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Semantic Networks
Note: This is a foundational article, newer applications of semantic 
networks and references are available but they do not advance the 
notational efficacy nor expressive power of the material presented in 
this article.

1.0 Introduction
Semantic networks have stimulated debate about their use as 
a propositional knowledge representation in reasoning and 
understanding systems since their introduction by Quillian 
(1968, 1969) and subsequent generalization by other re-
searchers including Shapiro (1971, 1979, 1987), Schubert 
(1975, 1976), Woods (1975), Levesque & Mylopoulos (1979), 
etc. Early on, semantic networks were successfully exploited 
for concept learning (Winston, 1970), natural language un-
derstanding (Schank, 1972, 1973; Schubert et al., 1979) and 
deductive reasoning (McSkimmon & Minker, 1977). They 
were also influential in psychological theories of cognition 
(Collins & Quillian, 1972; Norman & Rumelhart, 1975; and 
Wilson, 1979), the early development of knowledge represen-
tation languages (Brachman, 1979; Levesque & Mylopoulos, 
1977), the implementation of semantic network processing 
systems (Shapiro, 1979), and machine architectures (Fahl-
man, 1975, 1979, 1982). More recently, variants of semantic 
networks have been utilized in various inheritance mecha-
nisms. 

Initial misconceptions about the use of semantic net-
works in knowledge representation were widespread. By the 
end of the 1970's, however, both semantic network and pred-
icate calculus representations were recognized as formal lan-
guages designed to allow natural language statements to be 
paraphrased precisely and unambiguously and whose re-
spective reputations could be attributed to the use to which 
each had been put. Research efforts based on semantic net-
works emphasized associative and other non-deductive pro-
cessing whereas the predicate calculus was usually wedded to 
resolution-based theorem proving. It then became widely 
recognized that theorem proving techniques could just as 
easily be adapted to semantic network representations or 
non-deductive inference algorithms could be designed to 
predicate calculus.

The natural development and influence of semantic net-
works can be found in current knowledge representation and 
object-oriented languages. Data engineers and knowledge 
representation researchers, concerned with the need to for-
mally understand the expressive power and representational 
adequacy of various data and knowledge representation 
schemes, have returned to logic to provide a basis for such re-
flections. “Recasting” various formalisms in logical terms 
provides a basis for comparison and has led to the develop-
ment of new non-monotonic logics to handle incomplete-
ness, default reasoning and other unique requirements. 
These developments are having an effect on semantic net-
work proponents; McCalla & Cercone (1983) and Cercone & 
McCalla (1987) provide good overviews of network-based 
and other data and knowledge representations.

In this paper we report on what has come to be known as 
the ECO family formalism of semantic network. After briefly 
reviewing the early and ad-hoc development of semantic net-
works, we evolve the formalism due to Schubert (1975) and 
its continued development in over a decade's subsequent 
work in the representation and organization of knowledge, 
accelerated special purpose inference mechanisms designed 
around this graphical two dimensional logic representation 
and its use in an English COnversational System.

2.0 The Ad-Hoc Development of Semantic 
Nets

Early artificial intelligence (AI) representations of knowledge 
were developed in an ad-hoc manner, largely in response to 
the constraints of implementation. This is particularly true of 
semantic network representations of knowledge. A varied as-
sortment of semantic networks have appeared in many AI 
systems as a means for representing knowledge. They have 
been used to represent the meanings of English words, as 
representations of static information (facts) for deductive 
planning systems and question-answering programs, and as 
crude knowledge organizational schemes for both frame and 
non-frame formalisms. Until the late 1970's, semantic net-
works had been used in informal and disparate ways that 
have precluded their precise, nonrestrictive definition.

Quillian's Initiation

Quillian (1968) developed what came to be known as the 
semantic network as the result of his pioneering effort to 
model semantic memory and explain the organization of se-
mantic information in human memory. In Quillian's net-
works, word meanings were represented by a network of 
objects and relations among the objects. To distinguish am-
biguous meanings for pairs of words Quillian compared the 
plausibilities of different interpretations by the strength of 
the associations linking the pairs of meanings. Quillian dis-
tinguished the type node whose associative links lead di-
rectly into a configuration of other nodes that comprise the 
meaning of the object represented by the type node and the 
token node which refers indirectly to a word concept by 
having one special kind of associative link that points to the 
concept's type node. Figure 2-1 illustrates word meanings for 



the three meanings of plant: (1) a living structure which is not 
an animal, frequently with leaves, getting its food from air, 
water, earth; (2) apparatus used for any process in industry; 
and (3) put (seed, plant, etc.) in earth for growth. The three 
circled words, plant1, plant2, and plant3 represent type 
nodes and all other words represent token nodes. The non-
terminated links from token nodes represent pointers to the 
token's type node.

Quillian's effort initiated a surfeit of network formalisms 
from which several interesting associative processing algo-
rithms developed, for example Winston's network matching 
algorithm, Schank et al.'s language processing heuristics, etc. 
A unique network representation was characterized by the 
kinds of nodes, associative links, and types of operations that 
could be carried out within their network framework. With-
out exception, these networks were expressively weak.

PLANT2  

A APPARATUS  

USE  

PLANT3  

PUT 

PLANT1  OR PLANT2  PLANT3  

A-STRUCTURE  

LIVE  ANIMAL  WITH  GET  

Figure 2-1. Three meanings of plant.
Winston's Semantic Network

When presented with line drawings of scenes containing 
children's toy blocks, such as bricks, cubes, pyramids and 
wedges, Winston's (1970) program forms descriptive net-
works for these scenes disclosing the property and relation-
ships of the objects appearing in them. Using these structural 
descriptions, the program can learn structural concepts such 
as “pedestal”, “arch”, or “arcade” on the basis of examples 
and counterexamples of the concepts.1

After determining the bodies in a scene, the program 
then determines which edges belong to which object, and fills 
in partially occluded edges. Then the program infers the 
types of objects (brick, wedge, etc.) from the shapes and ad-
jacency relationships of the visible faces. The sizes and orien-
tation are then readily available. The example illustrated in 
Figure 2-2a is in the form of a semantic network. Nodes de-
pict particular things (such as the object ABC, and its faces A, 
B, and C) or general concepts (such as BRICK, LARGE, etc.), 
and the arcs are relations between things and/or general con-
cepts (e.g., PART-IS is a relation which holds between a thing 
and its parts).

Heuristic routines are next applied to scenes to obtain 
support and relative position relationships between bodies. 
This information is represented in descriptive network form, 
see Figure 2-2b. The final scene description includes these re-
lationships as well as the overall attributes of the object de-
termined earlier (brick, wedge, etc.) but not the finer details 
such as component faces and their shapes.

Winston's system learns using network descriptions and 
a clever network matching algorithm is developed. For exam-
ple, to teach the concept house, the system is presented an in-
stance and three non-instances of houses, Figure 2-3a. The 
initial model formed by the system describes the first true in-
stance of the concept. The model is generalized for subse-
quent examples so that it will accept any new instances and 
reject non-instances.2 Each modification of the model is 
made by generating a comparison network for the current 
model and the new example. A comparison network de-
scribes the similarities and differences between the model 
and the example. The description of scenes (1) and (2), their 
comparison network, and subsequent modifications of the 
model are shown for the “house” sequence in Figure 2-3b.
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Figure 2-2. (a) A large standing brick (b) A scene descrip-
tion.

Note the absence of the SUPPORTS pointer in the sec-
ond network. In the comparison network there is an extra 
pointer in the left network, labeled SUPPORTS with destina-
tions the node for the wedge. The modified model asserts 
there is necessarily a support relation between the two parts 
of the scene. This modified model will reject (2) as an in-
stance of a house. Similarly (3) cause a reinforcement of the 

1 While the content of the scenes is severely restricted, the methods 
employed in the program seem generalizable to more utilitarian 
concept-formation tasks (consider “table”, “chair”, etc.). Win-
ston-type structural learning evolved significantly from learning 
from parameter adjustment which had been the major dominant 
paradigm in pattern recognition up to that point. The work of Ha-
vens & Mackworth (1983, 1987) represents a major deviation in 
recognition tasks and is one of the dominant paradigms for scene 
recognition at the present time.

2 Non-instances are required to be fairly close to the true instances 
so that the system does not have too difficult a time determining 
which features of a non-instance disqualify it. 
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wedge property of the supported object by the necessary op-
erator, and (4) causes a reinforcement of the brick property 
of the supporting object. Just as certain features of the model 
can be reinforced through counter-examples, others can be 
relaxed when true instances are presented which differ from 
the model.

Although Winston's program embodies many ad-hoc de-
cisions, both in analyzing scenes and in the learning process 
and contains logical inadequacies in the network formalism 
(disjunction and quantification cannot be represented), the 
program incorporates a semantic network formalism and 
representation and a non-trivial algorithm for comparison 
networks.
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Figure 2-3. (a) A house and three near misses. (b) Descrip-
tion of scenes and comparison network.

Rumelhart, Lindsay, and Norman's 

Process Model for L-T Memory

Rumelhart, Lindsay, and Norman (1972) made one of 
the first attempts to formalize a semantic network in their 
work on modelling long-term memory. Their active structur-
al network was a labelled connected graph consisting of a set 
of nodes interconnected by a set of relations associating two 
nodes. They (arbitrarily) distinguished primary nodes, which 
refer directly to a natural language concept, and secondary 

nodes, which represent a concept as it is used in a specific 
context - a token (in Quillians’ sense).

Rumelhart et al. gave formal definitions for their nota-
tion and rules for forming relations, concepts (qualifiers, 
quantifiers, propositions, etc.), propositions, and operators. 
Application of their rules yield Figure 2-4 as an encoding of 
the sentence “John and Mary want (to have) three red bal-
loons”. This representation incorporated case structures into 
a network formalism. Figure 2-4 typifies general definitions 
of concepts incorporated into the network in a straightfor-
ward manner with case-like pointers indicating parts of nom-
inal concepts and agents and objects of verbs. They used the 
infamous ISA link to indicate type-token relations as well as 
subset relations; other links were poorly motivated and left 
unexplained. Little attention was paid to the logical adequacy 
of the representation thus the relationship between the dia-
grams and the concepts which they represent are left unclear.
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Figure 2-4. John and Mary want three red balloons.
Rumelhart's group did attempt to account for procedural 

information in their representation via the ISWHEN link and 
they integrated case information with other aspects of world 
knowledge. The LUIGI system described in Scragg’s Ph.D. 
thesis (1975), answers questions about processes and makes 
use of the model and representation developed by Rumelhart 
et al. Inconsistencies tend to diminish the appeal of their 
model. Their introduction of binary predicates isa and has 
property is a trick used by advocates of semantic networks to 
artificially convert unary to binary predicates. This is logical-
ly unnecessary unless one's purpose is to convert a higher-or-
der logic into a many-sorted first-order logic.

A serious impediment is the lack of distinction between 
general and specific (individual) concepts. Other difficulties 
centre around adverbial modification. They treat adverbial 
modifiers as operators that apply to relations and other oper-
ators to generate new relations or operators. Unfortunately 
many adverbial modifiers require systematic analysis rather 
than mere replacement by n-valued relations.

Simmons Computational Representation and Use

Simmons (1973) formally defined semantic nets accord-
ing to the rules

network := node* {* means one or more repetitions, 
the modified Kleene *}

node := atom + relationset | terminal constant
atom := Ci | Li {indexed contextual meaning or lex-

ical meaning}
relationset := relation + node
relation := member of a list of semantic relations
terminal constant := character string {examples are “noun”, 

“sing”, “act”}
Simmons then explained how to compute semantic net-

works from English strings using a variant of Woods' (1970) 
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augmented transition network (ATN) grammars and the gen-
eration of English sentences from the semantic network. 
Simmons used this formulation of a semantic network in a 
relatively simple question-answering system. Nevertheless, 
the expressive power and representation adequacy of net-
works was not a concern of Simmons.

What are Semantic Networks and Why Use Them

As described, semantic networks have been used in dif-
ferent applications and have been specified by notational 
variants. Shapiro (1971) most succinctly stated the distinctive 
characteristic of semantic networks, “All the information 
about a given conceptual entity should be reachable from a 
common place”. Thus it is that semantic nets can easily be 
thought of as clever indexing schemes for propositional 
knowledge representations, the network concepts represent 
intuitively meaningful entities and knowledge about these 
entities is directly attached to them.

The succinctness, clarity, and intuitive nature of seman-
tic networks argues in their favour if only for purely method-
ological advantages. Semantic networks are readable; they 
suggest procedures for comprehension and inference, and 
the computer data structures which they resemble. The ex-
amples given demonstrate how associative processing algo-
rithms and complex pattern matching operations were 
readily identifiable using networks. Although in both Quil-
lian's and Winston's applications, the semantic nets each uti-
lized were weak expressively, it is doubtful that either would 
have developed his particular associative processing algo-
rithms without the use and perspicuity of semantic networks.

3.0 Extending the Expressive Adequacy 
of Semantic Networks: A Basic Net-
work Formalism

We examine semantic network representations of knowl-
edge, discussing their suitability as a representation of prop-
ositional knowledge. The use of semantic networks as a 
uniform representation mediating between specialized rep-
resentations appropriate to particular task domains is con-
sidered.

3.1  A Data Structure for Semantic Information Processing 
Early on, Shapiro (1971, 1979) attempted to extend the 

expressive power of semantic networks. He introduced the 
important distinction between the conceptual relation and 
the structural relation. Structural relations are used to form 
the basic structure of the semantic network represented ex-
clusively by non-conceptual arc labels whereas conceptual re-
lations are represented by nodes. Shapiro also calls structural 
relations item relations and conceptual relations are referred 
to as system relations.

Shapiro's repertoire of meaningful entities included in-
dividuals (particular concepts), properties and relations (ge-
neric concepts), and propositions. The knowledge attached to 
a concept is the set of propositions in which it participates 
plus, possibly, relevant procedures.

