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Abstract

We present applications of rough set methods for feature selection in pattern recognition. We emphasize the role of

the basic constructs of rough set approach in feature selection, namely reducts and their approximations, including

dynamic reducts. In the overview of methods for feature selection we discuss feature selection criteria, including the

rough set based methods. Our algorithm for feature selection is based on an application of a rough set method to the

result of principal components analysis (PCA) used for feature projection and reduction. Finally, the paper presents

numerical results of face and mammogram recognition experiments using neural network, with feature selection based

on proposed PCA and rough set methods.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Reduction of pattern dimensionality via feature

extraction and feature selection (see, e.g., Kittler,
1986; Liu and Motoda, 1998a,b) belongs to the

most fundamental steps in data preprocessing.

Feature selection is often isolated as a separate

step in processing sequence. Features constituting

the object�s pattern may be irrelevant (having

no effect on processing performance) or rele-

vant (having an impact on processing perfor-

mance). Features can be redundant (dependent),
and may have a different discriminatory or pre-

dictive power. We present rough set methods and

principal components analysis (PCA) in context of

feature selection in pattern recognition.

The paper begins with a some preliminaries of
rough set approach (Pawlak, 1991). We emphasize

the special role of reducts in feature selection, in-

cluding dynamic reducts (Bazan et al., 1994, 1998).

Then, we present a short overview of feature

selection problem including open-loop and closed-

loop feature selection methods. This section fo-

cuses on the discussion on feature selection criteria

including rough set based methods. The next sec-
tion presents a short description of the PCA as a

method of feature projection and reduction. It also

contains description of rough set based methods,

proposed jointly with PCA, for feature projection

and reduction. The following section describes

results of numerical experiments on face and
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mammogram recognition using the proposed

rough set based method for feature selection and

neural networks. This section also contains short

description of feature extraction from facial im-

ages using singular value decomposition (SVD)

and feature extraction from mammograms which
is based on histograms.

2. Rough set preliminaries

Rough set theory has been introduced by

Zdzisław Pawlak (Pawlak, 1991) to deal with im-

precise or vague concepts. In recent years we wit-
nessed a rapid growth of interest in rough set

theory and its applications, worldwide (see, e.g.,

Skowron, 2000). Here, we introduce only the basic

notation from rough set approach used in the

paper.

Suppose we are given two finite, non-empty sets

U and A, where U is the universe of objects, cases,

and A––a set of attributes, features. The pair
IS ¼ ðU ;AÞ is called an information table. With

every attribute a 2 A we associate a set Va, of its

values, called the domain of a. By aðxÞ we denote a

data pattern ða1ðxÞ; . . . ; anðxÞÞ defined by the ob-

ject x and attributes from A ¼ fa1; . . . ; ang. A data

pattern of IS is any feature value vector v ¼
ðv1; . . . ; vnÞ where vi 2 Vai for i ¼ 1; . . . ; n such that

v ¼ aðxÞ for some x 2 U .
Any subset B of A determines a binary relation

IðBÞ on U, called an indiscernibility relation, de-

fined as follows:

xIðBÞy iff aðxÞ ¼ aðyÞ for every a 2 B

where aðxÞ denotes the value of attribute a for
object x.

The family of all equivalence classes of IðBÞ,
i.e., the partition determined by B, will be denoted

by U=IðBÞ, or simply U=B; an equivalence class of

IðBÞ, i.e., the block of the partition U=B, con-

taining x will be denoted by BðxÞ.
If ðx; yÞ 2 IðBÞ we will say that x and y are B-

indiscernible. Equivalence classes of the relation
IðBÞ (or blocks of the partition U=B) are referred

to as B-elementary sets. In the rough set approach

the elementary sets are the basic building blocks

(concepts) of our knowledge about reality. The

unions of B-elementary sets are called B-definable

sets.

The indiscernibility relation will be further

used to define basic concepts of rough set theory.

Let us define now the following two operations on

sets

B�ðX Þ ¼ fx 2 U : BðxÞ � Xg;
B�ðX Þ ¼ fx 2 U : BðxÞ \ X 6¼ ;g

assigning to every subset X of the universe U two

sets B�ðX Þ and B�ðX Þ called the B-lower and the B-
upper approximation of X, respectively. The set

BNBðX Þ ¼ B�ðX Þ � B�ðX Þ
will be referred to as the B-boundary region of X .

If the boundary region of X is the empty set,

i.e., BNBðX Þ ¼ ;, then the set X is crisp (exact) with

respect to B; in the opposite case, i.e., if
BNBðX Þ 6¼ ;, the set X is referred to as rough (in-

exact) with respect to B.

Several generalizations of the classical rough set

approach based on approximation spaces defined

by (U ;R), where R is an equivalence relation

(called indiscernibility relation) in U, have been

reported in the literature (for references see the

papers and bibliography in (e.g., Polkowski and
Skowron, 1998; Skowron, 2000).

Sometimes we distinguish in an information

table (U ;A) a partition of A into two classes C,

D � A of attributes, called condition and decision

(action) attributes, respectively. The tuple DT ¼
ðU ;C;DÞ is called a decision table. Any such deci-

sion table where U ¼ fx1; . . . ; xNg, C¼fa1; . .. ;ang
and D¼fd1; . .. ;dkg can be represented by means
of a data sequence (called also data set) of data

patterns ððv1;target1Þ;. . . ;ðvN ;targetN ÞÞ where vi¼
CðxiÞ, targeti¼DðxiÞ, and C i¼ða1ðxiÞ; . .. ;anðxiÞÞ,
Di¼ðd1ðxiÞ; . . .;dkðxiÞÞ, for i¼1; . . .;N . It is obvious

that also any data sequence defines a decision

table. The equivalence classes of IðDÞ are called

decision classes.

Let V ¼
S
fVaja 2 Cg [ Vd . Atomic formulae

over B � C [ D and V are expressions a ¼ v called

descriptors (selectors) over B and V, where a 2 B
and v 2 Va. The set FðB; V Þ of formulae over B

and V is the least set containing all atomic for-

mulae over B and V and closed with respect to the
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propositional connectives ^ (conjunction), _ (dis-

junction) and : (negation).

By kukDT we denote the meaning of u 2
FðB; V Þ in the decision table DT which is the set

of all objects in U with the property u. These sets

are defined by ka ¼ vkDT ¼ fx 2 U jaðxÞ ¼ vg, ku^
u0kDT ¼ kukDT \ ku0kDT; ku _ u0kDT ¼ kukDT [
ku0kDT; k:ukDT ¼ U � kukDT. The formulae

from FðC; V Þ, FðD; V Þ are called condition for-

mulae of DT and decision formulae of DT,

respectively.

Any object x 2 U belongs to a decision class

k
V

a2D a ¼ aðxÞkDT of DT. All decision classes of

DT create a partition of the universe U.
A decision rule for DT is any expression of the

form u ) w, where u 2 FðC; V Þ, w 2 FðD; V Þ,
and kukDT 6¼ ;. Formulae u and w are referred to

as the predecessor and the successor of decision

rule u ) w. Decision rules are often called ‘‘IF . . .
THEN . . .’’ rules.

