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Abstract

A speaker-independent automatic speech recognition system is
developed using hidden Markov models (HMMs). Simulated
annealing and randomized search are used to optimize discrete
features of the system, including topologies, parameter ties, context
clusters, and the sizes of mixture densities. Domain knowledge is used
to initialize and to constrain the search, which optimizes recognition
performance while reducing the number of model parameters. System
performance results for new types of discrete and continuous HMMs
measured on the TIMIT corpus are reported. The small set of
context-independent phoneme HMMs produced is competitive with
much larger systems of context-dependent models.

1. Introduction

Hidden Markov models (HMMs) are popular acoustic models used for automatic
speech recognition (ASR). An HMM is a probabilistic finite state automaton which
can describe a stochastic source with a good compromise between simplicity and
generality (Huang, Ariki & Jack, 1990). The list of arc-connecting states, and the
mapping which assigns to each of them a probability density are referred to as the
model “topology”. While rigorous mathematical methods have been developed for
estimation of acoustic parameters, the choices made for the topology, for tying dis-
tributions among different arcs or states, and for the phonetic or phonemic events to
be represented by an HMM, have been considered a design art.

Another important aspect to consider concerns training strategies, and in particular
the possibility of performing successive refinements and simplification steps on topologies
and distributions by initializing parameter estimation in a given step using the parameters
estimated in a previous step.

Previous studies have provided experimental evidence that having different HMMs
for the allophones of a given phoneme substantially improves the performance of ASR
systems (Lee et al., 1990; Kimball, Ostendorf & BechWati, 1992). It is also well-known
that training a large number of allophone models requires a very large training corpus
containing many samples of each allophone model to be trained.

Various training methods have been proposed to reduce the imprecision of parameter
estimation if a limited amount of data is available for certain phonemes. One is to
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train models at different levels of detail—isolated phonemes, and phonemes in the left
and/or right context—and to interpolate the statistical parameters of these models in
order to obtain the parameters of allophone HMMs (Chow et al., 1986). Another
method consists of clustering contexts, and performing a sort of generalization using
classification and decision trees (Hon, 1992), such that enough training samples are
available for each cluster, and clustering respects some mathematically-defined criteria
about the “impurity” introduced when merging allophones.

In addition to interpolation and clustering, various types of tying the statistical
distributions associated to different elements of HMMs have been studied (Young,
1992).

This paper proposes a methodology for a mathematically sound solution of the
problems whose solutions until now have usually been considered an “art”. The basic
concept is that choosing a set of allophones, HMM topologies, and tying of distributions
is a search problem. There are various methods and measures of success in directing a
search toward some goal.

In Section 2, simulated annealing is proposed as a search method for the above-
mentioned problems, guided by the recognition performance on a subset of the
experimental corpus disjoint from the test set. In general, search complexity is prohibitive,
so suitable heuristics have to be used in order to constrain it. Section 3 describes how
search is used to derive topologies and distribution ties. Also, heuristics based on speech
knowledge are proposed to constrain the choice of phonemic and phonetic contexts
which characterize a cluster.

We report experimental results for phoneme recognition on the TIMIT corpus
using the allophone models obtained with the above-described search procedure. The
recognition language model for our experiments is a loop of allophone models similar
to those described in the literature (Lee & Hon, 1989). The experiments show small
improvements obtained with topology optimization, and substantial improvements with
allophone models.

It is well-known that HMM parameter estimation depends on the initial values
assumed for the statistical parameters. In principle it should be possible to redesign
phoneme models using the topologies and the results of allophone-model training as
starting conditions. Section 4 describes how allophone models corresponding to the
same phoneme are merged into a single phoneme model and shows that performance
of the new phoneme models is close to that of the allophone models, suggesting that
the method proposed in this paper allows one to build a small and effective set of
phoneme models with a moderately large number of distributions.

Further improvements are obtained by conceiving simple HMMs, one for each
phoneme, with mixtures having a large number of Gaussian distributions only at the
beginning and at the end of the model. This choice is supported by the conjecture that
co-articulation effects produce large parameter variability at the boundaries between a
phoneme and its neighbours. The initial values of the parameters of the Gaussian
distributions are the ones of the trained distributions in corresponding initial and final
arcs of the allophone models. Also, improvements can be obtained by eliminating
similar Gaussian distributions and retraining the models with a reduced number of
mixtures.