A network syntax allowing arbitrary nesting of quantifi-

ers and propositional operator scopes is essential and one 
such syntax is discussed in the next section. The first com-
plete representation for quantifiers was introduced by Shap-
iro. He treated every and some as relations between 
sentences and individuals (the variables are assumed quanti-
fied) occurring in those sentences. Thus a quantified sen-
tence such as “Everyone loves Mary” involves two 
propositions nodes: one for the open sentence [[x person]?[x 
loves Mary]] and another for the proposition that the relation 
every holds between x and the open sentence. This method of 
quantification is syntactically complete but seems semanti-
cally unsatisfying since unbound variable nodes, open sen-
tence nodes, and relations over such nodes are not intuitively 
meaningful.

The use of Skolem functions to represent quantification 
in networks dispenses with variable-binding operators and 
thus introduces no meaningless nodes. For example, ∀x ∃y [y 
taller-than x] becomes [y(x) taller-than x]. The universal 
quantification of x is implicit, and y(x) is the Skolem function 
supplying a specific individual that is “taller-than” x corre-
sponding to each x.

The importance of Shapiro's early contribution was 
largely ignored until the mid 1970's when the concern for 
foundations in knowledge representation theory became of 
paramount importance.

3.2  A Comprehensive Network Formalism
A comprehensive network formalism is motivated and 

explained in Schubert et al. (1979). Special problems with re-
spect to the use of logical connectives, quantifiers, descrip-
tions, modalities, and some other constructions that fail in 
conventional semantic networks are systematically resolved 
with extensions to conventional network notations. The rep-
resentation harmonizes with linear one dimensional logical 
notations, illustrating the close kinship of the two notations. 
This kinship supports the claim that networks have inherited 
formal interpretability from logical notations. 

To unify previous network formalisms and extend their 
expressive power to include quantifiers, operators, and high-
er-order predication, Schubert et al. developed a canonical 
form of a semantic network. Schubert's network notation is a 
uniform representation, mediating between the special pur-
pose representations which are necessary for representing 
and processing different task domains. It is intended as a 
standard of comparison and serves to illustrate concepts of 
language comprehension.

We highlight the basic notation developed earlier, and 
present a few more complex examples to illustrate the ex-
pressive power, notational efficacy and logical adequacy of 
the network formalism.

3.2.1 The Basic Notation
Semantic networks are graphical analogues of data 

structures that represent facts in a computer system. Solid 
loops are used as nodes that represent either explicitly dia-
grammed proposition nodes or existentially quantified con-
cept nodes. In the first case, propositions form the basic unit 
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of knowledge represented by the notation. In the later case, 
nodes may be labeled with names for the concepts they de-
note, for example, John, book, book1, ...; ordinary attributive 
terms such as book are reserved for the corresponding uni-
versal concepts, while numerically suffixed words such as 
book1 are used for particular instances of the concepts. Un-
broken lines are used as arcs linking parts of a proposition to 
proposition nodes. Arc labels are simply distinguishing 
marks. They are analogous to parentheses or commas in the 
predicate calculus in that they relate denoting terms syntac-
tically; they are non-denotative themselves. Whenever possi-
ble they will be chosen to enhance readability and be 
suggestive of meaning, but numeric labels could also be used, 
cf McDermott (1975). To avoid confusion, predicate names 
will be designated in small letters and arc labels by capital let-
ters. An example of a simple network is offered in Figure 3-
1a. An English paraphrase of Figure 3-1a is: proposition P1 
represents the English sentence “John loves Mary”, P2 repre-
sents “Helen loves John”, P3 represents “Helen dislikes 
Mary”, P4 represents “John gave Mary a red dress”, P5 and 
P6 serve to identify the particular red dress which John gave 
to Mary.

Occasionally the detailed use of arcs and nodes in the ex-
plicit notation of Figure 3-1a will clutter a diagram, reducing 
readability. Figure 3-1b illustrates an abbreviated form of 3-
1a with the understanding that the structure is built upon ex-
plicit propositions. The full network is abbreviated by co-
alescing the predicate node into the proposition node, 
removing the solid loop.

Figure 3-1. (a) A Simple Network (b) its abbreviated form.
3.2.2 A Comprehensive Network Formalism

The basic semantic network was extended with notation 
for logical connectives, conventions for indicating quantifier 
and operator scopes, including n-ary and higher-order pred-
icates, and providing formal interpretability for each con-
struction. The notation extends the expressive power of the 
network, making it equivalent to high-order and modal log-
ics.

Notation for Logical Connectives

Logical connectives, ignored in most network formal-
isms, occur frequently in discourse and are necessary for 
truth-functional completeness. In Schubert's semantic net-
work notation logical connectives are represented as explicit 

nodes for logical compounds of propositions (or open sen-
tences), with graphical links to the components. Figure 3-2 
represents the English sentence “If either the Mets or the Pi-
rates win and the Expos take second place, then I'll recover 
past losses and either buy a colour TV or fly to Greece”. The 
figure illustrates the formation of disjunctions and conjunc-
tions explicitly by the use of graphical links to tokens of the 
disjunction and conjunction operators. The operator-oper-
and links of the logical operator are represented by broken 
lines in Figure 3-2. Observe that no distinguishing marks are 
needed on the links of disjunction or conjunction (they are 
symmetrical operators) and arrowheads can be dropped 
when there is no ambiguity. The use of past as a modifier of 
losses is an evasive manoeuvre; it postpones discussion of 
time. Other logical connectives can be introduced in the same 
way.

Figure 3-2. If either the Mets or Pirates win and the Expos 
take second place, then I'll recover my past losses and either 

buy a colour TV or fly to Greece.
In a semantic network containing logical compounds it 

is not suitable to regard all propositions in the network as as-
serted. In this formalism we adopt the convention that the 
complete semantic net asserts exactly those propositions 
which are not constituents of compound propositions (that 
is, operands of connectives or modal operators). Graphically 
this means that precisely those propositions are asserted 
which are not pointed to. We must devise a method for as-
serting a proposition which is also a constituent of a com-
pound proposition. The assertion of a constituent simplifies 
any logical compound. For propositional attitudes, causes, 
intentions and the like, however, it may prove worthwhile to 
assert a proposition independently of the compound. In this 
case, we can use disjunction with a single operand, V ? p, as a 
way of saying p holds since the compound proposition estab-
lished by the token V is not pointed to.

Representing Quantifiers in the Semantic Network

One prominent use of semantic network representations 
includes natural language understanding systems. Any rep-
resentation of natural language must include quantifiers 
such as “All boy scouts do good deeds”, and “several of my 
friends were on strike today”. General knowledge relies upon 
quantifiers as in “It is always raining on Long Beach”. Defi-
nite descriptions implicitly make use of quantification as the 
example “the people of China” shows. The meanings of com-
plex action concepts require quantification, such as “walk-
ing” which has associated with its definition, assertions such 
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as at all times, some of the limbs of the individual engaged in 
walking support the individual.

Quantification challenges semantic network representa-
tions to indicate the scopes of universal and existential quan-
tifiers. The notation used is analogous to quantifier-free 
normal form in predicate calculus. Propositions are in prenex 
form (quantifiers have maximum scope), existentially quan-
tified variables are Skolemized, and universal quantification 
is implicit. To distinguish between them, we simply use solid 
loops for existentially quantified concept nodes (as in all pre-
vious figures), and broken loops for universally quantified 
nodes. Graphical Signalization then links each existentially 
quantified node to all universally quantified nodes on which 
it depends (that is, whose universal quantifiers precede the 
existential quantifier in prenex form). Dotted lines represent 
these dependency links to distinguish them from proposi-
tional and logical links. For example, “Every critic admires 
some painting” is represented as shown in Figure 3-3a. In 
predicate calculus notation this is (∀x)[critic(x) ? (∃y) (paint-
ing(y) & admires(x,y))] or “critic(x)? [painting(f(x)) & ad-
mires (x,f(x))]”, Skolemized. Now if we can assume 
(∃y)(painting(y), that is, there is at least one painting (or al-
ternatively, that there is at least one critic), then this becomes 
painting(f(x)) & [critic(x) => admires (x,f(x))] which corre-
sponds to the slightly simpler diagram shown in Figure 3-3b. 
Here the painting proposition is no longer considered as a 
consequent of the critic proposition. This type of simplifica-
tion is often suitable for encoding natural language state-
ments, since we do not usually communicate in terms of 
propositions which are trivially true by virtue of the nonexis-
tence of their referents (which is not to say that we do not 
communicate about nonexistent entities). The diagram for 
“There is a painting which all critics admire” differs from Fig-
ure 3-3b only in the absence of the dependency link between 
the painting and critic nodes.

The proposed method of representing quantification is 
applicable only to propositions in prenex form. If we deal 
only with existential logic (one in which all propositional con-
structions are truth-functional), no generality is lost, though 
clarity is occasionally compromised. However, propositions 
involving (nonextensional) modal operators such as neces-
sarily and believes cannot be converted to prenex form. To 
represent such propositions, the present notation is expand-
ed to allow arbitrary embedding of quantifiers. The general-
ized scope notation allowing non-prenex propositions is 
illustrated in Figure 3-3c. Scope inclusion links establishing 
operator precedence over quantifiers run from proposition 
nodes to variables, not from operator nodes to variables. If 
the diagram were given in full form rather than the abbrevi-
ated notation this would be explicit. Other examples of high-
er-ordered constructions are in Schubert et al. (1979).

Techniques for representing knowing and believing ap-
ply equally to other propositional attitudes such as remem-
bering, supposing, intending, deciding, avoiding, hoping, 
imagining, pretending, and trying. Nonreferential terms 
within the scopes of such operators (whichever ones are 

deemed useful independently of the others) can be identified 
by means of scope dependency links. The same applies to the 
denotic modalities such as obligation. It should be obvious, 
for example, how “John ought to marry the prettiest girl” 
would be represented.

Figure 3-3. (a&b) Every critic admires some painting. (c) 
John believes that everyone likes him.

Causal dependency is an important modality deserving 
attention.  “John asked Mary to dance because she was the 
only girl left without a partner” is an example of an opaque 
context generated by a causal construction. Substitution of 
the term Mary for its referential synonym the only girl left 
without a partner clearly fails. As in other modal construc-
tions, we may need scope dependency links to express causal 
structures.

Logical quantifiers are unsuitable for expressing many 
natural language quantifiers such as several, many, most of, 
a few, more than, etc. These quantifiers can be handled sys-
tematically with (fuzzy) properties of set cardinality and rela-
tions between set cardinalities, plus standard set relations 
such as set inclusion. We can classify natural language quan-
tifiers according to their indication of set size from absolute 
to comparative, where comparative indicators are those com-
paring the size of one set to that of another set. The logical 
quantifier ∃ (there exists) is an absolute indicator of set size 
since (∃x)P(x) tells us that the set of P's contains at least one 
member. The quantifier ∀ (for all), by virtue of its equiva-
lence to ~∃~, is also an absolute indicator. In the context 
(∀x)[P(x)?Q(x)] however, where the number of P's is finite, it 
can be considered a comparative indicator of set size. It tells 
us that the subsets of P's that are Q's is as large as the set of 
P's itself. Common absolute quantifiers are none, one, two, 
three, ..., several; common comparative quantifiers are all of, 
most of, a small fraction of, a slight majority of, one-half of, 
two-thirds of, as many as, twice as many as, etc. Some quan-
tifiers show both absolute and comparative attributes, espe-
cially some and many. For example, in “many artificial 
satellites are orbiting the globe” many is used absolutely - it 
appears to imply a cardinality of at least about a dozen. In 
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“many students attend John's class” many is used in the 
sense considerably more than attend the average class. This 
particular use of many is discussed in Bartsch & Vennemann 
(1972). They do not consider the absolute indicativeness of 
many, however, nor of its comparative use in selecting a sub-
set of another set, as in “many of the world's people are un-
dernourished”. Contrast the numerical indication here with 
that in “many of the apples in the basket were rotten”.

Recognizing the absolute/comparative behaviour of 
quantifiers, we can describe them systematically by means of 
predicates on set cardinality and on pairs of set cardinalities. 
In Figure 3-4 the convention for abbreviating implication is 
shown, that is, single broken lines are used for the conjoined 
antecedents and solid lines for the conjoined consequences. 
The predicate # denotes the number of elements of a set, or 
rather the single-valued relation which holds between a set 
and the number of its elements. We regard # as a function 
from sets onto integers and several as a (fuzzy) property of 
numbers. If we accepted “several” as a possible value of set 
size, then it would be impossible to talk about the size of the 
set, as # would be many valued (for example, a 6-element set 
might have both size 6 and size several).

Figure 3-4. Several cars were on the lot; most of them were 
Fords.

Representing Definite and Relational Descriptions

Natural language representations usually ignore the dis-
tinction between definite and indefinite descriptions, so the 
method for representing both types of descriptions is shown 
here. The representation of both definite descriptions (the lit-
tle old lady at the door) and indefinite descriptions (a big ap-
ple) are based on the conventions for logical connectives and 
quantifiers already introduced rather than on a description 
operator such as Moore (1973) uses. Description operators 
are useful only at a superficial level of language representa-
tion, and in the domain of pure mathematics.

The description “John's car” conveys the presupposition 
that John has exactly one car. This is true at least for certain 
discourse contexts. The non-equivalent proposition that 
John owns a red car does not necessarily convey the unique-
ness condition has been expressed in John's car. The use of 
equality leads to a convention which is suitable for definite 
descriptions of sets, such as “the SOCRED supporters of Brit-
ish Columbia”, as well as for “John's car”. Figure 3-5 illus-
trates the representation of a definite description of sets.

