
J.F. Peters et al. (Eds.): Transactions on Rough Sets I, LNCS 3100, pp. 120–143, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Towards Scalable Algorithms
for Discovering Rough Set Reducts

Marzena Kryszkiewicz1 and Katarzyna Cichoń1,2

1 Institute of Computer Science, Warsaw University of Technology
Nowowiejska 15/19, 00-665 Warsaw, Poland

mkr@ii.pw.edu.pl
2 Institute of Electrical Apparatus, Technical University of Lodz

Stefanowskiego 18/22, 90-924 Lodz, Poland
cichon@p.lodz.pl

Abstract. Rough set theory allows one to find reducts from a decision table,
which are minimal sets of attributes preserving the required quality of classifi-
cation. In this article, we propose a number of algorithms for discovering all
generalized reducts (preserving generalized decisions), all possible reducts
(preserving upper approximations) and certain reducts (preserving lower ap-
proximations). The new RAD and CoreRAD algorithms, we propose, discover
exact reducts. They require, however, the determination of all maximal attribute
sets that are not supersets of reducts. In the case, when their determination is in-
feasible, we propose GRA and CoreGRA algorithms, which search approximate
reducts. These two algorithms are well suited to the discovery of supersets of
reducts from very large decision tables.

1 Introduction

Rough set theory has been conceived as a non-statistical tool for analysis of imperfect
data [17]. Rough set methodology allows one to discover interesting data dependen-
cies, decision rules, repetitive data patterns and to analyse conflict situations [24].
The reasoning in the rough set approach is based solely on available information.
Objects are perceived as indiscernible if they have the same description in the system.
This may be a reason for uncertainty. Two or more objects identically described in
the system may belong to different classes (concepts). Such concepts, though vague,
can be defined roughly by means of a pair of crisp sets: lower approximation and
upper approximation. Lower approximation of a concept is a set of objects that surely
belong to that concept, whereas upper approximation is a set of objects that possibly
belong to that concept.

Rough set theory allows one to find reducts from a decision table, which are mini-
mal sets of attributes preserving the required quality of classification. For example, a
reduct may preserve lower approximations of decision classes, or upper approxima-
tions of decision classes, or both. A number of methods for discovering reducts have
already been proposed in the literature [2-8, 11, 15-17, 20-31]. The most popular

Towards Scalable Algorithms for Discovering Rough Set Reducts 121

methods are based on discernibility matrices [20]. Other methods are based, e.g., on
the theory of cones and fences [7, 19]. Unfortunately, the existing methods are not
capable to discover all reducts from very large decision tables, although research on
discovering rough set decision rules in large data sets started a few years ago (see
e.g., [9-10, 14]). One may try to overcome this problem either by applying heuristics
or data sampling or both, or by restricting search to looking for some reducts instead
of all of them.

Recently, we have proposed the GRA-like (GeneralizedReductsApriori) algorithms
for discovering approximate generalized, possible and certain reducts from very large
decision tables [13]. This article extends the results obtained in [13]. Here, we pro-
pose new algorithms - RAD and CoreRAD - for discovering exact generalized, possi-
ble and certain reducts. CoreRAD is a variation of RAD, which uses information on
the so-called core in order to restrict the number of candidates for reducts and the
number of scans of the decision table. The new algorithms require the determination
of all maximal sets that are not supersets of reducts (MNSR). The knowledge of

MNSR is sufficient to evaluate candidates for reducts correctly. The method of
creating and pruning candidates is very similar to the one proposed in GRA [13]. In
the case, when the calculation of MNSR is infeasible, we advocate to search ap-
proximate reducts. In the article, we first introduce the theory behind approximate
reducts and then present in detail respective algorithms (GRA and CoreGRA).

The layout of the article is as follows: In Section 2, we remind basic rough set no-
tions and prove some of their properties that will be applied in the proposed algo-
rithms. In Section 3, we propose the RAD algorithm for discovering generalized and
possible reducts. A number of optimizations of the basic algorithm are discussed as
well. The CoreRAD algorithm, which calculates both the core and the reducts, is
offered in Section 4. In Section 5, we discuss briefly how to adapt RAD and Core-
RAD for the discovery of certain reducts. The notions of approximate reducts are
introduced in Section 6. We prove that approximate reducts are supersets of exact
reducts. The properties of approximate generalized reducts are used in the construc-
tion of the GRA algorithm, which is presented in Section 7. In Section 8, we discuss
the CoreGRA algorithm, which calculates both the approximate generalized reducts
and the approximate core. In Section 9, we propose simple modifications of GRA and
CoreGRA that enable the usage of these algorithms for discovering approximate cer-
tain reducts. Section 10 concludes the results indicating that the proposed solutions
can be applied in the case of incomplete decision tables as well.

2 Basic Notions

2.1 Information Systems

An information system (IS) is a pair S = (O, AT), where O is a non-empty finite set of
objects and AT is a non-empty finite set of attributes, such that a: O → Va for any
a∈AT, where Va is called domain of the attribute a.

122 Marzena Kryszkiewicz and Katarzyna Cichoń

An attribute-value pair (a,v), where a∈AT and v∈Va, is called an atomic descriptor.
An atomic descriptor or its conjunction is called a descriptor [20]. A conjunction of
atomic descriptors for attributes A⊆AT is called A-descriptor.

Let S = (O, AT). Each subset of attributes A⊆AT determines a binary indiscernibil-
ity relation IND(A), IND(A) = {(x,y)∈O×O| ∀a∈A, a(x) = a(y)}. The relation IND(A),
A⊆AT, is an equivalence relation and constitutes a partition of O. Objects indiscerni-
ble with regard to their description on attribute set A in the system will be denoted by
IA(x); that is, IA(x) = {y∈O| (x,y)∈IND(A)}.

Property 1 [9]. Let A, B ⊆ AT.
a) If A ⊆ B, then IB(x) ⊆ IA(x).
b) IA∪B(x) = IA(x) ∩ IB(x).

c) IA(x) = ∩a∈A Ia(x).

Let X⊆O and A⊆AT. AX is defined as a lower approximation of X iff AX =

{x∈O| IA(x) ⊆ X} = {x ∈ X | IA(x) ⊆ X}. AX is defined as an upper approximation of

X iff AX = {x∈O| IA(x) ∩ X ≠ ∅} = ∪{IA(x)| x ∈ X}. AX is the set of objects that

belong to X with certainty, while AX is the set of objects that possibly belong to X.

2.2 Decision Tables

A decision table is an information system DT = (O, AT∪{d}), where d∉AT is a dis-
tinguished attribute called the decision, and the elements of AT are called conditions.
The set of all objects whose decision value equals k, k∈Vd, will be denoted by Xk. Let
us define the function ∂A: O → P(Vd), A⊆AT, as follows [18]:

∂A(x) = {d(y)| y∈IA(x)}.

∂A will be called A-generalized decision in DT. For A = AT, an A-generalized decision
will be also called briefly a generalized decision.

Table 1. DT = (O, AT∪{f}) extended
by generalized decision ∂AT.

Table 2. DT’ = (O, AT∪{∂AT}) – sorted and reduc-
ed version of DT from Table 1.

x∈O a b c D e f ∂AT x∈O in DT� (x∈O in DT) a b c d e ∂AT
1 1 0 0 1 1 1 {1} 1 (3,4) 0 1 1 0 3 {1,2}
2 1 1 1 1 2 1 {1} 2 (5) 0 1 1 2 2 {2}
3 0 1 1 0 3 1 {1,2} 3 (1) 1 0 0 1 1 {1}
4 0 1 1 0 3 2 {1,2} 4 (9) 1 0 0 3 2 {3}
5 0 1 1 2 2 2 {2} 5 (6,7) 1 1 0 2 2 {2,3}
6 1 1 0 2 2 2 {2,3} 6 (8) 1 1 0 3 2 {3}
7 1 1 0 2 2 3 {2,3} 7 (2) 1 1 1 1 2 {1}
8 1 1 0 3 2 3 {3}
9 1 0 0 3 2 3 {3}

Example 1. Table 1 describes a sample decision table DT. The conditional attributes
are as follows: AT = {a, b, c, d, e}. The decision attribute is f. One may note that
objects 3 and 4 are indiscernible with respect to the conditional attributes in AT.

Towards Scalable Algorithms for Discovering Rough Set Reducts 123

Hence, ∂AT for object 3 contains both the decision 1 for object 3, as well as the deci-
sion 2 for object 4. Analogously, ∂AT for object 4 contains both its own decision (2),
as well as the decision of object 3 (1). Please see the last column in Table 1 for gener-
alized decision ∂AT for all objects in DT. Let X1 be the class of objects determined by
decision 1; that is, X1 = {1,2,3}. The lower and upper approximations of X1 are as

follows: ATX1 = {1,2} and ATX1 = {1,2,3,4}. �

Property 2 shows that the approximations of decision classes can be expressed by
means of an A-generalized decision.

Property 2 [9-11]. Let Xi ⊆ O and A⊆AT.
a) IA(x) ⊆ Xi iff ∂A(x) = {i}.
b) IA(x) ∩ Xi ≠ ∅ iff i ∈ ∂A(x).
c) AXi = {x∈O| ∂A(x) = {i}}.

d) AXi = {x∈O| i ∈ ∂A(x)}.
e) ∂A(x) = ∂A(y) for any (x,y)∈IND(A).