Section 4 also shows how performances can be improved by introducing simple
acoustic parameters describing time and broad-band features not well characterized by
mel-scaled cepstral coefficients and their derivatives.
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2. Search strategies
2.1. Simulated annealing

In contrast with hill-climbing or gradient-descent optimization methods, randomized
search does not set out to thoroughly explore the vicinity of a local extremum of the
cost function, but employs instead a random solution generator to visit points all over
the solution surface. One advantage of this approach is that it is easily applied to
almost any optimization problem, continuous or discrete, regardless of non-linearities
or discontinuities. A randomly generated set of solutions S; is unlikely to contain the
global or even a local extremum to a non-trivial cost function f(S). However, there is
a higher probability of yielding a solution S* such that

| (S*) = (Soptimal)|<m, M)

where m is some acceptable margin for error in the solution.

The goal here is to find improved values for certain discrete parameters of an HMM
speech recognition system. These parameters include the topology of the unit models.
The cost measure to be optimized is a measure of the recognition performance of the
system. As an example, consider the problem space represented by an HMM topology
restricted to topologies with no more than seven states and seven output distributions.
The state-transition matrix has 49 entries, each of which can contain nine values. This
means there are 5-7 x 10* distinct solutions. Clearly, exhaustive search is infeasible.

Although the computational cost of generating and testing new solutions prohibits
more than a cursory search of the problem space, a pure Monte Carlo search can
nevertheless have practical utility. Unless the initial solution is a good local optimum,
any series of randomly generated candidates which are perturbations of the initial
solution is likely to contain some candidates which improve the performance measure.
Care must be taken with this approach, however, since the goal is to derive a speech
model which generalizes well to new data.

A more directed kind of search is feasible, in which a method exists to escape from
local minima. For the last 10 years researchers have applied the technique of simulated
annealing (Kirkpatrick, Gelatt & Vecchi, 1983) to many areas where gradient and other
hill-climbing methods were unavailable or inadequate. Simulating annealing is a method
of randomized optimization which acts like a hybrid between Monte Carlo search and
hill-climbing, beginning like the former and settling into the latter near the end of the
search.

In Boltzmann annealing, the solutions to a given cost function are assumed to be
distributed with the Boltzmann probability factor P(S;) =exp(—E(S;)/kT) where E(S))
is the cost-function value for solution S;, k is Boltzmann’s constant and T is a system
parameter called temperature. A new solution is generated randomly, and accepted if
the cost improves (i.e. AE<0). Otherwise, the new solution is accepted according to the
probability ratio

P(Si+1)

P(S) =exp(—(E(Si;1) —E(S))/KT)

—exp(— AE/KT). @)
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This conditional acceptance of non-improvements allows the search procedure to escape
local minima. As T is reduced, the probabilities given by the Boltzmann distribution
vanish for all but the lowest-cost solutions. It can be shown that, given the above
assumptions, if the temperture is lowered in stages and enough solutions are sampled
at each temperature, Boltzmann annealing will converge to a globally optimal solution.
One “cooling” schedule that guarantees optimality is the logarithmic schedule

Inn,
Inn’

T,=T, (3)

where n is the temperature iteration and {T,, n,} are some reasonable starting values.
In practice faster schedules are used which, while sacrificing the theoretic property of
convergence, tend to provide useful optimization results. The latter approach is called
simulated quenching.

In this paper simulated annealing is used to optimize the structure of HMMs for
English phonemes. Because of the prohibitive size of the search space, a variety of non-
optimal schedules, including linear ones, were employed. During the annealing, new
solutions were generated from old by randomly permutating some discrete value, such
as the value of an entry in the matrix representing the HMM topology. The measured
recognition accuracy of the HMMs provided the value for cost function E.

2.2. Knowledge-guided search

The solutions searched for are refinements to the structure and organization of HMMs
for speech, things that are usually set by hand. The models arrived at are in turn fitted
to training data in the form of acoustic speech samples. To ensure the things learned
about HMMs are generalized improvements, the objective function that drives the
annealing process must be evaluated accurately. This means retraining and re-evaluating
the models on thousands of acoustic samples every time a new model structure is
generated. The computational cost of this procedure effectively precludes exploring the
search space very well. In topology experiments, for example, only a few hundred
solutions were tested at each temperature. However, any measurable improvement on
existing solutions is desirable.

