that allows an efficient application.
The good news is: As far as relational knowledge representation is concerned there
is no need for learning recursive predicates at all.

In the previous sections we discussed a method for inducing logic programs that
was based on two concepts of generality. The first one is that of θ-subsumption.
Given a formula ϕ, one can simply try and create some σ` and return ϕσ`

as a hypothesis. A slightly more intelligent method included literal dropping.
Including another set of formulas Φ into this process, we discovered OΦ as a gen-
eralsiation procedure relative to a given set of knowledge. The second concept

v. July 19, 2010(c) m.e.müller

7.4. INDUCING HORN THEORIES FROM DATA 199

that we modified to create a new method for inducing new Horn formulas was
resolution. We discovered three different special cases for which we described
one operator each.
But after all, unification and Deduction are derivation processes. Our hope is
that reversal of derivation leads to something like induction. In both cases, there
is no semantics involved. Yet the presented “induction calculi” are, procedurally,
infeasible. So in order to implement a working system, we need strong biases.
There are several possible solutions: First, we can restrict the language—for
example by allowing only a certain maximum number of variables or literals in
each clause. We can also try and introduce types or sorts into our language.
But most importantly, a good search procedure is required—based on a suitable
guiding heuristics.
In the next chapter we will discover a few more; and we will rediscover several
ideas to greater detail.

7.4.3 Semantic Biases

Inverting resolution means to define a calculus with a rule set that implements
a new derivation relation a. We were looking for some H such that for a given
Π we can explain E; which means that Π ∪ H |≈ E. Since semantics was too
expensive, we reduced |≈ to ` and developed refinement operators like OΦ,
intra-construction etc., such that refine(Π ∪H) ` ϕ =⇒ refine(Π ∪H) |≈ ϕ. In
this section, we will discover and a few more techniques for defining biases and
discuss known ones too more detail.

Restricting model size

The great things about ground models is, that there are no variables any more.
Recall the notion of a Herbrand interpretation (footnote 7). With at least one
non-constant function symbol in Σ, the Herbrand base is (due to recursion)
infinite. This is, theoreticaly, a very bad starting basis for an efficcient search
for H. However, by the Compactness Theorem and the work of Löwenheim
and Skolem, we know that it suffices to find an unsatisfiable subset to show
that Π ∪H is unsatsfiable. The procedure of a refutation proof by resuloution
makes use of exactly this property: It is based on the efficient construction of a
unsatisfiable subset (by adding the negation of the goal) and, by the law of the
excluded middle, conclude that if the negation leads to failure, the non-negated
goal must have been true.

Exercise 7.32 � Look up the Compactness Theorem and the Löwenheim-Skolem-
Theorem.

We now define a method for constructing finite Models which are admittedly
not complete - since defined by finite application of the resolution rule:

Definition 7.23 — h–easy ground Models. h–easy ground
Models

Let Φ be a set of of HOL-formulas over a signature Σ. We define

Thh`(Φ) :=
{
ϕ ∈ FmlHOL : Φ `i ϕ ∧ i ≤ h

}
(7.69)

v. July 19, 2010(c) m.e.müller

200 CHAPTER 7. INDUCTIVE LOGIC LEARNING

where ` denotes a SLD-resolution step.13

So instead of searching a potentially infinite hypothesis space, we restrict our-
selves to a finite one. Additionally, this restriction is defined in terms of the
minimum length of derivations required to infer a formula.

Restricting the set of possible assignments

In the last section we already mentioned the concept of connectedness. We
discovered that a variable occuing in a clause body has—due to the nature of
SLD-reolution—a certain impact on the semantics of a predicate. More specifi-
cally, a variable occuring in a clause is predetermined in the number of possible
bindings by the number of variables, their assignments, and their common ap-
pearance. This requires the notion of variable depth in a clause: Let there be a
clause

λ0:- λ1, . . . , λn−1.

Then, all the variables occuring in the clause head λ0 have depth 0. If some
variable X occurs in Li for the first time, then its depth is the maximum depth
of all varibales occuring in the literals Lj plus one (where i ∈ n and j ∈ i):

depth(X) := max{depth(X) : X occurs in λj , j ∈ i}+ 1 (7.70)

We now formulate a very important property of variables: It is their degree (of
freedom):

Example 7.20 On our base set s =
{
♦,4, •,�,�,N

}
, we examine the

number of (type compatible) variable assignements for the predicates bigger,
colour, shape, and has more edges (abbreviated by hme):

Predicate # possible α # satisfying σ

bigger 6 · 6 = 36 2 · 4 = 8
colour 6 · 2 = 12 4 + 2 = 6
shape 6 · 3 = 18 1 + 1 + 2 + 2 = 6
hme 6 · 6 = 36 5 + 4 + 3 = 12

Imagine now we would like to model a predicate that describes whether printing
one object needs more ink than another. Then,

nmi(�, X) is true for all X, because � requires most ink of all objects in s.
nmi(4, X) requires that X = ♦,

because any other object needs more ink than �.
nmi(X, •) requires X ∈

{
�,�,N

}
13This definition is a simplification of the more abstract idea of h–easiness: h is recursive,

computable function, such that for each ϕi which is valid in our model we need at most h(i)
derivation steps to deduce ϕi from Φ. Here, define h to be a constant value.

v. July 19, 2010(c) m.e.müller

7.4. INDUCING HORN THEORIES FROM DATA 201

Obviously, all black objects require more ink than white objects, and for most
black objects, it holds that the more edges it has, the more ink it requires (the
exception is that � needs more ink even though it has not more edges than �).

We define:

Definition 7.24 — Free-Assignment-Degree of a variable.
Free-Assignment-

Degree of a
variableLet there be a clause with n literals,

λ0 :- λ1, . . . , λn−1.

and the i–th literal

λi = pi(X0, . . . , Xk)

The free-assignment-degree of Xj in λi (written degfree(Xj , λi)) is the number
of variables in {Xj , . . . , Xk} which also appear in {X0, . . . , Xj−1} or in any other
literal λk, k ∈ i.

As a rule of thumb, degfree(Xj , λi) increase with growing i and j—which is due
to the top-down and left-to-right resolving strategy of SLD-Resolution.

Example 7.21 Let

nmi0(X0, Y1):- colour1(X0, C1), colour2(Y0, C1), hme3(X0, Y1).

where the idendixing is just to identify the occurence of a variable in a different
literal. It states that for two objects of the same colour, the one with more
edges requires more ink. The depths of all the variables are:

X0 Y0 X1 C1 Y2 C2 X3 Y3

depth(X) = 0 0 0 1 0 1 0 0

The values of degfree(Xj , λi) are as follows:

λi
degfree(·) 0 1 2 3

j = 0 0 1 1 2
j = 1 0 0 1 1

Supposing that α(X0) = N, there are six possible substitutions for Y0 of which
only three are valid (α(Y0) ∈ {♦,4, •}). The value of C is not restricted yet;
So for all three variables X,Y,C in the clause we have 1 · 6 · 2 = 12 different
assignments to chose from. Since X1 = X0, there is only one possible value
for C1; namely black—ruling out the factor 2 from the number of possible
instantiations such that we are left with only six alternatives. In literal 2, the
fact that C2 = C1 = black, reduces the number of possible instantiations for
Y2 to only 4 because there are only four black objects in s. In literal 3, all our
literals are instantiated. We conclude that there can be at most four different
values for Y (rather than six).

v. July 19, 2010(c) m.e.müller

202 CHAPTER 7. INDUCTIVE LOGIC LEARNING

A literal λ is called determinate, if each new variable in it has exactly one
possible binding given the bindings of the other variables. We can lift this
property to clauses and predicates and say that a clause is determinate, if all
of its literals are determinate and a predicate is determinate if all of its clauses
are determinate.

Definition 7.25 — ij-determinacy.ij-determinacy

A literal λ is called i–determinate, if it is determinate and if

max {depth(X) : X occurs in X} ≤ i

i.e. the maximum depth of its variables is bounded by i.
A clause λ0:- λ1, . . . , λn−1 is called ij–determinate, iff:

1. i is the maximum depth at which a determinate variable occurs.

2. j is the maximum degree of any variable occurring in λ1, . . . , λn−1.

An example for the application of the biases discussed so far is the learning
sustem Golem, [Muggleton and Feng, 1992, Muggleton and Feng, 1990, ?]. It
takes two sets of ground facts, E0 and E1, as sample and Π as background
knowledge. Π is also assumed to be ground; if it is not, it is represented by an
h-easy version of it. The result is that Π consists of ground facts only (or can be
transferred into one). On this set of formulas, OΠ is applied on pairs of examples
to infer hypotheses for the target predicate. Variable introduction is biased by
setting a threshold for i and j: We may not generalise to new variables or simply
introduce new variables if they would exceed the ij-determinacy. With these
heuristics, Golem performs more less the same learning loop as Foil does:

1. To learn a single rule, randomly pick ϕ,ψ ∈ E1 and compute OΠ(ϕ,ψ)
until coverage on E1 cannot be increased any more and no e ∈ E0 is
covered

2. Remove redundant literals

3. To learn sets of rules, remove the examples that are covered by a rule and
continue until all examples are covered (none are left).

The directedness of SLD-Resolution suggests a directedness of determinacy. In
fact the definition of determinacy is motivated by SLD-resolution.

Restricting declaraitve semantics by procedural semantics

If you are familiar with the Prolog programming language, you might have seen
predicate specifications. The expression

p(+X,+Y,−Z)

v. July 19, 2010(c) m.e.müller

7.4. INDUCING HORN THEORIES FROM DATA 203

meas that when trying to resolve a (negative) literal p(X ′, Y ′, Z ′), X ′ and Y ′

need to be ground terms, whereas Z ′ will be substituted after all body literals
of the clause have been resolved.

Example 7.22 Consider our predicate black as in example 7.7. It takes
one single argument and succeeds, if the provided argument represents a black
object:

?−black(•) uRES black(•) = {}
In this case, we receive a definite answer, Yes., for µ = {}. But what if we ask
?−black(X) ? Then, we have several options to resolve the goal using several
substitutions that in Prolog are discovered by backtracking:

µ0 = [X 7→ •] , µ1 = [X 7→ �] , µ2 =
[
X 7→ �

]
, µ3 = [X 7→ N]

This is useful for collecting the set of all things we know to be black. In our
case, we want to use the predicate black to check whether a certain instance
is black. The convention then is to declare the predicate black as a predicate
whose argument needs to be ground when trying to resolve it. It is specified by
writing black(+X).

The previous example was very simple because the predicate took only one
argument. Now consider example 7.13 and equation 7.45 of the subsequent
example. We induced a predicate consisting of two clauses

h0 = black polygon(X):- colour(X, black), shape(X, square).

h1 = black polygon(X):- colour(X, black), shape(X, diamond).

which were to defined to check whteher a certain object X is a black polygon.
An experienced Prolog programmer never would write such a predicate since if
he was asked to implement a predicate white polygon, he would have to copy
the clauses and replace all occurences of the ground term black with white.
Instead, he would write:

coloured polygon(X,C) :- colour(X,C), (7.71)

member(X, [square, diamond]).

Exercise 7.33 (♦�)

♦ Specify the predicate coloured polygon and all predicates appearing in the
body of the clause. For member, consult a Prolog manual or, for example,
[Bratko, 1986].

� Compute the free assignment degree of all the variable occurences in the pred-
icate definition of equation (7.71). Then, determine the smalles i and j such
that the predicate is ij-determinate!

If we want to specify a predicate which delivers a definite answer subsitution,
things are a bit different.

v. July 19, 2010(c) m.e.müller

204 CHAPTER 7. INDUCTIVE LOGIC LEARNING

Example 7.23 In order to retrieve objects from our knowledge base which
satisfy certain goals, we would implement a predicate is there a(+C,+S,−X)
as follows:

is there a(C, S,X) :- shape(X,S), (7.72)

colour(X,C). (7.73)

By SLD-Resolution, and an initial assignment α(C) = black and α(S) =
circle, we resolve ?−shape(X, circle) against the fact colour(•, circle) by
applying µ0 = [X 7→ •]. The substitution lemma then implies the assignment
α(X) changes to α [X 7→ •] such that α(X) = •. Hence ?−colour(X, black) be-
comes ?−colour(•, black) which, by µ1 [], resolves with the fact colour(•, black)
to the emtpy clause. Now we know that

∀α ∈ sVar : α(X) = • =⇒ Π |≈α is there a(black, circle, X). (7.74)

This means the goal is true for a substitution σ = {X 7→ •} and we can answer:
Yes, there is an X such that X is a black circle—namely X = •.

Exercise 7.34 (♦����)

♦ In the last example we have shown that Π `SLD is there a(black, circle, •).
Why is equation (7.74) true, too?

� What happens for ?−is there a(white, triangle, X)?

� Let there be an alternative definition of the predicate is there a:

is there a(C, S,X) :- colour(X,C),

shape(X,S).

Compute the free assignment degree of all the variable occurences. Then, de-
termine the smallest i and j such that the predicate is ij-determinate!

�� What happens for ?−is there a(white, triangle, X)?
What happens for ?−is there a(black, tetragon, X)?

From definition of biases we discussed so far and the observations we made by
examining SLD-proofs, we an conclude that it is a good idea to restrict the
search space for hypotheses by predetermination of predicate specifications. If
concerned with learning from examples rather than with rule invention, we also
know the predicate name and arity for which we want to learn a definition.
Specifications of predicates are also known as modes. Modes like

The target has a head literal, the arguments of which shall satisfy
the I/O behaviour determined by p(+X, +Y, -Z)

can be found in Progol or mFoil.
Finally, a very simple method for reducing search space is simply by limiting
the language available to formulate a hypothesis. Such limitations, also known
as predicate schemes, like

The target is a 3–literal Horn clause which matches p(, , X):- Q(X,Y), p(, X, Y).

v. July 19, 2010(c) m.e.müller

7.4. INDUCING HORN THEORIES FROM DATA 205

are used in Mobal, [?].14

7.4.4 Inverted Entailment

All our efforts so far concentrated on the fact that |≈ is too expensive to be
checked for every single guess what might be an appropriate hypothesis. As
a consequence we focussed on finding syntactical refinement operators that at
least come close to inverting entialment.

Example 7.24 Computing (relative) least generalisations with respect to
θ-subsumption are not least general with respect to implication. Imagine that

χ := p(f(f(0))):- p(0).

ξ := p(f(1)):- p(1).

The least general generalisation with respect to θ-subsumption is

ϕ = χO ξ = p(f(x)):- p(y).

But the least general generalsiation with respect to logic implication (i.e. entail-
ment) is:

ψ = χg ξ = p(f(x)):- p(x).

where ψ = χσ`= ξσ` with

σ`= [f(0) 7→ x, f(1) 7→ x, 0 7→ x, 1 7→ y]

It is clear that

ϕ = p(f(x)):- p(y) |≈ p(f(x)):- p(x) = ψ

and it is also clear that ϕ is way too general!

Our example contains is a recursive predicate definition. This clause contains
the same literal twice: The positive version makes the rule head, the negative
one is element of the rule body. So when trying to resolve p, we have to resolve
p again—just with another argument. Therefore, clauses that define recursive
predicates are also known as self-resolving clauses. From this point of view one
can see that ϕ in the preceeding example is really useless: proving a certain
instance of p by proving any any instance of it leads into a viciuos circle.