By Property 2e, objects having the same A-descriptor have also the same
A-generalized decision value; that is, the A-descriptor uniquely determines the
A-generalized decision value for all objects satisfying this descriptor. In the sequel,
the A-generalized decision value determined by A-descriptor t, such that t is satisfied
by at least one object in the system, will be denoted by ∂t. Table 2 shows the general-
ized decision values determined by atomic descriptors that occur in Table 1.

Table 3. Generalized decision values ∂(a,v) determined by atomic descriptors (a,v), where
a∈AT, v∈Va, supported by DT from Table 1.

(a,v) (a,0) (a,1) (b,0) (b,1) (c,0) (c,1) (d,0) (d,1) (d,2) (d,3) (e,1) (e,2) (e,3)

∂(a,v) {1,2} {1,2,3} {1,3} {1,2,3} {1,2,3} {1,2} {1,2} {1} {2,3} {3} {1} {1,2,3} {1,2}

We note that the A- and B-generalized decision values for object x provide an upper
bound on the A∪B-generalized decision value for x.

Property 3 [13]. Let A,B⊆AT, x∈DT. ∂A∪B(x) ⊆ ∂A(x) ∩ ∂B(x).

Proof: ∂A∪B(x) = {d(y)| y∈IA∪B(x)} = /* by Property 1b */ = {d(y)| y∈(IA(x) ∩ IB(x))}
⊆ {d(y)| y∈IA(x)} ∩ {d(y)| y∈IB(x)} = ∂A(x) ∩ ∂B(x). !

We conclude further that the elementary a-generalized decision values for x, a∈A,
can be used for calculating an upper bound on the A-generalized decision value for x.

Corollary 1. Let A⊆AT and x∈DT. ∂A(x) ⊆ ∩a∈A ∂a(x) = ∩a∈A ∂(a, a(x)).

Example 2. The {ce}-generalized decision value calculated from DT in Table 1 for
object 5 (∂{ce}(5) = {1,2}) equals its upper bound ∂c(5) ∩ ∂e(5) = ∂(c,1) ∩ ∂(e,2) = {1,2}
∩ {1,2,3} = {1,2}. On the other hand, the {ce}-generalized decision value for object
6 (∂{ce}(6) = {2,3}) is a proper subset of its upper bound ∂c(6) ∩ ∂e(6) = ∂(c,0) ∩ ∂(e,2)
= {1,2,3} ∩ {1,2,3} = {1,2,3}. !

124 Marzena Kryszkiewicz and Katarzyna Cichoń

Corollary 2. Let A⊆B⊆AT, x∈DT. ∂B(x) ⊆ ∂A(x).

Proof: By Property 3, ∂B(x) ⊆ ∂A(x) ∩ ∂B\A(x). Hence, ∂B(x) ⊆ ∂A(x). !

Finally, we observe that A- and B-generalized decision values for object x, where
A⊆B⊆AT, are identical when their cardinalities are identical.

Proposition 1. Let A⊆B⊆AT and x∈DT. ∂A(x) = ∂B(x) iff |∂A(x)| = |∂B(x)|.

Proof: (⇒) Straightforward.

(⇐) Let |∂A(x)| = |∂B(x)| (*). Since, A⊆B, then by Corollary 2, ∂A(x) ⊇ ∂B(x). Taking
into account (*), we conclude ∂A(x) = ∂B(x). !

2.3 Reducts for Decision Tables

Reducts for decision tables are minimal sets of conditional attributes that preserve the
required properties of classification. In what follows, we provide definitions of re-
ducts preserving lower and upper approximations of decision classes and objects’
generalized decisions, respectively.

Let ∅≠A⊆AT. A is a certain reduct (c-reduct) of DT iff A is a minimal attribute set
such that

 ∀x∈O, x∈ATXd(x) ⇒ IA(x) ⊆ Xd(x) (c)

A certain reduct is a set of attributes that allows us to distinguish each object x be-
longing to the lower approximation of its decision class in DT from the objects that
do not belong to this approximation.

A is a possible reduct (p-reduct) of DT iff A is a minimal attribute set such that

 ∀x∈O, IA(x) ⊆ ATXd(x) (p)

A possible reduct is a set of attributes that allows us to distinguish each object x in
DT from objects that do not belong to the upper approximation of its decision class.

A is a generalized decision reduct (g-reduct) of DT iff A is a minimal set such that

 ∀x∈O, ∂A(x) = ∂AT(x) (g)

A generalized decision reduct is a set of attributes that preserves the generalized de-
cision value for each object x in DT. In the sequel, a superset of a t-reduct, where
t ∈ {c, p, g}, will be called a t-super-reduct.

Corollary 3. AT is a superset of all c-reducts, p-reducts, and g-reducts for any DT.

Proposition 2. Let A ⊆ AT.
a) If A satisfies property (c), then all of its supersets satisfy property (c).
b) If A does not satisfy property (c), then all of its subsets do not satisfy (c).
c) If A satisfies property (p), then all of its supersets satisfy property (p).
d) If A does not satisfy property (p), then all of its subsets do not satisfy (p).
e) If A satisfies property (g), then all of its supersets satisfy property (g).
f) If A does not satisfy property (g), then all of its subsets do not satisfy (g).

Proof: Let A⊆B⊆AT and x∈O.

Towards Scalable Algorithms for Discovering Rough Set Reducts 125

Ad a) Let A satisfy property (c) and x∈ATXd(x). We are to prove that IB(x) ⊆ Xd(x).
Since A satisfies property (c), then IA(x) ⊆ Xd(x) (*). By Property 1a, IB(x) ⊆ IA(x) (**).
By (*) and (**), IB(x) ⊆ Xd(x).
Ad b) Analogous to a).
Ad c) Let A satisfy property (g). We are to prove that ∂B(x) = ∂AT(x). Since A satisfies
property (g), then ∂A(x) = ∂AT(x) (*). By Corollary 2, ∂AT(x) ⊆ ∂B(x) ⊆ ∂A(x) (**).
By (*) and (**), ∂B(x) = ∂AT(x).
Ad b, d, f) Follow immediately from Proposition 2a, b, c, respectively. !

Corollary 4.
a) c-super-reducts are all and the only attribute sets that satisfy property (c).
b) p-super-reducts are all and the only attribute sets that satisfy property (p).
c) g-super-reducts are all and the only attribute sets that satisfy property (g).

Proof: By definition of reducts and Proposition 2. !

Interestingly, not only g-reducts, but also p-reducts and c-reducts, can be deter-
mined by examining generalized decisions.

Theorem 1 [11]. The set of all generalized decision reducts of DT equals the set of all
possible reducts of DT.

Lemma 1 [13]. A⊆AT is a c-reduct of DT iff A is a minimal set such that
∀x∈O, ∂AT(x) = {d(x)} ⇒ ∂A(x) = {d(x)}.

Proof: By Property 2a,c. !

Corollary 5 [13]. A⊆AT is a c-reduct of DT iff A is a minimal set such
that∀x∈O, ∂AT(x) = {d(x)} ⇒ ∂A(x) = ∂AT(x).

2.4 Core

The notion of a core is meant to be the greatest set of attributes without which an
attribute set does not satisfy the required classification property (i.e. is not a super-
reduct). The generic notion of a t-core, t ∈ {c, p, g}, corresponding to c-reducts, p-
reducts and g-reducts, respectively, is defined as follows:

t-core = {a∈AT| AT\{a} is not a t-super-reduct}.

Clearly, the p-core and g-core are the same.

Proposition 3. Let R be all reducts of the same type t, where t ∈ {c, p, g}.

t-core = ∩R.

Proof: Let us consider the case when R is the set of all c-reducts. Let b ∈ c-core.
Hence b is an attribute in AT such that AT\{b} is not a superset of c-reduct. By Corol-
lary 4a and Proposition 2b, no attribute set without b satisfies property (c). Hence, no

attribute set without b is a c-reduct. Thus, all c-reducts contain b; that is, ∩R ⊇ {b}.

Generalizing this observation, ∩R ⊇ c-core.

126 Marzena Kryszkiewicz and Katarzyna Cichoń

Now, we will prove by contradiction that ∩R \ c-core is an empty set. Let

d ∈ ∩R and d ∉ c-core. Since d ∉ c-core, then, by definition of a core, AT\{d} is a
superset of some c-reduct, say B. Since B is a subset of AT\{d}, then B does not con-
tain d either. This means that among c-reducts, there is an attribute set (B), which

does not contain d. Therefore, d ∉ ∩R, which contradicts the assumption.

The cases when R is the set of all p-reducts or g-reducts can be proved analogously
from Corollary 4b,c and Proposition 2d,f, respectively. !

3 Discovering Generalized Reducts

3.1 Main Algorithm

Notation for RAD

• Rk – candidate k attribute sets (potential g-reducts);
• Ak – k attribute sets that are not g-super-reducts;
• MNSR – all maximal conditional attribute sets that are not g-super-reducts;
• MNSRk – k attribute sets in MNSR;
• DT’ – reduced DT;
• x.a – the value of an attribute a for object x;
• x.∂AT – the generalized decision value for object x.