Another interesting approach would be to let the amount of data used to train and
evaluate the models serve as the system “temperature”. This would allow more solutions
to be tested during the early part of the annealing, with the higher error in the evaluation
function serving as a probabilistic factor affecting the acceptance of new solutions.
Then as the system “cooled”, increased training would provide a more and more
accurate measure of solutions, and direct the system more toward a better solution (in
this case lower recognition error).

In any case, since the problem space is large and the ability to explore it limited, the
best way to solve the problem is to use the methodology in tandem with knowledge of
the problem domain. Search begins with knowledge-guided and empirically-proven
solutions. Randomized search is used to develop new and better solutions. These are
evaluated in the light of knowledge about the speech modelling problem, and adjustments
are made. If necessary, the entire procedure can be repeated. In the following experiments,
this approach of knowledge-guided random search has proved to be an effective
compromise, and provided better models for speech.
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Figure 1. The initial (top) and optimized topology for model “b”.

3. Applying search to HMM structure
3.1. Basic recognizer architecture

In each experiment, the original models are first evaluated by training them on a set
of sentences, and testing their recognition performance on another set. The train/test
suite is later used to measure the optimized speech system, to see if recognition
performance improved. The sentences used to score the models during search belong
to a third, separate test suite. All acoustic data were drawn from the TIMIT acoustic-
phonetic speech corpus. Three thousand six hundred and seventy-nine sentences were
used for training, and the core test of 192 sentences containing 7333 labelled phonemes
was used for final evaluation.

Both discrete and continuous HMMs were trained and evaluated. For the continuous
models, the HMM output distributions of 12 MEL-scaled cepstral coefficients, 12
difference cepstrum coefficients and energy and energy rate-of-change, were estimated
from the training data using continuous-mixture densities composed of Gaussians. The
covariance matrix is assumed to be diagonal. For the discrete models, three codebooks,
one for each feature set, were introduced (256 entries were used for each of the first
two sets and 64 for the energy features).

To speed up search, continuous models were abandoned in favour of discrete
ones during optimization experiments. The HMMs were trained by Baum-Welch re-
estimation. Recognition was performed using Viterbi maximum-likelihood decoding
over a looped, phonemic finite state network.

3.2. Topologies and distribution ties

As mentioned in the introduction, the topology and tying of distributions in HMMs
for speech are usually determined a priori, or based on statistical measures (Young,
1992). Some attempts are being made to evolve the topologies algorithmically
(Casacuberta, Vidal, Mas & Rulot, 1990; Jouvet, Mauuary & Monne, 1991; Takami &
Sagayama, 1992). In the method described here, the topology and distribution as-
signments of an HMM are represented as an integer array, and simulated annealing is
used to optimize this data structure. Each perturbed solution is applied to the basic
English phoneme models which are trained on one target set of sentences from the
TIMIT database, using discrete parameters. The models are then tested on a separate
test suite, with the measured unit accuracy used as the objective cost function to be
maximized.

After a set of topologies adapted to particular phoneme classes have been derived,
they are evaluated on a third data set of 192 sentences. Fig. 1 shows one such topology.
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TaBLE |. Comparison of initial and optimized topologies

No. Plosive Vowel Phone error
Continuous models distribution errors errors rate
Seven-state topology 1440 402 924 44.06
Mixed topologies 1362 385 890 43.62

A mix of the best performing topologies are selected (based on individual phoneme
accuracy), and finally evaluated by training a model set with continuous-mixture
densities.

The searches are initialized with a proven, left-to-right model, and limit the growth
of the model to seven states. Using domain knowledge in this way, the search is
constrained enough to achieve a reasonable solution in reasonable time. Since the
different phoneme classes are acoustically dissimilar, it is conjectured that different
topologies should be developed for specific broad-phoneme classes.

Search began with the initial topology represented by the top of Fig. 1. The
optimization proceeded by repeatedly perturbing values in the transition matrix, and
evaluating the new topology represented by these perturbed values. Since the values
represented both transitions and the distributions tied to them, the method optimizes
simultaneously over both topology structure and parameter-tying.