Decision rule u ) w is true in DT if and only if

kukDT � kwkDT. Otherwise one can measure its
truth degree by introducing some inclusion mea-

sure of kukDT in kwkDT.

Each object x of a decision table determines a

decision rule
V

a2C a ¼ aðxÞ )
V

a2D a ¼ aðxÞ.
Decision rules corresponding to some objects

can have the same condition parts but different

decision parts. Such rules are called inconsistent

(non-deterministic, conflicting, possible); otherwise
the rules are referred to as consistent (certain, sure,

deterministic, non-conflicting) rules. Decision

tables containing inconsistent decision rules are

called inconsistent (non-deterministic, conflicting);

otherwise the table is consistent (deterministic,

non-conflicting).

Numerous methods have been developed for

different decision rule generation (see, e.g., Pol-
kowski and Skowron, 1998; Skowron, 2000).

Another important issue in data analysis is

discovering dependencies between attributes. Let

D and C be subsets of A. We will say that D de-

pends on C in a degree k (06 k6 1), denoted

C )k D, if

k ¼ cðC;DÞ ¼ jPOSCðDÞj
jU j

where

POSCðDÞ ¼
[

X2U=D

C�ðX Þ

called a positive region of the partition U=D with

respect to C, is the set of all elements of U that can

be uniquely classified to blocks of the partition

U=D, by means of C.

If k ¼ 1 we say that D depends totally on C, and
if k < 1, we say that D depends partially (in a

degree k) on C.

The coefficient k expresses the ratio of all ele-

ments of the universe, which can be properly

classified to blocks of the partition U=D, employ-

ing attributes C and will be called the degree of the

dependency.

The coefficient 1 � cðC;DÞ can be called the
inconsistency degree of DT (see Liu and Setiono,

1996).

The ability to discern between perceived objects

is important for constructing many entities like

reducts, decision rules or decision algorithms. In

the classical rough set approach the discernibility

relation DISðBÞ � U � U is defined by xDISðBÞy if

and only if nonðxIðBÞyÞ. However, this is in gen-
eral not the case for the generalized approximation

spaces (one can define indiscernibility by x 2 IðyÞ
and discernibility by IðxÞ \ IðyÞ ¼ ; for any objects

x; y).
The idea of Boolean reasoning (Brown, 1990) is

based on construction for a given problem P a

corresponding Boolean function fP with the fol-

lowing property: the solutions for the problem P

can be decoded from prime implicants of the

Boolean function fP . Let us mention that to solve

real-life problems it is necessary to deal with

Boolean functions having huge size and large

number of variables.

It is important to note that the methodology

allows to construct heuristics having a very im-

portant approximation property which can be for-
mulated as follows: expressions generated by

heuristics (i.e., implicants) close to prime impli-

cants define approximate solutions for the prob-

lem.

Given an information system IS a reduct is a

minimal set of attributes B � A such that

IðAÞ ¼ IðBÞ. Finding a minimal reduct is NP-hard;

one can also show that for any m (sufficiently
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large) there exists an information system with m

attributes having an exponential number of re-

ducts. There exist fortunately good heuristics that

compute sufficiently many reducts in an acceptable

time.

Let IS be an information system with n objects.
The discernibility matrix of IS is a symmetric n� n
matrix with entries cij as given below. Each entry

consists of the set of attributes upon which objects

xi and xj differ.

cij ¼ fa 2 AjaðxiÞ 6¼ aðxjÞg for i; j ¼ 1; . . . ; n

A discernibility function fIS for an information

system IS is a Boolean function of m Boolean
variables a�1; . . . ; a

�
m (corresponding to the attri-

butes a1; . . . ; am) defined by

fISða�1; . . . ; a�mÞ ¼ ^ _ c�ijj1
n

6 j6 i6 n; cij 6¼ ;
o

where c�ij ¼ fa�ja 2 cijg. In the sequel we will write

ai instead of a�i .
The discernibility function fIS describes con-

straints which should be preserved if one would

like to preserve discernibility between all pairs of
discernible objects from IS. It requires to keep at

least one attribute from each non-empty entry of

the discernibility matrix, i.e., corresponding to any

pair of discernible objects. One can show (Skow-

ron and Rauszer, 1992) that the sets of all minimal

sets of attributes preserving discernibility between

objects, i.e., reducts correspond to prime impli-

cants of the discernibility function fIS.
The intersection of all reducts is the so-called

core. It is well known that choosing random reduct

as a relevant set of features in information system

will give rather poor results. Hence, several tech-

niques have been developed to select relevant re-

ducts or their approximations. Among them is one

base on so-called dynamic reducts (Bazan et al.,

1994, 1998). The attributes are considered relevant
if they belong to dynamic reducts with a sufficiently

high stability coefficient, i.e., they appear with

sufficiently high frequency in random samples ex-

tracted from a given information system.

There are several kinds of reducts considered

for decision tables. We will discuss one of them.

Let A ¼ ðU ;A; dÞ be a decision system (i.e., we

assume, for simplicity of notation, the set D of

decision attributes consists of one element d only,

D ¼ fdg and C ¼ A). The generalized decision in

A is the function oA : U ! PðVdÞ defined by

oAðxÞ ¼ fij9x0 2 Ux0 INDðAÞx and dðx0Þ ¼ ig

A decision system A is called consistent (deter-

ministic), if joAðxÞj ¼ 1 for any x 2 U , otherwise A
is inconsistent (non-deterministic). Any set con-

sisting of all objects with the same generalized

decision value is called the generalized decision

class. The decision classes are denoted by Ci where

the subscript denotes the decision value.

It is easy to see that a decision system A is

consistent if, and only if, POSAðdÞ ¼ U . More-

over, if oB ¼ oB0 , then POSBðdÞ ¼ POSB0 ðdÞ for
any pair of non-empty sets B, B0 � A. Hence,

the definition of a decision–relative reduct: a sub-

set B � A is a relative reduct if it is a minimal

set such that POSAðdÞ ¼ POSBðdÞ. Decision–rela-

tive reducts may be found from a discernibility

matrix: MdðAÞ ¼ ðcdijÞ assuming cdij ¼ cij � fdg if

(joAðxiÞj ¼ 1 or joAðxjÞj ¼ 1) and oAðxiÞ 6¼ oAðxjÞ;
cdij ¼ ;, otherwise. Matrix MdðAÞ is called the
decision–relative discernibility matrix of A. Con-

struction of the decision–relative discernibility

function from this matrix follows the construction

of the discernibility function from the discernibil-

ity matrix. One can show that the set of prime

implicants of f d
MðAÞ defines the set of all decision–

relative reducts of A. Because the core is the in-

tersection of all reducts, it is included in every
reduct, i.e., each element of the core belongs to

some reduct. Thus, in a sense, the core is the most

important subset of attributes, since none of its

elements can be removed without affecting of the

classification power of attributes. Yet another kind

of reducts, called reducts relative to objects can be

used for generation of minimal decision rules from

decision tables (Skowron, 2000). In some appli-
cations, instead of reducts we prefer to use their

approximations called a-reducts, where a 2 ½0; 1� is
a real parameter. For a given information system

A ¼ ðU ;AÞ the set of attributes B � A is called a-
reduct if B has non-empty intersection with at least

a � 100% of non-empty sets ci;j of the discernibility

matrix of A. Different kinds of reducts and their

approximations are discussed in literature as a
basic constructs for reasoning about data repre-
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sented in information systems or decision tables. It

turns out that they can be efficiently computed

using heuristics based on Boolean reasoning ap-

proach.