Exercise 7.35 (♦) Define a criterion by which one can easily determine whether an
arbitrary self-resolving clause maybe useful or certainly is not useful at all! — Think
of biases!

There is, however, one important observation that we have not taken into ac-
count so far. [Gottlob, 1987] states that:

v. July 19, 2010(c) m.e.müller

206 CHAPTER 7. INDUCTIVE LOGIC LEARNING

Definition 7.26 — Gottlob’s Lemma. Gottlob’s Lemma

Let there be two clauses ϕ and ψ as follows:

ϕ = {κ0, . . . , κk−1,¬κk, . . . ,¬κm−1}
ψ = {λ0, . . . , λl−1,¬λl, . . . ,¬λn−1}

where for

ϕ1 = {κ0, . . . , κk−1} and ψ1 = {λ0, . . . , λl−1}
ϕ0 = {¬κk, . . . ,¬κm} and ψ0 = {¬λ0, . . . ,¬λn}

ϕ1, ψ1 contain only positive literals and ϕ0, ψ0 contain only negative literals.
Then,

|= ϕ −→ ψ =⇒ ϕ1 |/ ψ1 ∧ ϕ0 |/ ψ0 (7.75)

So when one clause implies another, then its subsets of positive and negative
literals subsume the corresponding subsets of the other. ⊕
Formula (7.75) can be transformed into

ϕ |≈ ψ =⇒ ϕ1 |/ ψ1 ∧ ϕ0 |/ ψ0 (7.76)

The hypothesis H we are to infer shall at least entail all the positive examples⊕
of our target concept:

Π ∪H |≈ E1

where, as you will remember, E1 is a set of (ground) facts {{λ0} , . . . , {λn−1}}.
Then, we can rewrite the formula as

Π ∪H |≈ {{λ0} , . . . , {λn−1}}

Now, we try a little trick and require H to consist of facts only, too. Then we
can write

Π ∪ {{κ0} , . . . , {κm−1}} |≈ {{λ0} , . . . , {λn−1}}
This means that there is a substution such that Π ∪ {{κ0} , . . . , {κm−1}} ∪
{{¬λ0} , . . . , {¬λn−1}} is not satisfiable. Furthermore, by equation (7.75), the
set of positive literals κi subsumes the set of positive λj , and the same holds
for the negative literal subsets. If we now add the negation of E1 to Π we can
infer a set of formulas (or, more specifically, a conjunction of literals), which we
do not want to be implied by the hypothesis H we are looking for. Negation
on clauses with free variables in them requires skolemisation in order to avoid
existential quantifiers. Let there be a clause

ϕ = κ0, . . . , κk−1:- λ0, . . . , λl−1.

= {κ0, . . . , κk−1,¬λ0, . . . ,¬λl−1}
14Note that schemes like these explicitely include depth, degree, determinacy, and specifi-

cation biases. Note also, that Q is a placeholder for a predicate name; it is, so to say, a second
order variable.

v. July 19, 2010(c) m.e.müller

7.4. INDUCING HORN THEORIES FROM DATA 207

such that ϕ0 = {λj : j ∈ l} and ϕ1 = {κj : i ∈ k}. Then, its complement is the
set of all unary clauses where each clause is the skolemised negation of a literal
in ϕ:

ϕ := {{κ0} , . . . , {κk−1} , {λ0} , . . . , {λl−1}}σsk (7.77)

Note that this is not a single clause as was ϕ but an entire clausal theory
consisting of a conjunction of unary, ground clauses.15 Using complementation
we define:

Definition 7.27 — Bottom literal set, BotLit. Bottom literal set,
BotLit

Let Π be a set of clauses and ϕ a clause. The set

BotLit(Π, ϕ) := {λ : Π ∪ ϕ |≈ ¬λ and λ is a ground literal} (7.78)

is called the bottom set of ϕ for Π.

Roughly speaking, it is the set of all facts that are rejected when adding the
negation of ϕ to our background knowledge. Now comes the trick: If we assume
ϕ to be true—especially, if ϕ ∈ E1, then a subset of the according bottom literal
set is a clause that can be considered a good hypothesis for ϕ!

Definition 7.28 — Inverse Entailment. Inverse Entailment

Let Π be a set of clause. Let there be a set of ground facts E1, the positive
examples. Let ϕ = {κ} be clause (in this case, a fact) from E1. Let

BotLit(Π, ϕ) = {λ : Π ∪ {{¬κ}} |≈ ¬λ and λ is a ground literal}

Then, by inverse entailment, we consider H with

H |/ Bσsk for some B ⊆ BotLit(Π, ϕ)

a hypothesis derived by inverse entailment from ϕ wrt Π.

There are a few problems here: First, the bottom literal set is not neccessarily
finite. Luckily, the definition of inverse entailment includes a nice workaround as
we only need to consider subsets. Therefore, we can confine our search to finite
sets. The second problem is that there are still too many of them. And finally
there is a small gap between the generality of definitions and the examples we
kept in mind: The definitions work for arbitrary clauses wheras we spoke of
ground facts as formulas only. What we are looking for is located just in the
gap between—definite clauses. But first, let us consider a small example.

Example 7.25 Let

Π =

{
polygon(X):- edges(X, 4).,
black tetragon(X):- black(X), polygon(X), square(X).

}
ϕ = black tetragon(X):- edges(X, 4), black(X).

15More generally, the complement of any formula is its negation with all variables replaced
by Skolem constants.

v. July 19, 2010(c) m.e.müller

208 CHAPTER 7. INDUCTIVE LOGIC LEARNING

Then, complementation leads to

ϕ = {:- black tetragon(�)., edges(�, 4)., black(�).}

As a result,

BotLit(Π, ϕ) = {square(�),¬black(�),¬edges(�, 4),¬polygon(�)}

By inverse entailment we can build several causes ψ for which ψ |/ ϕ:

ψ0 = square(�):- black(�), edges(�, 4), polygon(�).

ψ1 = square(X):- black(X), edges(X, 4), polygon(X).

ψ2 = square(X):- edges(X, 4), polygon(X).

ψ3 = square(X):- black(X), polygon(X).

Exercise 7.36 (��)

� Is there a clause ψ′ for which neither Π ∪ {ψ′} |≈ square(2) nor Π ∪ {ψ′} |≈
square(�)? Why?

� Evaluate ψi, i ∈ 4 with respect to the base set
{
♦, •,4,©,�,�,2,N

}
.

⊕
The method of inverse entailment was first presented in [Muggleton, 1995].

Along with its theory, Muggleton presented an implementation in which the
construction of saturants and the subsequent search for clauses subsuming them
is guided by a heuristic measure of compression (rther than an entropy-based
measure) and strong biases on the form of the clauses that are to be considered.
These biases are defined in terms of so-called mode-declarations which are similar
to all the biases we discovered in section 7.4.3.
A beautiful concise summary of the most important ideas behind “semantic”
induction is [Yamamoto, 1997]. It refers to the most influential articles on which
inverted entailment is based as well as the two most completive contributions;
[Rouveirol, 1992] and [Nienhuys-Cheng and Wolf, 1996].

7.5 Summary

Inductive Logic Programming was at it’s peak in the mid 1990’s which is why
still many standard references are fifteen years old by now. One of the first
textbooks on ILP is [?]. A bit more detailed information can be found in [?].
A very readable and concise summary is an extended article by Muggleton
and de Raedt published in the Machine Learning Journal, [?]. Recent text-
books are [Raedt, 2008]; [Kersting and Raedt, 2000, Raedt and Kersting, 2004]
and [Kersting, 2008] focus on extending ILP by probabilisitc methods.

Inductive logic programming is about finding logic programs which describe un-
known target concepts. A program clause is a definite clause; clauses with at

v. July 19, 2010(c) m.e.müller

7.5. SUMMARY 209

least one negative literal are rule clauses. The rule head represents a relation
between its arguments—an n-ary predicate symbol is interpreted as an n-ary
relation. The entire predicate is defined by a disjunction of clauses, and every
clause by a conjunction of literals. These literals again refer to other predi-
cates; usually to predicates that are predefined in Π. Therefore, the predicate
definition

ϕ = black polygon(X) :- black(X), tetragon(X). (7.79)

ψ = black polygon(X) :- black(X), triangle(X). (7.80)

is just about the same as

x ∈ black polygon ⊆ s :⇐ x ∈ (black ∩ tetragon) ∪ (black ∩ triangle)

If we agree that anything we can’t prove is false, then our hypothesis becomes

black polygon := (black ∩ tetragon) ∪ (black ∩ triangle)

So if objects, say �, N and � are all black and either a tetragon or a triangle,
they are indiscernible by our knowledge about black polygons. In other words, it
does not matter at all whether the property of being black or being a tetragon is
expressed in terms of features in an according information system, by predicates
or by relations.
Whenever two objects are elements of the satisfaction set of a predicate, they are
indiscernible with respect to the relation by which this predicate is interpreted:
For R = {colour , tetragon} and the program above, it holds that{

�,�
}

= [[R]]
{
�,�

}
⇐⇒ � ¯̄R�

⇐⇒ Π ∪ {ϕ,ψ} |≈
{

black polygon(�),
black polygon(�)

}
If there are two concepts with instances{

N,�, •
}
⊆ c0

{4,�, •} ⊆ c1

then, with R = {Colour ,Size,Shape},

[[R]]c0 = c0 = 〈|R|〉c0 and [[R]]c1 = c1 = 〈|R|〉c1
Similarly, and there is just a simple representation shift involved herein,

c 0(X) :- colour(X, black), size(X,Y), shape(X,Z).

c 1(X) :- colour(X,Y), size(X, small), shape(X,Z).

As one can see, the above predicate definitions are highly redundant—and,
equivalently, there exist reducts of R: For P = {Colour} and Q = {Size}

[[P]]c0 = c0 = 〈|P|〉c0 and [[Q]]c1 = c1 = 〈|Q|〉c1

v. July 19, 2010(c) m.e.müller

210 CHAPTER 7. INDUCTIVE LOGIC LEARNING

The same holds for the logic program: The free variables do not at all contribute
to the restriction of the satisfaction set for the predicates. Hence,

c 0(X) :- colour(X, black).

c 1(X) :- size(X, small).

Finally, let us consider rule induction. We observe

�,�,N, • ∈ black = s− {♦,�} = s− white

�,N, •,♦ ∈ large = s−
{
�,�

}
= s− small

and
�,♦,� ∈ tetragon, triangle = {�} , circle = {•}

then, for c =
{
�,�,N

}
we find a reduct R = {Colour ,Shape} such that [[R]]c =

c = 〈|R|〉. For the according facts

white(♦). white(4).
black(•). black(�). black(�). black(N).
triangle(4). triangle(N).
tetragon(�). tetragon(♦). tetragon(�).
circle(•).

the induced rules are

c(X) :- black(X), tetragon(X).

c(X) :- black(X), triangle(X).

In this chapter we have discovered three ways of finding relational descriptions
of new concepts by inducing logic programs which define according satisfaction
sets.

v. July 19, 2010(c) m.e.müller

Chapter 8

Learning and Ensemble
Learning

We discussed several paradigms of how to extract relational
knowledge from sets of data. All of were based on an intu-
itive understanding of what it means to learn a new concept.
In this chapter we will try to find a more abstract definition
of learnability.
The second topic of this chapter is motivated by two ques-
tions: Why should we learn one complex classifier instead
of several simple ones—and why should we learn from all
observations instead from only the difficult ones?

8.1 Learnability

It is worth a second a thought whether some question can be answered from a
set of information before one tries to extract the knowledge required to derive
such an answer from all the data. There is no use in trying to answer a question
to which we have no answer; it is hard to try solving an ill-posed problem, and
it is not a wise idea to formulate an answer in a language that is not sufficiently
expressive in order to grasp what we want to say1.

Let us recall the first definition of a learning algorithm (definition 3.11): Presup-
posing that a concept c actually is learnable (whatever that means), a learning
algorithm is a procedure that from a set of examples induces a function that
computes an approximation of c:

Alg(Sµ(m, t)) = h ≈ t
1Things are a bit different in everyday life, though. But trying to extract some formal

concept from insufficient information often results in rather funny results, [Müller, 2008]

211

212 CHAPTER 8. LEARNING AND ENSEMBLE LEARNING

Reverting this definition we can try to formulate a definition of learnability :

Definition 8.1 — Learnability.Learnability

A problem x ∈ c is (correct) learnable, if there is an algorithm Alg which, given
a sample Sµ(m, t), delivers a function h such that h = χ(c).

This definition is quite rigid, and there exist weaker versions:

1. First, we consider only (finite) subsets s ⊆ U . It is much easier to examine
only a subset of objects and it is simpler to find a hypothesis explaining
fewer examples.

2. A problem is approximately correct learnable, if h ≈ χ(c). In this case one
needs to decide whether h ≈ c. It requires an error measure, of which there
are two basic types: In section 3.4.1 we defined pointwise error measures
and measures based on sets of such errors; in section 3.4.2 we introduced
error measures that evaluate hypotheses as a whole.

3. Finally, a problem is probably approximately correct (PAC) learnable if,
with a certain confidence, we can gurantee an approximately correct hy-
pothesis.

8.1.1 Probably approximately correct learning

The idea of PAC learning was coined by Leslie Valiant in 1984, [Valiant, 1984].

Definition 8.2 — PAC Learnability.PAC Learnability

A problem in U is PAC-learnable, if there exists a probably approximately correct
(PAC) learning algorithm Alg. Alg is PAC, if there exists a lower bound for the
number of required examples such that for all samples of equal or greater length,
with a probability of at most δ, t can not be approximately correct learned with
an error of less than ε.
Let 0 < ε, δ < 1. Let Alg be a learning algorithm for U with U being the base
set of U.Let t = χ(c), c ⊆ U , and µ a (probability) distribution on U . Alg is
PAC, if:

∃m0 : m ≥ m0 =⇒ µm {s :∈ Sµ(m, t) : errorµU (Alg(s), t) < ε} > 1− δ (8.1)

Therein, m0 is a value that must be computable by a function of ε and δ. The
“:∈” is there to denote, that Sµ(m, t) is not a function, but nondeterministically
delivers s.

PAC Learnability
A problem is probably approximately correct learnable, if there is an algorithm for
which only by defining a minimum confidence and maximum error, we can guarantee
that for any sample which contains at least a fixed minimum number of examples,
this algorithm with a certain probability delivers a hypothesis that is sufficiently
accurate—with an arbitrary and unknown distribution on our universe.

v. July 19, 2010(c) m.e.müller

8.1. LEARNABILITY 213

Example 8.1 Let U = N and codd = {1, 3, 5, . . .} be the set of odd numbers.
Then, h(x) = 1 :⇐⇒ x mod 2 = 0 is a hypothesis for which h = χ(codd). It is
a correct hypothesis.