Forty-eight or 53 units are modelled, depending on the experiment suite. Following
Lee and Hon (1989), the original unit models are mapped onto a simpler set of 39
recognition units for classification. All performance results in this paper are for these
39 units. Recognition performance is given by the phone error rate (PER):

PER — 100 x no. of insertions +no. of delethns +no. of substitutions .
no. of units

Topology optimization was performance-based, using 512 sentences to train and 96
sentences to evaluate each perturbation of the topology set. The success or failure of
the experiments was determined by testing models on another set of 96 sentences. After
many stages of optimization driven by large-sample performance, a best set of class-
specific topologies was derived. This set contained seven new topologies for the phonetic
classes: silence, closure, fricative, nasal, liquid, vowel and plosive. The models were
trained as many iterations as possible until performance failed to improve, and then
tested on a new dataset. A unit-by-unit study was made of how the new topology
performed relative to the seven-state topology, counting the number of errors E
associated in each case with a given phoneme p. E has four components: insertions,
deletions, the number of times a p is misrecognized as something else, and the number
of times something else is misrecognized as a p. Using the measure E, a new model set
was constructed, a mixture containing the better-performing topology for each phoneme.
This mixture showed an improved performance with a reduced number of Gaussian
distributions (Table 1). The mixture showed a 2% improvement in the discrete case,
and 1% in the continuous. The mixture was even better when considered on a per-class
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basis, significantly reducing the number of errors for vowels and hard-to-distinguish
plosives.

3.3. Allophone context clusters

The same performance-driven optimization approach was applied to the problem of
efficiently clustering contexts for allophone models. Since the problem space is large
and expensive to search, acoustic-phonetic reasoning was used to determine a sensible
initial grouping of contexts, and then simulated annealing perturbed these clusters so
as to improve the recognition accuracy of models trained on these contexts. The output
of the search procedure was also manually adjusted to conform to speech knowledge.

This approach is somewhat different from the tree-clustering algorithm of Bahl,
deSouza, Gopalakrishnan, Nahamoo and Picheny (1991), or the state-splitting approach
of Takami and Sagayama (1992). In this case, search is driven by performance and
knowledge. In previous sections HMMs model the context-independent phonemes.
Because of allophonic variability, better results are possible when phonemes are modelled
in context (Schwartz et al., 1985; Lee & Hon, 1989). However, there are 48 possible
left contexts and 48 possible right contexts for each phoneme. If each context of each
phone were modelled separately, it would be necessary to train 48°=110592 different
models. In fact, the task would be impossible with existing speech corpora, since most
of these contexts occur too rarely to be well represented in the training data (many in
fact never occur).

The solution is to combine phonemic contexts into clusters which have similar
contextual effects on the preceding or following phonemes. To model left-context units
using any of 10 clustered contexts, the allophones may be represented with fewer than
500 models, a manageable number for which there are likely to be adequate training
samples.

The problem is to choose the clusters appropriately. One approach would be to
choose as fine-grained a context as can be well-trained from the available data. The
more varied samples there are of a given speech unit, the more specialized models can
be made for that unit. Kimball et al. (1992) suggest a distribution can be adequately
estimated when the number of samples is about six times the dimension of the
observation vector. If the vectors contain 12 cepstral coefficients (MEL or DME), at
least 72 samples per model are needed (assuming at least one output distribution is not
tied to multiple transitions). Depending on one’s point of view, a rigid threshold like
this may result in too many or too few models. (In practice, good results are achieved
with some units trained on fewer samples.) In Lee, Giachin, Rabiner, Pieraccini and
Rosenberg (1991) another data-driven approach is used to select clusters. Following a
unit reduction rule based on the number of samples available for a unit in the training
data, they build a set of models containing 47 context-independent phones, 134 diphones
and 1101 triphones. While this approach guarantees the trainability of the units, it may
produce a large number of models with similar distributions, in effect adding parameters
without reducing system entropy.