The notation for descriptions as introduced is inade-
quate for descriptions of predicative concepts which are ex-
pressed in terms of predicates of the same, rather than 
higher, type. For example, suppose we wish to say that the 
property human is the same as the property rational animal; 

note that the latter property is of type 1 and is expressed in 
terms of the type 1 properties rational and animal. We cannot 
diagram this statement on the basis of the formula (∀x)[hu-
man(x)?rational(x) & animal(x)], since this merely asserts 
extensional identity (that is, the set of human beings equals 
the set of rational animals). The desired statement of inten-
sional identity can be made with the aid of Church's lambda 
(λ) operator. This operator abstracts a predicate from an 
open sentence by designating certain variables of the sen-
tence as arguments of the predicate. Thus we write human = 
λx [rational(x) & animal(x)]. Two additional interesting ex-
amples are provided by the sentences “Loving one's neigh-
bors is a virtue”, which requires abstraction of the monadic 
predicate loves one's neighbors from the dyadic predicate 
loves, and “The sun is shining brightly on the beach” which 
requires formation of the λ-abstracted sun shining brightly 
on the beach for comparison with the sun which is shining 
brightly on the beach. This latter example is shown in Figure 
3-6, using a graphical analogue of λ-abstraction. 

Figure 3-5. The SOCRED supporters of B. C. are illin-
formed.

(∃S)[(∀x)[member(x,S)?[SOCRED-supporters(x) &  
resident-of(x,B.C.)]] & (∀x)[member(x,S)?illinformed(x)]]

λ-conversion is accomplished by means of a (solid) λ-
link from the proposition expressing that an individual loves 
all of his neighbours to the node for the individual. In general 
graphical λ-abstraction involves the construction of some 
open sentence (possibly with embedded λ-expressions), and 
λ-conversion of some of the variables of the sentence. Open 
sentences are formed exactly like propositions, except that 
some of the participating concept nodes are regarded as free 
variables.  λ-conversion is symbolized by λ links from the 
node corresponding to an open sentence to free variables of 
the sentence. In the nonmonadic case λ links are labeled λ-A, 
λ-B, etc., (or in some other systematic way) to distinguish the 
arguments of the abstracted predicate.

Including Time in the Representation

Time is regarded as the only situational or contextual 
variable, cf. McCarthy & Hayes (1969) that needs to be added 
to action propositions. This contrasts with Anderson & Bow-
er (1973), Schank et al. (1975), etc. who include time and lo-
cale as basic dimensions of events in their representation. 
However, locale is not a property of events as a whole, but a 
(frequently time-dependent) property of the participants in 
an event. For example, in “John is watching a circling hawk” 
it is John and the hawk who have locations, not the event.

We use time in instantaneous (a proposition can have 
either a fixed or variable moment of time associated with it) 
and interval modes. In the interval mode the moment is re-
placed by a time interval which can be omitted in particular 
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contexts to simplify propositions that describe states and 
events with more enduring properties (like being a girl, car, 
etc.). This omission is a matter of expediency; any change in-
volving a metamorphosis ( a caterpillar becoming a butterfly) 
would require explicit recognition of time dependencies.

Figure 3-6. The sun is shining brightly on the beach.
Within this framework, temporal relations including 

tenses (which can be built up from more elementary tempo-
ral relations) can be defined. If we restrict our view of time as 
consisting of a set of elements (time points) and a relation 
that partially orders them, we can define binary temporal re-
lations similar to those of Bruce (1972). Bruce devised a sys-
tematic method for defining tenses. He mapped time 
relations given by auxiliary verbs and the form of the main 
verb and defined seven binary ordering relations on time seg-
ments, for example, I had gone - maps to after. Thus a tense 
is an n-ary relation on time segments, for example, past tense 
is one in which the relation after holds between two time seg-
ments. Our modifications to some of Bruce's binary ordering 
relations permit us to represent a sentence like “While he was 
in Rome, before he met his murderer, he first sang in La 
Gravity” as in Figure 3-7.

Figure 3-7. While he was in Rome, before he met his murder-
er, he first sang in La Traviata.

Primary issues of network form and content need to be 
addressed, including: (i) primitive versus nonprimitive rep-
resentations; (ii) the separation of propositional content of 
text from pragmatic aspects; and (iii) network normal form 
versus ad hoc systems. Computer systems design for specific 
tasks depends in part on early commitments to these issues. 
These ideas are detailed elsewhere, see Schubert et al. (1979), 
Brachman (1979), Woods (1975), etc., and summarized next.

4.0 What Should be Represented, Why, 
and How

Application designers face fundamental representation, or-
ganization, and processing issues early in their approach to 
design, and choices are critical. The designer must decide 

what should be represented, the form of the representation, 
and the level to which the representation is restricted. On the 
basis of these considerations, we argue in favour of a non-
primitive semantic network representation in which proposi-
tions are organized in normal form determined by the con-
cept hierarchy.

4.1  The Problem with Semantic Primitives
The expressive power and formal interpretability of the 

state-based representation (Cercone and Schubert, 1975) 
contrasts with Schank's (1972) conceptual dependency rep-
resentation and Wilks’ (1973) preference semantics repre-
sentation. We compare the methods of Schank and Wilks 
with the network oriented state-based representation in or-
der to argue against the use of a small number of very general 
primitive predicates for representing meaning in natural lan-
guage.

Conceptual dependency epitomized in the MARGIE sys-
tem, Schank et al. (1973), is rich in semantic representation 
and designed to assist paraphrase, inference, and machine 
translation. Schank represents meaning structures with a 
graphical notation that divides words into four conceptual 
categories. In addition, Schank uses only 14 primitive actions 
from which all other actions are derived.

Wilks' preference semantics also utilizes primitives to 
represent the meaning content of natural language state-
ments. Wilks concentrated on machine translation of small 
input paragraphs and reported reasonably good translation 
from English to French. Wilks' representation is based al-
most entirely on about 60 primitive predicates. Furthermore, 
Wilks (1977) admonishes Hayes (1974, 1977) for presenting a 
number of arguments against the use of semantic primitives 
as Schank and Wilks use them.1

Wilks misconstrues Hayes' remarks when he ascribes to 
Hayes the belief that a coherent and consistent metaphysics 
for STUFF is necessary for all ordinary language comprehen-
sion. At the other extreme, embedding the minimal content 
of terms into a minimum conceptualization does not facili-
tate the human interpretive process. The original term itself 
suggests what content we could infer in addition to the mini-
mal content. This idea of inference can be efficiently pro-
grammed in a semantic structure by inserting probable 
inferences with direct reference to the word definitions. This 
is simpler than analyzing the minimal representation and 
then looking for applicable inference rules.

1 Wilks writes “One aspect of these criticisms is not radical - in the 
sense of questioning the very basis of primitives - but it is a de-
mand by Hayes that primitive systems give a more explicit ac-
count of the rules regulating inferences concerning a primitive for 
substance, like STUFF. This demand for greater explicitness is a 
good one, though there is reason to doubt that any coherent and 
consistent metaphysics of substance can in fact be given. Two and 
a half millennia of philosophy have failed to provide one, yet 
throughout that time everyday conversation about substances, 
such as coal, oil, and air goes on unimpeded. It is important to 
stress this fact, so as not to fall into the error of imagining that lan-
guage about substances requires such a metaphysics of substanc-
es in order to function at all. It clearly does not.”
Introduction to Artificial Intelligence - Computer Science 4150 - Winter Semester, 2005 8



Wilks rejects Hayes' criticism that there is no model the-
oretic semantic for primitive based systems. He feels that 
Hayes' demand for such a model theoretic semantics makes 
Hayes' demand for a metaphysics of STUFF radical. Wilks 
emphatically rejects the application of model theoretic se-
mantics (in the manner of the semantics that Tarski con-
structed for logic) to the analysis of natural language 
meaning. Wilks believes that preference semantics evolve in-
evitably into a natural language itself. However, Wilks mis-
construes truth conditions as serving to determine the actual 
truth of sentences in the object language, and gives the exam-
ple of the inappropriateness of computing over a possible 
world. However, possible worlds are not intended to be com-
putational domains, but as part of an abstract conception of 
meaning and truth. Truth is thus only relevant to truth-deter-
mination. Model theoretic semantics does, provide a practi-
cal means to decide truth-determination, e.g., checking 
whether an inference mechanism is truth-preserving.

Wilks also chides Bobrow (1975) for arguing that a prim-
itive expansion or paraphrase requires a more complex 
match than does the original English word that the para-
phrase is for. He disputes the complexity of the matching, 
however, since preference semantics does not operate in 
paraphrase mode, he uses Schank's arguments about the 
paraphrase mode of Schank's primitive based system to re-
ject Bobrow's critique. Examining Schank's defense of primi-
tive-based systems, we find the following advantages: (1) 
paraphrase relations are made clearer; (2) similarity rela-
tions are made clearer; (3) inferences that are true of various 
classes of verbs can be treated as coming from the individual 
(primitive) ACTs. The inferences come from ACTs and states 
rather than from words; and (4) organization in memory is 
simplified because much information need not be duplicated. 
The primitive ACTs provide focal points under which infor-
mation is organized.

The increased clarity of paraphrase and similarity rela-
tions derives from Schank's use of canonical form rather than 
his “primitives” meaning representation, see Schubert et al. 
(1979) for detailed arguments. The last two advantages also 
cannot be traced to the use of semantic primitives. Sharing 
inferences within classes of verbs can be accomplished with-
out restating words in terms of primitive ACTS. Cercone 
(1975) gives an example which demonstrates both eats and 
drinks as sentential forms share in the implications that a 
single primitive ingests would store but conserve storage and 
computation.

Moreover, while we see no disadvantages of non-primi-
tive based representations, point (4) shows a major disad-
vantage in their elimination, namely the resultant need for 
matching complex primitive representations instead of orig-
inally simple propositions. Examining a typical restaurant 
script such as Schank proposes for John dined at a restaurant 
convinces us of the complexity of matching. Schank's method 
stores John's actions in the restaurant as a sequence of 
scenes, partially obtained from the restaurant script, which 
represent several successive conceptualizations about restau-

rant dinings. An inquiry such as “Did John dine at a restau-
rant?” requires another construction of the complex 
succession of conceptualizations about restaurant dining. 
Then the succession of conceptualizations would have to be 
matched. The task is not trivial. Wilks entire primitive-based 
system is spared this complication since the system was de-
signed for sentence translation and not question answering.

Schubert et al. (1979) present arguments which clarify 
the need for a meaning representation more detailed than 
Schank and Wilks' oversimplified meaning formulas. We 
maintain that no representation of meaning is adequate until 
it captures many of the same notions that people realize when 
they comprehend language utterances. Our version of what 
walking means to people is at least an order of magnitude 
more complex than the definitions Schank and Wilks allow 
for walking, since their formulas also admit other complex 
concepts such as running, skipping, skating, and hopping un-
der the same meaning formula. Our example demonstrates 
that the semantic network formalism was equal to the repre-
sentation task and also dramatized the actual complexity of 
ordinary concepts when expressed in the primitive-based 
representations of Schank and Wilks. The meaning formulas 
of primitive-based representations highlight properties most 
frequently needed for comprehension and simple inferences. 
This is their remaining salient feature. Primitive-based rep-
resentations do capture major properties of defined concepts 
and we have only added minor details to them. But to rely on 
meaning caricatures as Schank and Wilks do, ensures that 
comprehension will remain of a crude sort. Non-primitive 
based representations can be equipped with the advantages 
of the Schank-Wilks approach, simply by providing lists of 
the most frequently needed properties for comprehension of 
each predicate and permitting the significant properties of 
concepts to become independently accessible without invok-
ing the full meaning representation defining the concept.

The complexity of a concept does not interfere with its 
matchability since it is retrieved by its name. Considerations 
of storage economy and the computational complexity of pat-
tern-directed retrieval convince us of the limited value of 
primitive-based representations.

4.2  Propositional Content and Pragmatic Aspects
Is it sufficient to extract the propositional content of sen-

tences and use that as the basis of representation, or should 
the representation also reflect aspects of meaning such as 
speaker intention, presupposition, connotation, and style? 
An example from Woods (1975) demonstrates the signifi-
cance of these various aspects of meaning. Woods argues that 
the sentence

The dog that bit the man had rabies.   [4.1]

should not have a representation identical to the sentence

The dog that had rabies bit the man.[4.2]

even though the propositional content for [4.1] and [4.2] is 
identical, that is, there is a dog, there is a man, the dog had 
rabies, and the dog bit the man (ignoring, for simplicity, tem-
poral considerations). Woods protests, correctly, that the dif-
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fering descriptions of [4.1] and [4.2] are inappropriate 
criteria for accessing the memory node for the referent of ei-
ther description. Woods further insists that [4.1] and [4.2] in-
tuitively mean different things, so syntactic distinctions must 
be made between the meaning expressed in the relative 
clauses and the meaning expressed in the main clauses. Per-
haps Woods derives this position because he believes that in-
tensional and extensional entities must be represented by 
different sorts of nodes in a semantic network. For example, 
Woods says that in some contexts the prettiest blonde refers 
to only Sally Sunshine, yet in other contexts the prettiest 
blonde depends on the notion conveyed by the descriptive 
phrase. Woods believes that these contexts are distinguished 
by different sorts of nodes (or sub-networks). We believe that 
terms (or nodes) already encompass both extensions and in-
tentions, and that a syntactic distinction is not appropriate to 
distinguish extensional and intensional nodes. It is appropri-
ate to explain the conditions under which a term contributes 
to the truth value of a sentence through its intension rather 
than through its extension alone. Woods' differentiation be-
tween intensional and extensional entities parallels the dis-
tinction between transparent and opaque readings which can 
be illustrated by the sentence “John wants to marry the pret-
tiest girl”. The syntactic distinction lies in the relative scope 
of the wants modal operator and the existential quantifier of 
the example sentence.1 

We propose that a distinction be made between the 
propositional content of sentences and their pragmatic as-
pects. Different pragmatic aspects generate the different 
meanings of sentences like [4.1] and [4.2]. We agree with 
Woods that the internal meaning representation of a sen-
tence should reflect both its propositional content and its 
pragmatic aspects, but the two sorts of information should 
not be inextricably mixed. Mingling propositional and prag-
matic information would handicap comprehension processes 
which must utilize any acquired knowledge. Woods' special 
syntactic representational device would also encumber the 
matching process since the matching processes seeking suit-
able referents for [4.1] and [4.2] would depend on the origi-
nal text. In contrast, Schank (1972) has presented convincing 
reasons why an internal representation should be in a canon-
ical form, relatively independent of the original English sen-
tence. Mingling propositional and pragmatic information 
about utterances would disperse pragmatic information 
about a particular section of discourse over the propositional 
data base. Information about speaker intentions and as-
sumptions would be buried with knowledge about dogs, peo-
ple, etc. We maintain that a separate model for discourse 
status (speaker intentions and the like) is necessary. This 
model is the proper place for semantic information.