Algorithm. RAD;

DT’ = GenDecRepresentation-of-DT(DT);
MNSR = MaximalNonSuperReducts(DT’);
/* search g-reducts - note: g-reducts are all attribute sets that are not subsets of any set in MNSR */
if |MNSR|AT|-1| = |AT| then return AT; // optional optimizing step 1
R1 = {{a}| a∈AT}; A1 = {}; // initialize 1 attribute candidates for g-reducts
forall B ∈ MNSR do move subsets of B from R1 to A1; // subsets of non-super-reducts are not reducts
for (k = 1; Ak ≠ {}; k++) do begin

if |MNSR| = 1 then return ∪k Rk; // optional optimizing step 2
 MNSR = MNSR \ MNSRk; // MNSRk is not useful any more – optional optimizing step 3
 /* create k+1 attribute g-reducts Rk+1 and non-g-super-reducts Ak+1 from Ak and MNSR */
 RADGen(Rk+1, Ak+1, Ak, MNSR);

endfor;
return ∪k Rk;

The RAD (ReductsAprioriDiscovery) algorithm we propose starts by determining
the reduced decision table DT’ that stores only conditional attributes AT and the
AT-generalized decision for each object in DT instead of the original decision (see
Section 3.2 for the description of the GenDecRepresentation-of-DT function). Each
class of objects indiscernible w.r.t. AT ∪ {∂AT} in DT (see Table 1) is represented by
one object in DT’ (see Table 2). Next, DT’ is examined in order to find all maximal
attribute sets MNSR that are not g-super-reducts (see Section 3.3 for the description

of the MaximalNonSuperReducts function). The information on MNSR is sufficient
to derive all g-reducts; namely, g-reducts are these sets each of which has no superset
in MNSR (i.e., is a g-super-reduct), but all proper subsets of which have supersets

in MNSR (i.e., are not g-reducts).

Towards Scalable Algorithms for Discovering Rough Set Reducts 127

Now, RAD creates initial candidates for g-reducts that are singleton sets and are
stored in R1. The candidates in R1 that are subsets of MNSR are moved to

1 attribute non-g-super-reducts A1. The main loop starts. In each k-th iteration, k ≥ 1,

k+1 attribute candidates Rk+1 are created from k attribute sets in Ak, which are not g-
super-reducts (see Section 3.4 for the description of the RADGen procedure). The
information on non-g-super-reducts MNSR is used to prune candidates in Rk+1.

Namely, each candidate in Rk+1 that has a superset in MNSR is not a g-super-

reduct. Therefore it is moved from Rk+1 to Ak+1. The algorithm stops when Ak = {}.
Optional optimizing steps in RAD are discussed in Section 3.5.

3.2 Determining Generalized Decision Representation of Decision Table

The GenDecRepresentation-of-DT function starts with sorting the given decision
table DT w.r.t. the set of all conditional attributes and (optionally) the decision attrib-
ute. The sorting enables fast determination of the generalized decision values for all
classes of objects indiscernible w.r.t. AT. Each such class will be represented by one
object in the new decision table DT’ = (AT, {∂AT}), where the decision attribute is
replaced by the generalized decision.

function GenDecRepresentation-of-DT(decision table DT);

DT’ = {};
sort DT with respect to AT and d; // apply any ordering of attributes in AT, e.g. lexicographical
x = first object in DT; // or null if DT is empty
while x is not null do begin
 forall a∈AT do x’.a = x.a; x’.∂AT = {d(y)| y∈IAT(x)}; add x’ to DT’;

x = the first object located just after IAT(x) in DT;
endwhile;

return DT’;

3.3 Calculating Maximal Non-super-reducts

The purpose of the MaximalNonSuperReducts function is to determine all maximal
conditional attribute sets that are not g-super-reducts. To this end, each object in the
reduced decision table DT’ is compared with all other objects from different general-
ized decision classes. The result of the comparison of two objects, say x and y, be-
longing to different classes is the set of all attributes on which x and y are indiscerni-
ble. Clearly, such a resulting set is not a g-super-reduct, since it does not discern at
least one pair of objects belonging to different generalized decision classes. The com-
parison results, which are non-g-super-reducts, are stored in the NSR variable. After

the comparison of objects is accomplished, NSR contains a superset of all maximal

non-g-super-reducts. The function returns MAX(NSR), which can be calculated as
the final step or on the fly. For DT’ from Table 2, MaximalNonSuperReducts will find
NSR = {abc, b, bc, e, bde, be, bce, ac, ace, ae, abce, abe}, and eventually will re-

turn MAX(NSR) = {abce, bde}.

128 Marzena Kryszkiewicz and Katarzyna Cichoń

function MaximalNonSuperReducts(reduced decision table DT’);

 NSR = {};
 forall objects x in DT’ do
 forall objects y following x in DT’ do
 if x.∂AT ≠ y.∂AT then
 /* objects x and y should be distinguishable as they belong to different generalized decision classes; */
 /* the set {a∈AT| x.a = y.a} is not a g-super-reduct since it does not distinguish between x and y */
 insert in {a∈AT| x.a = y.a}, if non-empty, to NSR;
return MAX(NSR); // note: MAX(NSR) contains all maximal non-g-super-reducts

3.4 Generating Candidates for Reducts

The RADGen procedure has 4 arguments. Two of them are input ones: k attribute
non-g-super-reducts Ak and the maximal non-g-super-reducts MNSR. The two

remaining candidates Rk+1 and Ak+1 are output ones. After the completion of the

function, Rk+1 contains k+1 attribute g-reducts and Ak+1 contains k+1 attribute non-
g-super-reducts. During the first phase of the procedure, new k+1 attribute candidates
are created by merging k attribute non-g-super-reducts in Ak that differ only in their
final attributes. The characteristic feature of such a method of creating candidates is
that no candidate that is likely to be a solution (here: g-reduct) is missed and that no
candidate is generated twice (please, see the detailed description of the Apriori algo-
rithm [1] for justification). In the second phase, it is checked for each newly obtained
k+1 attribute candidate whether all its proper k attribute subsets are contained in non-
g-super-reducts Ak. If yes, then a candidate remains in Rk+1; otherwise it is pruned as

a proper superset of some g-super-reduct. Finally, all candidates in Rk+1 that are sub-

sets of maximal non-g-super-reducts MNSR are found non-g-super-reducts too, and

thus are moved to Ak+1.

procedure RADGen(var Rk+1, var Ak+1, in Ak, in MNSR);

 forall B, C ∈Ak do /* Merging */
 if B[1] = C[1] ∧ ... ∧ B[k-1] = C[k-1] ∧ B[k] < C[k] then begin
 A = B[1]•B[2]•...•B[k]•C[k]; add A to Rk+1;
 endif;

 forall A∈Rk+1 do /* Pruning */
 forall k attribute sets B ⊂ A do

if B ∉ Ak then delete A from Rk+1; // A is a proper superset of g-super-reduct B
 forall B∈MNSR do move subsets of B from Rk+1 to Ak+1; /* Removing subsets of non-g-super-reducts */
return;

3.5 Optimizing Steps in RAD

In the main algorithm, we offer an optimization that may speed up checking which
candidates are not g-reducts (optimizing step 3) and two optimizations for reducing
the number of useless iterations (optimizing steps 1 and 2).

In step 3, k attribute sets are deleted from MNSR since they are useless for identi-
fying non-g-superset-reducts among l attribute candidates, where l > k.

Towards Scalable Algorithms for Discovering Rough Set Reducts 129

Optimizing step 1 is based on the following observation: the condition |MNSR|AT|-1|
= |AT| implies that all AT\{a} sets are not g-super-reducts. Hence, AT is the only g-
reduct for DT and thus the algorithm can be stopped.

Optimizing step 2 can be applied when |MNSR| = 1. This condition implies that

all sets in Ak, which are not g-super-reducts, have exactly one - the same superset,

say B, in maximal non-g-super-reducts MNSR. If one continues the creation of k+1

attribute candidates Rk+1 by merging sets in Ak, then the new k+1 attribute candi-
dates would be still subsets of B. Hence, they would be pruned by the RADGen pro-
cedure from Rk+1 to Ak+1. As a result, one would obtain Rk+1 = {} and |MNSR| =

1. Such a scenario would continue when creating longer candidates until Al = {B}, l

> k. Then, RADGen will produce empty Rl+1 and empty Al+1; that is, the condition,

which stops the RAD algorithm. In conclusion, the condition |MNSR| = 1 implies
that no more g-reducts will be discovered, so the algorithm can be stopped.

3.6 Illustration of RAD

Let us illustrate now the discovery of g-reducts of DT from Table 1. We assume that
maximal non-g-super-reducts MNSR are already found and are equal to {{abce},
{bde}}. Table 4 shows how candidates for g-reducts change in each iteration.

Table 4. Rk and Ak after verification w.r.t. MNSR in subsequent iterations of New.

k Ak (each X in Ak has a superset in MNSR) Rk (each X in Rk has no superset in MNSR)
1 {a}, {b}, {c}, {d}, {e}
2 {ab}, {ac}, {ae}, {bc}, {bd}, {be}, {ce}, {de} {ad}, {cd}
3 {abc}, {abe}, {ace}, {bce}, {bde}
4 {abce}

4 Core-Oriented Discovery of Generalized Reducts

4.1 Main Algorithm

In this section, we offer the CoreRAD procedure, which finds not only g-reducts, but
also their core. The layout of CoreRAD reminds that of RAD. CoreRAD, however,
differs from RAD in that it first checks if the set of all maximal non-g-super-reducts
MNSR is empty. If yes, then each single conditional attribute is a g-reduct, so

CoreRAD returns {{a}| a∈AT} as the set of all g-reducts and ∩a∈AT {a} = ∅ as the
g-core (by Proposition 3). Otherwise, CoreRAD determines the g-core by definition
from all maximal |AT|-1 non-g-super-reducts in MNSR. All sets in MNSR that
are not supersets of the g-core are deleted, since the only candidates considered in
CoreRAD will be the g-core and its supersets. If the reduced MNSR is an empty set,

then the g-core does not have subsets in MNSR and thus it is the only g-reduct.