3. Feature selection

Feature selection is a process of finding a subset

of features, from the original set of features

forming patterns in a given data set, optimal ac-

cording to the given goal of processing and crite-

rion. An optimal feature selection is a process of

finding a subset Aopt ¼ fa1;opt; a2;opt; . . . ; am;optg of
A, which guarantees accomplishment of a pro-

cessing goal by minimizing a defined feature se-

lection criterion JfeatureðAfeature subsetÞ. A solution of

an optimal feature selection does not need to be

unique.

One can distinguish two paradigms in data

model building, and potentially in an optimal

feature selection (minimum construction para-
digms): the Occam�s razor and minimum descrip-

tion length principle (Rissanen, 1978).

In the virtue of the minimum construction idea,

one of the techniques for the best feature selection

could be based on choosing a minimal feature

subset that fully describes all concepts (for exam-

ple classes in prediction-classification) in a given

data set (Almuallim and Dietterich, 1991; Pawlak,
1991). Let us call this paradigm a minimum con-

cept description. However, this approach, good for

a given (possibly limited) data set, may not be

appropriate for processing of unseen patterns. A

robust processing algorithm, with the associated

set of features (reflecting complexity), is a trade-off

between the ability of processing a given data set,

versus generalization ability.
The second general paradigm of optimal feature

selection, mainly used in classifier design, relates to

selecting a feature subset which guarantees the

maximal between-class separability for the reduced

data sets. This relates to the discriminatory power

of features.

Feature selection methods consists of two main

streams (Duda and Hart, 1973; Fukunaga, 1990;
Bishop, 1995; John et al., 1994): open-loop methods

and closed-loop methods. The open-loop methods

(filter method) are based mostly on selecting fea-

tures using between-class separability criterion

(Duda and Hart, 1973). They do not use a feed-

back from predictor quality for the feature selec-

tion process. The closed-loop methods (John et al.,

1994) called also the wrapper methods, are based
on feature selection using a predictor performance

(and thus forming a feedback in processing) as a

criterion of feature subset selection. A selected

feature subset is evaluated using as a criterion

Jfeature ¼ Jpredictor a performance evaluation Jpredictor

of a whole prediction algorithm for the reduced

data set containing patterns with the selected fea-

tures as pattern�s elements.
Let us consider a problem of defining a feature

selection criterion for a prediction task based on

an original data set T containing N cases

ða; targetÞ constituted with n-dimensional input

patterns a and target pattern of output. Assume

that the m-feature subset Afeature � A ought to be

evaluated based on the closed-loop type criterion.

A reduced data set Tfeature, with patterns containing
only m-features from the subset Afeature, should be

constructed. Then a type of predictor PRfeature (for

example k-nearest neighbors, or neural network),

used for feature quality evaluation, should be de-

cided. This predictor ideally should be the same as

a final predictor PR for a whole design; however,

in simplified sub-optimal solution, a computa-

tionally less expensive predictor can be used only
for feature selection purpose. Let us assume that,

for the considered feature set A, a reduced feature

data set Afeature has been selected and a predictor

algorithm PRfeature based on Afeature, used for fea-

ture evaluation, decided. Then, evaluation of fea-

ture quality can be provided using one of methods

used for the final predictor evaluation. This will

require defining a performance criterion JPRfeature
,

of a predictor PRfeature, and an error counting

method which will show how to estimate a per-

formance through averaging of results. Consider

as an example a hold-out error counting method

for predictor performance evaluation. In order

to evaluate performance of a predictor PRfeature,

an extracted feature data set Tfeature is split into a

Ntra case training set Tfeature;tra, and a Ntest case
test set Tfeature;test (hold out for testing). Each case

ðaif ; targetiÞ of both sets contains a feature pattern
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aif labeled by a targeti. The evaluation criteria can

be defined separately for prediction-classification

and prediction-regression.

We will consider defining feature selection cri-

terion for a prediction-classification task, when a

feature subset Tfeature case contains pairs ðaf ; ctargetÞ
of a feature input pattern af and a categorical type

target ctarget taking value corresponding to one of

possible r decision classes Ci. The quality of clas-

sifier PRfeature, computed basing on the limited size

test set Tfeature;test with Ntest patterns, can be mea-

sured using the following performance criterion

JPRfeature
(here equal to a feature selection criteria

Jfeature)

JPRfeature
¼ ĴJall miscl ¼

nall miscl

Ntest

� 100% ð1Þ

where nall miscl is the number of all misclassified

patterns, and Ntest is the number of all tested pat-
terns. This criterion estimates the probability of

error (expressed in percent) by the relative fre-

quency of error. Usually some statistical methods

(e.g., cross-validation techniques) are used to ob-

tain better estimation of the predictor quality.

An overview of feature selection methods can

be find in (Liu and Motoda, 1998a,b). Let us only

mention that several methods of feature selection
are inherently built in a predictor design proce-

dure (Quinlan, 1993) and some methods of fea-

ture selection merge feature extraction with feature

selection. A feature reduction (pruning) method

for a self-organizing neural network map, based

on concept description, is suggested in (Lobo et al.,

1997).

We will concentrate in the following sections on
rough set approach to feature selection and on

some relationships of rough set methods with the

existing ones.

3.1. Feature selection based on rough sets

Rough set approach to feature selection can be

based on the minimal description length principle
(Rissanen, 1978) and tuning methods of parame-

ters of the approximation spaces to obtain high

quality classifiers based on selected features. We

have mentioned before an example of such pa-

rameter with possible values in the powerset of the

feature set, i.e., related to feature selection. Other

parameters can be used e.g., to measure the

closeness of concepts (Skowron, 2000).

One can distinguish two main steps in this ap-

proach.

In the first step, by using Boolean reasoning
relevant kinds of reducts from given data tables

are extracted. These reducts are preserving exactly

the discrenibility (and also some other) constraints

(e.g., reducts relative to objects in process for

minimal decision rules generation).

In the second step, by means of parameter

tuning reduct approximations are extracted. These

reduct approximations allow for shorter concept
description than the exact reducts and they are still

preserving the constraints to a sufficient degree to

guarantee, e.g., a sufficient approximation quality

of the described (induced) concept (Skowron,

2000).