In Lee et al. (1990) an initial set of context-dependent models is trained, and these
models are merged into clusters, called generalized allophones, according to some
algorithm. The first method, agglomerative clustering, is based on an entropy distance
measure applied to the allophones. The second method is a heuristic decision tree, in
which the root consists of the complete set of allophones corresponding to a particular
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TasLE Il. Initial right-context
clusters for plosives
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phoneme, and the leaves contain generalized allophones. At each node, the allophones
are recursively divided into two subclusters based on the answer to a question provided
by an expert linguist, a question designed to capture contextual effects. The recursion
ends according to a metric of the distance between a parent cluster and its subclusters.
In both above methods, the metric used to merge or split clusters is the “entropy
increase” or information loss in the output distributions when two models are merged.
Clustering is chosen so as to minimize entropy gain (Hon, 1992). A context-decision
tree is also constructed in Bahl et al. (1991), but their subtrees are divided according
to a Poisson-model likelihood of the possible splits measured against the training data.
The generation of subtrees is statistically dependent on not just the adjacent (left or
right) contexts, but on the several preceding and following phones as well. In De Mori,
Laface and Piccolo (1976) two methods are suggested which proceed from the opposite
direction: beginning with a generalized word model, they iteratively generate more
HMMs to model that word, in which each HMM is re-estimated from different subsets
of the training samples for that word. Although they do not address context, the same
methods could in effect derive context clusters automatically, without appealing to
acoustic-phonetic reasoning. However, the resultant context-sets would probably over-
lap. The state-splitting algorithm of Takami and Sagayama (1992) optimizes auto-
matically along both topological and contextual axes, based on measure likelihood on
the training data. A trivial Markov model is iteratively grown into a more complex
model in which contexts are clustered and integrated. Jouvet et al. (1991) avoids the
clustering problem, instead reducing the parameter space by integrating all left and
right contexts into the topological structure of the allophone model. This can be seen
equivalently as tying the distributions of the internal states of the allophone models.

In this paper, acoustic-phonetic reasoning is combined with the performance-driven
randomized search described earlier in order to optimize the context clustering with
respect to the available training data. In contrast with Takayama and Sagayama (1992),
recognition accuracy rather than training-set likelihood serves as the objective function.
We call this approach performance and knowledge-guided search.

Optimization was first applied to the problem of efficiently clustering right contexts
for plosive allophones. Speech science suggests that the right-hand event, or succeeding
phone, mostly affects plosive burst and transitions of relevant acoustic parameters.
Intuition suggested an initial grouping of vowel right contexts as shown in Table 11, in
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TaBLE IIl. Optimized right-context
clusters

1. ao aa ay aw ax ah
2. ixihiyyey

3. erae

4. uw uh oy ow

5. eh

6. fv

7.52

8. 1

9. r

10. w

TaBLE IV. Initial left-context clusters for vowels

L. pbfvm 13. ax
2.szzhthdhjhtdnch 14. ix
3. nghhgk 15. ih
4. 1 16. ae
5 w 17. ah
6. ao 18. uh
7. aa 19. oy
8. uw 20. iy
9. er 21. ow
10. ay 22. eh
11. ey 23. sil epi bel dcl gel pel tel kel
12. aw

which some phonemes starting with the same symbol were grouped together. Simulated
annealing perturbed these clusters so as to improve the recognition accuracy of models
trained in these contexts. The output of the search procedure showed a tendency toward
grouping phonemes by place of articulation. Minor corrections to clustering were
manually performed to finalize the trend, resulting in the grouping shown in Table 111;
some consonant clusters were also manually added.

Performance was used to drive the annealing. Since plosives were the model of
interest, the number of errors on the plosive data alone served as the performance
measure (i.e. how many plosive events were deleted or misrecognized). Almost all
plosives in the training data are found in the contexts of Table III.

Optimization was next applied to the problem of efficiently clustering left contexts
for vowels. The initial grouping (Table 1V) puts all the unsonorant consonants having
similar place of articulation in the same class. The clusters produced after search are
presented in Table V. The number of contexts was reduced from 23 to 13.
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TaBLE V. Optimized left-context clusters
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TaBLE VI. Development of the recognizer with discrete hidden Markov models. Phone error rate
includes insertion errors

Plosive Vowel Misrecognized  Phone error
Discrete models errors errors rate rate
48 phonemes 199 508 42-88 47-06
359 models, left contexts 202 461 40-25 44.51
364 models, left and right con- 192 465 3963 44.35

texts, seven-state topology

TaBLE VII. Results for continuous models (no language model)

No. of Misrecognized Phone error
Continuous models parameters rate rate
48 phonemes 74880 38-36 44.06
364 allophones, left and right 473304 3432 4076

contexts

A summary of results for discrete models using various types of context-dependent
allophones is shown in Table VI. The solutions from all the searches were combined,
and tested on a new set of 96 sentences using discrete-codebook HMMs. The left
contexts were expanded to include other consonant classes, using the context clusters
of Table V. Next, the left-context vowel and consonant models were combined with
the right-context plosives. As hoped for, higher accuracy by class averaged out to a
higher overall unit accuracy. Finally, these same context sets were used to train models
with topologies based on the earlier optimization experiments. The results are in the
last row of Table VI.