Example 8.2 Let U be the set of objects with shape 2, ◦,♦, or 4 and a
colour that is white, light, dark, or black. Let cwwbb be the set of sequences of
two white objects followed by two black objects (i.e. all sequences have length
4n):

cwwbb =

{
(w0w1b0b1)n :

i ∈ 2 ∧ wi, bi ∈ U ∧
colour(wi) = white ∧ colour(bi) = black

}
We define a distance function on the set of colour values distcolour : cod(colour)×
cod(colour)→

{
0, 1

4 ,
1
2 ,

3
4 , 1
}

as follows:

distcolour 2 � � �
2 0 1

4
3
4 1

� 1
4 0 1

4
3
4

� 3
4

1
4 0 1

4

� 1
4

3
4

1
4 0

Suppose the hypothesis generated by some Alg is the characteristic function of
the set

cwldb = {(xwhitexlightxdarkxblack)n : xi ∈ U ∧ colour(xi) = i}

Based on the definition of distcolour, we define a distance measure on U4n as
follows:

dist(x0x1x2x3, y0y1y2y3) :=
1

4

∑
i∈4

distcolour(xi, yi)

dist(x0x1x2x3v, y0y1y2y3w) := n
dist(x0x1x2x3, y0y1y2y3) + dist(v, w)

n+ 1

for v, w ∈ U4n. We compare an element x ∈ cwwbb and y ∈ cwldb:

x = 2 2 � � 2 2 � · · ·
y = 2 � � � 2 � � · · ·

distcolour = 0 1
4

1
4 0 0 1

4
1
4 · · ·

dist = 1
8 · · ·

which demonstrates that the entire distance for any sequence of length n of
symbols from cwwbb to any sequence of length n of symbols from cwldb is 0.125.
Therefore, h = χ(cwldb) is ε–correct w.r.t. cwwbb if ε > 0.125.

Now, let us consider the following problem: Let U = [0, 1]2 ⊂ R × R, where
for an instance x = 〈cx, sx〉 the colour of x is described by cx and the size of x

v. July 19, 2010(c) m.e.müller

214 CHAPTER 8. LEARNING AND ENSEMBLE LEARNING

ε

α

ht

rt

Figure 8.1: Learning Discs

by sx. Note that we have left the universe with objects of only finitely many
colours and sizes—the representation space is infinite! The target concept t is
the set of objects that belong to the disc with center

〈
1
2 ,

1
2

〉
and radius rt = 1

4 .
In other words,

t(x) = 1 :⇐⇒ x ∈
{
x ∈ U :

√
(cx −

1

2
)2 + (sx −

1

2
)2 ≤ rt

}
(8.2)

For an illustration of this problem, see figure 8.1. In order to compare two
objects, we define:

dist(x, y) =
√

(cx − cy)2 + (sx − sy)2 and ‖x‖ = dist(x,

〈
1

2
,

1

2

〉
)

Then we allow a certain degree of uncertainty which may result in wrong classi-
fication results. We add an “ε-region of tolerance” to the target concept which
means that we may accept slightly larger values than rt as distance to

〈
1
2 ,

1
2

〉
:2

cε := {x ∈ U : ‖x‖ ≤ rt + ε} .

The ε-tolerance-area cerr is a “rim” around the target concept with a width of
ε.

2“Larger” instead of “smaller or larger”, because the algorithm we shall use can only
overstimate the value of rt. The same argument applies to adding ε to tt instead of actually
defining an error region around the target concept.

v. July 19, 2010(c) m.e.müller

8.1. LEARNABILITY 215

Learning by generalsiation:

01 rh := 0
02 s := Sµ(m, t)
03 FOREACH (〈x, t(x)〉 ∈ s) DO
04 { IF t(x) = 1 THEN

05 rh := max({rh, ‖x‖})
06 }
07 RETURN (rh)

Learning by specialisation:

01 rh := 1
02 s := Sµ(m, t)
03 FOREACH (〈x, t(x)〉 ∈ s) DO
04 { IF t(x) = 0 THEN

05 rh := min({rh, ‖x‖})
06 }
07 RETURN (rh)

where t(x) = 1 :⇐⇒ ‖x‖ ≤ rc.

Figure 8.2: Learning a disc

Example 8.3 Let us try a purely geometric interpretation of our example:
For rt = 1

4 and ε = 1
8 ,

A(c) =
1

16
π ≈ 0.196 ≈ 20% (8.3)

A(cε) =
9

64
π ≈ 0.442 ≈ 44% (8.4)

A(cerr) = A(cε)−A(c) =
5

64
π ≈ 0.245 ≈ 25% (8.5)

It means that, presupposing a continuous uniform distribution, about 20% of
all objects are elements of our target concept, while 80% are not. In 56% of all
cases we can correctly reject an object; and in 25% of all cases we we may or
may not make a false positive prediction.

A disk (or rather its radius) is PAC-learnable, if there is a PAC algorithm for
it. Since the disc is defined by a certain radius rt around

〈
1
2 ,

1
2

〉
, the learning

alorithm has to find with a certain probability a value rh such that the difference
between rt and rh is at most ε. An algorithm to approximate rc by rh is quite
simple: Start with an empty hypothesis (that is, rh = 0) and for every positive
example x, redefine rh to ‖x‖, if ‖x‖ > rh. Alternatively, we can start off
with a most general hypothesis and successively restrict it: Let rh >

1
2 and for

each negative example that is closer to
〈

1
2 ,

1
2

〉
than rh, decrease rh to the newly

observed radius until we have processed all examples. The algorithms are shown
in figure 8.2; we will from now on refer to the specialiastion algorithm. After m
iterations, with at least one positive example in s, it holds that

1

2
≥ rh ≥ rc.

v. July 19, 2010(c) m.e.müller

216 CHAPTER 8. LEARNING AND ENSEMBLE LEARNING

The error set errsetU (h, t) is the rim with width rh − rc around the disc with
radius rc. More precisely,

errsetU (h, t) =

{
x ∈ U : rh ≥

√
(
1

2
− cx)2 + (

1

2
− sx)2 > rt

}

But what about the actual error of h with respect to t? And what about the
reliability of these algorithms?
We examine the specialisation algorithm as shown in figure 8.2 on the right side
for the disk learning in figure 8.1. A closer look at our learning problem reveals
that there is some kind of symmetry involved, since all discs represented by
hypotheses are concentric to

〈
1
2 ,

1
2

〉
:

xt

0
� � x′h

�

d

�
�

n

�
‖rh‖

��

d

�
}

k

〈
1
2 ,

1
2

〉_
‖rt‖

_

where ‖x′h‖ = ‖xh‖ = rh and ‖x′t‖ = ‖xt‖ = rt. The error set of rh is the rim
containing all the objects that are farther away from the center than rt but no
more than rh:

errsetU (h, t) = {x ∈ U : rt < ‖x‖ ≤ rh} (8.6)

In order to guarantee that h’s error is not larger than some ε, we look for a
worst hypothesis that just satisfies the error restriction. This worst case is

α = max{r : µ(Fr) ≤ ε} (8.7)

where Fr is the disk wit radius r.3 In other words, α is the largest possible
radius for a disk such that its (entire) area has an error of at most α. This adds
an entry to our diagram above, which, after slight transforms, looks as follows:

rt

〈
1
2 ,

1
2

〉 � �
9

9yyyyyyyy

�

�QQQQQQQQQQQQQQ α

rh

Now it’s time to think about errors: Due to our definition of α, it holds that

µ({x ∈ U : rt < ‖x‖ ≤ α}) ≤ ε. (8.8)

3N.B. The attentative reader will have noticed that we do not make a proper distinction
between a measure on the set of radiuses describing disks and a measure of the areas of these
disks. However, this does not give rise to any problem in the running argument.

v. July 19, 2010(c) m.e.müller

8.1. LEARNABILITY 217

Since rh ≤ α, it is also true that

µ({x ∈ U : rt < ‖x‖ ≤ rh}) ≤ ε. (8.9)

It is also true, that the “outer space” completes to probability 1:

µ({x ∈ U : 0 < ‖x‖ ≤ α}) + µ({x ∈ U : α < ‖x‖ ≤ 1}) = 1. (8.10)

For the true error of rh we conclude:

errorµU (rh, t) = µ({x ∈ U : rt < ‖x‖ ≤ rh}) (8.11)

≤ µ({x ∈ U : rt < ‖x‖ ≤ α})
≤ ε

Great! Obviously it is possible to learn a hypothesis that is at least ε–good. But
what is the probability of being able to find it? In order to find a hypothesis
we need to see an example that is better than α! The probability of not seeing
such an example is the probability that none of the m examples is in the rim is
at most (1 − ε)m. Therefore, with probability of at least 1 − (1 − ε)m there is
at least one such required example in the sample:

µm(
{
s :∈ Sµ(m, t) : errorµh(r,)rtU ≤ ε

}
) ≥ 1− (1− ε)m (8.12)

This means that the probability of picking a “good” example depends only on
ε and, of course, on m. So what does it mean for the value δ of confidence? If
we substitute (1− ε)m from equation (8.12) for δ in equation (8.1) then we find
that

δ > (1− ε)m

So we need to find a formula for computing a value for m0 ≤ m, which is the
minimum value for which the above inequality becomes true. The choice m0 =
d 1
ε ln 1

δ e satisfies all our requirements—and that means, that the problem we
wanted to learn is probably approximately correct learnabe: We have described
an algorithm (see figure 8.2) and we have shown that by a mere definition of a
maximally tolerated error of ε and a confidence δ we can compute the number
of required examples—absolutley independently from any knowledge about µ!
This is, in fact, a really impressive conclusion. If you still do not share a certain
excitement or if you are asking yourself for the benefit of all these calculation,
then maybe the following example will eradicate all doubts:

Example 8.4 In the example above and with δ = ε = 0.1, we need 23
examples to learn an arbitrary disk with an arbitrary underlying distribution.

Exercise 8.1 (���)

� Prove the statement from the preceding example!

� What is the value of δ, if we restrict m0 to 18 and keep ε = 0.1?

v. July 19, 2010(c) m.e.müller

218 CHAPTER 8. LEARNING AND ENSEMBLE LEARNING

� How many examples does it take if we are satisfied with a hypothesis that is
better than random (that means that ε is just slightly larger than 1

2
) in 99% of

all runs?

For the latter two questions you might want to write a little program that calculates
a “table” of the dependencies between ε, δ, and m0!

What we have shown so far is that we could find an estimate of the complexity
for learning two–dimensional continous problems. The reason for this was our
running example and the idea behind finding a classifier that works sufficiently
well with a minimal number of features, relations, or predicates—short: with
a minimum number of dimensions. The funny thing is that we reduced the
two-dimensional problem of learning a disk to the one-dimensional problem of
learning an interval on the real numbers; or, to be more precise, a ray. A more
illustrative version of the proof presented here (including the details on how to
find a term describing m0) can be found in a great “manual of computational
theory”, [Anthony and Biggs, 1997].

8.1.2 Learnability and learning algorithms

For our running example domain, we showed that we can learn any concept
that can be visualised by a disc in the plane where the plane itself is defined by
a pair of features from F. Actually, we worked on a much harder problem than
in all examples before because until then, our world was discrete: Objects had
a certain colour like black, dark, or white, and they had a distinct shape like
squares, circles, or triangles. Even the size of an object was discrete: they were
small or large. In the universe U we created in this chapter, objects can have
any shade of grey from white to black and any size from a minimum size 0 to a
maximum sice 1. It means that U is infinite; it is even uncountably infinite. Yet
we can find an iterative algorithm which comes to a halt after a finite number
of steps and output a hypothesis satisfying a preset quality bias. This is, even
modestly speaking, a wonderful result—for now.

Since the representation spaces that we were concerned with so far are discrete,
most learning problems we examined so far are PAC! This is simply due to the
fact that for every finite hypothesis or representation space, there is a very sim-
ple algorithm which is PAC. It is so simple that it does not deserve a figure and
a pseudo-code formulation, but it is so important that it deserves a knowledge
box:

v. July 19, 2010(c) m.e.müller

8.1. LEARNABILITY 219

Finite Problems are PAC Learnable
Every learning problem with a finite representation space is PAC learnable:

If the set U is finite, then just enumerate all of its elements, and sort them into two
sets; one set representing the target concept and one set representing its complement.
Then, for δ = 1 and ε = 0, one can choose m0 = |U |. This is neither elegant nor
efficient—but it works.

Every learning problem with a finite hypothesis space and a representable hypothesis
is PAC learnable:

In this case, just enumerate all hypotheses, and iterate them until we find one sat-
isfies our needs! If we want to learn a hypothesis with zero error, it requires our
representation to be fine enough to describe the target concept. If it is not, we can
at least find a best hypothesis after running through all possible hypotheses.

But usually, U is infinite. This is why we restricted the domain for learning
to a finite subset s ⊆ U at the very beginning of our journey (see figure 3.1).
In real life, any information system which we take as a base for our learning
problem is “finite”: First, there is only a finite amount of data s. Second, there
is only a finite set of features F; and third, for each feature f ∈ F, cod(f) = Vf
is finite, too. The domain it represents, however usually is not finite. Because
of the inductive assumption (see section 3.3) we can live with a finite subset
of the domain. The restriction to only a finite set of features corresponds to a
restriction of our language of hypotheses. And finally, even continuous functions
usually are quantised and are, for a defined interval, finite.

Clustering and Learnability

If you take a look at figure 8.1 again, the similarity of all approaches discussed
so far becomes obvious: Learning a k-NN classifier means to identify clusters.
Note that the description of the problem domain we gave in section 4.2 we
already lifted our representation from a discrete information system to Rn with
an Euclidean distance measure in equation (4.1). Note also that the k-NN
hypothesis itself as defined equation (4.2 is just the same as in equation (8.2)!

Decision Trees. In chapter 5 we discovered an appoach to an information
gain based heuristics search procedure for hierarchical clustering. The algo-
rithms presented therein are based on discrete features, too. However, there
exist extensions that are capable of working with real-valued features. They
simply perform an internal quantisation by identifying relevant intervals. There
are many algorithms for quantisation—ranging from a simple equal frequency
binning to, again, entropy based methods. But basically, quantisation again is
clustering, too.

Rough Sets and Learnability

In rough set theory the notion of upper and lower boundaries provide us with a
beautiful vacabulary to circumscribe what in PAC-learning we have called the ε-
region. The definition of equivalence relations and all concepts required in rough
set theory are not limited to finite sets even though all examples were defined

v. July 19, 2010(c) m.e.müller

220 CHAPTER 8. LEARNING AND ENSEMBLE LEARNING

on finite domains. The equivalence class of natural numbers is a proper set of
the rational numbers which in turn is a proper subset of real numbers—and
they all are at least denumerable infinite.

Exercise 8.2 (��) Define a relation Q ⊆ R×R such that [[Q]]Q = N and 〈|Q|〉Q = R!

We also noted that (|R|)c is the region of uncertainty around c and it is a straight-
forward idea to define

errsetU (R, t) := {x ∈ (|R|)c : x /∈ {x ∈ U : t(x) = 1}}

But what about the distance of an object from the actual boundary of the
concept? In the rough set approach there are only nominal class values, no
ordinals. And if there is no (given) order, there is no (canonical) distance. But
there is a natural order : Keeping in mind one of the baselines of this book,
discernability is what makes knowledge. Accordingly, two objects are more
similar the more knowledge it requires to distinguish between them. Therefore,
the minimal number of relations |P| we need to add to R such that

x ∈ c =⇒ x ∈ [[P ∪R]]c

A measure based on this idea is very well suited for any “bottom-up” rough set
classifier learning algorithm where (starting with an empty set or a known core)
we add relations to specialise the hypothesis until it is “good” enough (which,
in turn, can be estimated using any of the error measures described in section
3.4).