In using rough sets for feature selection two

cases can be distinguished, namely global and local

feature selection scheme. In the former case the
relevant attributes for the whole data table are

selected while in the latter case the descriptors of

the form ða; vÞ where a 2 A and v 2 Va are selected

for a given object. In both cases we are searching

for relevant features for the object classification. In

the global case we are searching for features de-

fining a partition (or covering) of the object uni-

verse. This partition should be relevant for
describing together with some other features the

approximation of partition (or part of it) defined

by the decision attribute. In the local case we are

extracting descriptors defining together with some

other descriptors a relevant neighborhood for a

given object with respect to a decision class.

Using of rough sets (Pawlak, 1991; Bazan et al.,

1994, 1998) to feature selection was proposed in
several contributions (see, e.g., Swiniarski and

Nguyen, 1996; Swiniarski et al., 1995). The sim-

plest approach is based on calculation of a core for

discrete attribute data set, containing strongly

relevant features, and reducts, containing a core

plus additional weakly relevant features, such that

each reduct is satisfactory to determine concepts in

the data set. Based on a set of reducts for a data set
some criteria for feature selection can be formed,

for example selecting features from a minimal
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reduct, i.e., a reduct containing minimal set of

attributes. In order to find a robust (well-general-

izing) feature subset, dynamic reducts were pro-

posed (Bazan et al., 1994, 1998). The selection of

dynamic reduct is based on the cross-validation

method. The methods of dynamic reducts gener-
ation have been applied for relevant feature ex-

traction, e.g., for dynamic selection of features

represented in discretization as well as in the pro-

cess of relevant decision rules inducing. In order to

find a robust feature subset, reflecting generaliza-

tion, dynamic reducts were proposed in (Bazan

et al., 1994, 1998), construction of which is based

on cross-validation in feature subset selection.
Some other methods based on non-invasive data

analysis and rough sets are reported in (Duentsch

and Gediga, 1997).

Let us now summarize the applications of rough

set methods for feature selection in closed loop.

The method is based on searching first for short

(dynamic) reducts or reduct approximations. This

step can be realized using for example software
systems like ROSETTA (see www page: http://

www.idi.ntnu.no/�aleks/rosetta/rosetta.html or

RSES: see www page: www.roughsets.org). The

next step is based on genetic algorithm with the

fitness function measuring the quality of the se-

lected reduct approximation B dependent, among

others, on (i) the quality of the reduct approxima-

tion by the set B, (ii) the cardinality of the feature
set B, (iii) the discernibility power of the feature set

Bwith respect to the discernibility between decision

classes measured, e.g., by means of the approxi-

mation quality of a D-reduct by B, (iv) the number

of equivalence classes created by a feature set on a

given data set and/or the number of rules generated

by this set (Wr�ooblewski, 2001), (v) the closeness of

concepts (Skowron, 2000), (vi) the conflict resolu-
tion strategy (Szczuka et al., 2001). The parameters

used to specify and compose the above components

into a fitness function are tuned in evolutionary

process to obtain the classifier of the highest quality

using the feature set B. The classifier quality is

measured by means of the quality of new ob-

ject classification. Let us finally mention recently

reported results based on ensambles of classifiers
constructed on the basis of different reducts (see,

e.g., Wr�ooblewski, 2001).

In the following subsections we point out some

relationships of rough set approach with the ex-

isting methods for feature selection. The conclu-

sion is that these methods are strongly related to

extraction of different kinds of reducts.

3.2. Relevance of features

There have been both deterministic and prob-

abilistic attempts to define feature relevancy

(Almuallim and Dietterich, 1991; John et al., 1994;

Pawlak, 1991).

Rough set theory (Pawlak, 1991; Skowron,

2000) defines deterministic strong and weak rele-
vance for discrete features and discrete targets. For

a given data set a set of all strongly relevant features

forms a core. A minimal set of features satisfactory

to describe concepts in a given data set, including a

core and possibly some weakly relevant features,

form a reduct. A core is an intersection of reducts.

We will show that different kinds of definitions

of relevant features correspond to different kinds
of reducts.

Let us denote by ai a vector of features (attri-

butes) (a1; a2; . . . ; ai�1; aiþ1; . . . ; an) obtained from

the original feature vector a by removing ai. By vi
is denoted a value of ai (John et al., 1994).

A feature ai is relevant if there exists some value

vi of that feature, a decision value (predictor out-

put) v, and value vi (generally a vector) for which
Pðai ¼ viÞ > 0 such that

Pðd ¼ v; ai ¼ vijai ¼ viÞ 6¼ P ðd ¼ v; ai ¼ viÞ ð2Þ

In the light of this definition a feature ai is relevant

if probability of a target (given all features) can

change if we remove knowledge about a value of

that feature.

In (John et al., 1994) other definitions of strong

and weak relevance were introduced.

A feature ai is strongly relevant if there exists
some value of that feature vi, a value v (predictor

output) of decision d and a value vi of a ai for

which P ðai ¼ vi; ai ¼ viÞ > 0 such that

Pðd ¼ vjai ¼ vi; ai ¼ viÞ 6¼ P ðd ¼ vjai ¼ viÞ ð3Þ
Strong relevance implies that a feature is indis-

pensable, i.e., that its removal from a feature
vector will change prediction accuracy.
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Let us assume DT ¼ ðU ;A; dÞ be a decision

table where Vd ¼ f1; . . . ; rg. The decision d defined

the (target) classes Cs ¼ fx 2 U jdðxÞ ¼ sg for

s ¼ 1; . . . ; r. We define a new decision table

DTd ¼ ðU ;A; dAÞ assuming dAðxÞ ¼ ðlA
C1
ðxÞ; . . . ;

lA
Cs
ðxÞÞ for x 2 U . It means that the new decision is

equal to the probability distribution defined by the

case x in decision table DT. Now one can show

that the reducts relative to such decision, called

frequency related reducts (�SSle�zak, 2001), consists

of relevant features in the above defined sense, any

maximal set of relevant features is a reduct of this

kind.

One can also define reducts corresponding to
the relevant features specified by means of the

definition of relevant feature as well as the fol-

lowing one.

A feature ai is weakly relevant if it is not

strongly relevant, and there exists a subsequence bi
of ai, for which there exist: some value of that

feature vi, a decision value (predictor output) v of

d, and a value vi of vector bi, for which
P ðai ¼ vi; bi ¼ viÞ > 0 such that

P ðd ¼ vjbi ¼ vi; ai ¼ viÞ 6¼ P ðd ¼ vjbi ¼ viÞ ð4Þ
One can observe that a weak relevance indicates

that a feature might be dispensable (i.e., not rele-

vant), however, sometimes (in companion with
some other features) it may improve prediction

accuracy.

A feature is relevant if it is either strongly rel-

evant or weakly relevant, otherwise it is irrelevant.