Results for the continuous-parameter models are summarized in Table VII.
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TasLE VIII. Merging the discrete hidden Markov models

Plosive Vowel Misrecognized  Phone error

Discrete models errors errors rate rate
53 phonemes, merged dis- 173 489 38-90 4337

tributions
53 phonemes, simplified 157 464 3856 4343

TaBLE IX. Merged continuous context-independent models
No. of Misrecognized Phone error

Continuous models parameters rate rate
53 phonemes, simplified 356 304 34-8 400
53 phonemes, with additional 397 416 338 39.7

features
53 phonemes, Fig. 2 topology 301 252 32.7 382
Same, with bigrams 30-8 355

4. Derivation of phoneme models from allophone models
4.1. Merging and retraining

To this point, the result of the search process was a set of unit model topologies and
output distributions well trained for units in left or right context. The final experiment
attempted to simplify the speech recognition system by merging the distributions of
the allophones into phoneme units with parallel transitions. This was done for both
discrete and continuous-distribution models.

In the discrete case, the n allophones for unit U were merged in a straightforward
way. All allophones for U had the same topology T. A new topology was created with
n parallel transitions for each single transition in T. Each of these parallel transitions
was tied to the corresponding distribution in one of the allophones for U. Once these
merged-model phonemes were built, they were then retrained for four iterations. These
models had a better phone error rate than the best allophone models (Table VIII).

In order to simplify the models and further reduce the number of parameters, all the
parallel transitions but one of the internal states of the merged models were removed,
on the hypothesis that the extra distributions were only useful for modelling the
contextual effects at the left or right end of the units. In fact, the simplified models
showed improvements, after four training iterations, with respect to their predecessors.

The end result of the search process was to construct a set of discrete models
with internal topological structure complex enough to model contextual effects of
neighbouring units significant to the particular unit. Results are summarized in Table
VIII. It appears that a substantial performance improvement can be obtained in context-
independent models by just adding context-dependent distributions on the initial and
final transitions of phoneme HMMs.

The same merge/simplify procedure was applied to the continuous models. Con-
tinuous-distribution HMMs already employ density mixtures. In this case the process
of combining allophone distributions essentially means selecting mixture sizes for
context-independent models and initializing the corresponding distributions with well-
trained values. Results are summarized in Table IX.
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Figure 2. Final topology. (—), Large mixtures: modelling contextual effects;
(==-), small mixtures: modelling the internal states.

4.2. Further improvements

An interesting research avenue consists in using new acoustic parameters which are
likely to contain information not well represented by MEL cepstral coefficients. A
preliminary investigation has been conducted by considering simple measures in the
time domain and in broad frequency bands.

Following experiments described in De Mori et al. (1976) the signal energy can be
described in terms of peaks and valleys. Let an “event” be a peak or a valley. Let t,
be the beginning time of the j-th event e(j). A temporal feature

temp(t) =t—t, (4)

is computed where t,, is the beginning time of e(j) that covers a time interval including
t. A value u(t) is then computed as follows:

u(t) = temp(t) if temp(t)<u, (5)
Uo+1og, (temp(t) — o) otherwise

where y, is a constant chosen a priori. The feature u(t) suggests the position of the
t-th frame in the suprasegmental acoustic event t belongs to.

Two other features are obtained by introducing e,(t), the energy of the highest spectral
value in the 100-900 Hz band at time t, and

es(t)
e.(t)

Qs (t) =109y (6)

where e;(t) is the highest spectral value at time t in the 3-5 kHz band. Performances
were further improved by adding the new acoustic features, as shown in Table IX.