4.3  Network Form
We limit our discussion of the form of representation to 

the issue of property inheritance. In a separate paper, Vogel, 

Cercone, and Popowich (1990) examine property inheritance 
much more exhaustively using a new paradigm of beliefs and 
socially determined context.

The extended semantic network notations are capable of 
expressing any arbitrary proposition expressible in English, 
for example Schubert et al (1979), Levesque et al. (1979). But 
any system designed for reasoning about the real world must 
also effectively exploit property inheritance within general-
ization hierarchies. Conceptual entities typically consist of 
many components, the relationship between these compo-
nents is valuable information. We require a mechanism 
which allows inheritance of the relationships from compo-
nents to corresponding components within a conceptual en-
tity. For example, the attachment relationships between the 
body parts of birds would require nontrivial inference pro-
cesses to transfer to other similarly structured animals.

The method of variable-sharing was proposed by Hayes 
(1977) and adapted by Schubert et al. (1979) to solve this 
problem and allow for trivial transfer of relationships. We 
recommend that the knowledge associated with a generaliza-
tion hierarchy be stored as a set of implicative propositions 
which share one universally quantified node and any number 
of existentially quantified nodes dependent on the universal-
ly quantified node. The antecedents of the implications in-
volve the universally quantified node as argument and 
correspond to concepts making up the generalization hierar-
chy in the manner of hierarchies described above. Thus the 
implicants of a concept are accessible by topic rather than a 
long list of propositions involved in the concept. This mecha-
nism facilitates addition of new information and we speculate 
that it is possible to organise other than monadic concepts, 
say relational concepts, hierarchically as well.

5.0 Using Semantic Networks for Knowl-
edge Representation

A general theory of natural language understanding requires 
representations with sufficient expressive power to represent 
the meaning content of ordinary language. Schubert's ex-
tended semantic network notation possesses this expressive 
power. We now present a development of some ideas con-
cerning the semantic network representation of individual 
items of factual knowledge in a computer, where this knowl-
edge is thought of as being conveyed to the computer in nat-
ural language. 

5.1  The Basic Framework
The basic framework embodied by many natural lan-

guage understanding systems is the <actor-action- object> 
formalism. Certainly this is not without justification. Much of 
natural thought and communication follows from this frame-
work. Only a deeper analysis of actions and intentions seems 
to belie thinking of this framework as underlying natural lan-
guage. While not denying the intrinsic value to organization, 
heuristic programming, and pragmatics that this <actor-ac-
tion-object> formalism suggests, its theoretic value for be-
ginning investigations into language comprehension is 
minimal.

1 For sake of simplicity we ignore the additional ambiguity of 
whether the prettiest girl refers to the time of John's wanting or 
the time of John's marrying.
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A more fundamental starting point uses extended se-
mantic networks to represent many natural language con-
structions in a neutral state-based representation, explicitly 
representing the propositional content of language utteranc-
es. At times, explicit comparisons are made between concep-
tual dependency theory and preference semantics theory on 
the one hand and the extended network approach on the oth-
er.

5.2  States, Events, Actions, Cases, Causes, and Intentions
Sentences such as

The sun was turning red and approaching the 
western horizon.[5.1] 

raises many questions about Schank's and Wilks' formalisms. 
In [5.1] the motion of the sun must be done by somebody or 
something whereas its change of colour cannot be done by 
somebody or something. Thus, using the <actor-action-ob-
ject> formalism espoused by both Schank and Wilks, modes 
of behaviour which are expressed by actions must have actors 
whereas all other modes of behaviour cannot have actors. In 
the case of the (apparently) moving sun in sentence [5.1], one 
is hard pressed to identify the actor. Consequently we are 
compelled to regard certain ongoing activities which intui-
tively just happen as instigated by someone or something (in-
cluding natural forces in a vague, unspecified sense).

Just as we are compelled to regard certain ongoing activ-
ities as instigated by somebody or something, we are denied 
the option of regarding certain actions as having an agent as 
in

John was hurting Mary by pulling her hair.[5.2] 

In [5.2] the hurting not being an action, has no actor 
whereas in

John was dragging Mary by pulling her hair. [5.3] 

the dragging, insofar as it involves PTRANS'ing does have 
John as an actor.

We may wonder by what criterion we draw the line be-
tween what an actor does and what he causes. In [5.2], ac-
cording to Schank, we are to regard the “hurting” as caused 
by the “pulling” action. But the same is true of PTRANS'ing in 
[5.3]. Furthermore, even direct bodily action such as moving 
an arm can be viewed as caused by muscle contraction or, 
subjectively, as caused by an act of will, either of which again 
may have antecedent causes.

It seems to us that no structural primitives should be as-
sociated with actors at all. Instead we propose a neutral rep-
resentation in which events are expressed as sequences of 
states of the participants. The successive states simply ex-
press what happened, without explicit commitment as to who 
did it. Agent(s) in an event can be identified by supplementa-
ry propositions. The notion of an agent can continue to be 
used to aid interpretation and inference. Agent would be re-
garded as a rather fuzzy higher level concept, understood by 
the system in terms of the role of a supposed agent within a 
sequence of causally and teleologically related states. In the 
sentence “John uprooted the sapling” the term agent can be 

considered highly applicable to John's role in the event while 
in the sentence “The avalanche uprooted the tree” its applica-
bility to the role of the avalanche would be considered rela-
tively low. The notion of an agent seems to depend in part on 
causal priority of a state of the supposed agent in the se-
quence of states under consideration, and in part on the ex-
tent to which purposive behaviour can be ascribed to the 
supposed agent in general, and in part to the extent to which 
the particular sequence of states which he initiated can be as-
sumed to be intentional on his part.

Similarly we propose to separate why something hap-
pened (causes, enabling conditions, reasons, explanations, 
justifications, and the like) from what happened. This does 
not prevent us from including causal propositions in the rep-
resentation and relying heavily on them for interpretation 
and inference. However, time relations and changes of state, 
not causes, will give coherence to a set of propositions as an 
event.

Schank's instrumental case relation between actions can 
and should be represented in terms of causation and inten-
tion. If a system has a conceptualization to the effect that 
John was PTRANS'ing the ball by PROPEL'ing it, then this 
conceptualization should also express that the PROPEL'ing 
was causing the PTRANS'ing. Phrases ostensibly expressing 
instrumental actions often express no more than causation. 
An example is the by clause in

The effluents were killing the fish by raising the 
temperature of the water.[5.4] 

When there is a difference, it lies in the intimation of 
purposive causation. In

John woke Mary by blowing his trumpet.[5.5] 

purposive causation is expressed, while in

Mary woke up because John was blowing his trumpet.  
[5.6] 

it is not. Sentences [5.5] and [5.6] clearly show that the in-
strumental relation amounts to a causal relation supplement-
ed by intentional states.

Since the inception of conceptual dependency theory 
and preference semantics, there have been many changes to 
them. An early criticism of Cercone and Schubert (1975), ap-
parently still somewhat valid, has largely been amended. 
Both theories now appear to have the conception of a state.

According to Fodor (1972), actions are to be thought of 
as a proper subclass of events. According to Schank, an action 
is something a nominal can be said to be doing at some mo-
ment.1 A study of his proposed inferences shows that an ac-
tion does not express a definite change in a situation; rather 
it expresses existence of a situation which tends to produce 
change, and all actual changes must be inferred. Formulas for 
actions in Wilks' theory are analogous but less explicit. Ac-
tions, then, express modes of behaviour which promote but 
do not guarantee the occurrence of events. For example, the 

1 this is an interpretation of Schank's definition.
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actions PTRANS, INGEST, MOVE do not express changes in 
location; instead those changes are primary inferences given 
that an actor is PTRANS'ing, INGEST'ing, or MOVE'ing 
something. Syntactically, the relationship between an event, 
say a change in location, and the action, say PTRANS, whose 
primary inference is that event, corresponds quite closely to 
the relationship between verbs and their participles respec-
tively. To say that John was PTRANS'ing himself with the re-
sult that his location changed is quite analogous to saying 
that he was going somewhere with the result that he went 
there.1 In any case the term action is now seen to be quite 
misleading, since it normally connotes the occurrence of def-
inite events, rather than the existence of a dynamic situation 
which tends to generate events.

Thus Schank's actions (contrary to the connotation of 
the term) correspond more closely to states than to events! 
To say that A is PTRANS'ing B is merely to express a momen-
tary truth about the system in which A and B participate, not 
a change in that system (which remains to be inferred). This 
view is compatible with the observation that many common 
modifiers express subtle blends of passive and dynamic attri-
butes. The examples below bring to mind conceptual images 
that illustrate a gradually increasing emphasis on dynamics.

blue sky  ? bright sun   ? glowing (or luminous) candle   ?
burning candle   ? blazing fire  ? billowing smoke

Schank's actions, and, as far as we can determine, Wilks', 
are dynamic states, or activities, or modes of behaviour which 
mediate changes in certain attributes. Thus PTRANS and 
MOVE mediate changes in location, INGEST and EXPEL me-
diate changes in containment, and MTRANS mediates 
changes in awareness.

We believe that the recognition that actions in Schank's 
sense are essentially states rather than events is important, 
since it leads to a uniform view of all (true) events as sequenc-
es of states. In this view the need for identifying actors of 
events does not arise, nor is it necessary to delineate the spu-
rious boundary between passive and dynamic states.2

We now illustrate our representation of states and 
events. Nothing new needs to be added to the network nota-
tion of section 3. We regard any condition which can hold 
momentarily (blue, moving, running, etc.) as a state. Accord-
ingly, any atomic proposition which is based on a time-de-
pendent predicate is a state proposition. Figure 5-1 shows 
two concurrent state propositions: something (the redness of 
the sun) was increasing throughout some time interval and 
something else (the distance between the sun and the hori-
zon) was decreasing throughout the same time interval.

Actually there are two additional state propositions, con-
cerned with the existence of unique values of redness and dis-
tance at all moments of time within the time interval of 
interest; these have not been made explicit since they can be 
taken to be implicit in the redness and distance relations.

Fig 5-1. The sun was getting redder and approaching the horizon.
Actually there are two additional state propositions, con-

cerned with the existence of unique values of redness and dis-
tance at all moments of time within the time interval of 
interest; these have not been made explicit since they can be 
taken to be implicit in the redness and distance relations.

Events involve a change in state as “the last leaf fell from 
the tree” illustrates. The definitive characteristic of state 
changes is the following: if a system has property A at time t1, 
and property B at time t2, then A?B is a change of state if and 
only if A and B are mutually exclusive properties, for exam-
ple, A=solid, B=liquid; A=round, B=rectangular. In fact a 
state attribute such as colour which can assume various val-
ues can consistently be defined as a set of mutually exclusive 
properties, each member of the set being regarded as a value 
of the attribute. This admits both qualitative attributes such 
as colour as well as quantitative attributes such as location. 
Figure 5-2 shows a simple event involving a single change of 
state of a system with one component (Mary). The time rela-
tion then implies immediate succession of the two time inter-
vals. 

Figure 5-2. Mary fell asleep.
Our representation of Schank's sentence “John hit 

Mary” is shown in Figure 5-3a. A paraphrase is the following. 
Some unknown mode of behaviour of John caused some ob-
ject to move quickly toward Mary. Subsequently the object 
reached Mary and exerted a force on her. Note that we have a 
state and an event here, viz. John's unknown state and the 
event of the object moving toward Mary and striking her. In 
accordance with our earlier remarks about causation, the 
causal connections between John's state and the ensuing 
event does not make John's state part of that event. Only ex-
clusive and successive states of a particular system of objects 
form events. A natural inference in Figure 5-3a would be that 
John intentionally hit Mary, that is, that the missing state of 
John is that he was trying to bring about the event in ques-
tion. We represent trying by the state predicate x has active 
goal y at time t, as illustrated in Figure 5-3b. The explanatory 
paraphrase goes as follows. The cow was on the ground, pro-
pelling itself towards a location above the moon; then it was 

1 Unlike Schank we do not regard he was going and he went as 
equivalent; we claim that he went there, unlike he was going 
there, affirms that he did arrive at his destination, and that it is de-
cidedly odd to say he went there but didn't get there.

2 Since the inception of conceptual dependency theory and prefer-
ence semantics, there have been many changes to them. An early 
criticism of Cercone and Schubert (1975), apparently still some-
what valid, has largely been amended. Both theories now appear 
to have a conception of a state.
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moving toward that location; then it was at that location; 
then it was moving towards a place of destination on the 
ground, such that the moon is between the place of departure 
and place of destination; then it was at the place of destina-
tion. Note that moving towards could have been represented 
in terms of distance decreasing as shown in Fig 5-1.

Fig 5-3. (a) John hit Mary.   (b) The cow jumped over the 
moon.

An important consequence of our very broad conception 
of states is that new complex states (modes of behaviour) can 
be defined in terms of events involving primitive or previous-
ly defined states. The time of occurrence of these events can 
extend some distance backward and forward from the mo-
ment at which the new state is defined to hold. For example 
walking is defined in terms of successive states of motion and 
displacement of the walker's feet and body over a period of 
observation encompassing (say) two steps, since an instanta-
neous snapshot of a person is insufficient for deciding wheth-
er or not that person is walking (although it may of course 
supply enough cues to prompt the inference that the person 
is walking). A tentative definition of walking is given below.

Complex dynamic states (modes of behaviour) such as 
walking, running, dancing, tumbling, flickering, etc., can be 
constructed in terms of more elementary states. The con-
structions are necessarily as complex as the states they de-
scribe. Complexity can result from the intricate coordination 
of several simultaneous activities (for example, rolling ex-
presses rotation and translation at coordinated rates), or 
from complex time dependencies (for example, flickering), or 
from both (for example, walking).