Otherwise, the g-core is not a g-reduct, and the new candidates R|core|+1 are created by
merging the g-core with the remaining attributes in AT. Clearly, the new candidates

130 Marzena Kryszkiewicz and Katarzyna Cichoń

which have supersets in maximal non-g-super-reducts MNSR are not g-reducts

either, and hence are moved from R|core|+1 to A|core|+1. From now on, CoreRAD is
performed in the same way as RAD.

Algorithm. CoreRAD;

 DT’ = GenDecRepresentation-of-DT(DT);
 MNSR = MaximalNonSuperReducts(DT’);
 if MNSR = {} then return (∅,{{a}| a∈AT}); // each conditional attribute is a g-reduct
 core = ∅;
 forall A∈MNSR|AT|-1 do begin {a} = AT\A; core = core ∪ {a} endfor;
 if |MNSR|AT|-1| = |AT| then return (AT, AT); // or if core = AT then - optional optimizing step 1
 MNSR = {B ∈ MNSR| B ⊇ core}; // g-reducts are supersets of the g-core

 if MNSR = {} then return (core, {core}); // g-core is a g-reduct as there is no its superset in MNSR

 MNSR = MNSR \ MNSR|core|; // or equivalently MNSR = MNSR \ {core};
/* initialize candidate for reducts as g-core’s supersets */
 startLevel = |core| + 1; RstartLevel = {}; AstartLevel = {};

 forall a∈AT \ core do begin A = core ∪ {a}; RstartLevel = RstartLevel ∪ {A} endfor;
 forall B ∈ MNSR do move subsets of B from RstartLevel to AstartLevel;
 for (k = startLevel; Ak ≠ {}; k++) do begin
 if |MNSR| = 1 then return (core, ∪k Rk); // optional optimizing step 2
 MNSR = MNSR \ MNSRk; // MNSRk is not useful any more – optional optimizing step 3
 /* create k+1 attribute g-reducts Rk+1 and non-g-super-reducts Ak+1 from Ak and MNSR */
 GRAGen(Rk+1, Ak+1, Ak, MNSR);
 endfor;
return (core, ∪k Rk);

4.2 Illustration of CoreRAD

We will illustrate now the core-oriented discovery of g-reducts of DT from Table 1.
We assume that MNSR has already been calculated and equals {{abce}, {bde}}.
Hence, core = AT / {abce} = {d}. Now, we leave only the supersets of the core in
MNSR; thus MNSR becomes equal to {{bde}}. Table 5 shows how candidates
for g-reducts change in each iteration (here: only 1 iteration was sufficient).

Table 5. Rk and Ak after verification w.r.t. MNSR in subsequent iterations of CoreRAD.

K Ak (each X in Ak has a superset in MNSR) Rk (each X in Rk has no superset in MNSR)
2 {bd}, {de} {ad}, {cd}

5 Discovering Certain Reducts

RAD and CoreRAD can easily be adapted for the discovery of certain reducts. It suf-
fices to modify line 4 of the MaximalNonSuperReducts function as follows:

if (x.∂AT ≠ y.∂AT) and (| x.∂AT | = 1 or | y.∂AT | = 1) then

This modification guarantees that all objects from lower approximations of all de-
cision classes, which have singleton generalized decisions, will be compared with all
objects not belonging to the lower approximations of their decision classes.

Towards Scalable Algorithms for Discovering Rough Set Reducts 131

6 Approximate Attribute Reduction

6.1 Approximate Reducts for Decision Table

The discovery of reducts may be very time consuming. Therefore, one may resign
from calculating strict reducts and search more efficiently for approximate reducts,
which however, should be supersets of exact reducts and subsets of AT. In this sec-
tion, we introduce the notion of such approximate reducts based on the observation

that for any object x in O: ∩a∈A ∂a(x) ⊇ ∂A(x) (by Corollary 1).
Let ∅≠A⊆AT. AT is defined an approximate generalized decision reduct (ag-

reduct) of DT iff ∃x∈O, ∩a∈AT ∂a(x) ⊃ ∂AT(x). Otherwise, A is an approximate gen-
eralized decision reduct (g-reduct) of DT iff A is a minimal set such that

∀x∈O, ∩a∈A ∂a(x) = ∂AT(x) (ag)

Corollary 5 specifies properties of certain decision reducts in terms of generalized
decisions. By analogy to this corollary, we define an approximate certain decision
reduct as follows:

AT is defined an approximate certain decision reduct (ac-reduct) of DT iff ∃x∈O,

∂AT(x) = {d(x)} ⇒ ∩a∈AT ∂a(x) ⊃ ∂AT(x). Otherwise, A is defined an approximate
certain reduct (ac-reduct) of DT iff A is a minimal attribute set such that

∀x∈O, ∂AT(x) = {d(x)} ⇒ ∩a∈A ∂a(x) = ∂AT(x) (ac)

In the sequel, a superset of a t-reduct, t ∈ {ac, ag}, will be called a t-super-reduct.

Corollary 6. AT is a superset of all ac-reducts and ag-reducts for any DT.

Proposition 4. Let x∈O and A ⊆ AT. If ∩a∈A ∂a(x) = ∂AT(x), then:

a) ∩a∈A ∂a(x) = ∂A(x) = ∂AT(x).

b) ∀B ⊆ AT, B⊃A ⇒ ∩a∈B ∂a(x) = ∂B(x) = ∂AT(x).

Proof: Let ∩a∈A ∂a(x) = ∂AT(x) (*).

Ad a) By Corollaries 1-2, ∩a∈A ∂a(x) ⊇ ∂A(x) ⊇ ∂AT(x). Taking into account (*),

∩a∈A ∂a(x) = ∂A(x) = ∂AT(x).
Ad b) Let B ⊆ AT, B⊃A. By Corollary 2, ∂A(x) ⊇ ∂B(x) ⊇ ∂AT(x). Taking into account

Proposition 4a, ∩a∈A ∂a(x) = ∂A(x) = ∂B(x) = ∂AT(x) (**). Clearly, ∩a∈A ∂a(x) ⊇

∩a∈B ∂a(x) ⊇ ∩a∈AT ∂a(x). Taking into account (**), ∂B(x) = ∂AT(x) = ∩a∈A ∂a(x) ⊇

∩a∈B ∂a(x) ⊇ ∩a∈AT ∂a(x) ⊇ ∂AT(x). Hence, ∩a∈B ∂a(x) = ∂B(x) = ∂AT(x). !

Corollary 7.
a) An ag-reduct is a g-super-reduct.
b) An ag-reduct is a p-super-reduct.
c) An ac-reduct is a c-super-reduct.

132 Marzena Kryszkiewicz and Katarzyna Cichoń

Proof: Ad a) Let A be an ag-reduct. If ∃x∈O, ∩a∈AT ∂a(x) ⊃ ∂AT(x), then A = AT,
which by Corollary 3 is a g-super-reduct. Otherwise, by definition of an ag-reduct

and Proposition 4a, ∀x∈O, ∩a∈A ∂a(x) = ∂A(x) = ∂AT(x). Thus A satisfies property (g).
Hence, by Corollary 4c, A is a g-super-reduct.
Ad b) Follows from Theorem 1 and Corollary 7a.
Ad c) Analogous, to the proof of Corollary 7a. Follows from the definition of an
ac-reduct, Corollary 3, Corollary 5, Corollary 4a and Proposition 4a.

Proposition 5. Let A ⊆ AT.
a) If A satisfies property (ag), then all of its supersets satisfy property (ag).
b) If A does not satisfy property (ag), then all of its subsets do not satisfy (ag).
c) If A satisfies property (ac), then all of its supersets satisfy property (ac).
d) If A does not satisfy property (ac), then all of its subsets do not satisfy (ac).

Proof: Ad a,c) Follow from Proposition 4.
Ad b, d) Follow immediately from Proposition 5a, c, respectively. !

Corollary 8.
a) ag-super-reducts are all and the only attribute sets that satisfy property (ag).
b) ac-super-reducts are all and the only attribute sets that satisfy property (ac).

Proof: By definition of respective approximate reducts and Proposition 5. !

6.2 Approximate Core

An approximate core will be defined in usual way; that is,

t-core = {a∈AT| AT\{a} is not a t-super-reduct}, where t ∈ {ac, ag}.

Proposition 6. Let R be all approximate reducts of the same type t, t ∈ {ac, ag}.

t-core = ∩R.
Proof: Follows from Corollary 8 and Proposition 5, and is analogous to the proof of
Proposition 3. !