A final experiment was performed using the same model topology, shown in Fig. 2,
for all complex phoneme models (vowels, liquids, nasals and plosives). In this topology,
the transitions represented by thick lines are modelled with a moderately large number
of Gaussian distributions, while the transitions represented by thin lines are modelled
with small mixtures. The relative sizes of these mixtures reflect the number of contexts
in which the allophones described earlier were trained.

The initial distributions were taken from the well-trained merged models described
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in Subsection 4.1. These distributions were duplicated or reduced in number, so that
each transition from the first state of the new topology could be tied to a mixture of
39 densities, each mixture tied to the fourth state could have 30 densities, and all the
internal “thin” distributions could be mixtures of six probability density functions. The
new models were then retrained for five iterations, and low-probability transitions were
pruned. The results (third row in Table 1X) confirm the importance of good initialization
of the parameters before estimation.

Taking into account the comparatively modest feature set employed here, and the
context-independence of the resulting models, these results compare favourably with
those reported in the literature. Currently, the best reported phone-recognition rates
on TIMIT (Robinson, 1991; Young & Woodland, 1994) are achieved using second-
order derivatives and various kinds of context-dependency learning.

5. Discussion

Knowledge-guided, performance-driven randomized search has proven effective in
optimizing structural features of a machine-learning model. This optimization proceeds
along two coordinates: improving the performance measure, while reducing the number
of parameters in the model. The search should be guided by knowledge about the
problem domain, in order to improve its efficiency.

The search for an optimal HMM topology can be guided by measures of model
likelihood or recognition accuracy. Average likelihood of the model set was found to
be unpredictive. Another possibility would be to optimize a unit topology based on
the individual model likelihood. It would be instructive to look for similarity in the
topologies evolved through these methods, with those of Takami and Sagayama (1992)
and Sanchis and Casacuberta (1991). All of these results could be compared another
way: training an ergodic, fully connected model on sufficient data so as to reduce the
probabilities of the unnecessary state-transitions to near zero. Once this model is edited
to remove low-likelihood paths, it should possess a near-optimal structure. Although
it would be difficult to train unit models sufficiently due to insufficient data, it is possible
in this way to compare the methods in producing a general topology. Experiments
reported in this paper do not encourage such efforts.

The problem of clustering allophone models has been summarized by Hon (1992)
with three considerations: consistency, trainability and generalization. The first two
considerations are a trade-off: to make sure the units selected are consistent (i.e. perform
well), the training must be as context-specific as possible. The difficulty is acquiring a
sufficient number of training samples to produce a consistent model. Consistency will
also depend on building models that are sufficiently distant from each other. Thus, the
different metrics that have been used to cluster models include training-sample size
(Lee et al., 1991), model likelihood (Bahl et al., 1991; Takami & Sagayama, 1992),
acoustic-phonetic reasoning, model cross-entropy (Lee et al., 1990), and recognition
performance. The method of this paper, randomized search through cluster-space driven
by performance, implicitly optimizes all of these measures, though somewhat inefficiently.

The last consideration, generalizability, is that the trained units can provide good
candidate models for new units not present in the training data. This becomes an
important issue when an ASR system based on subword units is presented with new
vocabularies to model. The clusters developed in this paper introduce a useful degree
of generalization.
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In this research allophone models were initialized with the distributions of context-
independent models, and vice versa. For both consistency and generalization of subword
units, it is better to perform an interpolation of new subclusters with the more
general, better trained phoneme model from which they are derived. This may improve
performance.

The results described in this paper indicate that a simple model for phonemes
containing rich mixtures of Gaussian distributions is a serious competitor for context-
dependent allophones. Choosing a variable number of Gaussians has a positive impact,
especially if parameter estimation is initialized with the results of previous optimizations.
Furthermore, this performance can be sustained even with a reduced number of mixtures
if parameters are again initialized with the results of previous optimizations. Having a
large number of Gaussians per mixture does not imply a high computation time if the
number of different mixtures is not large. In fact, the probability of a distribution can
be approximated with the probability given by the Gaussian that makes the biggest
contribution to the mixture for a given observation. A given observation can be
compared with intervals computed off-line, each interval corresponding to a Gaussian
that will eventually give the highest contribution to the mixture. After a fast binary
search, only the computation of a value in a single Gaussian distribution per mixture
has to be performed.

Finally, simple broad-band acoustic parameters and temporal features appear to
have a significant positive impact as well.
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