Since we intend to exploit fully the semantic “preferenc-
es” that any given predicate induces on its arguments, we 
propose to make use of cases in our approach to representa-
tion. For example the predicate moving prefers a physical ob-
ject as its first argument and a physical location as its second 
argument; the predicate has-active-goal prefers a sentient 

being as its first argument and a state proposition as its sec-
ond argument. Furthermore, there are broad similarities be-
tween the argument preferences of different predicates. For 
example, several predicates prefer animate objects in certain 
argument positions. We certainly can and sometimes do ac-
knowledge such similarities and give a rough indication of 
the sort of preferences involved by using suggestive argu-
ment markers such as ANIM, THING, DIRECTION, PLACE, 
etc., instead of noncommittal markers such as A, B, C, ... , . 
However, we do not think that these markers can be chosen 
so that they express not merely similar but identical argu-
ment roles and semantic preferences, no matter in which 
predicate they occur.1 

Thus semantic cases, while certainly useful heuristically 
in finding or inferring arguments of predicates have no uni-
versal or primitive status.

5.3  Complex Concepts
According to Schank's dictionary, if a human, X, walks to 

a location, Z, then X PTRANS's X by X MOVEing the feet of X 
in the direction of Z. This formula rules out walking on one's 
hands and knees, or walking on one's hands (admittedly a 
rare skill). More importantly, the formula admits running, 
skipping, hopping, jogging, shuffling, and even skating. Pre-
sumably, then, the dictionary entry is not intended to capture 
the full meaning of walking as we seem to understand it, but 
only those aspects which are most essential to language un-
derstanding and inference. Similarly Wilks' formulas are in-
complete. For example, it is correct to say that DRINK 
implies ((*ANI SUBJ)(((FLOW STUFF) OBJE)((*ANI 
IN)(((THIS (*ANI (THRU PART))) TO) (BE CAUSE))))) but 
not the converse (which could mean someone was receiving 
an enema). So again a selection of only some linguistically 
important features has apparently been made.

It is important to formulate more complete meaning 
representations for two reasons. First, more information will 
be required for adequate comprehension of ordinary dis-
course. Second, much more information will surely be re-

1 This view is supported by Bartsch and Vennemann (1972): “... 
case is entirely a surface category and not, as Fillmore (1968) 
suggests, a category of universal semantics. Semantic representa-
tions are based on propositions, which consist of a relation (n-ary 
predicate with n>=0) with a finite number of arguments filled ei-
ther with constants or with bound variables. The “meaning” of an 
argument as argument is entirely determined by its relation. 
Therefore, no two arguments have precisely the same meaning, as 
arguments. Thus, if the meaning of an argument as argument is 
called a case, then there are as many cases as there are arguments, 
and this number, if it is finite at all, is a very large one. What some 
linguists call “cases” are classes of arguments based on certain 
semantic similarities which follow from the semantic similarities 
of their relations. The fact that certain arguments show similari-
ties in their syntactic behaviour, such as tending to occur in cer-
tain position relative to the verb or belonging to the same surface 
case, does not support the assumption that there exists a small 
number of universal cases. Those syntactic similarities are simply 
a consequence of the fact that the human mind is structured in 
such a way that it tends to group objects on the basis of certain 
relevant similarities and then manipulate the objects of the group 
alike.
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quired to match the human ability to describe concepts and 
reason about them. For example, suppose we ask a reason-
ably articulate person to describe human walking in as much 
detail as possible. We might elicit at least the following infor-
mation: Each foot of the walker repeatedly leaves the ground, 
moves freely in the walking direction for a distance compara-
ble to the length of the walker's legs (while staying close to the 
ground), then is set down again, and remains in position on 
the ground, supporting the walker, while the other foot goes 
through a similar motion. The repetition rate is about one 
repetition per second. The legs remain more or less extended. 
The body remains more or less erect and is carried forward at 
a fairly constant rate. Further details could be added about 
flexing motions of feet, knees, and hips, the slight up-and-
down motion of the body, typical arm motion, and forces ex-
erted on the ground. Figure 5-4 shows a network which de-
scribes walking (regarded as a state predicate with three 
arguments besides time) along these lines. A few proposi-
tions have been omitted so as not to clutter the diagram. 
These are that each foot is also above the ground (and close 
to it) while moving, that each foot is also supporting X while 
stationary; that the duration of each of the unlabeled time in-
tervals [] is approximately half a second; and that the speed 
of motion of the walker's body is approximately constant. 
There is no difficulty in adding these state propositions, ex-
cept that the last requires moving to have an additional argu-
ment, namely the speed of motion. Note that [ti] is the time 
interval of observation of the walker, and that it contains t, 
the time at which X is said to be walking. Thus walking is de-
fined by behaviour in the temporal vicinity of the moment of 
predication, specifically about two seconds of motion allow-
ing about three or four steps. 

Our representation of walking is limited since it is not 
applicable to unusual modes of walking (for example, on 
hands and knees) or to animals. This limitation raises the 
question: how many kinds of walking should be represented 
separately? Also, is there a representation which expresses 
the common features of all kinds of walking? We have at-
tempted such a representation in Figure 5-5. The representa-
tion is based on the following characteristics of walking in 
general:

1. it is done using limbs that are a subset of the limbs of the 
individual involved in the walking;

2. the number of limbs involved is greater than or equal to 
two;

3. at all times some of the limbs used for walking are in 
nonsliding contact with the walking surface (not the 
same as saying some of the limbs are in contact with the 
surface at all times);

4. each limb used for walking is stationary on the walking 
surface at some time and subsequently is moving for 
some time; and 

5. the individual as a whole is in motion in the walking di-
rection

The interesting feature of our representation is the use of 
quantification to describe the role of any number of legs in 
the walking. Note that without quantification, describing the 

locomotion of say, a millipede would be very tiresome.

Figure 5-4. Person x walking at time t in direction d on 
ground g.

Figure 5-5. x walking at time t in direction d on surface g.
A serious flaw in our representation of walking, and one 

for which we have no systematic remedy, is that we have ig-
nored the fuzziness of many of the meaning components. For 
example, it seems necessary to put constraints on the length 
of stride (lest the walker be allowed to mince forward in mil-
limeter increments), yet to give an exact distance would be 
absurd.

An important consequence of conceptual fuzziness, con-
sidering complex concepts, is that we can no longer draw a 
sharp boundary between extracting the meaning of an utter-
ance and making probable inferences on the basis of the de-
rived meaning structure. This is because we only find the 
probable meaning of an utterance. For example, the utter-
ance “John built the house” probably means that he built a 
large, rigid-walled enclosure with a roof, separate rooms, 
etc.; but none of this is certain. The utterance “John was 
laughing” probably means that he was producing a series of 
voiced sounds by staggered exhalation of air, and that his fa-
cial expression was merry; but he might have laughed silent-
ly, or his facial expression might have been derisive or even 
hostile. If we try to reduce semantic uncertainty by excluding 
from the meaning of a term all but its absolutely minimal 
content, and ascribe everything else to inference, we run into 
problems. In the case of house all that would remain would 
be a partial enclosure - which accommodates a fenced-off 
field, a shipping crate, or a jacket. In the case of laughing we 
would perhaps be left with spasmodic breathing and intent to 
convey amusement, which could suggest that John is asth-
matic and dancing a jig.
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Finally we wish to point out that many concepts can be 
understood in different ways. For example, in “John was lis-
tening to the incessant chirping of the crickets,” is chirping 
understood simply by its correspondence to a particular au-
ditory sensation, or is it understood as a rapidly fluctuating, 
more or less uniformly high-pitched sound, or even as a com-
plex variation of air pressure with time? Minsky's (1975) 
work on frame systems strongly suggests that the kind of un-
derstanding of a concept we use at a given time is extremely 
task -and-context dependent. This certainly casts doubt on 
the one-concept-one-formula approach to language under-
standing. 

5.4  Adjectives and Relative Terms
Adjectives and relative terms are typically represented 

by drawing on a reference set. The notion of a reference set (a 
set of objects whose members are used for comparison with 
some given object relative to some measurable attribute of 
the objects) is difficult to comprehend. While it is possible to 
define a more or less adequate reference set to account for “a 
large apple,” it is not immediately apparent what the refer-
ence set would be if one were to ask a child to draw a large cir-
cle on a sheet of paper. This is a question above and beyond 
the one pointed out (rightly) by Bartsch and Vennemann 
(1972) concerning how the reference set is inferred from the 
context, especially extra-sentential context.

We avoid some difficulties of having predetermined ref-
erence sets by making use of functors.1 The typical value 
functor applied to a concept with some measure attribute re-
turns a value, for example, the typical value of size for man. 
Note that this is not the same as the typical man's size. The 
typical man's size is not readily determinable since it is hard 
to ascertain exactly what constitutes a typical man. A typical 
value functor was shown earlier in Figure 3-6. We can abbre-
viate the typical value functor in a manner analogous to the 
collapsing of predicates in the abbreviated network notation.

Descriptive adjectives are treated as conjoined predica-
tions in most cases, as shown in Figure 5-6a. Yet most adjec-
tives appear to be comparative in nature regardless of their 
morphology. For example, big, small, tall, heavy, and so on 
are relative adjectives based on some measurable attribute of 
the object of focus. Figure 5-6b illustrates how comparatives 
would be diagrammed. The explanatory paraphrase of “John 
is bigger than Bill” is “John's size is greater than Bill's size”. 
Often the comparative is implicit in the utterance. For exam-
ple, in the sentence “John is a big man” the adjective “big” 
serves as a comparative. The associated paraphrase is “John 
is a man and the size of John is greater than a typical value of 
size for a man”. 

Ordinary discourse admits constructions such as: “John 
is the perfect man.”, “Mary is the worst conceivable cook.”, 
“In order to form a more perfect union...”, ... Modifiers such 

as perfect, ideal, and worst conceivable are problematic to 
represent because of the way they operate on what they mod-
ify. For example, we might formulate “John is the perfect 
man” in logical terms as:

(∀P)[[(∀x)[man(x) & P(x)*? y-approves[P(x)]]] ? P(John)
where *? stands for “necessarily implies”.

where y is the speaker. The formulation reads “John has all 
properties such that y would approve of any man's having 
them”. We can then easily formulate an expression for 
“someone is not a perfect man” by utilizing our formulation 
given above with the existential quantifier added (∃z)~ and 
replacing P(John) with P(z). Clearly, the method of handling 
comparative adjectives such as big, tall, etc. does not work 
here.

Figure 5-6. (a) Mixed bag of adjectives network. (b) Explicit 
comparative network.

We make no definite proposals for handling adjectives 
such as perfect, ideal, worst kind of, best conceivable, etc., at 
any detailed level of analysis. A more superficial analysis of 
“Big John is a perfect fat man” is rendered as Figure 5-7. Ad-
ditional information such as “John is a basketball player”, 
can be easily added to the structure.

Figure 5-7. Functor Networks: Big John is a perfect fat man.
5.5  Adverbial Constructions 

We draw attention to the major problem of representing 
adverbial meanings and suggest plausible methods for han-
dling adverbial constructions within the state-based concep-
tual framework.

Two major approaches treating adverbial modifiers in-
clude that of Montague (1972, 1974) and Bartsch & 
Vennemann (1972) who regard comparative adjectives and 
adverbs as operators which transform predicates, and that 
approach due to Reichenbach (1947), seemingly accepted by 
Schank2, regards adverbial modifiers as second-order predi-
cates that impose constraints on a specific relation, thereby 
restricting the class of specific relations to which it may be a 
member. We consider Bartsch and Vennemann's approach, 
which seems promising but will be seen to have serious de-

1 According to Cresswell, a functor is a symbol which, occurring 
as the first member of a sequence of symbols of certain syntactic 
kinds, makes a sequence of the same or another syntactic kind, 
Cresswell (1974). 
Introduction to Artificial Intelligence - Computer Science 4150 - Winter Semester, 2005 15



fects.

Bartsch & Vennemann suggest that adverbial adjectival 
modifiers operate on noun meanings; they have semantic 
representations with functors f such that f is applied to term 
x to map x onto a new term f(x). The contrast between “Ed 
owns a large car” & “Ed is running quickly” illustrated a prob-
lem with this approach. Whereas large in the first sentence 
has as a reference set the set of cars, and Ed's car is large rel-
ative to the average for that set, running quickly cannot be 
analyzed so easily. If the analogy were perfect then the refer-
ence set operated on by quickly would be the set of runnings 
(whatever that means); but clearly this set of runnings must 
be further restricted to the set of runnings Ed is capable of 
performing. Thus quickly appears to operate not on running 
alone, but on Ed running.1

Thus the nature of the runner is being used to narrow the 
reference set to which we apply a measure function. In Ed is 
running quickly - quickly modifies running with respect to 
Ed's runnings, or, if we don't know Ed, at least to human run-
nings (assuming that Ed is human). Unfortunately factors 
other than the identity or category of the runner can also af-
fect the meaning of quickly, as shown by “Ed is running 
quickly on his hands and knees”, “Ed is running quickly on 
the moon”, “Ed is running quickly in Chile”, “The cheetah is 
running quickly in the dense forest”, “The cheetah is running 
quickly on the plain” The effect of locale on the meaning of 
quickly is seen in the contrast between the first two of these 
examples and between the last two of these examples.

The context which determines the meaning of an adver-
bial modifier cannot be circumscribed once and for all. In 
general, adverbials must be allowed to interact with any spe-
cific and general knowledge available about the participants 
in (and setting of) an action. In the approach of Zadeh (1972) 
to the treatment of adverbial hedges he specifies (weighted) 
components of each fuzzy term on which a hedge may oper-
ate once and for all. Because he needs to specify these 
(weighted) components prior to using a particular hedge, his 
approach lacks generality. In our semantic network, we 
would represent “The sun is shining brightly on the beach” 

without the adverb as diagrammed in Figure 3-6, in keeping 
with Bartsch & Vennemann's general approach but taking 
into account the above considerations. In the representation 
we show the explicit relationship between the speed of the 
sun's shining as compared to the typical value of brightness 
for something that is shining on a beach and is a sun.