We can see that irrelevant features will never

contribute to prediction accuracy, thus can be re-

moved.

It has been shown in (John et al., 1994) that for
some predictor designs feature relevancy (even

strong relevancy) does not imply that a feature

must be in an optimal feature subset.

3.3. Criteria based on mutual information

Entropy can be used as a mutual information

measure of data set for feature selection. Let us
consider a decision table (data set) DT ¼ ðU ;A; dÞ.
Assume A ¼ fa1; . . . ; ang. Then any n-dimensional

pattern vector aðxÞ ¼ ða1ðxÞ; . . . ; anðxÞÞ where x 2
U is labelled by a decision class from C ¼

ðC1; . . . ;CrÞ. The value of mutual information

measure for a given feature set B � A can be un-

derstood as the suitability of feature subset B for

classification.

If initially only probabilistic knowledge about

classes is given, then the uncertainty associated
with the data can be measured by entropy

EðCÞ ¼ �
Xr
i¼1

P ðCiÞ log2 PðCiÞ ð5Þ

where P ðCiÞ is the a priori probability of a class Ci

occurrence. It is known that entropy EðCÞ is an

expected amount of information needed for class
prediction.

As a measure of uncertainty, the conditional

entropy EðCjBÞ, upon subset of features B, can be

defined for discrete features as

EðCjBÞ ¼ �
X
all v

P ðvÞ
Xr
i¼1

P ðCijvÞ log2 P ðCijvÞ
 !

ð6Þ
More generally for continuous features we have

EðCjBÞ ¼ �
Z

all v

pðvÞ
Xr
i¼1

P ðCijvÞ log2 P ðCijvÞ
 !

ð7Þ
where pðvÞ is a probability density function. The

mutual information MIðC;BÞ between the classi-

fication and feature subset B is measured by a

decrease of uncertainty about prediction of classes

given knowledge about patterns v formed from
features B

JfeatureðBÞ ¼ MIðC;BÞ ¼ EðCÞ � EðCjBÞ ð8Þ
One can consider entropy related reducts (�SSle�zak,
2001) and Boolean reasoning to extract relevant

feature sets with respect to the entropy measure.

Moreover, using Boolean reasoning one can search
for frequency related reducts preserving probabil-

ity distributions to a satisfactory degree.

3.4. Criteria based on inconsistency count

An example of criteria for feature subset eval-

uation can be the inconsistency measure (Pawlak,

1991; Liu and Setiono, 1996).

840 R.W. Swiniarski, A. Skowron / Pattern Recognition Letters 24 (2003) 833–849



The idea of attribute reduction can be general-

ized by introducing a concept of significance of

attributes which enables to evaluate attributes not

only in the two-valued scale dispensable––relevant

(indispensable) but also in the multi-value case by

assigning to an attribute a real number from the
interval ½0; 1� that expresses the importance of an

attribute in the information table.

Significance of an attribute can be evaluated by

measuring the effect of removing the attribute

from an information table.

It was shown previously that the number

cðC;DÞ expresses the degree of dependency be-

tween attributes C and D, or the accuracy of the
approximation of U=D by C. It may be now

checked how the coefficient cðC;D) changes when

attribute a is removed. In other words, what is the

difference between cðC;D) and cðC � fag;DÞ. The

difference is normalized and the significance of

attribute a is defined by

rðC;DÞðaÞ ¼
ðcðC;DÞ � cðC � fag;DÞÞ

cðC;DÞ

¼ 1 � cðC � fag;DÞ
cðC;DÞ

Coefficient rC;DðaÞ can be understood as a classi-

fication error which occurs when attribute a is

dropped. The significance coefficient can be ex-
tended to sets of attributes as follows:

rðC;DÞðBÞ ¼
ðcðC;DÞ � cðC � B;DÞÞ

cðC;DÞ

¼ 1 � cðC � B;DÞ
cðC;DÞ

The inconsistency rate used in (Liu and Setiono,
1996) for a reduced data set can be expressed by

JincðBÞ ¼ rðC;DÞðBÞ.
Another possibility is to consider as relevant the

features that come from approximate reducts of

sufficiently high quality.

Any subset B of C is called an approximate

reduct of C and the number

eðC;DÞðBÞ ¼
ðcðC;DÞ � cðB;DÞÞ

cðC;DÞ ¼ 1 � cðB;DÞ
cðC;DÞ

is called an it error of reduct approximation. It

expresses how exactly the set of attributes B ap-

proximates the set of condition attributes C with

respect to determining D.

Several other methods of reduct approximation

based on measures different from positive region

have been developed. All experiments confirm the
hypothesis that by tuning the level of approxima-

tion the quality of the classification of new objects

may be increased in most cases. It is important to

note that it is once again possible to use Boolean

reasoning to compute the different types of reducts

and to extract from them relevant approximations.

3.5. Criteria based on interclass separability

Some of the criteria for feature selection which

are based on interclass separability are based on

an idea of Fisher�s linear transformation: a good

feature (with a high discernibility power) should

cause a small within-class scatter and a large be-

tween-class scatter (Duda and Hart, 1973; Fuku-

naga, 1990).
Rough set approach also offers methods to deal

with interclass separability. In (Skowron, 1995) so-

called D-reducts have been investigated. These

reducts preserve not only discernibility between

required pairs of cases (objects) but also they allow

to keep the distance between objects from different

decision classes above a given threshold (if this is

possible).

3.6. Criteria based on minimum concept description

Open loop type criteria of feature selection

based on minimum construction paradigm were

studied (Almuallim and Dietterich, 1991) in ma-

chine learning and in statistics for discrete features

noise free data sets. The straightforward tech-
niques of best feature selection could be choosing a

minimal feature subset that fully describes all

concepts (for example classes in classification) in a

given data set (see, e.g., Almuallim and Dietterich,

1991; Pawlak, 1991). Here a criterion of feature

selection could be defined as Boolean function

JfeatureðBÞ with value 1 if a feature subset B is sat-

isfactory to describe all concepts in a data set,
otherwise having a value 0. The final selection

would based on choosing a minimal subset for

which a criterion gives value 1.
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An idea of feature selection, with the minimum

concept description criterion, can be extended by

using concept of reduct defined in theory of rough

sets (Pawlak, 1991; Skowron, 2000). A reduct is a

minimal set of attributes that describes all con-

cepts. However, a data set may have many reducts.
If we use definition of the above open-loop fea-

ture selection criterion, we can see that for each

reduct B we have maximum value of the criterion

JfeatureðBÞ. Based on a paradigm of the minimum

concept description, we can select a minimum

length reduct as the best feature subset. However,

the minimal reduct is good for ideal situations

where a given data set fully represents a domain of
interest. For real life situations, and limited size

data sets, other reduct (generally other feature

subset) might be better for generalizing prediction.

A selection of robust (generalizing) reduct, as a

best open-loop feature subset, can be supported

by introducing an idea of dynamic reduct (Bazan

et al., 1994, 1998).