7 Discovering Approximate Generalized Reducts

7.1 Main Algorithm

The GRA (GeneralizedReductsApriori) algorithm, we have recently introduced in
[13], finds all ag-reducts from the decision table DT. Unlike in RAD, GRA, does not
need to store all maximal non-g-super-reducts MNSR. On the other hand, GRA
requires the candidates for reducts to be evaluated against the decision table. The
validation of the candidate solution against the decision table DT in our algorithm
consists in checking if the candidate satisfies property (ag); that is, if the intersection
of the elementary generalized decisions of the attributes in the candidate set deter-
mines the same generalized decision value as the set of all conditional attributes AT
does for each object in DT. We will use the following properties in the process of
searching reducts in order to prune the search space efficiently:

Towards Scalable Algorithms for Discovering Rough Set Reducts 133

• Proper supersets of ag-reducts are not ag-reducts, and hence such sets shall not be
evaluated against the decision table.

• Subsets of attribute sets that are not ag-super-reducts are not ag-reducts, and thus
such sets shall not be evaluated against the decision table.

• An attribute set whose all proper subsets are not ag-super-reducts may or may not
be an ag-reduct, and hence should be evaluated against the decision table.

Since our algorithm is to work with very large decision tables, we propose to re-
strict the number of decision table objects against which a candidate should be evalu-
ated. Our proposal is based on the following observation:

• If an attribute set A satisfies property (ag) for the first n objects in DT (or reduced
DT’) and does not satisfy it for object n+1, then A is certainly not an ag-reduct
and thus evaluating it against the remaining objects in DT (DT’) is useless.

• If an attribute set A satisfies property (ag) for the first n objects in DT (or DT’),
then property (ag) will be satisfied for these objects for all supersets of A. Hence,
the evaluation of the first n objects should be skipped for a candidate that is a
proper superset of A.

The GRA algorithm starts with building the reduced version DT’ of decision table
DT (see Section 3.2 for the description of the GenDecRepresentation-of-DT func-
tion). DT’ stores only the AT-generalized decisions instead of the original decisions.
Next, the a-generalized decision value for each atomic descriptor (a,v) occurring in
DT (or in DT’) is calculated as the set of the decisions (or the union of the AT-
generalized decisions) of the objects supporting (a,v) in DT (or in DT’). Each pair:
(atomic descriptor, its generalized decision) is stored in Γ. Now GRA creates initial
candidates for ag-reducts. The initial candidates are singleton sets and are stored in
R1. The set of 1 attribute non-ag-super-reducts A1, as well as known maximal non-

ag-super-reducts NSR, are initialized to an empty set. The main loop starts. In each

k-th iteration, k ≥ 1, the k attribute candidates Rk are evaluated during one pass over
DT’ (see Section 7.2 for the description of the EvaluateCandidates procedure). As a
side effect of evaluating of Rk, all k attribute non-ag-super-reducts Ak are found and

known maximal non-ag-super-reducts NSR are updated. The case when NSR|AT| =
AT indicates that AT does not satisfy property (ag) for some object. Hence, by defini-
tion AT is the only ag-reduct and the algorithms stops. Otherwise, k+1 attribute can-
didates Rk+1 are created from k attribute sets in Ak, which turned out not to be ag-
super-reducts (see Section 7.4 for the description of the GRAGen procedure). The
information on non-ag-super-reducts NSR is used to prune the candidates in Rk+1.

Namely, each candidate in Rk+1 that has a superset in NSR is known a priori not to

be an ag-reduct. Therefore it is moved from Rk+1 to Ak+1. The algorithm stops when

Rk = Ak = {}. Optimizations steps 1-2 in GRA are analogous to steps 1-2 in RAD,
which were discussed in Section 3.5.

134 Marzena Kryszkiewicz and Katarzyna Cichoń

Modified or additional notation for GRA

• Rk – candidate k attribute sets (potential ag-reducts);
• Ak – k attribute sets that are not ag-super-reducts;
• A.id – the identifier of the object against which attribute set A should be evaluated;
• NSR – quasi maximal attribute sets found not to be ag-super-reducts;
• NSRk – k attribute sets in NSR;
• x.identifier – the identifier of object x;
• Γ - the set containing generalized decision values determined by atomic descriptors supported by

objects in DT (DT’); that is: Γ = ∪a∈AT, v∈Va {{(a,v), ∂(a,v))}.

Algorithm. GRA;

DT’ = GenDecRepresentation-of-DT(DT);
/* calculate a-generalized decision value for each atomic descriptor (a,v) supported by DT (or DT’) */

for each conditional attribute a∈AT do
for each domain value v∈Va do begin compute ∂(a,v); store ((a,v), ∂(a,v)) in Γ endfor;

/* initialize 1 attribute candidates */
R1 = {{a}| a∈AT}; A1 = {}; NSR = {}; // conditional attributes are candidates for ag-reducts
for each A in R1 do A.id = 1; // the evaluation of candidate A should start from object 1 in DT’

/* search reducts */
for (k = 1; Ak ≠ {} ∨ Rk ≠ {}; k++) do begin
 if Rk ≠ {} then begin
 /* find and move non-ag-reducts from Rk to Ak and determine maximal non-ag-super-reducts NSR */

 EvaluateCandidates(Rk, Ak, Γ, NSR);
 if |NSR|AT|| = 1 then return AT; // or equivalently, if NSR|AT| = AT then
 if |NSR|AT|-1| = |AT| then return AT; // optional optimizing step 1

 elseif |NSR| = 1 then return ∪k Rk; // optional optimizing step 2
 endif;
 /* create k+1 attribute candidates Rk+1 and non-ag-super-reducts Ak+1 from Ak and NSR */
 GRAGen(Rk+1, Ak+1, Ak, NSR);
endfor;

return ∪k Rk;

A characteristic feature of our algorithm, which is shared by all Apriori-like algo-
rithms (see [1] for the Apriori algorithm), is that the evaluation of candidates requires
no more than n scans of the data set (decision table), where n is the length of a long-
est candidate (here: n ≤ |AT|).

GRA, however, differs from Apriori in several ways. First of all, our candidates are
sets of attributes instead of descriptors. Next, we evaluate candidates whether they
satisfy property (ag), while the evaluation in Apriori consists in calculating the num-
ber of objects satisfying candidate descriptors. Additionally, our algorithm uses dy-
namically obtained information on non-ag-super-reducts to restrict the search space
as quickly as possible. Another distinct optimizing feature of our algorithm is that the
majority of candidates is evaluated against a fraction of the decision table instead of
the entire decision table (see Section 7.2). Namely, having found that a candidate A
does not satisfy the required property (ag) for some object x, the next objects are not
considered for evaluating this candidate at all. In addition, the evaluation of candi-
dates that are proper supersets of the invalidated candidate A starts from object x.
These two optimizations may speed up the evaluation process considerably.

Towards Scalable Algorithms for Discovering Rough Set Reducts 135

7.2 Evaluating Candidates for Approximate Reducts

The EvaluateCandidates procedure takes 4 arguments: k attribute candidates for ag-
reducts Rk, k attribute sets that are known not to be ag-super-reducts Ak, the general-
ized decisions determined by atomic descriptors Γ, and known maximal non- ag-
approximate-super-reducts NSR. For each object read from DT’, the candidates in

Rk that should be evaluated against this object are identified. These are candidates A
such that A.id equals the identifier of the object. Let x be the object under considera-
tion and A be a candidate such that A.id = x.identifier. The upper bound ∂ on ∂A(x) is
calculated from the generalized decisions determined by the atomic descriptors stored
in Γ. If ∂ equals x.∂AT, then A satisfies property (ag) for object x and still has a chance
to be an ag-reduct. Hence, A.id is incremented to indicate that A should be evaluated
against the next object after x in DT’ too. Otherwise, if ∂ ≠ x.∂AT, then A is certainly
not an ag-reduct and thus is moved from candidates Rk to non-ag-super-reducts Ak.
Additionally, the MaximalNonAGSuperReduct procedure (see Section 7.3) is called
to determine a quasi maximal superset (nsr) of A that does not satisfy property (ag)
for object x either. If nsr obtains the maximal possible length (i.e. |nsr| = |AT|), AT is
returned as the maximal set the approximate generalized decision of which differs
from the real AT-generalized decision, and the procedure stops. Otherwise, the found
non-ag-super-reduct is stored in NSR’. Since the evaluation of candidates against

objects may result in moving all candidates from Rk to Ak, scanning of DT’ is
stopped as soon as all candidates turned out false ones.