It is well to note that the set of suns shining brightly on 
beaches required for comparison, may well be empty (if not, 
replace “beach” with “ocean floor”). The reference set there-
fore, if it exists at all, is not of this world but of some imagi-
nary world which is our conception of how hard suns would 
find the going if they were to shine brightly on beaches (or 
ocean floors). In our formulation we have applied the typical 
value functor to the lambda abstracted predicate “shining 
brightly on the beach”. The typical value functor does not 
presume the existence of a reference set.

5.6  Opacity and Vagaries of Reference
Some linguistic forms give rise to referentially opaque 

contexts. This is true of the propositional attitudes “believes 
that ...”, “knows that ...”, “wants to ...”, and others, as well as 
other modalities created by causal situations, intentions, and 
the like, and conditional statements including the counter-
factual conditional. Quotation creates referentially opaque 
contexts. While “simpleton” may be referentially equivalent 
to “fool”, the statement simpleton has nine letters does not 
allow substitution of “fool” for “simpleton”.

To illustrate how a referentially opaque context can 
block existential quantification, the sentence “John wants to 
marry a blonde.” gives rise to two possible interpretations:

“John wants to marry a specific girl who also hap-
pens to be a blonde.”; and

“John has no particular girl in mind, but he wants 
whoever he does marry to be a blonde.”

The first interpretation, transparent reading, can be ex-
istentially quantified, that is, there exists someone whom 
John wants to marry. The second interpretation cannot be 
quantified in like manner since it contains an assertion about 
an existential statement rather than being an existential 
statement.

Various (equivalent) explanations have been given for 
this type of ambiguity. Philosophers tend to describe this as 
scope ambiguity of an existential quantifier. Some linguists 
however, prefer to portray the ambiguity as a distinction be-
tween a referential and attributive use of a noun phrase. With 
Schubert's notation the opaque reading of “John wants to 
marry a blonde” would be represented as shown in Figure 5-
8. The transparent reading would be represented by Figure 5-
8 if we took out the dotted line.

Both Montague (1972) and Lewis (1972) have developed 
theories that enable both the transparent and opaque read-
ings for sentences to be generated. This is not carried far 
enough. The important problem remaining is how to choose 
the correct interpretation in context. This problem is investi-
gated further in Strzalkowski & Cercone (1986, 1989) and a 
solution is proposed to choose the correct context.

2 Schank diagrams adverbs as action modifiers without further 
analysis. Apparently he has not concerned himself with the mean-
ings of genuine manner adverbials so far, however, see Schank 
(1974) for a discussion of adverbs such as vengefully, thought-
lessly, etc. In the case of many adverbs (as in the case of many ad-
jectives) this neglect is probably justified, since most of the 
meaning content derives from perceptual processes. For example, 
in the sentence Mary walked gracefully it is difficult to para-
phrase gracefully in more elementary terms. Essentially we know 
gracefulness when we see it. Perceptual understanding needs to 
be supplemented only by a few additional facts for language com-
prehension, such as the fact that graceful motion is generally 
pleasing, is more or less the opposite of awkward motion, is 
smooth and coordinated, etc. Other adverbial modifiers clearly 
require systematic analysis; quickly is a good example. This term 
appears to say something about the speed of an action or activity, 
comparing it to some standard. An adequate meaning representa-
tion for quickly should spell this out precisely.

1 cf “The cheetah is running quickly” and “The ant is running 
quickly” Clearly quickly here operates on running ant and run-
ning cheetah respectively.
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Figure 5-8. John has no particular girl in mind, but he wants 
whoever he does marry to be a blonde.

We have taken a critical look at many problems and sug-
gested plausible methods for dealing with some of them. In 
particular, the basic representation in terms of states and 
events, the definition of complex concepts (most importantly 
action concepts), the handling of adjectives and relative 
terms as well as adverbial modifiers were examined. Solu-
tions to the problems that these topics present to language 
processing systems have been developed to the point that 
some of them have been incorporated into the experimental 
programs that support this research.

6.0 Superimposing Organizational Strat-
egies

6.1  Representing Lexical Info: English Word Meanings
In Quillian's networks word meanings were represented 

by a network of objects and relations among the objects. To 
distinguish ambiguous meanings for pairs of words Quillian 
compared the plausibilities of different interpretations by the 
strength of the associations linking the various pairs of mean-
ings. Quillian's network was believed to contain the germina 
for a more sophisticated understanding of the relationship 
between meaning and grammar. Subsequent writers who 
used nets in their systems tried to further explore this rela-
tionship.

Schank's conceptual dependency theory represents 
meaning structures with a graphical notation consisting of 
items from four conceptual categories: picture producers 
[PP], picture aiders [PA], action aiders [AA], and actions 
[ACTS]. They correspond closely to nouns, adjectives, ad-
verbs, and verbs, respectively. The conceptualization is 
Schank's smallest structural unit; conceptualizations are 
graphical structures that link together conceptual categories 
using a variety of graphical symbols, conceptual tense mark-
ers, conceptual cases and primitive actions.1

Cercone augmented the meaning representations of 
Schank and Wilks, utilizing semantic networks for the mean-
ing representation of both the semantic and pragmatic infor-
mation of a word concept. Cercone's meaning representation 

is not based on primitives but permits efficient use of seman-
tic preferences and is capable of accommodating unlimited 
amounts of information about complex concepts without loss 
of computational efficiency in the use of those concepts. The 
pragmatic and semantic information associated with the con-
cept drink1, the ordinary sense of drinking as in John drinks 
water, is illustrated in Figure 6-1. Note the constraints that 
the drinker should be animate and the stuff drunk liquid. The 
major implication that x ingests y (or the subsuming concept 
ingest) in turn provides access to the implications of ingest-
ing. In this way Schank-type and Wilks-type inferences are 
made available through property inheritance. Figure 6-2a 
shows how the ordinary sense of drinking can be modified to 
accommodate supplementary propositions to explain the im-
plications associated with an alcoholic drinking.

Figure 6-1. The properties of drink1.
Since ingest is not a primitive, it also has associated 

pragmatic and semantic properties. These are illustrated in 
Figure 6-2b. A paraphrase of the semantic formula says that 
if x ingests y through z, then some unspecified state or event 
causes stuff y to move towards the opening z and this in turn 
causes y to assume a location inside x (without trying to be 
very sophisticated about this point).

6.2  Organizing Network Information
The characteristic concept-centred organization of se-

mantic networks does not address representation issues but 
rather focuses primary concern with organizing knowledge 
for effective use. Subsequent semantic network notations 
have been developed in an independent and application spe-
cific manner. Moreover, they have often blurred the impor-
tant distinction between the representational and 
organizational aspects of network formalisms.

Early efforts by Shapiro (1971) to imbue networks with 
increased logical power explicitly documented this distinc-
tion by contrasting system relations, items, and item rela-
tions. Schubert clarified this distinction by demonstrating 
that a logical representation couched in network form offers 
the advantages of a propositional representation (that is, for-
mal interpretability and expressive adequacy) while retain-
ing the methodological advantages of the associative network 
organization. His notation indicated that an intelligent in-
dexing scheme coupled with a database of logical formulae 
could indeed be considered to be a kind of semantic network.

The basic distinction between the propositional content 
of a knowledge database and the access mechanism to that 
content has been noted by Bobrow and Winograd (1975). We 
wish to emphasize organizational aspects of semantic net-

1 Schank used four cases: the objective case, which relates an ob-
jective PP to an ACT; the recipient case, which relates a donor PP 
and a recipient PP to an ACT; the directive case, which relates di-
rection (to and from) to an ACT; and the instrumental case, which 
links conceptualizations instrumental to an ACT to a conceptual-
ization containing the ACT. In addition to conceptual cases, 
Schank makes use of only fourteen primitive actions through 
which he expresses all other actions. These primitive actions are: 
PROPEL, MOVE, INGEST, EXPEL, GRASP, PTRANS, 
MTRANS, ATRANS, SMELL, LOOK-AT, LISTEN-TO, 
CONC, and MBUILD. 
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works, in the tradition of Quillian and in the spirit of Hayes 
(1974), who writes, “If someone argues for the superiority of 
semantic networks over logic, he must be referring to some 
other property of the former than their meaning”. The corre-
spondence between semantic networks and logic has been es-
tablished; the meaning of a given network is identical with 
the meaning of the equivalent logical expression. The object 
of our immediate attention is that structure which remains 
after paring the propositional content from a semantic net-
work, that is, the indexing structure which provides concept-
based proposition access.

Figure 6-2. (a) Properties of drink1a. (b) Properties of ingest.
Organizational theories of knowledge can be character-

ized by the desire to cluster related knowledge into chunks. 
Ideally, these chunks should reduce the computation re-
quired to isolate knowledge relevant in a particular context.

We can easily impose a hierarchical (subconcept-super-
concept relation) structure on top of the general concepts in 
memory, such as that illustrated in Figure 6-3, as a heuristic 
device. Earlier on, both the concept-centred organization of 
nets and many of the logical tools of predicate calculus were 
evident (albeit implicitly) in many of knowledge representa-
tion systems. For example, in reference to the GUS system 
(Bobrow et al., 1977), Kay (1976) reports “ ... now the contents 
of these slots in the dialog frames (and in lots of other frames 
that exist in the system) are typically other frames. These 
structure recurse to great depth. Of course they are not sim-
ply tree structures, but they are circular and point to one an-
other; they're networks”. Also, Hayes provides a translation 
of KRL features into a many-sorted predicate logic, which he 
takes to be the external meaning of KRL expressions.

The conspicuous remaining feature of frame-like sys-
tems is simply the idea of grouping pieces of knowledge 
which may be useful for understanding a particular concept 
or situation. Hayes explains that a frame may be viewed as an 
n-ary relation between itself and its slots, which themselves 
Introduction to Artificial Intelligence - Computer Science 4150 - Winter Semester
may be viewed as binary relations and unary predicates. One 
could therefore represent a frame within the semantic net-
work notation. The major difference between the “frames” 
view and the network view is one of function versus structure, 
as noted in Schubert et al. (1979): “A memory structure is re-
garded as a frame because of the kinds of knowledge and ca-
pabilities attributed to it, rather than because of any specific 
structural properties”.

Figure 6-3. Superimposed Hierarchical Structure.
6.3  Superimposing Topical Organizations

Research into semantic networks at the University of Al-
berta culminated in one solution to the so-called symbol 
mapping problem and in doing so, this group of researchers 
directly addressed organizational aspects of semantic net-
work representations, see Schubert et al. (1979).

In general a concept is characterized, though not de-
fined, by its implications and these implications can be more 
or less essential to the meaning of a concept. For example, 
consider the following two statements: Johnny walked his 
pet boa-constrictor daily and Johnny's boa constrictor has six 
legs or Boa constrictors are friendly, warm furry animals. 
Both statements contradict boa constrictor properties, the 
latter alternatives contradicting an essential property. In the 
second statement, we are either violating necessary universal 
statements for parts (has six legs) or properties (friendly, 
warm, furry); in the first we are merely contradicting contin-
gent properties (pets).

It is clear that any system designed for reasoning about 
its world must efficiently exploit property inheritance within 
generalization (IS-A) hierarchies or relationship inheritance 
from components to corresponding components (PART-OF) 
hierarchies. What complicates this problem is that conceptu-
al entities typically consist of many components, for example, 
parts of an object, the participants of an action, or the depart-
ments of an organization. An example illustrates one possible 
solution. Consider a bird subhierarchy; it should be sufficient 
to specify the attachment relationships between head, neck, 
body, legs, and tail at the top level, and this information 
should be visible from each particular kind or instance of 
bird. Consider the following fragments of bird knowledge:

(∀r) [[r bird]  ? (∃s) (∃t) [[s part-of r] & [t part-of r] & 
[s head] & [t neck] & [s joins t]]]
(∀u) [[u owl]  ? (∀v) (∀w) [[v part-of u] & [w part-of u] 
& [v head1] & [w neck1] ? [v big] & [w short]]]
(∀x) [[x emu]  ? (∀y) (∀z) [[y part-of x] & [z part-of x] 
& [y head2] & [z neck2] ? [y small] & [z long]]]

We assume that in addition to the subconcept relation-
ships that owl, emu are necessarily birds, that head1, head2 
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are necessarily heads, etc. Particularized owl's heads, etc. are 
partly intuitive (the picture it conjures in the mind) and part-
ly anticipatory. We will need a separate concept for each part 
of a thing as a point of attachment for knowledge peculiar to 
it. This disjointed collection of propositions is redundant. 
Furthermore, nontrivial inference is required to transfer re-
lationships from the bird context to the owl and emu con-
texts. Here the only relationships, besides part-of 
relationships, is that the head is joined to the neck. However, 
there would be many such relationships in a system knowl-
edgeable about birds in general.

Consider the alternative arrangement of these facts:

(∀x) (∀y) (∀z)
[ [[x bird] ? [[y part-of x] & [z part-of x] & [y head] & 
[z neck] & [y joins z]]]
& [[x owl]  ? [[y head1] & [z neck1] ? [y big] & [z 
short]]]
& [[x emu] ?[[y head2] & [z neck2] ? [y small] & [z 
long]]]]

Through variable sharing we have eliminated all redun-
dancies. Moreover, parts relationships for birds now transfer 
trivially to owls and emus. Thus shared nodes can change 
character depending on viewpoint. In our bird propositions x 
represents any bird from one view, an owl from another, and 
an emu from another. Similarly, y and z represent different 
heads and necks depending on the point of view.

Back-linking from shared variables to propositions 
should be suppressed, since there is no benefit in having uni-
form access to all propositions in which such nodes partici-
pate. It is more useful for general knowledge to be accessible 
via participating predicates, such as “owl”, “head”, etc.

We can generalise from our example and conclude that 
the knowledge associated with a generalization hierarchy 
should be stored as a set of implicative propositions sharing 
one universally quantified node and any number of existen-
tially quantified nodes dependent on the universally quanti-
fied node. The antecedents of the implications involve the 
universally quantified as argument, and correspond to the 
concepts making up the generalization hierarchy.