3.7. Feature selection with individual feature rank-

ing

One of straightforward feature selection proce-
dures is based on an evaluation of predictive

power of individual features, then ranking such

evaluated features, and eventually choosing the

first best m features (Kudo and Sklansky, 2000). A

criterion applied to an individual feature could be

of either of the open-loop or closed-loop type. This

algorithm has limitations and assumes indepen-

dency of features, also relies on an assumption that
the final selection criterion can be expressed as a

sum or products of the criteria evaluated for each

feature independently. It can be expected that a

single feature alone may have a very low predictive

power, whereas this feature when put together

with others, may demonstrate significant predic-

tive power.

One can attempt to select a minimal number m̂m
of the best ranked features that guarantees a

performance better or equal to a defined level

according to a certain criterion Jfeature;ranked.

One of criteria evaluating predictive power of a

feature could be defined by the rough set measure

of significance of the feature (attribute) discussed

before.

4. PCA and rough sets for feature projection,

reduction and selection

Orthonormal projection and reduction of pat-

tern dimensionality may improve the recognition

process by considering only the most important

data representation, possibly with uncorrelated

elements retaining maximum information about

the original data and with possible better gener-

alization abilities.
We will discuss PCA for feature projection

and reduction, followed by the joint method of

feature selection using PCA and rough sets

method.

4.1. PCA for feature projection and reduction

We generally assume that our knowledge about
a domain is represented as a limited size sample of

N random n-dimensional patterns x 2 Rn repre-

senting extracted object�s features. We assume that

an unlabeled training data set T ¼ fx1; x2; . . . ; xNg
can be represented as a N � n data pattern matrix

X ¼ x1; x2; . . . ; xN½ �T. Let the eigenvalues of the

covariance matrix Rx of X are arranged in the

decreasing order k1 P k2 P � � � kn P 0, with the cor-
responding orthonormal eigenvectors e1; e2; . . . ; en.
Then the optimal linear transformation

y ¼ cWWKLTx ð9Þ

is provided using the m� n optimal Karhunen–

Lo�eeve transformation (KLT) matrix cWWKLT ¼
e1; e2; . . . ; em½ �T composed with m rows being the

first m orthonormal eigenvectors of the original

data covariance matrix Rx. The optimal matrixcWWKLT transforms the original n-dimensional pat-

terns x into m-dimensional (m6 n) feature pat-

terns y

Y ¼ ðcWWKLTX
TÞT � XcWW T

KLT ð10Þ

minimizing the mean least square reconstruction
error.
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The open question remains, which principal

components to select as the best for a given pro-

cessing goal.

We have applied PCA, with the resulting KLT

(Duda and Hart, 1973; Bishop, 1995), for the or-

thonormal projection (and reduction) of reduced
SVD patterns xsvd;r representing recognized face

images.

The selection of the best principal components

for classification purpose is yet another feature

selection problem. In the next section we will dis-

cuss an application of rough sets for feature se-

lection/reduction.

4.2. Application of rough set based reducts for

selection of discriminatory features from principal

components

The PCA, with resulting linear KL projection,

provides feature extraction and reduction optimal

from the point of view of minimizing the recon-

struction error. However, PCA does not guarantee
that selected first principal components, as a fea-

ture vector, will be adequate for classification.

Nevertheless, the projection of high dimensional

patterns into lower dimensional orthogonal prin-

cipal components feature vectors might help for

some data types to provide better classification.

In many applications of PCA an arbitrary

number of the first dominant principal compo-
nents is selected as a feature vector. However,

these methods do not cope with the selection of

the most discriminative features well suitable for

classification task. Even assuming that the KL

projection can help in classification, and can be

used as a first step in the feature extraction/selec-

tion procedure, still an open question remains:

‘‘Which principal components to choose for clas-
sification’’?

One of possibilities for selecting features from

principal components is to apply rough set theory

(Pawlak, 1991; Skowron, 2000). Specifically, de-

fined in rough set computation of a reduct can be

used for selection some of principal components

being a reduct. Thus these principal component

will describe all concepts in a data set. For a sub-
optimal solution one can choose the minimal

length reduct or dynamic reduct as selected set of

principal components forming a selected, final

feature vector.

The following steps can be proposed for PCA

and rough set based procedure for feature selec-

tion. Rough sets assume that a processed data set

contains patterns labeled by associated classes,
with the discrete values of its elements (attributes,

features). We know that PCA is predisposed to

transform optimally patterns with real-valued

features (elements). Thus after realizing the KLT,

resulting projected patterns features must be

discretized by some adequate procedure. The re-

sulting discrete attribute valued data set (an in-

formation system) can be processed using rough
set methods.

Let us assume that we are given a limited size

data set T, containing N cases labeled by asso-

ciated classes

T ¼ fðx1; c1
targetÞðx2; c2

targetÞ; . . . ; ðxN ; cNtargetÞg ð11Þ

Each case ðxi; citargetÞ (i ¼ 1; 2; . . . ;N ) is constituted

with a n-dimensional real-valued pattern xi 2 Rn

with corresponding categorical target class citarget.
We assume that a data set T contains Ni

(
Pl

i Ni ¼ N ) cases from each categorical class ci,
with the total number of classes denoted by l.

Since PCA is an unsupervised method, first,

from the original, class labeled data set T, a

pattern part is isolated as N � n data pattern

matrix

X ¼

x1

x2

..

.

xN

2664
3775 ð12Þ

where each row contains one pattern. The PCA

procedure is applied for extracted pattern matrix

X, with resulting full size n� n optimal KL matrix
WKLT (where n is a length of an original pattern x).
Now, according to the designer decision, the

number m6 n of first dominant principal compo-

nents has to be selected. Then the reduced m� n
KL matrix WKLT, containing only first m rows of a

full size matrix W, is constructed. Applying the

matrix WKLT the original n-dimensional pattern x
can be projected using transformation y ¼ WKLTx,
into the reduced m-dimensional patterns y in the
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principal components space. The entire projected

N � m matrix Y of patterns can be obtained by the

formula Y ¼ XWT
KLT.

At this stage, the reduced, projected data set,

represented by Y (with real-valued attributes), has
to be discretized. As a result, the discrete attribute

data set represented by the N � m matrix Yd is

computed. Then, the patterns from Yd are labeled

by the corresponding target classes from the

original data set T. It forms a decision table DTm

with m-dimensional principal component related

patterns. From the decision table DTm one can

compute the selected reduct Afeature;reduct of size l

(for example minimal length or dynamic reduct) as

a final selected attribute set. Here a reduct com-

putation is pure feature selection procedure. Se-

lected attributes (being a reduct) are some of

elements of projected principal components vector

y.
Once the selected attribute set has been found

(as a selected reduct), the final discrete attribute
decision table DTf ;d is composed. It consist of

these columns from the discrete matrix Yd which

are included in the selected feature set Afeature;reduct.