Learnability and ILP

One of the most interesting topics in learning logic programs is the induction of
recursive predicates. From the point of view of a logician recursive predicates
are self-resolving clauses. The unification involved in this process results in the
construction of possibly infinite term structures. This problem could only be
solved by examining Herbrand models or by strong syntactical biases. The in-
troduction of these biases, may it be the restriction to ground facts, to programs
Π with only unit clauses in them, ij-determinacy or any similar method helps
drawing a beautiful line between learning problems: Only few ILP-problems are
PAC-learnable; and they all require very strict assumptions in the form of the
biases discussed in the chapter on ILP. In general, PAC-learnability is known to
be a very pessimistic concept: If there is a simple learning problem, it is PAC
in most cases; if it is interesting, it is not PAC. Whenever we can formulate
a hypothesis for which we cannot determine whether h(x) = 1 or h(x) = 0
in polynomial time for some x ∈ U , then any problem in representation space
is not PAC-learnable. As an example, consider the following little logic pro-
gram that we assume some learning algorithm has generated to describe our
hypothesis:

v. July 19, 2010(c) m.e.müller

8.2. DECOMPOSING THE LEARNING PROBLEM 221

01 h(0, X, Y):- Y isX + 1.
02 h(X, 0, Y):- Z isX − 1, h(Z, 1, Y).
03 h(X,Y, Z):-
04 U isX − 1,
05 V isY − 1,
06 h(X,V,W),
07 h(U,W,Z).

Exercise 8.3 (�) Check the validity of the hypothesis for the following triplets:
〈1, 1, 3〉 , 〈2, 2, 9〉 , 〈3, 3, 81〉 , and 〈4, 4, 6561〉!

The argument of Non-PACness is based on an important article that we shall
rediscover in section 8.3. Let us summarise:

A problem is learnable...
If there is an algorithm that can effectively (and efficiently) deliver a hypothesis
solving the problem with a certain confidence and a certain maximum error.

But how do we learn in every day life? If one problem is too big, we try to
divide and conquer. That is, we try to brake down the big problem into many
small ones each of which are simple to learn. Another method is to repeatedly
learn the problem where in each iteration we focus on what we don’t know yet.

8.2 Decomposing the Learning Problem

Imagine you want to learn a large set of facts for an exam. One method is to
write down every single fact on a file card and the flip through the pile over and
over again until you know them all. Usually, your collection will not cover all
the topics; but it is a representative sample of all questions that might occur in
an exam.

This gives rise to several problems: Sometimes, you have too few examples cards
to infer a model that is good enough (in terms of passing the exam). There are
three different reasons. If you don’t have enough cards, your hypothesis might be
too general, it could be overfit or it is simply bad because you picked the wrong
set of cards. Sometimes, you have too many cards. This results in the problems
of computational and representational complexity. With too many aspects or
too many examples you are not able to find a hypothesis until examination day
which sufficiently well describes what you need to know in order to pass. And
finally, it could be that the method you apply to learn is not appropriate for
the problem which means that any hypothesis is rather weak. But wouldn’t it
be a good idea to use many weak learners resulting in many weak hypotheses
which (for example, by voting) then solve a new probem as a team? Yes! It is
a good idea.

It is easier to learn a less complex problem than a very complicated one and it is
easier to learn from a smaller set of facts and within a smaller set of hypotheses.
We examined the process of sampling in detail in section 3.3. But it was not

v. July 19, 2010(c) m.e.müller

222 CHAPTER 8. LEARNING AND ENSEMBLE LEARNING

before definition 3.23 that we began to think about a probably positive side–
effect of the non-determinacy of ST (,.)he first idea that comes to mind is called
sub-sampling. It means to learn on subsets and then combine the classifiers
for all the subsets to receive a classifier on the entire set. The problem is to
find a method of combining all the classifers hi = Alg(si) with si ⊂ s to one
single hypothesis h. There exist many methods for choosing si ⊂ s, and, as
you can imagine, they all have different impacts on the final result. Either way,
we use the term “subsampling” for any kind of systematic downsampling as,
e.g. k–th selection sampling or repeated draws with replacement. The second
idea is re-sampling. It means that we learn a set of classifiers from different
samples hi = Alg(Sµ(m, t)). It means a repeated nondeterministic execution of
Sµ(m, t), also resulting in a set of samples si.

4

Exercise 8.4 (♦) Give a short example for each of the three methods mentioned
above and explain the differences.

8.2.1 Bagging

Bagging means to find a set of experts, form a single committee and then present
th problem to the committee rather than an individual expert.

Bagging
Bagging is a meta-learning approach, where the same learning algorithm is presented
a number of different samples each of which result in an individual predictor. The
hypothesis is defined by an aggregation of all predictors.
The idea behind bagging is to make learning simpler on subsets of the problem and
to yield a better result by the “knowledge of majority”.

If we have a sample s from which it is hard to learn a good hypothesis, then we
generate a set of subsamples si, learn hypotheses hi (representing experts) from
then and then combine all hypotheses to one (being the committee) that shall
describe the whole sample. “Bagging” is an acronym formed from bootstrapping
which refers to an initial process of forming a set of samples that is used for
the subsequent process. After learning comes aggregating which means that we
have to combine all hypotheses.

Definition 8.3 — Aggregation of hypotheses, hagg .
Aggregation of
hypotheses, hagg

Let there be set of k samples si, i ∈ k. If cod(t) is numerical, the aggregated
hypothesis is the average over all hi = A(si).

hagg(x) =
1

k

k∑
i=1

hi(x) =
1

k

k∑
i=1

A(si)(x) (8.13)

4We have used the terms “sub”–sampling and “re”–sampling very informally. Sampling
itself is a broad research field with strong links to the theory of information. In this diction we
would state that downsampling comes a along with a loss of bandwidth, and thus, information.
One idea is to deliberately lose only those parts that cause confusion in learning and keep those
from which we gain knowledge: In image recognition, edges are made explicit by increasing
contrast—which means to throw away all nuances.

v. July 19, 2010(c) m.e.müller

8.2. DECOMPOSING THE LEARNING PROBLEM 223

If t is nominal, i.e. cod(t) = {1, 2, . . . , j}, the aggregated hypothesis is

hagg(x) = mcvπ(2)({〈i, hi(x)〉 : i ∈ n) (8.14)

i.e. delivers the answer j on which most hi agree.5

With a given set of k (different) samples si the case is simple—basically, we
are done with bagging. The problem is that usually we are supplied only once
with a fix sample s = Sµ(m, t). In order to apply bagging on one single sample,
we have to find a method by which we can generate a set {samplei : i ∈ k}. A
simple method is to independently choose subsets of s.

As already noted, φ is unknown. By our inductive hypothesis, φ is preserved by
s. Therefore it should be preserved under the average of repeatedly randomly
drawing subsets, too.

Definition 8.4 — Bootstrap approximation.
Bootstrap

approximation
Given some sample s of length m, we define k data sets si, i ∈ k each of length
mi ≤ m. Every sample si contains mi examples all of which are drawn at
random and with replacement. Note that if an example is drawn several times
for si, it appears only once in si.

As a result of this procedure we now have a set of k different subsamples si
which we hope to form k different hypotheses hi as well and from which we can
define an aggregated hypothesis. This method makes use of two very important
properties inu our learning scenario:

1. Since si are drawn at random (i.e. presupposing a uniform distribution on
s) and since s is drawn with respect to µ, the average probability of an
object x to occur in a sample si is φ(setx) (see definition 3.8 and theorem
3.1).

2. All si are nearly always pairwise different (this is an immeadiate conjecture
of the previous observation).
Throughout the book we made another implicit assumption: For different
samples, the same algorithm will produce different hypothesis as well (see
section 3.6 and theorem 3.2).

This gives rise to a very important question: What does it take for a learning
algorithm to deliver different hypotheses for different examples? And, even
more important: Is the difference between different examples proportinal to the
difference between the resulting hypotheses?

Example 8.5 Imagine we observe sequences of objects from our running
example—and the target function is a predictor for the colour value of any

5The most common value function mcv was defined in equation (4.3). We need to collect
all results together with the number i of the predictor such that multiple occurence in the set
is preserved. The function π2 is simply the projection on the second element of the tuples.

v. July 19, 2010(c) m.e.müller

224 CHAPTER 8. LEARNING AND ENSEMBLE LEARNING

object in U . Again, a small representation shift on our underlying information
system helps a lot:

colour 2 � � � �
ρ : U → Colour white light grey dark black
ρ′ : U → [0, 1] 0 1

4
1
2

3
4 1

Let t : Un → [0, 1] with

t(〈x0, x1, . . . , xn−1〉) =
1

n

∑
i∈n

colour(x)

where n is an odd number. So t is simple the arithmetic mean of grey-scale
values. Note that this value is any real number from the interval [0, 1], whereas
all the values xi are from the set

{
0, 1

4 ,
1
2 ,

3
4 , 1
}

. Let us now imagine that our
hypotheses space contains only four hypotheses:

h(x)0 = 0

h(x)1 = mcvcolour ({〈i, colour(xi)〉 : i ∈ n})
h(x)2 = µ1/2({〈i, colour(xi)〉 : i ∈ n})
h(x)3 = 1

which means that our learning algorithm can choose from four predictors only:
The first one always predicts white, the second one the most common value, the
third one the median, and the forth one always predicts black. It is clear by
intuition that for a small change in the supplied training sample the resulting
hypotheses will not differ too much. Only with a very small sample size or large
differences in the distribution of target values in between two samples s and s′

it could happen that Alg(s) = h0 and Alg(s′) = h3.

Exercise 8.5 (♦ — �) This exercise requires the reader to be familier with statistics
(but then it should be easy): Can you give an estimate for the expected (maximum)
error of hypotheses h0, h1, h2, and h3? — For the interested reader we suggest to read
up about Chebychev’s theorem in measure theory.

Example 8.6 Multi layer perceptrons are universal function approximators
which for a small change in their input produce only a small change in the
output. However, only a small change in the presented sample can result in
drastically different hypotheses (sometimes even by only a rearrangement of
example sequences); see [Breiman, 1996].

The property of “local robustness” against changes in the presented samples is
known as stability :

Definition 8.5 — Stability of Learning Algorithms.
Stability of Learning
Algorithms

An algorithm Alg is called stable, if for a “small” change from s to s′,

Alg(s) = h ≈ h′ = Alg(s′) (8.15)

v. July 19, 2010(c) m.e.müller

8.2. DECOMPOSING THE LEARNING PROBLEM 225

1
−

er
ro

r(
h
, t

)

U

Figure 8.3: Bagging for free lunch

Alg is called unstable, if a small change in s can result in a large change of the
predictive behaviour of h.

Since t remains constant, two hypotheses h and h′ delivered by an unstable
algorithm have different errors on one common test set. In allusion to the
No-Free-Lunch–Theorem the situation can be illustraded as in figure 8.3. An
unstable base learner will produce many hypotheses that specialise on different
parts of the universe. And in sum, there are “specialists” for nearly every subset
of the domain which in a process of aggregation together with a majority of all
other hypotheses will more likely come to a correct prediction. We now cir-
cumstantiate the intuitive understanding of bagging with a (slightly simplified)
version of the argument in [Breiman, 1994].
Assume there is a sample s = Sµ(m, t) (drawn with respect to and representing
µ). Let cod(t) be numerical. By definition 3.16, we choose the quadratic error
measure for numerical values as in equation (3.26). Then, the aggregated hy-
pothesis hagg is an average predictor for µ learned on a sample with distribution
ν:

hagg(x) = Eν(h(x)) (8.16)

where Eν denotes the expected (target) value for x based on the distribution
on s. Bagging increases the quality of learning, if it reduces the expected error
of the hypothesis. Therefore, let us take a look at errors:

errors(h, t) = Eν(Eµ(dist(t(x), h(x))))

and the error of hagg on is

erroragg(h,) ts = Eµ(dist(t(x), Eν(h(x))).

With some knowledge in statistics, this leads to the following inequality:

errors(hagg , t) ≤ errors(h, t) (8.17)

v. July 19, 2010(c) m.e.müller

226 CHAPTER 8. LEARNING AND ENSEMBLE LEARNING

The less equal both sides are, the lower is hagg ’s mean squared error in relation
to that of h. And this explains why bagging works for unstable learners only:
Let si, i ∈ k, be a sequence of similar, but different samples.

• If A is stable, all hi will be similar to hagg and the both sides of the
inequality are nearly equal.

• If A is unstable, we have an increasing chance of different hi. The more
of them differ to increasing extent, the more increases the right side over
the left.

The more µ differs from the distribution ν on the sample, the more likely si
will differ from s. Accordingly, the improvement by bagging depends on the
stability/instability turnover point of Alg—and this point depends on µ, the
size m of s, the difference between µ and ν and, finally, Alg itself. If, however,
some h = Alg(s) is nearly optimal, then no bagging will improve the results.

Bagging
Bagging is a very simple method that allows to improve learning results by aggregat-
ing several partial hypotheses. It works only algorithms that are unstable.

8.3 Improving by Focusing on Errors

Consider again the scenario of learning from a set of file cards. It is a good
idea to learn subsets as we have seen in the previous section. But nobody does.
What we do instead is somekind of boosting :

Boosting
Boosting means to iterate the learning process where in each iteration we put more
emphasis on the objects that we were not able to describe properly in the previous
iteration.

The idea behind ensemble learning—may it be bagging or boosting—is that in
general it is much more complicated to learn in one shot rather than by divide-
and-conquer. When trying to learn several subproblems in parallel, there is the
risk of putting effort in learning the same thing twice because one learner does
not know what the other does. This is an argument for an iterated learning
approach. The second argument is that one usually focuses on what still has to
be done rather than what we’ve already accomplished. Such a general principle
can be applied to all learning problems and all learning algorithms (called base
learner) in a boosting approach. Let us reformulate the knowledge box from
above with a small touch of formal terminology:

Definition 8.6 — Boosting algorithm.Boosting algorithm

A boosting algorithm repeatedly calls a (weak) base learner that produces a
locally accurate but globally bad hypothesis with each time a different sample.
The result is a sequence of hypotheses where all the errors we made in a step i,
have an increased probability to be picked as a learning example in step i+ 1:

v. July 19, 2010(c) m.e.müller

8.3. IMPROVING BY FOCUSING ON ERRORS 227

If x ∈ errsets(hi, t), then

φ

{
si :

〈x, t(x)〉 ∈ si ∧
si :∈ S(m, t)i

}
≤ φ

{
si+1 :

〈x, t(x)〉 ∈ si+1 ∧
si+1 :∈ S(m, t)i+1

}
(8.18)

where S(m, t)k denotes the set of all samples that are drawn by Sµ(m, t) in the
k-th iteration. This means, that examples which we cannot classify correctly
will be dealt with in the next step with increasing probability.