The last step of the EvaluateCandidates procedure consists in updating maximal
non-ag-super-reducts NSR with NSR’. Please note that k attribute sets are not

stored in the final NSR since they are useless for identifying non-super-reducts
among l attribute candidates, where l > k.

procedure EvaluateCandidates(var Rk, var Ak, in Γ, var NSR);

/* assert: Γ = ∪a∈AT, v∈Va {{(a,v), ∂(a,v))} */
NSR’ = {};
for each object x in DT’ do begin
 for each candidate A in Rk do
 if A.id = x.identifier then begin
 ∂ = ∩a∈A ∂(a, x.a); // note: each ((a, x.a), ∂(a, x.a)) ∈ Γ
 if ∂ ≠ x.∂AT then begin // or equivalently: if | ∂ | ≠ | x.∂AT | then
 move A from Rk to Ak;
 nsr = MaximalNonAGSuperReduct(A, x, ∂ , Γ); // find a quasi maximal non-ag-super-reduct
 if nsr = AT then begin NSR = {AT}; return endif; // or equivalently: if |nsr| = |AT| then
 add nsr to NSR’;
 else A.id = x.identifier + 1 // A should be evaluated against the next object

endif
 endif;

 if Rk = {} then break;
endfor;
NSR = MAX((NSR’ \ NSRk’) ∪ (NSR \ NSRk));

return;

136 Marzena Kryszkiewicz and Katarzyna Cichoń

7.3 Calculating Quasi Maximal Non-approximate Generalized Super-reducts

The MaximalNonAGSuperReduct function is called whenever a candidate, say A,
does not satisfy property (ag) for some object x. This function returns a quasi maxi-
mal superset of A that does not satisfy property (ag) for x. Clearly, there may be many
such supersets of A; however the function creates and evaluates supersets of A in a
specific order. Namely, nsr variable, which initially equals A, is extended in each
iteration with one attribute (assigned to variable a) that is next after the one recently
added to nsr. Please note that the first attribute in AT is assumed to be next to the last
attribute in AT. The creation of supersets stops when an evaluated attribute nsr∪{a}
satisfies property (ag) for object x. Then, MaximalNonAGSuperReduct returns nsr as
a known maximal superset of A, which is not an ag-super-reduct.

function MaximalNonAGSuperReduct(in A, in x, in ∂, in Γ);

/* assert: ∂ ≠ x.∂AT */
nsr = A; ∂nsr = ∂; previous_a = last attribute in A;
for (i=1; i <= |AT|; i++) do

if previous_a = last attribute in AT then a = first attribute in AT
else a = next attribute after previous_a in AT;
previous_a = a; ∂nsr = ∂nsr ∩ ∂(a, x.a); // note: each ((a, x.a), ∂(a, x.a)) ∈ Γ
if ∂nsr = x.∂AT then break else add a to nsr;

endfor;
return nsr;

7.4 Generating Candidates for Reducts

The GRAGen procedure differs from RADGen only in the pruning phase in that it
determines the id field of each k+1 attribute candidate, say A, as a side effect of
checking if A has all its k attribute subsets in Ak. Namely, A.id is assigned the maxi-

mum of the id fields of A’s subsets in Ak. Such value of A.id field means that there

was a subset of A in Ak that satisfied property (ag) for A.id-1 objects. Hence, A is
known a priori to satisfy this property for A.id-1 objects and the first object against
which it should be evaluated has identifier equal to A.id.

procedure GRAGen(var Rk+1, var Ak+1, in Ak, in NSR);

forall B, C ∈Ak do /* Merging */
 if B[1] = C[1] ∧ ... ∧ B[k-1] = C[k-1] ∧ B[k] < C[k] then begin
 A = B[1]•B[2]•...•B[k]•C[k]; add A to Rk+1; A.id = 1;
 endif;

forall A∈Rk+1 do /* Pruning */
forall k attribute sets B ⊂ A do

if B ∈ Ak then A.id = max(A.id, B.id)
else delete A from Rk+1; // A is a proper superset of super-reduct B

forall B ∈ NSR do move subsets of B from Rk+1 to Ak+1; /* Removing subsets of non-super-reducts */
return;

Example 3. We will illustrate GRAGen by showing how the candidates of size 3 are
created. Let A2 = {{ab}[id:2], {ac}[id:3], {ae}[id:2], {bc}[id:3], {bd}[id:2], {be}[id:3],

Towards Scalable Algorithms for Discovering Rough Set Reducts 137

{ce}[id:3], {de}[id:2]} (the indices provide information on identifiers of objects recently
evaluated for respective attribute sets) and NSR = {{abce}, {bde}}.

The first phase of the procedure consists in creating candidates R3 from pairs of

sets in A2 that differ only in their final attributes. Thus, we receive the following

candidates: R3 = {{abc}[id:1], {abe}[id:1], {ace}[id:1], {bcd}[id:1], {bce}[id:1], {bde}[id:1]}.

The pruning phase deletes these candidates from R3 that do not have at least one of

their 2 attribute subsets in A2. In addition, the field id of each candidate is set to

maximum of id values of all proper subsets of the candidates in A2. The only candi-

date in R3 that does not have some of its 2 attribute subsets in A2 is {bcd}. Namely,

{cd} is such a subset of {bcd}, which does not belong to A2. The fact that {cd}∉A2
means that {cd} is an ag-super-reduct. Hence, {bcd} is known a priori to be a proper
superset of an ag-reduct. Thus, this candidate is pruned from candidates R3. As a

result, R3 becomes equal to {{abc}[id:3], {abe}[id:3], {ace}[id:3], {bce}[id:3], {bde}[id:3]}.
The final phase determines candidates that are certainly not ag-reducts as they are

subsets of previously found non-ag-super-reducts NSR. Such candidates are moved

from R3 to A3. Eventually, A3 = {{abc}[id:3], {abe}[id:3], {ace}[id:3], {bce}[id:3],

{bde}[id:3]} and R3 = {}. Hence, no 3 attribute candidates should be evaluated against
the decision table. !

7.5 Illustration of GRA

In this section, we illustrate the discovery of ag-reducts for DT from Table 1. We
assume that the reduced decision table DT’ (see Table 2) has already been deter-
mined. Table 6 shows how candidates change in each iteration before and after vali-
dation (if any) against DT’. In this process, the reduced decision table was scanned
twice in order to evaluate the candidate sets. Only 8 candidates were evaluated
against DT’, although 21 attribute sets were enumerated (that is, occurred in R or A).
As a result, 2 approximate ag-reducts were found; namely, {ad} and {cd}, which are
exact g-reducts (see Section 3.6).

Table 6. Rk, Ak, and NSR in subsequent iterations of GRA.

k Rk before valida-
tion

Ak before validation Rk after
validation

Ak after validation NSR’ NSR

1 {a}[id:1], {b}[id:1],
{c}[id:1], {d}[id:1],
{e}[id:1]

 {a}[id:2], {b}[id:1],
{c}[id:3], {d}[id:2],
{e}[id:2]

{abc}, {b},
{c}, {de},
{abce}

{abce},
{de}

2 {ad}[id:2], {bd}[id:2],
{cd}[id:3]

{ab}[id:2], {ac}[id:3],
{ae}[id:2], {bc}[id:3],
{be}[id:2], {ce}[id:3],
{de}[id:2]}

{ad}[id:8],
{cd}[id:8]

{ab}[id:2], {ac}[id:3],
{ae}[id:2], {bc}[id:3],
{bd}[id:2], {be}[id:3],
{ce}[id:3], {de}[id:2]

{bde} {abce},
{bde}

3 {abc}[id:3], {abe}[id:3],
{ace}[id:3], {bce}[id:3],

{bde}[id:3]

 {abce}

4 {abce}[id:3]

138 Marzena Kryszkiewicz and Katarzyna Cichoń

8 Core-Oriented Discovery of Approximate Generalized Reducts

8.1 Main Algorithm

Algorithm. CoreGRA;

 DT’ = GenDecRepresentation-of-DT(DT);
 for each conditional attribute a∈AT do
 for each domain value v∈Va do begin compute ∂(a,v); store ((a,v), ∂(a,v)) in Γ endfor;
/*initialize 1 attribute candidates */
 R1 = {{a}| a∈AT}; A1 = {}; NSR = {}; // conditional attributes are candidates for ag-reducts
 for each A in R1 do begin A.id = 1; A.nsr = A endfor;

/* find and move non-reducts from R1 to A1; determine maximal non-reducts */

 EvaluateCandidates1(R1, A1, Γ, NSR);
 if |NSR|AT|| = 1 then return (AT, AT); // or equivalently, if NSR|AT| = AT then
/* determine core */
 core = ∅; core.id = 1;
 forall A∈NSR|AT|-1 do begin {a} = AT\A; core = core ∪ {a}; core.id = max(core.id, {a}.id) endfor;
/* create candidate for reducts as core’s supersets */
 if core = ∅ then begin
 startLevel = 2;
 ReductsAprioriGen(R2, A2, A1, NSR); //create 2 attribute candidates from 1 attribute non-ag-reducts
 else begin
 NSR = {B ∈ NSR| B ⊇ core}; // ag-reducts are supersets of ag-core
 if |core| > 1 then
 if NSR ≠ {} then // ag-core is not an ag-reduct as there is its superset in NSR

 NSR = NSR \ NSR|core| // or equivalently NSR = NSR \ {core};
 else begin
 R|core| = {core}; A|core| = {}; EvaluateCandidates(R|core|, A|core|, Γ, NSR);
 if |NSR|AT|| = 1 then return (AT, AT);
 endif;
 if R|core| = {core} then return(core, R|core|) // or equivalently if |R|core|| = 1 then
 else begin
 startLevel = |core| + 1; RstartLevel = {}; AstartLevel = {};

 forall {a}∈A1 such that a∉core do begin
 A = core ∪ {a}; A.id = max(core.id, {a}.id); // candidates should contain ag-core
 RstartLevel = RstartLevel ∪ {A}
 endfor;
 forall B ∈ NSR do move subsets of B from RstartLevel to AstartLevel;
 endif
 endif;
 for (k = startLevel; Ak ≠ {} ∨ Rk ≠ {}; k++) do begin /* ag-reducts’ regular search */

 if Rk ≠ {} then begin
 /* find and move non-ag-reducts from Rk to Ak and determine maximal non-ag-super-reducts NSR */
 EvaluateCandidates(Rk, Ak, Γ, NSR);
 if |NSR|AT|| = 1 then return (AT, AT) endif;
 elseif |NSR| = 1 then return (core; ∪k Rk); // optional optimizing step
 endif;
 GRAGen(Rk+1, Ak+1, Ak, NSR); // create (k+1)-candidates from k attribute non-ag-reducts
 endfor;
return (core; ∪k Rk);

Towards Scalable Algorithms for Discovering Rough Set Reducts 139

The CoreGRA algorithm, we propose, finds not only ag-reducts, but also their
core. The layout of CoreGRA reminds that of GRA. CoreGRA, however, differs from
GRA, in that it evaluates 1 attribute candidates in special way that provides sufficient
information to determine the ag-core, and next creates subsequent candidates only as
supersets of the found ag-core. CoreGRA calls the EvaluateCandidate1 procedure
(see Section 8.2) in order to evaluate 1 attribute candidates. Unlike the EvaluateCan-
didate procedure, EvaluateCandidate1 guarantees that all maximal |AT|-1 non-
ag-super-reducts will be determined and returned in NSR. Using this information,
the ag-core will then be calculated according to its definition.