Each pattern in DTf ;d is labeled by the corre-

sponding target class. Similarly one can obtain a

real-valued resulting reduced decision table DTf ;1

extracting (and adequately labeling by classes)

these columns from the real-valued projected ma-
trix Y which are included in the selected feature set

Afeature;reduct. Both resulting reduced decision tables

can be used for a classifier design.

Algorithm. Feature extraction/selection using PCA

and rough sets

Given: A N-case data set T containing n-
dimensional patterns, with real-valued attributes,
labeled by l associated classes fðx1; c1

targetÞ; ðx2;
c2
targetÞ; . . . ; ðxN ; cNtargetÞg.

1. Isolate from the original class labeled data set

T, a pattern part as N � n data pattern matrix

X .

2. Compute for the matrix X the covariance ma-

trix Rx.
3. Compute for the matrix Rx the eigenvalues and

corresponding eigenvectors, and arrange them

in descending order.

4. Select the reduced dimension m6 n of a feature

vector in principal components space using de-

fined selection method, which may base on

judgement of the ordered values of computed

eigenvalues.
5. Compute the optimal m� n KLT matrix WKLT

based on eigenvectors of Rx.

6. Transform original patterns from X into m-

dimensional feature vectors in the principal

component space by formula y ¼ WKLTx for a

single pattern, or formula Y ¼ XWKLT for a

whole set of patterns (where Y is N � m matrix).

7. Discretize the patterns in Y with resulting ma-
trix Yd .

8. Compose the decision table DTm constituted

with the patterns from the matrix Yd with the

corresponding classes from the original data

set T.

9. Compute a selected reduct from the decision

table DTm treated as a selected set of features

Afeature;reduct describing all concepts in DTm.
10. Compose the final (reduced) discrete attribute

decision table DTf ;d containing these columns

from the projected discrete matrix Yd which

are correspond to the selected feature set

Afeature;reduct. Label patterns by corresponding

classes from the original data set T.

11. Compose the final (reduced) real-valued attrib-

ute decision table DTf ;r containing these col-
umns from the projected discrete matrix Yd

which are correspond to the selected feature

set Afeature;reduct. Label patterns by corresponding

classes from the original data set T.

The results of discussed method of feature ex-

traction/selection depend on a data set type and

three designer decisions:

1. Selection of dimension m6 n of projected pat-

tern in the principal component space.

2. Discretization method (and resulting quantiza-

tion) of projected data.

3. Selection of a reduct.

First, for the selected dimension m, the applied
quantization method may lead to the decision

table DTm for which no reduct exists. Then, a

designer should return to the discretization step
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and select other discretization. Even, if for all

possible discretization attempts a reduct cannot be

found, then a return is realized to the stage of se-

lecting a dimension m of reduced feature vector y
in principal component space. It means that pos-

sibly the projected vector does not contain satis-
factory set of features. In this situation a design

procedure should provide the next iteration with

selected larger value of m. If for m ¼ n a reduct

cannot be found, a data set is not classifiable in

precise deterministic sense. Lastly, selection of re-

duct will impact an ability of a designed classifier

to generalize prediction for unseen objects.

5. Numerical experiments

5.1. Face recognition

As a demonstration of a role of rough set

methods for feature selection/reduction we have

carried on numerical experiments of face recogni-
tion. We have considered ORL (see web page:

www.cam-orl.co.uk/facedatabase.html) gray scale

face image data sets. We have provided separately

recognition experiments for 10 category data sets,

and 40 category data sets of face images. Each

category was represented by 10 instances of face

images. Each gray scale face image was of the di-

mension 112 � 92 pixels. Feature extraction from
face images has been provided by SVD.

Classification of face images was performed

with a single hidden layer error back propagation

neural network, learning vector quantization

(LVQ) neural network, and rule-based rough set

classifier.

5.1.1. SVD as a feature extraction from face images

SVD can be used to extract features from im-

ages. A rectangular n� m real image represented

by n� m matrix A, where m6 n, can be trans-

formed into a diagonal matrix by means of SVD.

Assume the rank of matrix A is r6m. The matri-

ces AAT and ATA are non-negative, symmetric and

have the identical eigenvalues ki. For m6 n there

are at most r6m non-zero eigenvalues. The SVD
transform decomposes matrix A into the product

of two orthogonal matrices W of dimension n� r,

and U of dimension m� r and a diagonal matrix

K1=2 of dimension r � r. The SVD of a matrix

(image) A is given by

A ¼ WK1=2UT ¼
Xr
i¼1

ffiffiffiffi
ki

p
wi/

T
i ð13Þ

where the matrix W, and U have r orthogonal

columns wi 2 Rn, /i 2 Rm (i ¼ 1; . . . ; r), respec-

tively (representing orthogonal eigenvectors of
AAT and ATA). The square matrix K1=2 has diag-

onal entries defined by

K1=2 ¼ diag
ffiffiffiffiffi
k1

p
;
ffiffiffiffiffi
k2

p
; . . . ;

ffiffiffiffi
kr

p� �
ð14Þ

where ri ¼
ffiffiffiffi
ki

p
(i ¼ 1; 2; . . . ; r) are the singular

values of the matrix A. Each ki, (i ¼ 1; 2; . . . ; r) is

the non-zero eigenvalue of AAT (as well as ATA).

Given a matrix A (an image) decomposed A ¼
WK1=2UT, and since W and U have orthogonal

columns, thus the SVD transform of the image A is

defined as

K1=2 ¼ WTAU ð15Þ

If the matrix A represents an n� m image, then r
singular values

ffiffiffiffi
ki

p
(i ¼ 1; 2; . . . ; r) from the main

diagonal of the matrix K1=2, can be considered as

extracted features of the image. These r singular

values can be arranged as an image feature vector

(SVD pattern) xsvd ¼ ½
ffiffiffiffiffi
k1

p
;
ffiffiffiffiffi
k2

p
; . . . ;

ffiffiffiffi
kr

p
�T of an

image.

Contrary to PCA, SVD is a purely matrix
processing technique and not a direct statistical

technique. The SVD decomposition is applied to

each face image separately as a face feature ex-

traction, whereas eigenfaces (Turk and Pentland,

1991) are obtained by projection of face vectors

into principal component space derived statisti-

cally from the covariance matrix of the set of im-

ages.
Despite of the expressive power of the SVD

transformation it is difficult to say arbitrarily how

powerful the SVD features could be for a classifi-

cation of face images.

The r-element SVD patterns can be heuristically

reduced by removing its rr trailing element which

values are below heuristically selected threshold

�svd. This can result in nsvd;r ¼ r � rr element
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reduced SVD patterns xsvd;r. In the next sections

we discuss techniques of finding reduced set of face

image features.

5.1.2. ORL data sets

The entire image data set was divided into
training and test sets: 70% of these sub-images

were used for the training set. Given original face

images set, we have applied feature extraction

using SVD of matrices representing image pixels.