Note that φ is a distribution over a set of samples as elementary events whereas
µ is a distribution over U . As we know, it is µ which determines the behaviour
of Sµ(m, t); and the expression in equation 8.18 actually states, that µ has
to change from step i to i + 1 because it is the “importance” of some x that
shall influence the behaviour of the learning algorithm or the choice of samples
submitted to this algorithm.
But even if we would know how to change µ, we couldn’t—for we don’t know
what to change. At this point the idea of subsampling comes in quite handy:
We assume to have one single fixed sample s = Sµ(m, t). Then, we work with
a distribution φ on this sample rather than on U .
All algorithms we have discussed so far did not make use of any additional
information such as a distribution of the sample. However, there are many
such algorithms; just imagine an explicit weight value that, for example, locally
distorts a distance measure in a k-means clustering algorithm. Then, centroids
would not just wander to the plain center of gravity of in scenario as shown in
figure 4.2, but they would be drawn more into the direction of “heavy weights”.
If the base learner does not make use of the probability distribution over s, then
we can simply simulate this by sub-sampling where si are drawn from s with
respect to the changing distribution. Still we have to decide what the initial
probability distribution φ0 shall look like. The simplest way is to assume an
independent identical distribution.6 Based on this choice, we can now examine a
first version of a boosting algorithm as introduced by [Schapire, 1990]. First, we
need to redefine cod(t) := {−1, 1} for arithmetic reasons. Then, let us assume
there is a base learning algorithm Alg which is better than random. Such a
learning algorithm is called a weak learner. Finally, we define:

∀e ∈ s : φ0({e}) :=
1

m
(8.19)

Then, we iterate Alg k times and after the i–th iteration define φi+1 by increas-
ing φi({〈x, t(x)〉}) if x ∈ errsets(hi, t) and then normalise using a factor 1

νi
to

ensure that φi+1 is a proper probability distribution again. The new probability
value of such an object is defined in terms of its old probability, an adaptation
value, and the difference of hi and t measured in terms of their product (remem-
ber that we defined cod(t) = {−1, 1}). Then, Alg is called again—either on the
same sample with the new distribution or on a new sample that is drawn with

6Even though this appears to be an unbiased choice it is not: There is no qualitative
difference between the assumption of i.i.d. or a binomial distribution or any other.

v. July 19, 2010(c) m.e.müller

228 CHAPTER 8. LEARNING AND ENSEMBLE LEARNING

01 i := 0; s := Sµ(m, t); φ0 :=i.i.d.
02 WHILE (i < k) DO
03 { choose αi ∈ R;
04 hi := Alg(φi, s);

05 ∀ 〈x, t(x)〉 ∈ s : φi+1({x}) := 1
νi
φi({x})−αihi(x)t(x);

06 i := i+ 1;
07 }
08 return

(
hagg := sgn

∑
i∈k αihi(x)

)

Figure 8.4: AdaBoost.B0, [?]

respect to the new distribution. The process ends after k rounds and the result
is the average of all hypotheses: −1, if the weighted sum of all hypotheses’s
answers is negative and 1 otherwise. The pseudo-code of this algorithm (called
AdaBoost.B0) is shown in figure ??.

Example 8.7 Imagine the following, artificial, case which is just to illustrate
the boosting mechanism (we neglect αi and simply produce a new i.i.d. φi+1 on
the previously wrong classified examples): s = {•,4,�,2} and t(x) = 1 :←→
colour(x) = black . Let φ0({x}) = 1

m = 1
4 . In this case, let us assume that Alg

delivers a hypothesis h0 when presented s0 = {〈x, t(x)〉 : x ∈ s}:

s • 4 � 2
t 1 −1 1 −1
φ0

1
4

1
4

1
4

1
4

h0 1 1 −1 1

The errorset is errsets(h0, t) = {4,�,2}. We have h0 which is correct on • and
now repeat learning on a new sample:

s • 4 � 2
t 1 −1 1 −1
φ1 0 1

3
1
3

1
3

h1 1 −1 1 1

Such that the error set of h1 is {2}. Therefore, in the second step,

s • 4 � 2
t 1 −1 1 −1
φ2 0 0 0 1
h2 1 −1 −1 1

v. July 19, 2010(c) m.e.müller

8.3. IMPROVING BY FOCUSING ON ERRORS 229

But if Alg still is not able to learn 2, then it does not change anything anymore.
Let us aggregate now:

s • 4 � 2
t 1 −1 1 −1∑
h1 1 + 1 + 1 1− 1− 1 −1 + 1 + 1 1 + 1 + 1

3 −1 1 3
hagg 1 −1 1 1

This is of course an oversimplified example, because it assumes that in the i+1-
st run, Alg knows that it simply shall copy the answer of hi for all objects that
have a probability of 0. It does not only need knowledge about other but also
about φ—which is quite much.

At the very beginning, we stated that there is no real difference between learning
a binary problem or a nominal problem. The argument was that we can shift
a representation from a nominal function tN : U → k to k binary functions
ti : U → 2 with ti(x) = 1 :⇐⇒ t(x) = i thereby decomposing on k–ary learning
problem to k binary ones. There are two boosting algorithms which slightly
differ in how they cope with nominal target value sets. The first one suffices to
show the most imortant property of boosting:

The Advantage of Boosting
Let there be a weak base learning algorithm which in k turns produces an error of

error
φi
s (hi, t) ≤ 1

2
on the training sample. Then there exists an upper bound for

the error of the aggregated hypothesis which drops exponentially in the number of
iterations.

The major improvement in AdaBoost.M1 is that it has a bail-out-option if the
error of the base learner increases above 1

2 and that the entire sample error
of the hypothesis is taken into account. The error of a hypothesis hi is the
probability weighed sum of all false predictions:

err i := errorφi
s (hi, t) (8.20)

as defined in equation (3.30) and a binary distance measure as in equation (3.27).
If this error is larger than 1

2 , the procedure terminates immediately (otherwise,
it would be an ever increasing error). Then, φi is changed by a factor erri

1−erri on
every false prediction of hi. The rest of the algorithm is just about the same
as AdaBoost.B0, except, of course, for the final hypothesis. It is simply the
response for which the cumulated error is minimal. The pseudo-code is shown
in figure 8.5. To see how φi changes in AdaBoost.M1 over time, see the following
example:

Example 8.8 This time, we have a set of twelve objects and wrong
predictions for every odd integer in the i-th iteration.

v. July 19, 2010(c) m.e.müller

230 CHAPTER 8. LEARNING AND ENSEMBLE LEARNING

01 i := 0; s := Sµ(m, t); φ0 :=i.i.d.
02 WHILE (i < k) DO
03 {
04 hi := Alg(φi, s);
05 err i := φi(errsets(ht, t));
06 IF err i >

1
2 THEN k := i− 1 ; break;

07 αi := erri/(1− err i)
08 FORALL x ∈ s DO
09 { IF (hi(x) 6= t(x)) THEN

10 φi+1({x}) := αi
νi φi({x});

11 ELSE

12 φi+1({x}) := 1
νiφi({x});

13 ENDIF

14 } 15}
16 return

(
hagg(x) = arg maxc

{(∑
i∈k ln 1

αi

)
: hi(x) = c

})
Note that just as in AdaBoost.B0, the call of Alg with information φi can

be simulated by subsampling (hi := Alg(Sφi(m
′, t)) on the base set s of s).

Figure 8.5: AdaBoost.M1, [?]

v. July 19, 2010(c) m.e.müller

8.3. IMPROVING BY FOCUSING ON ERRORS 231

x ∈ s hi(x) = t(x) φi νi · φi hi+1(x) = t(x) φi+1

1 0 .05 .05 .088
2 1 .1 .048 .085
3 0 .025 .025 .044
4 1 .2 .096 .169
5 0 .025 .025 .044
6 1 .15 .072 .127
7 0 .075 .075 .132
8 1 .025 .012 .021
9 0 .025 .025 .044

10 1 .15 .072 .127
11 0 .125 .125 .221
12 1 .025 .012 .021

The error of hi is err i = .05+.025+.025+.075+.025+.125 = .325. Accordingly,
αi ≈ .481. The sum in the third column is .614 such that we have to normalise
by νt = 1

.614 ≈ 1.629. Multiplication with φi then gives φi+1 as in the last
column.

We end this rather theoretical excursion to ensemble learning by the boosting
theorem: Suppose, that for err i ≤ 1

2 for all i ∈ k and let δi = 1
2 − err i. Then,

errors(hagg , t) =
|{i : hagg(xi) 6= t(xi)}|

m

≤
∏
i∈k

√
1− 4δ2

i

≤ e

(−2
∑
i∈k δ

2
i

)

It means, that in this case the error of the aggregated hypothesis can be reduced
with increasing iterations; actually, the error converges exponentionally in the
number of iterations against zero. The downside of this really impressing result
is that the error we are talking about is the error on the training sample; i.e. s
is the base set of strain. Therefore, the entire boosting approach depends on the
adequacy of the chosen sample and a maximum accuracy on this sample will
nearly always lead to overfitting and much less impressive results on a test set.
But, supposing the saple is chosen wisely, it holds that whenever the error on
the training sample decreases, so it does on any other sample (hopefully), [?].
In general, it is a good idea to think of boosting as:

• repreated sub- or resampling on a set of observations with

• a given (unknown) distribution measure on the entities being observed

• and a deliberate adaptive sampling bias by an error-dependent change of
the probability distribution φ that is taken for sampling or as additional
knowledge for Alg.

In many cases, boosting helps a lot (for both binary and nominal problems)
but it may require some changes of the base learner. A simple case is where we
simulate the Alg(φ, s) by Alg(Sφ(m, t)). An extension of AdaBoost.M1, called

v. July 19, 2010(c) m.e.müller

232 CHAPTER 8. LEARNING AND ENSEMBLE LEARNING

AdaBoost.M2, explicitly requires Alg to work with φi and to deliver a value
in [0, 1] as a measure of plausibility) back to the boosting algorithm as it is
required for a more sophisticated change in φi+1.

8.4 A Relational View on Ensemble Learning

So why bagging, boosting and all those measures, probabilities and expectation
values? Knowledge about a square means to be able to say that 2 is a square
and 4 is not. And a ♦ is not a 2 as a ◦ is not a N. There is no probably, there
is no approximately, and there is no lucky sampling in relational knowledge
discovery. Right? — Wrong!

8.4.1 Dividing the sample set

Bagging means to learn classifiers that specialise on subsets of the sample. Why
shan’t we try and learn rough set classifiers for subsets of the universe? This
time, let us take a closer look at rough set classifiers

Relational Bagging. In a relational setting, bagging means that for a set of
k subsamples si of size m′ ≤ m, Alg computes k hypotheses Pi approximating
ci := si ∩ c with si = {x : 〈x, t(x)〉 ∈ si}. The most important thing to know
before asking whether a certain learning algorithm can benefit from bagging
is whether the algorithm is stable or not. Finding a rough set classifier is an
unstable procedure.

Exercise 8.6 (�) Give an example!

Once we found k hypotheses, we need to aggregate them. Assume there is a
function agg , we want that

Pagg := agg({Pi : i ∈ k}) ≈ t

Since we are dealing with rough classifiers, we have a weak and a strong inter-
pretation of target class predictions:

t(x) 0 1
rough x /∈ [[Pagg]]c x ∈ 〈|Pagg |〉c
strict x /∈ 〈|Pagg |〉c x ∈ [[Pagg]]c

It means, that if x ∈ (|Pagg |), the rough classifier could answer “x ∈ c”, because
if x is in the boundary region, it is in the upper approximation, too. Also,
the classifier could answer “x /∈ c”, because the boundary region has an empty
intersection with the lower approximation. For the same reason, the strict
predictor cannot at all deliver an answer because the boundary region is exactly
the region whose elements are neither outside the upper approximation nor
inside the lower. In equation (6.9) we defined the rough characterisitc function
with three values. Using this definition, k sets of equivalence relations model k

v. July 19, 2010(c) m.e.müller

8.4. A RELATIONAL VIEW ON ENSEMBLE LEARNING 233

characteristi function on k sets ci ⊆ c. Without a further analysis of the ci we
could build an aggregated classifier function by voting again:

χagg(c)(x) := mcvπ2 {〈i, χi(ci)(x)〉 : i ∈ k} (8.21)

Another, very simple method is as follows:

hagg(x) :=

 1, if x ∈ ⋃i∈k[[Pi]]ci
1/2, if x ∈ (

⋃
i∈k (|Pi|)ci)− (

⋃
i∈k[[Pi]]ci)

1, else.
(8.22)

Exercise 8.7 (�) Change the definition of hagg by replacing
⋃

with
⋂

or by using a
few more set operations. Are they equivalent?—What are ther differences?

What does bagging mean for the relation sets? Let us assume, that everey ci
is definable. Then, there exist reducts Pi ∈ Redci(R) that define ci but even if⋃
i∈k ci = c, it is not true that

k⋃
i=1

Pi ∈ Redc(R) (8.23)

The problem here is that reducts are not unique: Redci(R) = {P1
i ,P

2
i , . . . ,P

ri
i }.

Furthermore, the union of two (different) reducts is never a reduct. Cores are
unique, but—if there are at least two disjoint reducts—can be empty, which
is not very helpful either: If we try to construct a reduct of R for c by some
operations on the cores of Pi, it might be the case that some cores themselves
are empty, or that two of them are disjoint—which leaves the candidate for the
core of R for c empty (even if it is not). All we can state for sure is that

whenever R ∈ Corci(R) then R ∈ Corc(R) (8.24)

Since the core Corci(R) can be empty, we define a table T (i, j) = |{R ∈
Redcj (R) : R ∈ Pi}| with 1 ≤ j ≤ k and 1 ≤ i ≤ |Redcj (R)|. If T (i, j) =
|Redcj (R)|, then Ri must be an element of Corc(R). Computing this table is
computationally infeasible because we would have to check all reducts for all
ci. Accordingly, there is no canonical efficient bottom-up implementation to
determine a core from reducts using a bagging-like method.
If, on the other hand, we try to construct reducts from cores (i.e. top-down), we
can apply a very simple method (since cores are unique): For a set s of objects,
the discernability matrix D(P) contains the names of all relations by which
xi and xj can be discriminated. If for some i, j it holds that D(i, j) = {R},
then R must be an element of Cors(F), because then, R is the only relation by
which xi and xj can be discriminated. The runtime complexity of computing
the core this way is O(1

2 |R|m2), where the worst case is Corc(R) = R. Using
the same method in bagging with k bags of size m′, we obtain O(1

2 |R|n(m′)2).
Furthermore, the algorithm in figure 8.6 benefits from parallel computations of
smaller discernability matrices.

v. July 19, 2010(c) m.e.müller

234 CHAPTER 8. LEARNING AND ENSEMBLE LEARNING

01 PROC relBag (F, s, k,M)
02 { H := F; C = {}
03 FOREACH(i ∈ k)
04 { si := randomselect(M, s);
05 Ci := core(si,H);
06 H := H−Ci; C := H + Ci; % + denotes concatenation
07 };
08 H := sortby(β,H);
09 WHILE (errort(C, s) ≥ ε ∨H = {})
10 { R := first(H); R := tail(H);
11 IF (errort(C, s) > errort(C ∪ {R}, s)) THEN {C := C + {R} };
12 H := R;
13 }
14 return (C);
15 }

Figure 8.6: Relational Bagging

The complexity of finding reducts depends on the number of relations and the
size of the data set. But it also depends on the number k of bags one chooses,
the number m′ of the size of the smaller samples and the “validity” of the
hypotheses that are generated. The converse implication of equation (8.24),

R /∈ Corci(R) =⇒ R /∈ Corc(R) (8.25)

becomes true only for m′ ≈ m and, until m′ = m, large k.