Unfortunately, the shared variable form of generaliza-
tion hierarchies complicates the process of adding new infor-
mation. New facts such as (∀x)[[x owl] ? [x predator]] cannot 
be simply added to the net by creation of a new variable node. 
Instead, this information must be inserted at the appropriate 
place in the appropriate hierarchy, with x replaced by the uni-
versal node of that hierarchy.

We have only considered monadic concept hierarchies 
and it seems possible to organise relational concepts hierar-
chically as well. These will share more than one universal 
node, as exemplified with the following fragment of the “in-
gests” hierarchy [We have suppressed time relations and oth-
er subtleties for simplicity, but see Section 7 below]:

(∀x) (∀y) (∀u) (∀v) (∀w)
[[[x ingests y] ? [[u orifice-of x] & [v place] & [w place] 
& [v outside x] & [w inside x] & {y moving v w] &...]]

& [[x eats y] ?[[y food] & [u mouth-of x]]]
& [[x drinks y] ? [[y liquid] & [u mouth-of x]]]
& [[x snuffs y] ? [[y powder] & [u mouth-of x]]]

:

etc.

How many hierarchies are there? We imagine that the 
most hierarchies should be of the order of generality of 
Schank's or Wilks' primitives.1 Thus there may be dozens of 
hierarchies.

Symbol mapping in a semantic network is facilitated by 
imposing a sub-concept super-concept (IS-A) hierarchy on 
the network concepts. Thus Clyde's elephanthood immedi-
ately provides a handle on knowledge attached to the ele-
phant concept. There is more at stake with Fahlman's “Clyde 
the elephant” than property inheritance. Mere access to ele-
phant knowledge does not guarantee swift question-answer-
ing or consistency checking. Imagine hundreds of facts 
impinging on “Clyde”, “elephant”, “mammal”, etc. and at-
tempt to do a Quillian-like activation search to particular at-
tributes, such as colour or appearance. This would, in all 
likelihood lead to a combinatorial explosion when trying to 
construct inference chains to answer relatively simple que-
ries like “What colour is Clyde?” or “Does Clyde live in a tea-
cup?”.

To answer questions of the sort just posed, we note two 
features which these examples illustrate. One is the need to 
classify propositions topically as colour propositions, loca-
tion propositions, size propositions, etc. This classification 
scheme should help us to avoid the exhaustive search for 
combinations of propositions which yield a desired conclu-
sion. The other is the need for access to just those proposi-
tions about a concept which belong to one of the above topics.

Our approach is to structure the propositions associated 
with each concept in accordance with a topic hierarchy. We 
define a topic as a predicate over proposition-concept pairs. 
For example, “colouring” is a predicate which is considered to 
be true for the proposition “a zebra has black and white 
stripes” in relation to the concept “zebra”. Another topic 
predicate which is true for that proposition in relation to “ze-
bra” is “appearance”, in fact, “appearance” holds for any 
proposition-concept pair for which “colouring” holds, that is, 
“appearance” is a supertopic of “colouring”, and conversely, 
“colouring” is a subtopic of “appearance”.

Topic predicates are stored in the semantic network, 
linked by subtopic and supertopic relationships. Together, 
these form a topic hierarchy (or several topic hierarchies). 
Topic hierarchies provide a basis for organizing the proposi-
tions attached to a node for a particular kind. A possible topic 
hierarchy for physical objects is shown in Figure 6-4, which 
provides an attempt to comprehensively classify knowledge 
about physical objects with minimal overlap between catego-
ries. The subconcept topic is intended to be a slot not only for 
genuine subconcept relationships (that is, necessary sub-

1 This may be the real significance of primitives.
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sumption) but also for contingent subsumption relationships 
and for instances of a concept. Similar notions apply for su-
perconcept relationships.

Once a topic hierarchy has been defined for a particular 
kind of node, the propositions attached to any node of that 
kind can be organised in accordance with the hierarchy. This 
is accomplished by superimposing an access structure called 
a topic access skeleton upon the attached propositions. A top-
ic access skeleton mimics a part of the topic hierarchy, name-
ly that part which is needed to supply access paths to all the 
available propositions about the node, when these are at-
tached to the appropriate terminal topics.

subconcept  

supercpncept  

translucency 
part  

external part  

in te rna l part  

physical-   
qual ity  

size  

external- qua lity  

mass  

substance  

appearance  

odour  

tactile-qual ity  

form  

colouring   

texture  

texture  

hardness  

resi lience  

mental-   
qual ity  

emotiona l disposi tion  

in te llectual  disposi tion  

static-   
relationship  

function  

physical-   
relationship  
emotiona l-   
relationship  
abstract-    
relationship  

location  

part-o f  

con tainment  

force  

kinship  

con tro l  

ownership  

membership  
behaviour

Figure 6-4. A topic hierarchy for physical objects.
For example, if the only facts known about Clyde are that 

he is an elephant and likes to eat peanuts, these would be at-
tached to the access skeleton. If elephants, in turn, are known 
to be very large, grey, rough-skinned mammals and Clyde is 
known to be an instance of an elephant, these facts would be 
attached to the access skeleton. Note that “texture” appears 
twice, making the “rough-skinned” predication available 
both as an aspect of appearance and as a tactile quality. In im-
plementations a topic hierarchy and corresponding access 
skeletons need not be strictly tree-structured since a single 
“texture” node can be used, with pointers to it from both the 
“appearance” and “tactile-quality” nodes.

Schubert et al. (1979) discuss the insertion and retrieval 
of propositions in a topically organised semantic network in 
detail. In that discussion they indicate how topically organ-
ised networks facilitate the kinds of inferences about objects 
and their kinds and discuss the importance of the subconcept 
superconcept classification. They also explain a mechanism 
for performing automatic topical classification of proposi-
tions and discuss how the proper topical classification of 
propositions in general depends on their logical form and on 
the nature of the predicative concepts involved. Finally they 
address time and storage trade-offs and provide a clever path 
contraction algorithm which guarantees descent time in the 
tree-like topic hierarchies, and subsequent access to proposi-
tions they encode, to be proportional to log nmax, the maxi-
mum number of propositions attached to any concept.

7.0 Special Purpose Inference Mecha-

nisms 
Topic hierarchies are obviously useful to organize the retriev-
al of information relevant to the implications of concepts, but 
the same idea can be extended to other kinds of information 
about concepts. For example, time, part and colour informa-
tion about concepts can be organized into structures which 
support the efficient use of that information. Another way to 
view the incorporation of this organizational knowledge is 
simply to view it as a special purpose inference system aug-
menting an ordinary first order logic (FOL) theorem prover. 
From this view, the topic hierarchy is simply a specialist 
about the implications of being a concept instance. This view 
has given rise to the method of creating hybrid reasoners in 
which a general purpose FOL reasoner is augmented by spe-
cial purpose methods that can efficiently reason about special 
relations in particular domains (Slagle, 1972; Bundy, Byrd 
and Mellish, 1982; Vilain, 1985; Brachman, Gilbert and 
Levesque, 1985; Rich, 1985). The ECO system is one of these 
hybrid systems, supplementing its general purpose reasoner 
with special purpose methods for time, types, numbers 
(arithmetic relationships), sets, colours, strings (for string 
manipulation), and part-of relationships.

The key to the efficiency of many of the specialists is 
their use of alternate representations, which enable the rea-
soning to be done by efficient algorithms that take advantage 
of special properties of the predicates, terms and functions in 
their domain. For example, the temporal specialist uses a 
partial order graph to represent temporal relationships and 
fast graph searching techniques to determine the relations, 
the type specialist uses a preorder numbering scheme on type 
hierarchies, and the colour specialist uses a cylindrical model 
of colour to determine relationships among colours.

A significant problem for designers of hybrid systems is 
determining how to integrate the special reasoners into the 
general reasoner. Generally, the methods fall into one of two 
classes: those which operate at the metalevel, using their spe-
cial abilities to improve the order in which available inference 
steps are applied, and those which operate at a sublevel, seek-
ing to improve the power and efficiency of the inference steps 
used by the general reasoner. In the ECO system, all of the 
specialists are added as sub-level reasoners. At the sub-level, 
there are (at least) four ways in which a specialized reasoner 
can be added: (1) as an evaluative inference step, which di-
rectly evaluates truth values of literals, or simplifies function-
al terms; (2) by changing the unification procedure of the 
inference step to take into account some of the specialist's 
knowledge (e.g., to disallow unification of variables that are 
typed with incompatible types, or to unify two constant sym-
bols that in fact stand for the same domain concept); (3) by 
expanding the set of literals which lead to the possible appli-
cation of an inference step (e.g., in a resolution system a co-
lour specialist might immediately identify white(x) and 
black(x) as incompatible clauses, or identify man(x) as being 
subsumed by human(x)); and (4) as a completely new infer-
ence step (e.g., the paramodulation step that is commonly 
added to resolution systems to incorporate equality). Special-
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ists in the ECO system can use any of the first three methods 
to integrate their knowledge back into the general reasoner. 
The details can be found in Schubert, Papalaskaris and 
Taugher (1987), which also discusses the relationship of (1) 
and (3) to Stickel’s theory resolution (Stickel, 1985). Aside 
from the specialized domain knowledge that is encoded into 
the specialist, specialists generally acquire knowledge by 
transforming statements in the language of the general rea-
soner into their own representational forms. Providing a 
mechanism which allows specialists to communicate with the 
general reasoner is only part of the solution to increasing the 
overall efficiency of a hybrid reasoner; as Levesque and 
Brachman (1987, p 88) put it, “the trick with these hybrid sys-
tems is to factor the reasoning task so that specialists are able 
to cooperate and apply their optimized algorithms without 
interfering with each other.” Some steps towards solving this 
particular problem within the ECO system framework are de-
scribed in (Miller and Schubert, 1988b). In contrast to hybrid 
systems in which the specialists add expressive or inferential 
power to the overall system, for example, KL-TWO (Vilain, 
1985) and KRYPTON (Brachman, Gilbert and Levesque, 
1985). ECO specialists employ alternate representations of 
the same knowledge available to the general reasoner, and 
serve only to accelerate inference. Thus, there is no require-
ment that a specialist be complete, as the general method can 
fill in any gaps, albeit less efficiently. As long as the opera-
tions a specialist is allowed to perform are equivalent to sets 
of standard deductive steps, the specialist (and thus the over-
all system) is guaranteed to be logically sound.1 The following 
sections describe the representational and inferential capa-
bilities of several of the more complex specialists used by the 
ECO system.

7.1  Time 
The time specialist described here is based on the spe-

cialist designed by Taugher and Schubert (Schubert, Papalas-
karis & Taugher, 1987), and includes some enhancements to 
handle both strict and nonstrict relations, and combinations 
of events, time points and absolute times in propositions 
(Miller and Schubert, 1988a). The representation used is a 
partial order graph that has been partitioned into chains. All 
the points belonging to a chain are linearly ordered with re-
spect to each other. There may be transitive arcs between the 
points in a chain. Cross chain links define relations between 
points in one chain and points in another.

For points within a chain, an arbitrary pseudo-time 
number is associated with each point (a minimum and maxi-
mum). These numbers show the ordering relationship be-
tween points in a chains. In addition, the minimum point and 
the maximum point on the chain that a point can be equal to 
are stored with it-giving a range of points that can possibly be 
equal. These are used to show whether the relationship given 
by the pseudo times alone is strict or nonstrict (for example, 
< or < =). Determining the relationship between any two 

points in the same chain can be done in constant time using 
these pseudo-times, while a graph search is required if they 
are on different chains.

In addition to the time graph of time points, there is a 
metagraph of chains. The cross chain links define arcs be-
tween chains in the metagraph. The metagraph is used to 
search for paths from one point to another. This makes a 
graph search dependent on the number of cross chain links 
rather than the total number of time points (a significant sav-
ings).

Figure 7-1 shows an example time graph and meta 
graph. In the time graph, small circles represent points on 
chain 1, small squares are points on chain2, and small trian-
gles represent points on chain 3. So circle1 is before circle2, 
circle2 before circle3 and so on. There are cross chain links 
from triangle1 to circle1 (that is, triangle1 is before circle1), 
from triangle1 to square1, from square2 to circle1, and one 
more from circle2 to square3.

In the metagraph, these cross chain links show up as 
links between meta-nodes. There is one meta node for chain 
1 (the big circle), one for chain 2 (the big square) and another 
for chain 3 (the big triangle). The links within chains do not 
show up here, as within a chain they are not needed to deter-
mine relations. Following the cross chain links, we can get 
that triangle1 is before square3, and square1 is before circle3, 
but no information about triangle2 and square3.

circle-1  c irc le-2  c irc le-3  c irc le-4  

square-1  square-2  square-3  

triangle-1  triangle-2  

chain 1  

chain 3  
chain 2  

Figure 7-1. Example Timegraph and Metagraph. 
Furthermore, an absolute time (date) minimum and 

maximum are stored with each time point. These are a six-tu-
ples of the form <year, month, day, hour, minute, second>, 
where each element may be numeric or symbolic, for exam-
ple, 1987 04 a 12 b c represents some time at or after 12 a.m. 
and before 1 p.m. of some day in April, 1987. Symbolic infor-
mation may be filled in later by another assertion, or left un-
specified throughout the session. Absolute time maxima 
propagate back to points before the given point (in the chain 
or on other chains), and minima propagate forward. This en-
sures that each point has the best absolute time information 
possible. Absolute time comparisons can sometimes be used 
to get a relation in constant time between two points on dif-

1 This restriction is satisfied by the operations ECO specialist are 
allowed to participate in.
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ferent chains, avoiding a metagraph search.

Insertion time into the graph is constant in most cases, 
except for propagation of absolute times or strictness values. 
In the worst case, propagation may require visiting every 
point in the graph, although this is highly unlikely. Occasion-
ally a chain may have to be renumbered, which requires going 
to all the points in a single chain.