As a result, we have obtained for each image a 92

element xsvd SVD pattern with features being the

singular values of an object matrix ordered in the

descending order. In the next step we have carried
out several simple classification experiments using

SVD patterns of different length in order to esti-

mate the sub-optimal reduction of those patterns.

These patterns are obtained by cutting of trailing

elements from the original 92-element SVD pat-

tern.

These experiments have helped to select 60-

element reduced SVD patterns xsvd;r. Then, ac-
cording to the proposed method, we have applied

PCA for feature projection/reduction based on

reduced SVD patterns from the training set. Sim-

ilarly as for the reduction for SVD pattern, we

have provided several classification experiments

for different length of reduced PCA patterns.

These patterns are obtained by considering only a

selected number of the first principal components.
Finally, the projected 60-element PCA patterns

have been in this way heuristically reduced to 20-

element reduced PCA patterns xsvd;r;pca;r. In the last

preprocessing step the rough set method has been

used for the final feature selection/reduction of the

reduced PCA continuous-valued patterns. For

discretization of the continuous reduced PCA

features we have applied the method of dividing
each attribute value range into 10 evenly spaced

bins. The discretized training set was used to find

relevant reducts, e.g., the minimal reduct. This

reduct was used to form the final pattern. The

training, and the test sets (decision tables) with

real-value pattern attributes were reduced ac-

cording to the selected reduct.

In the paper we describe the simplest approach
for relevant reduct selection. Existing rough set

methods can be used to search for other forms of

relevant reducts. Some of such methods we have

mentioned in Section 3.1. Among them are those

based on ensambles of classifiers (Dietterich,

1997). In our approach first a set of reducts of high

quality is induced. Such set is used to construct a

set of predictors and next from such predictors the
global predictor is constructed using evolutionary

approach (for details see, e.g., Wr�ooblewski, 2001).

Predictors based on these, more advanced methods

make possible to achieve predictors of better

quality. Certainly, the whole process of inducing

such classifiers needs more time.

In all these cases statistical methods, e.g., cross

validation techniques, are used to estimate the
robustness of the constructed predictors.

5.1.3. Neural network classifier

The designed error backpropagation neural

network classifier was composed with input layer,

one hidden layer and output layer followed by the

class choosing module. The network learning al-

gorithm had momentum and adaptive learning
techniques built into it. First, we have studied 10

category data set with 90% cases in the training set

and 10% cases in the test set. We have selected the

5-element reduct basing on the reduced 20-element

PCA pattern of the training set. The neural net-

work with 50 neurons in the hidden layer has been

designed. The number of hidden neurons was

chosen on the basis of performed experiments. The
neural network has provided 99% correct classifi-

cation of the test set. The rough set rule based

classifier for the discretized data set restricted to

the attributes from the 5-element reduct has ex-

hibited 100% accuracy.

We have also studied 40 category data set with

total number of 400 cases. For this data sets we

have selected 7-element reduct of the 320-case
training set as a base for the final feature selection

of reduced PCA patterns. The error backpropa-

gation neural network with 300 neurons has been

designed. The number of neurons in the hidden

layer has been chosen experimentally. The neural

network has provided 96.25% correct classification

of the 320 case training set, and 75.5% accuracy

for the 80 case test set. We have applied the resil-
ient backpropagation algorithm as a network

training function that updates weight and bias val-
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ues, with the performance criterion goal 0.000299.

The rough set rule based classifier for the discret-

ized data set restricted to the attributes from the 7-

element reduct has exhibited 94.5% accuracy for

the 80 case test set.

The LVQ neural network, trained for the
training set with reduced final patterns has pro-

vided 95.8% accuracy for the test set with 28 cases.

The network has been trained for 200 code-book

vectors and k ¼ 4 neighbors.

The SVD has demonstrated a potential as a

feature extraction method for face images. The

processing sequence: SVD, PCA with KLT, and

rough set approach created possibilities for a sig-
nificant reduction of pattern dimensionality with

increase of classification accuracy and generaliza-

tion. The considered classifiers have demonstrated

ability to recognize face images after such sub-

stantial reduction of pattern length.

5.2. Recognition of mammographic images

We have provided numerical experiments of

mammographic images recognition. The MIAS

MiniMammographic Database with 1024 � 1024

pixels images has been used in numerical experi-
ments (Suckling et al., 1994). The database con-

tains three types of class-labeled images: normal,

benign (abnormal), and malignant (abnormal).

For each abnormal image the coordinates of cen-

tre of abnormality and proximate radius (in pixels)

of a circle enclosing the abnormality, have been

given. For classifications the centre locations and

radii apply to clusters rather than to the individual
classifications. We have provided numerical ex-

periments of recognition of normal and abnormal

images (two category classification). We have se-

lected randomly 144 images for recognition ex-

periments. This set was divided into 128 case

training set and 16 case test set.

From the original 1024 pixel gray scale mam-

mographic image we have extracted a 64 � 64
pixels sub-image around the center of abnormality

(or at the average coordinate for normal cases).

For the selected 64 � 64 pixels sub-image we have

applied a histogram method as a feature extraction

method.

5.2.1. Feature extraction based on histogram

We have applied a histogram method for fea-

ture extraction from the mammographic images.

First, for a given nr � nc image with nr rows and nc
columns, the histogram nhb � nc matrix H for a
given number of bins nhb is extracted. Second, the

nh ¼ nhb � nc element histogram pattern xh is

formed from the histogram matrix H by concate-

nating of its subsequent columns of H: xh ¼
½h01 � � � h

0
nc�

0
. The 10 bin histogram has been used

to form the 10 � 64 ¼ 640 element histogram

pattern.

5.2.2. Classification

For the extracted histogram patterns in the next

phase the PCA method has been applied for pat-

tern projection into principal component space

followed by heuristic reduction of PCA pattern

length. In the final preprocessing step the rough set

methods have been applied for the final feature

selection and data sets reduction.
Classification of mammographic images have

been performed by the single hidden layer, error

back propagation neural network. The PCA

technique has allowed heuristic reduction of pro-

jected patterns to the length of 60 elements. Finally

the rough set technique has resulted with 8 element

reduced final patterns. For the reduced by rough

set histogram patterns the error backpropagation
network has provided 75.0% accuracy for the test

set.

The sequence of data mining steps, including

application of histogram for feature extraction,

PCA, and rough set for projection and feature

selection, has showed a potential for designing of

neural network classifiers for mammographic im-

ages.

6. Conclusion

We have presented a rough set method and its

role in feature selection for pattern recognition.

We have proposed the sequence of data mining

steps, including application of SVD, histograms,
PCA, and rough sets for feature selection. This

processing sequence has shown a potential for

feasible feature extraction and feature selection in
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designing of neural network classifiers for face

images and mammographic images. The discussed

method provides substantial reduction of pattern

dimensionality. Rough set methods have shown

ability to reduce significantly the pattern dimensi-

onality and have proven to be viable data mining
techniques as a front end of neural network clas-

sifiers.
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