Clusters and Trees. The popularity of clustering in statistical domains and
the simplicity of the bagging procedure has led to a widespread combination of
the two methods; especially in data mining scenarios. There even exists a library
for bagged clustering based on [Leisch, 1999] with an application to market seg-
mentation, [Dolnicar and Leisch, 2000]. [Dudoit and Fridlyand, 2003] describe
an application in the area of bio-informatics; a discipline of increasing impor-
tance and with a strong backgorund in statistical methods. Accordingly, the
authors stress the use of bagging in reducing the variation over several runs of
clustering algorithms by the averaging behaviour of bagging.
Decision tree induction is, as we have seen, basically the same as recursive par-
titioning with heuristic guidance. Tree induction algorithms have been used ex-
tensively in empirical evaluation of both bagging and boosting, [Freund and Schapire, 1996]
and [Quinlan, 1996, Quinlan, 2001].

Bagging for ILP. Averaging out a large variance on hypothess is very impor-
tant in statistial approaches. Another prime candidate for bagging is ILP. The

v. July 19, 2010(c) m.e.müller

8.4. A RELATIONAL VIEW ON ENSEMBLE LEARNING 235

first reason is that there are no probablities in Horn logic which makes bagging
easier than boosting in a straightforward implementation. One of the biggest
problems in ILP is search. FOIL does an information gain guided search (see
7.3) whereas PROGOL uses an A∗-like algorithm with heuristics described in
section 7.4.3. All these algorithms start off with a single sample—and have to
carry out the search sequentially; considering, evaluating and refining (or refus-
ing) each hypothesis after another. By choosing several subsets of the sample
one can try and induce a hypothesis for each of these subsets. Exactly this idea is
described and implemented by [and David Page et al., 2002] and, subsequently,
in [Raymond J. Mooney, 2004].

8.4.2 Focusing on Errors

In a relational boosting approach we do not have a probability distribution
which we could adjust in order to focus on learning error sets.
Instead of boosting the probability of those examples that are misclassified by
a hypothesis hi, we only remove the set of already correctly classified objects
from the set of entities to be taken into consideration; i.e. we restrict the search
for a hypothesis to what in rough set theory is the boundary region.

Boosting rough sets. Given a hypothesis H, the problem is to find a relation
R which is a good candidate to rule out as many elements from the boundary
region as possible by adding or removing it from H.
This can be done only heuristically and, as such, is a source of bias. The al-
gorithm shown in Fig. ?? uses a function sortby to pick the “best” relation
(determined by the heuristic function β). One possible heuristics could be in-
formation gain (see Sect. ??) or many other, computationally even cheaper
methods (for example, choosing R whose index has a certain property). An-
other, though more expensive method, is to validate R against a test sample
stest and choose β(R) = errort(R, stest)

−1
. To learn c from F we chose R ∈ F

with R = arg max{β(R) : R ∈ F}, hoping that it generates a fine grained parti-
tion that has a minimal boundary region on the target concept. We then iterate
this process on the boundary region only.
Note that—in contrast to standard boosting—we do not keep a sequence of
hypotheses, but we iteratively build a reduct starting from the empty set. As
such, it is a bottom-up learning algorithm.

Boosting Clusters an trees. Just as in bagging, the increasing popularity of
boosting showed the highest impact on otherwise popular knowledge discovey
methods (see the paragraph on clusters and trees in section 8.4.1). A pretty
recent development and evalaution of an application of boosting to clustering
is described in [Frossyniotis et al., 2004]. Recall also that boosting is a trick to
add more information to a learning problem than what it is explicitely provided
with. A distribution µ, which we assume to be unknown, basically is nothing but
knowledge. For example, we can for each (target) concept in U add a dimension

v. July 19, 2010(c) m.e.müller

236 CHAPTER 8. LEARNING AND ENSEMBLE LEARNING

01 PROC relBoost (H, s)
02 { IF (good enough(H)) THEN return(H);
03 C := sortby(β,F−H);
04 WHILE (errort(H, s) ≥ ε)
05 { C =: [C|R];
06 IF(errort(H ∪ C, s) < errort(H, s)) THEN
07 { relBoost(H ∪ C, errsett(H ∪ C, s)); }
08 ELSE

09 { return(H ∪ relBoost(R, errsett(H ∪ C, s)); }
10 }
11 return(⊥);
12 }

Figure 8.7: Relational “Boosting” by Re-learning Errors Only

(i.e. feature) to the underlying information system I; each of which encodes
the characteristic function of the concept. Then, each such feature defines a
distribution itself with φc({x}) = 1

m , iff x ∈ c. As a result, the product space
carries all the information as it inherits the product measure. The task of
learning c then becomes, statistically speaking, the task of learning φc. Adding
such knowledge to the learning algorithm by expanding Alg(s) to Alg(φc, s)
(as in line 4 of the algorithms in figures 8.4 and 8.5) or by subsampling with
respect to φc may help to improve the qualitity of the resulting hypothesis.
Another kind of knowledge is “local equivalence”: It means that we are not able
to describe an entire equivalence class but only equivalence between selected
pairs of objects. This is known as linkage in clustering. A relational point
of view is that a linkage relation (or its dual concept, non-linkage) represent
subsets of equivalence relations. The search for equivaence relations then is
the search for so–called minimal rectangles which are difunctional relations,
[Ali Jaoua, 2009]. Adding reflexivity to them (which is a safe thing to do as we
can assume every singe object to be linked to itself) then induces an equivalence
relation (see section 2.1.6). Using this additional knowledege (which, again, can
be expressed in terms of a distribution on the set of all pairs of objects) is used
for a boosted clustering method described in [Yi Liu, 2007].

8.5 Summary

We have seen that PAC learning is a very pessimistic view on knowledge dis-
covery but it very well reflects what knowledge discovery is about:

v. July 19, 2010(c) m.e.müller

8.5. SUMMARY 237

The learning dilemma
If a problem is finite, it can be solved by enumeration—which cannot really be con-
sidered to be a procedure that builds on what we would call knowledge.
In general, the more interesting a problem is, the more complex it is, too. One aspect
of interestingness of knowledge is the sheer need for it. And the stronger the need,
the more likely it is that the knowledge is not trivial and well hidden—if it exists at
all.
The morale is: What we know or what we can learn with small effort is not
interesting—and anything that is interesting is hard to learn.

In the references you will quite often find the term “data mining”—and with the
recent advent (or rediscovery) of relational methods “relational data mining”
as well. People often explain this term by the metaphor of mining for rare
diamonds in a huge pile of gravel. To us, knowledge discovery means to find
answers for the following questions:

• Is there a cognoscible7 structure in the pile of gravel?

• If so, can this structure be explained in terms of our knowledge?

• And if we then find something else, are we able to explain why we found
it, and where it would be promising region to look for another piece?

All these problems are not easy. In this chapter we have described two ensemble-
techniques and their applications to relational methods. Both of them are
divide–and–conquer strategies: Bagging means to divide the pile into several
heaps and have each of them analysed by its own. Boosting means to start off
with a simple random search in the pile which in its behaviour is constantly
being refined: If our hypothesis is good enough for a certain part of th pile, we
know we can search it efficiently later on and focus on finding another, refined
technique that will increase the current efficiency on the remaining part of the
pile.
This metaphor, in contrast to the mining metaphor, also illustrates the difference
between knowledge discovery and data mining:

Mining for Information and the discovery of knowledge
Instead of digging for valuable pieces of information in a mine of data, knowledge
discovery is about finding concepts and procedures that describe whether mining will
iscover something at all—and, if so, where it would be best to dig first.

7Note that one synonym for “cognoscible” is “discernible”!

v. July 19, 2010(c) m.e.müller

238 CHAPTER 8. LEARNING AND ENSEMBLE LEARNING

v. July 19, 2010(c) m.e.müller

Chapter 9

The Logic of Knowledge

If we assume knowledge to be what it takes to make rational
decisions, knowledge is not logic. It is not even logic when
we assume it is representable in an information system.
Many decisions (and every answer to a question is a deci-
sion) are far from being discrete, deterministic, or deduc-
tively comprehensable.
Yet, the simplest question we can ask is: “Is x equal to y?”.
And it takes knowledge in the form of the ability to discern
different things from each other in order to decide whether
one should answer “Yes” or “No”.

During the last decades, Machine Learning evolved from theories of reasoning in
Artificial Intelligence to an essential component of software systems. Statistical
methods outperform logic based approaches in most application domains—and
with increasing computational power it became possible to generate-and-test
classifiers. As a more sophisticated approach ensemble learning implements
divide-and-conquer strategies on the learning problem. With the further in-
crease of data collections (e.g. data warehouses), the problem we are facing is
not concerned with how we can induce a classifier that supports our model
assumptions on the data but rather to understand what kind of information
there actually is. In Machine Learning, this approach is known as knowledge
discovery.

9.1 Knowledge Representation

Since we are used to describe knowledge in the language of terminologic logic,
we quite often identify knowledge representation with logic models. In chapter
3, we have seen that knowledge can be represented in many, many different
ways. Each representation formalism has its own advantages and downsides.

239

240 CHAPTER 9. THE LOGIC OF KNOWLEDGE

We may also find several alternative representations for one an the same set
of knowledge. If there are two such alternatives, they can be equivalent—or
not. In the case they are equivalent, we can argue that there is a lossless
representation shift from one representation spae into the other (and back).
This is not just a funny thig to do, but it also has a practical relevance: It
can be that the kind of knowledge that we are looking for can be found much
easier in one representation system than in another. In such a case we would
first translate the source representation into the one that is easy to work with,
induce a hypothesis and then—if we wish—translate it back into the original
language.

If the two systems are not equivalent then a representation shift is always con-
joined to some loss of information. Such a loss can be deliberate for two reasons:
First, if the loss is tolerable, then we can accept a weaker hypothesis. The level
of tolerance is often defined by a tradeoff between the loss of accuracy and the
gain of efficiency. Second, loss can be usefull. Imagine again the metaphor of
searching a diamond in a heap of gravel. The heap is the source representation.
We now apply a lossy transform and use a huge fan to blow all the stones onto a
large conveyor belt. This transform is lossy, because the strong air stream takes
away all the dust and little pieces of gravel that are too light to be a valuable
diamond.

Next, we asked ourselves where all the evidence comes from that we build our
hypotheses upon. One of the most important terms we discovered in the section
3.3 on samples: Our “quest for knowledge” is biased in many, many ways.
Some biases are due to the representation (one can’t express the number 2

7 in
N), others are due to the samples or the method by which the samples are taken.
Again, just as with representations of different advantages and disadvantages,
biases are not always negative. If we know that the number we are looking for
is 2

7 , then there is no need to inspect all numbers in R!

Finally, we asked ourselves what it means for a hypothesis to be “good”. This
actually, is just another bias—because it is always that we stop our search for
a hypothesis once it is good enough. On the other hand, it is by no means
guaranteed that any artifical measure of quality (of wich tere are so many)
reflects “adequacy”, “suitability” or any kind of measure to describe whether it
is meaningful or not in real life.

All of these concepts—representation, representation shifts, information loss,
biases, and all the different measures of quality could be very well described in
terms of relations only.

9.2 Learning

The second part of the book consists of the description of several relational or
logic learning paradigms:

• clustering, where one wants to find a meaningful partitioning of the data
set;

v. July 19, 2010(c) m.e.müller

9.2. LEARNING 241

• decision tree induction which is about an efficient search for hierarchical
clustering;

• rough set data analysis as an unbiased and exhausitve approach to find
minimal sets of relations that suffice to describe the target concept;

• and finally, inductive logic programming which can be considered an im-
provement of the relational approaches where the extension of concepts in
a relational description corresponds to the satisfaction set of an according
predicate definition.

As one can see from this very brief list and the description of all paradigms in
less than a sentence each, the similarities are huge.

9.2.1 Clustering

Given a predefined set of clusters, the question to which class in a classification
c = {ci : i ∈ n} a certain object x ∈ U belongs, k–NN is a simple voting algo-
rithm that assigns to x the same class identifier i ∈ n as most of of the k nearest
neighbours of x have. The notion of “near” presupposes a distance measure—
and there are many such measures. The simplest one is a binary measure we
use in the evaluation of hypotheses as well: If two objects are the same, their
distance is 0; otherwise it is 1. Reducing a multiclass learning problem (|c| > 2)
to n binary problems is not possible using this measure for we are not able to
decide wich classifier should be trusted if there are several ones that return 1.
But if we can use an euclidean measure, then the minimum distance of an object
to all the cluster centroids can be taken as an aggregated hypothesis.1

Learning clusters means to learn equivalence classes by defining disjoint subsets
of objects representing classes. It starts by randomly choosing class represen-
tatives: the random choice of centroids ci. Then, for every object x ∈ U , the
algorithm has to decide for which i it shall be true that x ∈ [ci]. This decision is
made by asking a distance measure again—but also, and this also forms a bridge
between the spatial representation as in figure 4.2 and the relational notion of
“rectangles” (see section 8.4.2).

9.2.2 Decision Tree

I hesitated whether the induction of decision trees should be included in this
book. After all, there are many other machine learning approaches that were not
mentioned in this book; Artificial neural networks, Bayesian reasoning, Support
Vector Machines just to name a few. Even though decision tree induction make
use of an entropy based heuristics, it is still a relational method. The resulting
tree is just a “recipe” for classfiying a new and unknown object along a hierarchy
of partitions. Whether such a hierarchy is expressed in terms of a tree, by

1This shows the connectedness of a relational representation, representation transforms,
a clustering approach, and the notion of using a set of hypotheses compute an aggregated
hypothesis as coined by bagging.

v. July 19, 2010(c) m.e.müller

242 CHAPTER 9. THE LOGIC OF KNOWLEDGE

a concept hierarchy as in figure 4.3, by a recursive relational notation as in
equation (5.10) or by a set of rules as in section 5.5.2—it’s just matter of personal
preference. The only thing that makes decision tree induction a bit different
from all other relational approaches is just that it does not work without biases—
but with biases, it is one of the most efficient ones.

9.3 Rough Sets

Rough set data analysis is, finally, relational learning without any bells and
whistles. What it makes so special though, is, first the non-numerical method
of representing vague membership and, more importantly, its framework for
reasoning about sets of relations rather than about relations between objects.
Decision tree induction does not “think” about dependencies between relations.
It simply chooses the one that has the highest expected information gain in
each step. When applying a rule-based post-pruning method, there is a nice
effect showing that this greedy method is in fact myopic: If it wasn’t, then rule
based post-pruning could never result in a forest (see figure 5.5.2). Rough set
data analysis has a broader view on the hypothesis space: If there are different
alternatives for adding a relation P or Q to a set of relations R such that both
(|R ∪ {P}|)cisubseteq(|R|) and (|R ∪ {Q}|)cisubseteq(|R|), then bothR∪{P} and
R∪{Q} are candidates for promising reducts. If then ci then is just one of many
classes in ci, the power of rough set data analysis lies in the comparison of the
utility of P and Q in terms of c: Whereas decision tree induction simply chooses
between P and Q with respect to their information content on c, we can take into
account [[{P} � R]]c and its relation to [[{Q} � R]]c. Another very important
thing about rough set theory is that has been studied in connection with multi-
valued and multi-modal logics ([Orlowska, 1993, Yao, 2003, Düntsch, 1997]) and
formal concept analysis, [Xu et al., 2008, Düntsch et al., 2007].