If the ag-core is an empty set, then 2 attribute and longer candidates are created and
evaluated as in GRA. Otherwise, all sets in NSR that are not supersets of the ag-core
are deleted, since the only candidates considered in CoreGRA will be the ag-core and
its supersets. If the ag-core contains only one attribute, it is not evaluated because
singleton attributes were already evaluated. The ag-core is not evaluated also in the
case, when NSR, already restricted to non-ag-super-reducts being the core’s super-
sets, is not empty. In this case, the ag-core is also a non-ag-super-reduct as a subset
of some non-ag-super-reduct in NSR. Otherwise, the ag-core is evaluated. Provided
the ag-core is found an ag-reduct, it is returned as the only ag-reduct. If the ag-core is
not a reduct, the new candidates R|core|+1 are created by merging the core with the
remaining attributes in AT. Clearly, the new candidates which have supersets in maxi-
mal known non-ag-super-reducts NSR, are not ag-reducts either, and hence are

moved from R|core|+1 to A|core|+1. From now on, CoreGRA is performed in the same
way as GRA.

It is expected that CoreGRA should perform better than GRA, when the ag-core
consists of a sufficient number of attributes. Then fewer iterations should be per-
formed and probably fewer candidates will be evaluated. Nevertheless, when the
number of attributes in the ag-core is small, CoreGRA may be less effective than
GRA because of the more exhaustive evaluation of 1 attribute candidates (their nsr
fields are likely to be evaluated against the entire decision table in CoreGRA).

8.2 Evaluating Singleton Candidates

Below we describe the EvaluateCandidates1 procedure, which is primarily intended
to be applied only to 1 attribute candidates in CoreGRA, although it can be applied
for evaluating candidates of any length. It is assumed that an additional field nsr is
associated with each k attribute candidate A in Rk.

The EvaluateCandidates1 procedure differs from EvaluateCandidates in that after
discovering that a candidate A is not an ag-reduct, it is not removed from Rk immedi-
ately. Nevertheless, EvaluateCandidates1 stops advancing A.id field as soon as the
first object invalidating A is found (like EvaluateCandidates does). In such a case,
instead of evaluating A, its nsr field is extended and evaluated against the remaining
objects in the decision table as long as nsr obtains the maximal possible length (i.e.
|nsr| = |AT|) or the end of the decision table is reached. In the former case, AT is re-
turned as the maximal set the approximate generalized decision of which differs from

140 Marzena Kryszkiewicz and Katarzyna Cichoń

the real AT-generalized decision, and the procedure stops. In the latter case, the re-
maining candidates A in Rk that turned out not ag-reducts (i.e. such that A.id ≠

|DT|+1), are moved to Ak and NSR’ is updated with their nsr fields.

procedure EvaluateCandidates1(var Rk, var Ak, in Γ, var NSR);

 NSR’ = {};
 for each object x in DT do begin

 for each candidate A in Rk do begin
 ∂ = ∩a∈A.nsr ∂(a, x.a); // note: each ((a,x.a), ∂(a,x.a)) ∈ Γ
 if ∂ ≠ x.∂AT then begin // or equivalently: if |∂t| = |x.∂AT| then
 A.nsr = MaximalNonAGSuperReduct(A.nsr, x, ∂, Γ); // find a maximal non-ag-super-reduct
 if A.nsr = AT then begin NSR = {AT}; return endif // or equivalently: if |A.nsr| = |AT| then
 elseif A.id = x.identifier then A.id = x.identifier + 1 // evaluate A’s supersets against the next object

 endif;
 endfor;
 if Rk = {} then break;
 endfor;
 for each candidate A in Rk do

 if A.id ≠ |DT|+1 then move A from Rk to Ak; add A.nsr to NSR’ endif; // A is not an ag-reduct
NSR = MAX(NSR’ \ NSRk’); // NSR = MAX((NSR’ \ NSRk’) ∪ (NSR \ NSRk)) for k > 1

return;

8.3 Illustration of CoreGRA

In this section, we illustrate how CoreGRA searches ag-reducts in the decision table
DT from Table 1. Table 7 shows how candidates change in each iteration before and
after validation against the reduced decision table DT’ from Table 2.

After 1 attribute candidates were evaluated by EvaluateCandidates1, NSR became

equal to {{abce}, {de}}. Thus, {abce} was the only set in NSR the length of which
was equal to |AT|-1. Hence, the ag-core was determined as AT\{abce} = {d}. Since
the new candidates were to be supersets of the ag-core, all sets from NSR that were

not supersets of the ag-core were pruned and NSR became equal to {{de}}. The ag-
core {d} is not an ag-reduct, as it was not present in the set of the positively evaluated
candidates R1 (here: R1 = ∅).

New candidates were created by merging the ag-core with the remaining attributes
in AT resulting in the following 4 attribute candidates: {ad}, {bd}, {cd}, {de}. One of
them ({de}) was known a priori not to be an ag-reduct as a subset of the known non-
ag-super-reduct {de} in NSR. From now on, CoreGRA proceeded as GRA. The
execution of the CoreGRA algorithm resulted in enumeration of 9 attribute sets in-
stead of 21 (see Section 7.5).

Table 7. Rk, Ak, and NSR in subsequent iterations of CoreGRA.

k Rk before validation Ak before
validation

Rk after
validation

Ak after validation NSR’ NSR

1 {a}[id:1], {b}[id:1], {c}[id:1],
{d}[id:1], {e}[id:1]

 {a}[id:2], {b}[id:1], {c}[id:3],
{d}[id:2], {e}[id:2]

{abc}, {bc}, {c},
{de}, {abce}

{abce},
{de}

2 {ad}[id:2], {bd}[id:2],
{cd}[id:3]

{de}[id:2] {ad}[id:8],
{cd}[id:8]

{bd}[id:2], {de}[id:2]} {bde} {bde}

Towards Scalable Algorithms for Discovering Rough Set Reducts 141

9 Discovering Approximate Certain Reducts

Approximate certain reducts of DT are defined by means of generalized decisions
only of objects in DT with singleton AT-generalized decisions. This observation sug-
gests that the GRA and CoreGRA algorithms shall calculate ac-reducts of DT cor-
rectly, provided the candidate attribute sets are evaluated only against the objects in
DT with singleton AT-generalized decisions. This can be achieved in two ways:

a) either the initialization of candidates in the GRA procedure should be preceded
by an additional operation that removes all objects from DT (or DT’) that have
non-singleton AT-generalized decisions and renumbers the remaining objects;

b) or the evaluation of candidates should be modified so that to ignore objects with
non-singleton AT-generalized decisions safely (please, see [13]).

10 Conclusion

In the article, we have offered two new algorithms: RAD and CoreRAD for discover-
ing all exact generalized (and by this also possible) and certain reducts from decision
tables. In addition, CoreRAD determines the core. Both algorithms require the calcu-
lation of all maximal attribute sets MNSR that are not super-reducts. An Apriori-

like method of determining reducts based on MNSR was proposed. Our method of

determining MNSR is orthogonal to the methods that determine a discernibility

matrix (DM), which stores information on sets of attributes each of which discerns
at least one pair of objects that should be discerned, and return the family of all such
minimal sets (MDM). The reducts are then found from MDM by applying Boo-
lean reasoning.

The calculation of MNSR (as well as MDM) requires comparing each pair of
objects in the decision table and finding maximal (minimal) attribute sets among
those that are the result of the objects’ comparison. This operation is very costly
when the number of objects in a decision table is large. In order to overcome this
problem one may use a reduced table (AT, {∂AT}), which stores one object instead of
many original objects that are indiscernible on AT and ∂AT. Nevertheless, when the
number of objects in the reduced table is still large or the number of MNSR

(MDM) is large, the calculation of reducts may be infeasible. Our preliminary ex-

periments indicate that the determination of MNSR is a bottleneck of the proposed
RAD-like algorithms in such cases. To the contrary, the proposed Apriori-like method
of determining reducts based on MNSR is very efficient.