Creation of all supporting graph structures requires 
O(n+e) space and O(n+e) time, where n is the number of time 
points, and e is the number of relations between them. Deter-
mination of relations between points is based the metagraph, 
as the in-chain checking time is constant, so is O(m) where m 
is the number of cross-chain links (m < < n sup 2). Duration 
minima and maxima (in seconds) are stored on the links be-
tween points. These may affect the absolute times around 
them, which are then propagated. They are also used in cal-
culating duration between points where the path uses this 
link. Durations may be unspecified and are then treated sim-
ilar to unspecified absolute times, generating an evaluation 
request and adding to the interested party list of the concept. 
To determine the duration between any two points, an ex-
haustive search must be done between those points, calculat-
ing the duration along all paths to get the best one. This 
particular search uses a traditional depth first search over the 
entire time graph, rather than using the metagraph. Both du-
ration information on arcs, and duration information implic-
it in absolute times are used.

7.2  Types
This specialist uses partitioning hierarchies of type pred-

icates as a logically true representation of the relationships 
among the predicates that appear in the hierarchy. A preor-
der numbering scheme makes possible constant time deter-
minations of the relationships between predicates within the 
same hierarchy. For example, in the “thing” hierarchy shown 
in Figure 6-2, “thing” is divided into “physical-object” and 
“abstract-object”, which are further subdivided: “physical-
object” into “living-thing” and “non-living-thing” and so on. 
The numbers following the predicates are assigned when the 
hierarchy is created or changed, and can be used to quickly 
determine subsumption or disjointness relationships. For ex-
ample, “wolf” and “human” are disjoint because there is no 
overlap between the numbering range associated with “wolf 
[38,38]” and “human [17,26]”. “Wolf” is subsumed by “crea-
ture” because the numbering range associated with “wolf 
[38,38]” is within the numbering range associated with 
“creature [16,40]”.

The “thing” hierarchy is an “exclusion” hierarchy - all 
sibling nodes are mutually exclusive. “Overlap” hierarchies 
are also possible - in these, subsumption can be determined 
by the same method, but not disjointness. Hierarchies may 
also be inextricably intertwined, in that the same predicate 
can appear in several hierarchies, all “connected” at that 
predicate. For example, if “human” is partitioned in two dif-
ferent ways (minor, adult, etc., as in the “thing” hierarchy; 
and Caucasian, Asian, Negro, etc., in another hierarchy), it is 
still possible to determine that Caucasian is subsumed by 

creature, simply by noting that “human” is subsumed by 
“creature” in the first hierarchy, and “Caucasian” is sub-
sumed by “human” in the other. This works much like the 
metagraph in the time specialist - within each hierarchy the 
preorder numbering is used, and between hierarchies the 
connecting predicates are used. Thus, we can not only deter-
mine relationships between predicates in the same hierarchy, 
but also relations across hierarchies.

THING [1,112] 

    PHYSICAL-OBJECT [2,108] 

        LIVING-THING [3,40] 

            PLANT [4,15] 

              ... 

            CREATURE [16,40] 

                HUMAN [17,26] 

                    ADULT [18,20] 

                        MAN [19,19] 

                        WOMAN [20,20] 

                    MINOR [21,26] 

                      ... 

                ANIMAL [27,40] 

                    MICROBE [28,28] 

                      ... 

                    LARGER-ANIMAL [32,40] 

                        FISHLIKE-ANIMAL [33,33] 

                          ... 

                        WARM-BLOODED-QUADRAPED [37,39] 

                            WOLF [38,38] 

                            FOX [39,39] 

                        SIMIAN [40,40] 

        NON-LIVING-THING [41,108] 

            INANIMATE-NATURAL-OBJECT [42,55] 

              ... 

            ARTIFACT [56,107] 

              ... 

            FOOD [108,108] 

    ABSTRACT-OBJECT [109,112] 

        THOUGHT [110,110] 

        IDEA [111,111] 

        GROUP [112,112]

Figure 7-2. A partitioning type hierarchy for “thing”.
In general, relationships among type predicates may de-

fine an arbitrarily complex graph that cannot be represented 
by a simple partitioning hierarchy (or even multiple inter-
twined hierarchies). Nevertheless, the type specialist uses hi-
erarchies because in practice most taxonomies appear to fit 
reasonably well within a hierarchical framework, see 
Schubert et al. (1987). More to the point perhaps, is that effi-
cient methods for unrestricted graphs do not appear to be 
within reach, Schubert (1979). In the ECO system, specialists 
are not required to be complete, which means that they can 
trade-off completeness for efficiency without sacrificing the 
completeness of the overall system.

7.3  Parts 
The part-of structure of an object can be represented in 

essentially the same way as the taxonomy of concept types. 
For example, Figure 6-3 depicts a partitioning graph which 
(exhaustively) partitions the human anatomy. The algo-
rithms sketched for type hierarchies could be used to deter-
mine the truth values of such formulas as (backbone-of-John 
part-of spine-of-John) or the incompatibility of (x pelvis-of 
John) and (x left-leg-of John). However, consider the ques-
tion “Is the spine part of y?”, where “y” is the combination of 
trunk and neck, as specified in the graph. Since “spine” and 
“y” are on different partitioning hierarchies, which are fur-
thermore not connected by a part which can supply a transi-
tive relationship between the two (that is, as “human” 
supplied a relationship for “Caucasian” and “creature”), the 
type specialist would answer “unknown”. However, it should 
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be possible to infer “yes”, since the spine is divided fully into 
the neckbone and backbone, both of which have upward 
paths to “y”.

This additional complexity of parts graphs in compari-
son with type graphs has led to less restrictive structures for 
representing part-of relationships, at the cost of slightly less 
efficient algorithms. One such representational structure is a 
closed graph. A closed graph consists of one main hierarchy, 
along with any number of other hierarchies such that all of 
the leaves of these hierarchies are also leaves of the main hi-
erarchy. Figure 6-3 is almost a closed graph; it can easily be 
made into one by partitioning “x” (which intuitively repre-
sents the soft tissue of the body) into “x1” (which represents 
the soft tissue of the head), “x2”, and so on..

backbone  

Each P-token represents a partit ioning assertion dividing the node to which it  is linked  above i nto 
the nodes to which it  is li nked bel ow. The solid lines defi ne a parti tioning hierarchy, and the broken 
lines def ine three addit ional,  superimposed hierarchies.   

neckbone  

lef t arm   
bones   

right  arm   
bones   

lef t l eg   
bones   

right  leg   
bones   

skull  

P  

spine  ribcage  pelvi s  

x1  x2  x3  

P  

P  P  P  P  P  
P  P  

P  

P  

P  

head  neck  trunk  skeleton  

arm s  legs  

lef t   
arm   

right    
arm    

lef t   
leg   

right    
leg   

P  

x  

person  lim bs  

V  

x4  
x5  x6  x7  

Figure 7-3. Upper levels of a partitioning graph - the human 
body.

The inference algorithm for closed partitioning graphs 
(P-graphs) works by “projecting” nodes which do not lie on 
the main hierarchy into the main hierarchy. For example, the 
projection of “spine” into the main hierarchy is the set of 
nodes S = {neckbone, backbone} and for “y” it is Y = 
{neck,trunk}. From these, it is easy to infer (by using a num-
bering scheme such as used for type hierarchies) that “spine” 
is part of “y”, since all members of S have ancestors in Y. If the 
graph can be decomposed into hierarchies such that no node 
belongs to more than one of a few hierarchies, and nodes be-
ing compared usually belong to a common hierarchy, then 
expected time for a given comparison will be nearly constant 
(due to the numbering scheme) since a projection onto the 
main hierarchy will only be required in a few instances.

The restrictions on the structure of closed P-graphs can 
be relaxed somewhat, by using semi-closed P-graphs. A semi-
closed P-graph is one which is either a closed P-graph, or a 
semi-closed P-graph with another semi-closed P-graph at-
tached to it by one of its main roots. Intuitively, a semi-closed 
P-graph allows for “entirely unrelated” partitionings of the 
same entity. More detail about the parts specialist can be 
found in Schubert et al. (1987).

7.4  Colours
The colour specialist determines the relationships be-

tween colour predicates (for example, crimson is subsumed 

by red, and brown and blue are incompatible). At first glance, 
it would seem that the graphical structures used for types or 
parts would also be amenable to representing colour relation-
ships. However, there are several complications that are pe-
culiar to colour predicates. For example, many colour shades 
overlap (for example, tan, midbrown, chocolate), and multi-
ple partitionings would be needed to properly separate all of 
these shades into overlap and non-overlap relationships. Ad-
ditional partitionings would also be needed to properly rep-
resent shades which straddle disjoint basic colours (for 
example, as lime straddles yellow and green). To deal with 
“hedged” colour relations, such as “lime is sort of yellow and 
sort of green”, the partitioning graphs would have to be aug-
mented with adjacency and/or apart-from relations, and 
even these partitionings would still not be able to represent 
colour properties such as lightness, purity, saturation, and 
the warm/cool distinction. As an alternative to graphical rep-
resentations, it appears that geometric representations are 
much better at representing these kind of colour relations, 
and that is why the colour specialist uses the cylindrical co-
lour model depicted in Figure 6-4.

 This model, developed by Papalaskaris, in Schubert et al 
(1987), was arrived at by imagining that any colour is com-
posed of some amount of a pure, monochromatic colour, plus 
certain amounts of black and white.
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Figure 7-4. Colour cylinder with the cool shades lifted away. 
There are three dimensions to this object: (1) hue - this 

dimension runs through the continuum of rainbow hues, ar-
ranged in a circle and arbitrarily scaled from 0 to 12; (2) pu-
rity - the radial axis, parametrizes the amount of black 
present purity = pure colour / (pure colour + black) which de-
creases from 1 to 0 as black is added; and (3) dilution - axial 
dimension, parametrizes the amount of white present dilu-
tion = white/(pure colour + black + white) which increases 
from 0 to 1 as white is added.

The model renders each English colour term simply as a 
region bounded by six coordinate surfaces, defined by three 
pairs of upper and lower bounds on hue, purity and dilution 
(so in the implementation each colour is represented by six 
numbers). With this geometry, it is possible to check any de-
sired relationship between pairs of colour regions, such as in-
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clusion, overlap, adjacency, and separation by using the 
corresponding geometric concepts. Hedged predicates are 
handled by simply expanding the colour regions of the co-
lours in question.

8.0 Current Research and Directions
Research and development within the ECO family endures; 
we are trying to achieve the goal of developing an English lan-
guage conversational system. Recent work on the inference 
engine has shifted our focus from a resolution-based predi-
cate logic question-answering system, see deHaan and 
Schubert (1986), to an inference engine which uses natural-
deduction-like inference steps and is based on a new episodic 
logic which allows both the explicit content of narratives or 
dialogs and the world knowledge needed to understand them 
to be easily represented. This logical representation provides 
restricted quantifiers, modal operators and propositional at-
titudes, predicate modifiers, nominalization operators, epi-
sodic variables, anaphoric variables, unreliable 
generalizations, and other non-standard constructs, see 
Schubert and Hwang (1988) and Schubert and Hwang 
(1989). The new inference engine, named EPILOG, also per-
forms input-driven inferencing to generate “interesting” con-
clusions before they are actually required to answer a 
question. Specialists may participate in this process, by mak-
ing assertions back into the knowledge base of the general 
reasoner. Meaning postulate “axiom schemas” are support-
ed, for example, a meaning postulate might assert that any 
concept that is described by a predicate modified by “very” 
can also be described by that predicate standing alone. Mean-
ing postulate axiom schemas greatly reduce the number of 
rules required. A specialist to handle the “meta-predicates” 
that appear in these meaning postulates (for example, “ac-
tion-pred”) has been added, as have specialists for strings, 
arithmetic relationships, and set relationships, see Schubert 
et al. (1990). Work continues on the conversational system 
and on EPILOG at the Universities of Rochester and Alberta, 
and also at Boeing Co., where EPILOG is an important part of 
a prototype message processing system, see Jenkins et al. 
(1990).

9.0 Concluding Remarks
A little over ten years ago, we made a number of remarks 
about future directions, see Schubert et al. (1978, 1979). It is 
instructive to briefly review some of those remarks now. We 
said, Schubert et al. (1978, p 170), 

“... an important future task will be the integration of uniform 
propositional representations with special-purpose representa-
tions, such as those required for efficient spacial, linguistic, and 
numerical information processing.”

I think it is safe to say that this integration has largely 
taken place, see deHaan and Schubert (1986), Miller and 
Schubert (1988a, 1988b), & Schubert et al. (1987). We went 
on to say, Schubert et al. (1978, p 170),

“... we need to transplant the parser to the topically organized net 
and expand it to handle at least noun phrase reference and bring 
into play the 'major implications' of verb concepts.”

Much work has been done on parsing since that state-
ment was made, both in Alberta and by derivative groups of 
researchers, see Strzalkowski (1983), Strzalkowski and Cer-
cone (1986, 1989). Although, strictly speaking, the words of 
our quote have been performed, the intent may well remain 
elusive in its totality for some time. Another point worth con-
sidering is captured in the following “prediction”, see 
Schubert et al. (1979, p 170),

“With regard to knowledge organization, we plan to continue the 
detailed development of generalization and topic hierarchies to 
determine how readily the full range of human concepts and hu-
man knowledge can be systematized in this way.”

We started well to tackle this task, nonetheless, the “full 
range” has proven somewhat elusive to this point.

We pointed out the potential for learning within the top-
ically oriented network organization and our desire to better 
understand our conception of the question-answering and 
problem-solving processes. This potential for learning and 
our better understanding remain to be fully exploited. Prog-
ress, however incremental, is steady and apparent and we ex-
pect to report additional successes in the years to come. 
Additional research needs to be undertaken before it will be 
possible to accurately access how daunting a task lies ahead 
in dealing with the overall general problems of knowledge 
representation and organization. A hopeful sign is the fact 
that at least over the past decade many additional researchers 
have generated a wealth of new research results in these areas 
and the computational paradigm is now being much more 
widely applied.
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