9.4 Inductive Logic programming

The last learning paradigm we discussed was inductive logic programming.
It is by far the most powerful of all the approaches presented. Simple Ilp
learning problems are PAC-learnable [Džeroski et al., 1992], but it is also, in
terms of computational effort, the most expensive of all methods presented
here. Especially when not restricted to horn clauses—which is required when
we want to work with a proper negation and a non-restricted logic representation
language—then one has to abandon all hope. Similarly, the logic of negation
as failure makes it not easy to properly define when a negative example is not
implied by a theory. On the other hand, it is exactly this what brings about
the idea of Heyting-Algebras as interpretations of logic programs and which
connects the semantics of logic programs to rough set theories.

Understanding Horn theories as approximations is not a new idea, [Kautz et al., 1995],
but there were only few contributions from the inductive logic programming

v. July 19, 2010(c) m.e.müller

9.4. INDUCTIVE LOGIC PROGRAMMING 243

community which is mostly due to the generally rather negative results, e.g. [Nock and Jappy, 1998].
Every R ∈ F also defines a binary predicate r(x, fR(x)).2 The satisfaction set
of r is the set of all instantiations of x for which r holds and whose meaning
equals the corresponding R-equivalence class:

[x]R = {y ∈ U : r(y, fR(x))}.

In order to derive r(x, v) from a given set of clauses Π, that is, Π ∪Π ` r(x, v),
one needs to show that there is a correct answer substitution θ such that (Π ∪
Π ∪ {¬r(x, v)})θ ` 2. An optimal hypothesis Π guarantees that

∀θ : r(X, fR(X))θ ⇐⇒ (Π ∪ Π{¬r(X,V)})θ ` 2 (9.1)

Since ` is correct but not complete, we are able to give a lower approximation
of r where [[Π]]r describes a subset of the satisfaction set of r:

[[Π]]r :←→ {y : (Π ∪ Π ∪ {¬r(X,V)})θ ` 2} (9.2)

Another method is to encode each feature f into a predicate symbol f. Then a
Horn theory Π ∪ Π models an information system, if:

∀x ∈ U ∀f ∈ F : Π ∪ Π ` f(x, y)⇐⇒ f(x) = y

A Horn reduct Π′ of Π is a set of clauses where for each clause ϕ ∈ Π′ there is
a clause ψ ∈ Π and a substitution θ such that ϕ ⊆ ψθ and Π and Π′ induce the
same theory. Translating the original definition of a reduct, Π′ ∈ Reds(Π) holds
if Π′ ∈ Reds(Π) is true and the satisfaction set of Π′ equals the satisfaction set
of Π on s. As an example, let us consider the case of literal dropping and its
relationship to building reducts. Let there be two clauses,

t(x,1) ← p1(x, f1(x)) ∧ · · · ∧ pk(x, fk(x)) ∧ pk+1(x, fk+1(x)) and

t(x,1) ← p1(x, f1(x)) ∧ · · · ∧ pk(x, fk(x)).

Obviously, the former implies the latter. If the satisfaction sets of both are the
same, then the second clause is a reduct of the first one by dropping one literal,
or, equivalently, by dropping one feature or equivalence relation. If

t(x,1) ← p1(x, a) ∧ p2(x, b)

t(x,1) ← p1(x, a) ∧ p2(x, c)

one can induce t(x,1)← p1(x, a) ∧ p2(x, y) or even t(x,1)← p1(x, a).

2R ∈ F is an equivalence relation induced by fR ∈ F, whereas r ⊆ U denotes a concept.
r finally is a predicate, whose definition is unknown and needs to be learned such that its
satisfaction set approximates r.

v. July 19, 2010(c) m.e.müller

244 CHAPTER 9. THE LOGIC OF KNOWLEDGE

9.5 Summary

One of the main goals of this book is to present several paradigms of knowledge
discovery in a unifying framework. This may result in a state of mild confusion—
some students reported to me, that it all appears to be the same anyway and I
should stop repeating myself. Well, at a certain level of abstraction things are
equal. By now, you know why: Just drop all clusters except for one, prune you
decision tree right after the root node, choose as a hypothesis the set of relations
with only the universal relation in it or define a predicate with variables in the
head only and an empty body.
Of course, the different algorithms are not the same. But they share common
properties. This offers two very important opportunities:

• If one looks at a problem from different perspectives, it is more likely to
identify general problems in solving the problem and to find mistakes or
weaknesses in other formalisations.

• If one method can solve a certain problem with some difficulties and an-
other method can solve another problem with some other difficulties, too—
maybe the can profit from each other by changing problems; or, from the
point of view of a programmer: change the paradigm rather than the
problem.

The more knowledge one puts into something, the less new knowledge one can
get out of it. Therefore, one should let the facts speak for themselves and build
models on observation—rather than looking for examples where one hopes they
would satisfy ones model.

v. July 19, 2010(c) m.e.müller

Chapter 10

Indexes and Bibliography

Notation

The following fonts are used in this book. With a few exception, their meanings
are:

a,b, c, . . . Roman small characters Entities/Atoms/Objects, elements of a set
. . . , x, y, z Italic small roman characters Variables

. . . , f, g, h, . . . Italic small roman characters Functions
. . . , X, Y, Z Capital italic roman characters Random Variables

. . . , R, S, T, . . . Capital italic roman characters Relations
. . . ,F, . . . ,P,Q,R, . . . Capital bold roman characters Sets of relations

A,B,C, . . . Capital gothic characters Structures of any kind
α, γ, δ, . . . Lowercase greek characters Variables, constants, parameters

ϕ,ψ, . . . , κ, λ, ν, Formulas, literals
µ, prob distributions

µ most general unifier

245

246 CHAPTER 10. INDEXES AND BIBLIOGRAPHY

Special Sets

F The set of features
D Domain
U Universe, our representation space
U the base set of U
c a concept c ⊂ s, c ⊂ U

c a classification is a set of concepts: c = {c0, c1, . . .}
0,1,2, . . . ,k, . . . sets with 0, 1, 2, . . . , k, . . . elements

with 0 = ∅ and k = (k − 1) ∪ {(k − 1)}
2 the set {1,0}
N natural numbers {1, 2, 3, . . .}
Q Rational numbers
R real numbers
s sample

Special variables or functions

m Usually, |s|.
n Usually, |F| of features f ∈ F.

m and n are also used for f : sm → sn or any upper bound.
k the number |c| of classes in a classification c = {c0, c1, . . . , ck−1}

i, j running indices
k, l running indices / boundaries
~x vector 〈x0, x1, . . . , xn−1〉
σ substitution

ε, δ small values; usually errors and differences
µ probability distributions

v. July 19, 2010(c) m.e.müller

247

Relations, Functions, Operators

R,S, . . . Relation; usually endorelations
declared as R ⊆ s× s or R : s ⇁ s

R a set of relations
usually the set of equivalence relations induced by F

dom(R) domain of R
cod(R) codomain of R
pRs preimage of s under R

{x ∈ dom(R) : xRy ∧ y ∈ s ⊆ cod(R)}
sRq image of s under R

{y ∈ cod(R) : xRy ∧ x ∈ s ⊆ dom(R)}
R` converse R`= {〈y, x〉 : xRy}
R complement R = {〈y, x〉 : ¬xRy}

f, g, . . . functions f, g : s0 → s1 with si arbitrary sets.
F a set of functions
Rf equivalence relation induced by function f : xRy ≡ f(x) = f(y)
s/R quotient; partition induced by equivalence relation R
s/f quotient; partition induced by function f and Rf
[x]R equivalence class of x induced by R

Special Functions

f, g, h, . . . any function
χ(s) characteristic function of a set s into 2
tc target function tc : U → k
tc target function χ(c).
ρ representation ρ : D→ U
τ transform/representation shift: τ : U→ U′

|y|x the number of occurences of x in y (with y a vector or a word).
|x| if x is a scalar, |x| is its absolute value

if x is a set, then |x| is x’s cardinality
`(~x) dimension of ~x
`(w) length of word w
χ(s) characteristic function of set s

Arithmetics

x · y (or xy) scalar multiplication
x · ~y (or x~y) scalar multiplication
~x · ~y (or ~x~y) dot product

s0 � s1 pairwise intersection of sets of sets: {s′0 ∩ s′1 : s′0 ∈ s0, s
′
1 ∈ s1}

◦ concatenation
• Hadamard product; component-wise product of two vectors/matrices
× set/cross product

v. July 19, 2010(c) m.e.müller

248 CHAPTER 10. INDEXES AND BIBLIOGRAPHY

Notational Oddities

~x a vector 〈x0, x1, . . . , xn−1〉 ∈ s0 × s1 × · · · × sn−1 with length |~x| = n.
Vectors are not written as x to avoid confusion with number sets x.

x[i] the i-the component x[i] = xi ∈ si of ~x
(used to avoid double indexing)

sums
∑n−1
i=0 xi =

∑
i∈n xi

v. July 19, 2010(c) m.e.müller

Bibliography

[Ali Jaoua, 2009] Ali Jaoua, Rehab Duwairi, S. E. S. B. Y. (2009). Relations
and Kleene Algebra in Computer Science, volume 5827/2009 of Lecture Notes
in Computer Science, chapter Data Mining, Reasoning and Incremental Infor-
mation Retrieval through Non Enlargeable Rectangular Relation Coverage,
pages 199–210. Springer.

[and David Page et al., 2002] and David Page, Costa, V. S., and Shavlik, J.
(2002). An empirical evaluation of bagging in inductive logic programming.
In Proceedings of the 12th international conference on Inductive logic pro-
gramming.

[Anthony and Biggs, 1997] Anthony, M. and Biggs, N. (1997). Computational
Learning Theory. Cambridge University Press, 2nd edition.

[Ash, 1965] Ash, R. B. (1965). Information Theory. Dover Publications.

[Barron et al., 1998] Barron, A., Rissanen, J., and Yu, B. (1998). The minimum
description length principle in coding and modeling. IEEE Transactions on
Information Theory, 44(6):2743–2760.

[Bratko, 1986] Bratko, I. (1986). Prolog for artificial intelligence. Addison-
Wesley, London.

[Breiman, 1994] Breiman, L. (1994). Bagging predictors. Technical Report 421,
University of California, Berkeley.

[Breiman, 1996] Breiman, L. (1996). Heuristics of instability and stabilization
in model selection. The Annals of Statistics, 24(6).

[Chaitin, 1966] Chaitin, G. J. (1966). On the length of programs for computing
binary sequences. JACM, 13:547–569.

[Chaitin, 1987] Chaitin, G. J. (1987). Information, Randomness and Incom-
pleteness - Papers on Algorithmic Information Theory. World Scientific Press,
Singapore.

[Dolnicar and Leisch, 2000] Dolnicar, S. and Leisch, F. (2000). Getting more
out of binary data: Segmenting markets by bagged clustering. Technical
Report 71, Vienna University of Economics and Business Administration.

249

250 BIBLIOGRAPHY

[Dudoit and Fridlyand, 2003] Dudoit, S. and Fridlyand, J. (2003). Bagging to
improve the accuracy of a clustering procedure. Bioinformatics, 19(9).

[Düntsch, 1997] Düntsch, I. (1997). A logic for rough sets. Theoretical Computer
Science, 179(1-2):427–436.

[Düntsch et al., 2007] Düntsch, I., Gediga, G., and Or lowska, E. (2007). Re-
lational attribute systems ii: Reasoning with relations in information struc-
tures. In Transactions on Rough Sets VII, number 4400 in LNCS. Springer.

[Džeroski et al., 1992] Džeroski, S., Muggleton, S., and Russell, S. (1992). PAC-
learnability of determinate logic programs. In Proceedings of the 5th ACM
Workshop on Computational Learning Theory, pages 128–135, New York,
NY. ACM Press.

[Ehrig et al., 2001] Ehrig, H., Mahr, B., Cornelius, F., Große-Rhode, M., and
Zeitz, P. (2001). Mathematisch-strukturelle Grundlagen der Informatik.
Springer, 2 edition.

[Freund and Schapire, 1996] Freund, Y. and Schapire, R. E. (1996). Experi-
ments with a new boosting algorithm. In Proc. 19th Intl. Conf. Machine
Learning.

[Frossyniotis et al., 2004] Frossyniotis, D. S., Likas, A. C., and Stafylopatis, A.
(2004). A clustering method based on boosting. Pattern Recognition Letters,
25(6):641 – 654.

[Gottlob, 1987] Gottlob, G. (1987). Subsumption and implication. Information
Processing Letters, 24(2):109–111.

[György, 1968] György, P. (1968). Induction and Analogy in Mathematics, vol-
ume 1 of Mathematics and Plausible Reasoning. Princeton University Press.

[Horn, 1951] Horn, A. (1951). On sentences which are true of direct unions of
algebras. ournal of Symbolic Logic, 16(1):14–21.

[Huth and Ryan, 2004] Huth, M. and Ryan, M. (2004). Logic in Computer
Science. Cambridge University Press, 2 edition.

[Kautz et al., 1995] Kautz, H., Kearns, M., and Selman, B. (1995). Horn ap-
proximations of empirical data. Artificial Intelligence, 74(1).

[Kearns, 1990] Kearns, M. J. (1990). The Computational Complexity of Ma-
chine Learning. MIT Press.

[Kearns and Vazirani, 1994] Kearns, M. J. and Vazirani, U. V. (1994). An In-
troduction to Computational Learning Theory. MIT Press.

[Kersting, 2008] Kersting, K. (2008). Probabilistic Inductive Logic Program-
ming. Springer.

v. July 19, 2010(c) m.e.müller

BIBLIOGRAPHY 251

[Kersting and Raedt, 2000] Kersting, K. and Raedt, L. D. (2000). Bayesian
logic programs. In Cussens, J. and Frisch, A., editors, Proceedings of the
Work-in-Progress Track at the 10th International Conference on Inductive
Logic Programming, pages 138–155.

[Kolmogorov, 1965] Kolmogorov, A. (1965). Three approaches to the quantita-
tive definition of information. Prob. Inf. Trans., 1:1–7.

[Leisch, 1999] Leisch, F. (1999). Bagged clustering. Technical Report 51, Vienna
University of Economics and Business Administration.

[Li and Vitanyi, 1993] Li, M. and Vitanyi, P. (1993). An introduction to Kol-
mogorov complexity and its applications. Springer-Verlag, Berlin.

[MacKay, 2003] MacKay, D. J. C. (2003). Information Theory, Inference, and
Learning Algorithms. Cambridge University Press.

[Mazzola et al., 2006] Mazzola, G. B., Milmeister, G., and Weissmann, J.
(2006). Comprehensive Mathematics for Computer Scientists, volume 1-2.
Springer, 2 edition.

[Muggleton, 1995] Muggleton, S. (1995). Inverse entailment and Progol. New
Generation Computing, 13:245–286.