In the case, when the determination of MNSR is infeasible, we advocate to search
approximate reducts. In the article, we have defined such approximate reducts based
on the properties of a generalized decision function. We have shown that for each
A-generalized decision one may derive its upper bound (A-approximate generalized
decision) from elementary a-generalized decisions, where a∈A. Whereas exact gen-
eralized (certain) reducts preserve the AT-generalized decision for all objects (for
objects with singleton generalized decisions), each approximate generalized (certain)
reduct A guarantees that A-approximate generalized decision is equal to the

142 Marzena Kryszkiewicz and Katarzyna Cichoń

AT-generalized decision for all objects (for objects with singleton generalized deci-
sions). An exception to the rule is the case, when there is an object for which the
approximate AT-generalized decision differs from the actual AT-generalized decision.
Then the entire set of conditional attributes AT is defined as a reduct. We have proved
that approximate generalized and certain reducts are supersets of exact reducts of
respective types. In addition, approximate generalized reducts are supersets of exact
possible reducts.

We have presented GRA and CoreGRA algorithms for discovering approximate
generalized (and by this also possible) reducts and certain reducts from very large
decision tables. The experiments we have carried out and reported in [13] prove that
the GRA-like algorithms are scalable with respect to the number of objects in a deci-
sion table and that CoreGRA tends to outperform GRA with increasing number of
conditional attributes. For a few conditional attributes, however, GRA may find re-
ducts faster. Nevertheless, the experiments need to be continued to fully recognize the
performance characteristics of particular GRA-like algorithms.

Finally, we note that all the proposed algorithms are capable to discover all dis-
cussed types of reducts from incomplete decision tables as well. The only difference
consists in a slightly different determination of generalized decision value for atomic
descriptors, namely ∂A(x) = {d(y)| y∈SA(x)}, where SA(x) = {y∈O | ∀a∈A, (a(x) =
a(y)) ∨ (a(x) is NULL) ∨ (a(y) is NULL)} (see e.g. [12]). In the future, we intend to
develop scalable algorithms for discovering all exact reducts.

References

1. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast Discovery of As-
sociation Rules. In: Advances in KDD. AAAI, Menlo Park, California (1996) 307-328

2. Bazan, J., Skowron, A., Synak, P.: Dynamic Reducts as a Tool for Extracting Laws from
Decision Tables. In: Proc. of ISMIS ’94, Charlotte, USA. LNAI, Vol. 869, Springer-
Verlag, (1994) 346–355

3. Bazan, J., Nguyen, H.S., Nguyen, S.H., Synak, P., Wróblewski, J.: Rough Set Algorithms
in Classification Problem. In: L. Polkowski, S. Tsumoto and T.Y. Lin (eds.): Rough Set
Methods and Applications. Physica-Verlag, Heidelberg, New York (2000) 49 - 88

4. Jelonek, J., Krawiec, K., Stefanowski, J.: Comparative Study of Feature Subset Selection
Techniques for Machine Learning Tasks. Proc. of IIS ’98, Malbork, Poland (1998) 68–77

5. John, H.G., Kohavi, R., Pfleger, K.: Irrelevant Features and the Subset Selection Problem.
In: Machine Learning: Proc. of the Eleventh International Conference, Morgan Kaufmann
Publishers, San Francisco, CA, (1994) 121–129

6. Kohavi, R., Frasca, B.: Useful Feature Subsets and Rough Set Reducts. In: Proc. of the
Third International Workshop on Rough Sets and Soft Computing, San Jose, CA (1994)

7. Kryszkiewicz, M.: The Algorithms of Knowledge Reduction in Information Systems, Ph.D.
Thesis, Warsaw University of Technology, Institute of Computer Science (1994)

8. Kryszkiewicz, M., Rybinski, H.: Finding Reducts in Composed Information Systems. Fun-
damenta Informaticae Vol. 27, No. 2–3 (1996) 183–196

9. Kryszkiewicz, M.: Strong Rules in Large Databases. In: Proc. of IPMU’ 98, Paris, France,
Vol. 2 (1998) 1520–1527

10. Kryszkiewicz M., Rybinski H.: Knowledge Discovery from Large Databases using Rough
Sets. In: Proc. of EUFIT ’98, Aachen, Germany, Vol. 1 (1998) 85-89

Towards Scalable Algorithms for Discovering Rough Set Reducts 143

11. Kryszkiewicz, M.: Comparative Study of Alternative Types of Knowledge Reduction in
Inconsistent Systems. International Journal of Intelligent Systems, Wiley, Vol. 16, No. 1
(2001) 105–120

12. Kryszkiewicz, M.: Rough Set Approach to Rules Generation from Incomplete Information
Systems. In: The Encyclopedia of Computer Science and Technology. Marcel Dekker, Inc.,
New York, Vol. 44 (2001) 319-346

13. Kryszkiewicz, M., Cichoń K.: Scalable Methods of Discovering Rough Sets Reducts. ICS
Research Report 28/2003, Warsaw University of Technology (2003)

14. Lin, T.Y.: Rough Set Theory in Very Large Databases. In: Proc. of CESA IMACS ’96,
Lille, France Vol. 2 (1996) 936-941

15. Modrzejewski, M.: Feature Selection using Rough Sets Theory. In: Proc. of the European
Conference on Machine Learning (1993) 213–226

16. Nguyen, S.H., Skowron, A., Synak, P., Wróblewski, J.: Knowledge Discovery in Data-
bases: Rough Set Approach. In: Proc. of IFSA ’97, Prague, Vol. II (1997) 204-209

17. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer Academic
Publishers, Vol. 9 (1991)

18. Pawlak, Z., Skowron, A.: A Rough Set Approach to Decision Rules Generation, ICS Re-
search Report 23/93, Warsaw University of Technology (1993)

19. Romanski, S., Operations on Families of Sets for Exhaustive Search, Given a Monotonic
Boolean Function. In: Proc. of Intl’ Conf. on Data and Knowledge Bases, Israel (1988)

20. Skowron, A., Rauszer, C.: The Discernibility Matrices and Functions in Information Sys-
tems. In: Intelligent Decision Support: Handbook of Applications and Advances of Rough
Sets Theory. Kluwer Academic Publishers (1992) 331-362

21. Skowron, A., Swiniarski, R.W.: Information Granulation and Pattern Recognition. In: S.K.
Pal, L. Polkowski, A. Skowron (eds.): Rough-Neural Computing. Techniques for Comput-
ing with Words. Heidelberg: Springer-Verlag (2004)

22. Slezak, D.: Approximate Reducts in Decision Tables. In: Proc. of IPMU ’96, Granada,
Spain, Vol. 3 (1996) 1159-1164

23. Slezak, D.: Searching for Frequential Reducts in Decision Tables with Uncertain Objects.
In: Proc. of RSCTC ’98, Warsaw. Springer-Verlag, Berlin (1998) 52–59

24. Slowiński, R. (ed.): Intelligent Decision Support, Handbook of Applications and Advances
of the Rough Sets Theory. Kluwer Academic Publishers, Vol 11 (1992)

25. Stepaniuk, J.: Approximation Spaces, Reducts and Representatives. In: Skowron,
A., Polkowski, L. (eds.): Rough Sets in Data Mining and Knowledge Discovery, Springer-
Verlag, Berlin (1998)

26. Susmaga, R.: Experiments in Incremental Computation of Reducts. In: Skowron, A.,
Polkowski, L., (eds.): Rough Sets in Data Mining and Knowledge Discovery, Springer-
Verlag, Berlin (1998)

27. Susmaga, R.: Parallel Computation of Reducts. In: Proc. of RSCTC ’98, Warsaw. Springer-
Verlag, Berlin (1998) 450–457

28. Susmaga, R.: Computation of Shortest Reducts. In: Foundations of Computing and Deci-
sion Sciences, Poznan, Poland, Vol. 2, No. 23 (1998)

29. Susmaga, R.: Effective Tests for Inclusion Minimality in Reduct Generation. In: Founda-
tions of Computing and Decision Sciences, Vol. 4, No. 23 (1998) 219–240

30. Tannhäuser, M.: Efficient Reduct Computation. M.Sc. Thesis, Institute of Mathematics,
Warsaw University, Warsaw (1994)

31. Wroblewski, J.: Finding Minimal Reducts Using Genetic Algorithms. In: Proc. of the 2nd
Annual Join Conference on Information Sc., Wrightsville Beach, NC, (1995) 186–189

	1 Introduction
	2 Basic Notions
	2.1 Information Systems
	2.2 Decision Tables
	2.3 Reducts for Decision Tables
	2.4 Core

	3 Discovering Generalized Reducts
	3.1 Main Algorithm
	3.2 Determining Generalized Decision Representation of Decision Table
	3.3 Calculating Maximal Non-super-reducts
	3.4 Generating Candidates for Reducts
	3.5 Optimizing Steps in RAD
	3.6 Illustration of RAD

	4 Core-Oriented Discovery of Generalized Reducts
	4.1 Main Algorithm
	4.2 Illustration of CoreRAD

	5 Discovering Certain Reducts
	6 Approximate Attribute Reduction
	6.1 Approximate Reducts for Decision Table
	6.2 Approximate Core

	7 Discovering Approximate Generalized Reducts
	7.1 Main Algorithm
	7.2 Evaluating Candidates for Approximate Reducts
	7.3 Calculating Quasi Maximal Non-approximate Generalized Super-reducts
	7.4 Generating Candidates for Reducts
	7.5 Illustration of GRA

	8 Core-Oriented Discovery of Approximate Generalized Reducts
	8.1 Main Algorithm
	8.2 Evaluating Singleton Candidates
	8.3 Illustration of CoreGRA

	9 Discovering Approximate Certain Reducts
	10 Conclusion
	References