[Muggleton and Buntine, 1988] Muggleton, S. and Buntine, W. (1988). Ma-
chine invention of first-order predicates by inverting resolution. In Proceed-
ings of the 5th International Conference on Machine Learning, pages 339–352.
Kaufmann.

[Muggleton and Feng, 1990] Muggleton, S. and Feng, C. (1990). Efficient induc-
tion of logic programs. In Proceedings of the First Conference on Algorithmic
Learning Theory, pages 368–381, Tokyo. Ohmsha.

[Muggleton and Feng, 1992] Muggleton, S. and Feng, C. (1992). Efficient induc-
tion of logic programs. In Muggleton, S., editor, Inductive Logic Programming,
pages 281–298. Academic Press, London.

[Muggleton et al., 1992] Muggleton, S., King, R., and Sternberg, M. (1992).
Protein secondary structure prediction using logic-based machine learning.
Protein Engineering, 5(7):647–657.

[Muggleton et al., 1998] Muggleton, S., Srinivasan, A., King, R., and Sternberg,
M. (1998). Biochemical knowledge discovery using Inductive Logic Program-
ming. In Motoda, H., editor, Proc. of the first Conference on Discovery
Science, Berlin. Springer-Verlag.

[Müller, 2008] Müller, M. E. (2008). Learning from noise. AI Magazine, 2(29).

[Nienhuys-Cheng and Wolf, 1996] Nienhuys-Cheng, S.-H. and Wolf, R. D.
(1996). Least generalizations under implication. In Muggleton, S. H., ed-
itor, Proc. ILP’96. Springer.

v. July 19, 2010(c) m.e.müller

252 BIBLIOGRAPHY

[Nock and Jappy, 1998] Nock, R. and Jappy, P. (1998). Function-free Horn
clauses are hard to approximate. In Page, D., editor, Proceedings of the
Eighth Inductive Logic Programming Workshop (ILP98), Berlin. Springer-
Verlag. LNAI 1446.

[of Ockham, 1323] of Ockham, W. (1323). Summa totius logicae. n/a.

[Orlowska, 1993] Orlowska, E. (1993). Reasoning with incomplete information:
Rough set based information logics. In Proceedings of the SOFTEKS Work-
shop on Incompleteness and Uncertainty in Information Systems, pages 16–
33.

[Popper, 2002] Popper, K. R. (2002). The Logic of Scientific Discovery. Rout-
ledge.

[Quinlan, 1991] Quinlan, J. (1991). Determinate literals in inductive logic pro-
gramming. In IJCAI-91: Proceedings of the Twelfth International Joint Con-
ference on Artificial Intelligence, pages 746–750, San Mateo, CA:. Morgan-
Kaufmann.

[Quinlan and Cameron, 1995] Quinlan, J. and Cameron, R. (1995). Induction
of logic programs: FOIL and related systems. New Generation Computing,
13:287–312.

[Quinlan and Cameron-Jones, 1993] Quinlan, J. and Cameron-Jones, R.
(1993). FOIL: a midterm report. In Brazdil, P., editor, Proceedings of the 6th
European Conference on Machine Learning, volume 667 of Lecture Notes in
Artificial Intelligence, pages 3–20. Springer-Verlag.

[Quinlan, 2001] Quinlan, J. R. (2001). Relational data mining. In Džeroski, S.,
editor, Relational learning and boosting. Springer.

[Quinlan, 1996] Quinlan, R. (1996). Bagging, boosting, and c4.5. In Proceedings
of the Thirteenth National Conference on Artificial Intelligence, pages 725–
730. AAAI Press.

[Raedt, 2008] Raedt, L. D. (2008). Logical and Relational Learning. Cognitive
Technologies. Springer.

[Raedt and Kersting, 2004] Raedt, L. D. and Kersting, K. (2004). Probabilis-
tic inductive logic programming. In Ben-David, S., Case, J., and Maruoka,
A., editors, Proceedings of the 15th International Conference on Algorith-
mic Learning Theory, volume 3244 of Lecture Notes in Computer Science.
Springer-Verlag.

[Raymond J. Mooney, 2004] Raymond J. Mooney, Prem Melville, L. R. T. J. S.
I. d. C. D. D. P. V. . S. C. (2004). Data Mining: Next Generation Challenges
and Future Directions, chapter Relational Data Mining with Inductive Logic
Programming for Link Discovery. AAAI Press.

v. July 19, 2010(c) m.e.müller

BIBLIOGRAPHY 253

[Rouveirol, 1992] Rouveirol, C. (1992). Extensions of inversion of resolution
applied to theory completion. In Muggleton, S., editor, Inductive Logic Pro-
gramming. Academic Press, London.

[Russell, 1992] Russell, B. A. W. (1992). Theory of Knowledge: The 1913
Manuscript. Routledge.

[Russell, 1995] Russell, B. A. W. (1995). An Inquiry into Meaning and Truth.
Routledge.

[Schapire, 1990] Schapire, R. E. (1990). The strength of weak learnability. Ma-
chine Learning, 5:197–227.

[Shannon and Weaver, 1949] Shannon, C. E. and Weaver, W. (1949). The
Mathematical Theory of Communication. University of Illinois Press, Urbana.
Reprints 1963, 1998.

[Solomonoff, 1964] Solomonoff, R. (1964). A formal theory of inductive infer-
ence. Information and Control, 7:376–388.

[Sperschneider and Antoniou, 1991] Sperschneider, V. and Antoniou, G.
(1991). Logic - A Foundation for Computer Science. Addison-Wesley.

[Valiant, 1984] Valiant, L. (1984). A theory of the learnable. Communications
of the ACM, 27:1134–1142.

[Welsh, 19xx] Welsh, D. (19xx). Codes and Cryptography. Oxford University
Press.

[Wolpert and Macready, 1997] Wolpert and Macready (1997). No free lunch
theorems for optimization. IEEE Transactions on Evolutionary Computation,
1(1):67–82.

[Xu et al., 2008] Xu, F., Yao, Y., and Miao, D. (2008). Rough set approxima-
tions in formal concept analysis and knowledge spaces. In Foundations of
Intelligent Systems, LNCS. Springer.

[Yamamoto, 1997] Yamamoto, A. (1997). Which hypotheses can be found with
inverse entailment? In Lavrač, N. and Džeroski, S., editors, Proceedings of
the Seventh International Workshop on Inductive Logic Programming, pages
296–308. Springer-Verlag, Berlin. LNAI 1297.

[Yao, 2003] Yao, Y. Y. (2003). On generalizing rough set theory. In Rough Sets,
Fuzzy Sets, Data Mining, and Granular Computing (Proc. 9th Int. Conf.),
number 2639 in LNAI. Springer.

[Yi Liu, 2007] Yi Liu, Rong Jin, A. K. J. (2007). Boostcluster: Boosting clus-
tering by pairwise constraints. In The Thirteenth International Conference
on Knowledge Discovery and Data Mining.

v. July 19, 2010(c) m.e.müller

Index

[x]R, see equivalence class
Σ–Algebra A

Def. 7.1, 157
Sµ(m, t), sampling function, s, sample

Def. 3.8, 55
entropy(x), Shannon’s Entropy Mea-

sure
Def. 5.1, 98

entropyf (g, s), Feature Entropy (Infor-
mation)

Def. 5.3, 102
Ind, see indiscernability relation
<, 26
θ–subsumption, ϕ |/ ψ

Def. 7.13, 169
θ–subsumption, t |/ t′

Def. 7.12, 168
h–easy ground Models

Def. 7.23, 202
ij-determinacy

Def. 7.25, 204
k–means Clustering

Def. 4.4, 83
k–nearest neigbhour classification hy-

pothesis
Def. 4.2, 80

k–nearest neighbour Algorithm
Def. 4.3, 80

k-Means, 82
clustering, 82

(dist)-Error, errors(h, t) w.r.t. dist
Def. 3.16, 60

(Labelled) sample, s, t
Def. 3.7, 55

(Relative) Utility
Def. 6.18, 150

(Un-)supervised Learning

Def. 3.9, 56
FOL-Resolution

Def. 7.6, 161
Foil-Gain, gainFoil

t (λ, h)
Def. 7.16, 178

Minimum Description Length, 15

∅, 23
⊥, see relation, empty
>, see relation, universal
>, see relation, universal
2x, 23

Absorption
Def. 7.22, 199

Accuracy of h
Def. 3.20, 64

Aggregation of hypotheses, hagg
Def. 8.3, 226

Antisymmetry, 25
Assignment α, Evaluation �·�Aα

Def. 7.2, 157
Attribute signifiance

Def. 6.20, 152

bias
confirmation, 72
language, 69
search, 70
selection, 71
validation, 70

Biased samples
Def. 3.25, 71

Binary Relation
Def. 2.1, 24

Boolean Algebra
Def. 2.7, 31

254

INDEX 255

Boosting algorithm
Def. 8.6, 230

Bootstrap approximation
Def. 8.4, 227

Bottom literal set, BotLit
Def. 7.27, 209

bound, 30

C(R), see coincidence matrix
category

basic, 37, 85
elementary, 37, 85

centroid, 81
Classification, c

Def. 3.4, 44
Classifier

Def. 3.5, 44
cod, 24
Code, 12
codomain, 24
coincidence matrix, 25
complement

of a clause, 209
complement, , 25
Compression, 12
Concept, Class

Def. 3.2, 42
Confusion Matrix

Def. 3.18, 63
converse, ,̀ 25
Converse, Complement

Def. 2.2, 25
Core

Def. 6.13, 138
Correctness of h

Def. 3.13, 59
Coverage of h

Def. 3.22, 66
cross product, 24

D(R), see discernability matrix
Data Mining, 10
Decision Tree

Def. 5.5, 106
Decisive tree hypothesis

Def. 5.7, 107

Definability
Def. 6.5, 127

dependency, 143
Difunctionality, 25
discernability matrix, 29
Dispensability, Reducibility

Def. 6.11, 137
dom, 24
domain, 24
Domain, Universe, Representation

Def. 3.1, 42

endorelation, 25
Entropy of a set s

Def. 5.2, 99
equivalence

knowledge, 38
relation, 26

equivalence class, 26
Equivalence of Knowledge

Def. 6.4, 126
Equivalence Relation

Def. 2.5, 26
Equivalence, Φ ∼= Ψ

Def. 7.10, 166
Equivalent Knowledge

Def. 2.11, 38
Error Rate err(h, s) of h

Def. 3.15, 59
Error set of h

Def. 3.14, 59
Evaluation of h

Def. 3.12, 58

Fibonacci numbers, 12
Free-Assignment-Degree of a variable

Def. 7.24, 203
Fuzzy k–means Clustering

Def. 4.6, 84

Gain Ratio
Def. 5.9, 111

Generality of FOL-Formulas, ϕ |4 ψ
Def. 7.11, 167

Gottlob’s Lemma
Def. 7.26, 208

v. July 19, 2010(c) m.e.müller

256 INDEX

Homogenuous Relations
Def. 2.3, 25

Horn Logic
Def. 7.7, 162

1s, “identity”, see identity relation
ILP Learning Problem

Def. 7.8, 164
image, 24
Indiscernability Relation

Def. 6.1, 122
Indiscernability relation

Def. 2.10, 37
inductive hypothesis, 68
inductive assumption, 57
Inductive hypothesis

Def. 3.24, 68
information system, 27
Information Gain

Def. 5.4, 102
Information system

Def. 2.6, 27
Information Theory, 14
integer arithmetic, 23
Intersection of equivalence relations

Def. 2.9, 35
Intra-Construction

Def. 7.21, 193
Intra/Inter–Class Similarity

Def. 4.7, 87
inverse, see 25
Inverse Entailment

Def. 7.28, 210
Inverse substitution, σ−1

Def. 7.18, 184
I, 27

K(R), see kernel matrix
k-Nearest Neighbours, 79
kernel matrix, 28
k-NN

seek-Nearest Neighbours, 79
Knowledge, 9
Knowledge Base

Def. 6.2, 122
knowledge base, 37

language bias, 69
lattice, 30
Leaf/Node error rate

Def. 5.10, 113
Learnability

Def. 8.1, 216
Least General Generalisation (lgg), g

Def. 7.15, 171
lower bound

greatest, 30
Lower/Upper Approximations, Rough

set
Def. 6.6, 129

Machine Learning Algorithm, Alg
Def. 3.11, 58

MDL, see Minimum Description Length
Model, A |= ϕ

Def. 7.4, 158
Most common values, mcv

Def. 4.1, 79

Node Coverage
Def. 5.6, 106

noise, 57
Noisy sample

Def. 3.10, 57
Normalized Gain, gainnorm

t (f, s)
Def. 5.8, 110

Ockham’s razor, 15
order relation, 26
overfitting, 72
Overfitting, overfit h

Def. 3.26, 74

2x, 23
PAC Learnability

Def. 8.2, 216
pair

ordered, 24
Partial Implication

Def. 6.19, 151
Partition Utility

Def. 4.8, 89
Peano, 24

v. July 19, 2010(c) m.e.müller

INDEX 257

poset, see st, partially ordered22, 26,
29

power set, 23
powerset, 23
Precision of h

Def. 3.19, 64
predicate

specification, 205
predicate mode, see pedicate specifica-

tion207
preimage, 24
Probabilistic (Fuzzy) Classification

Def. 4.5, 84
Properties of Relations

Def. 2.4, 25

quotient, 27

range, see 24
Recall of h

Def. 3.21, 65
Reducts

Def. 6.12, 137
Refinement

Def. 6.3, 124
Reflexivity, 25
relation, 24

binary, 24
empty, 25
identity, 25
kernel, 28
matrix, 25
universal, 25

Relation Algebra
Def. 2.8, 31

Relative Generality of FOL-Formulas,
ϕ |4Γ ψ

Def. 7.14, 170
Relative Implication

Def. 6.16, 143
Relative Indispensability

Def. 6.15, 143
Relative Least Generalisation, OΦ

Def. 7.19, 185
Relative Positive Knowledge

Def. 6.14, 140

Relative Reducts and Relative Cores
Def. 6.17, 145

Representation of a concept
Def. 3.3, 43

Representation Transform
Def. 3.6, 49

RLE, see 13
Rough approximations of classifications

Def. 6.8, 132
Rough Definability

Def. 6.7, 132
Rule Representation of Decision Trees

Def. 5.11, 116
run length encoding, 13
Russell, 9

sample
noisy, 57

search bias, 70
separability

linear, 50
set, 22

partially ordered, 22
Sharpness (Classification)

Def. 6.10, 133
Sharpness, Roughness

Def. 6.9, 133
Stability of Learning Algorithms

Def. 8.5, 228
subidentity, 25
Subterm positions, t

⊗
Ai B

Def. 7.17, 183
support, 174
Symmetry, 25

term depth, 161
Theory, Th(Φ)

Def. 7.9, 165
×, “times”, 24
⇁, “to”, 24
Training set, Validation set, strain, sval

Def. 3.23, 67
Transitivity, 25
True error, errorµs (h, t)

Def. 3.17, 61
Truncation

v. July 19, 2010(c) m.e.müller

258 INDEX

Def. 7.20, 189

upper bound, 30
least, 30

validation bias, 70
Validity, |=

Def. 7.3, 158
variable

depth, see variable depth
variable depth, 202

Wittgenstein, Ludwig, 43

x, 23

v. July 19, 2010(c) m.e.müller

