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Biological networks Vertices: proteins

Edges: physical interactions

- Traditionally, individual
cellular components and
their functions are N s Fop S s
studied S WO LD
- most biological functions SRR b S
are due to interactions L, e S o CRRR Re
between different cellular .. & oo i ie s
constituents I s S st
- various networks have A e
emerged including T SRR
protein-protein R 3 F
interactions networks.

(H. Jeong et al., 2001) Lethality and centrality in protein networks,
H.Jeong et al., 2001
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http://www.ornl.gov/sci/techresources/Human_Genome/project/info.shtml

Definitions

 Definition 1:

Let G(V,E) denotes a graph where V is the set of vertices, and E, E SV xV, is
the set of edges in G

+ Definition 2:

Let x and y be vertices from G. y is adjacent to x if there is an edge between
x and y, and y is a neighbor of x. Let N(x) denote the set of vertices that are
adjacent to x, and N(x) is the neighborhood of x

+ Definition 3:
A degree of a vertex, x, d(x) is the number of incident edges to x

- Definition 4:
An induced subgraph, H, is a subgraph such that E(H) consists of all edges
that are connected to V(H) in G



Network properties



Global network properties versus local
network properties

Global network properties Local network properties
« Look at the overall network « Focus on local structures or
patterns

- PPI networks are incomplete,
and contain bias - Can measure properties in
local regions even though

networks are incomplete
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Global network properties

» Degree distribution, P(k)
= 1s the probability in which any randomly selected
vertex has degree k

 Diameter

= the maximum shortest path length between any
pair of vertices. Often, it is the average shortest
path length between all pairs of vertices

= Centrality measures
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Centrality measures - degree
centrality

degree centrality of vertex u:

Cy(u) =d(u)



Centrality measures - closeness
centrality

center of G:
Cen(G)={xeVle(x)=r(G)}
excentricity of x:

— max d
e(x) = max d(x.)
radius of G:

r(G) = min e(x)

xeV
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Centrality measures - betweenness
centrality

betweenness centrality of vertex w:

{uj ij = V‘M 7& V’ V 7& W} Suww(w) is the number
' of geodesic paths

between u and v that
BC(W) — Z S”:;(W) pass through w
u,yeV uy
‘ Suv is the number of
geodesic paths

between u and v
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Local network properties

Motifs

Graphlets

- Small subgraphs in a network
whose patterns appear
significantly more than in
randomized networks

- Do not take into account
patterns that appear with
average or low frequency

« Depend on randomization
scheme

(R. Milo et al, 2002)

- All non-isomorphic connected
induced graphs on a certain
number of vertices

- Identify all structures, not only
the over-represented ones

(N. Pr-zulj et al. 2004b)
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Graphlets

3-node graphlets 4-node gr aphlets

FAN A.Ii QA Not limited to

3-5 node

§ i"‘ Yd J%‘Q’?X@ graphlets!
DAy

All 3 to 5 node graphlets, graphlet No. 1 to 29. Fig.
1 of Modeling interactome: scale-free or geometric.

oy X X X J

(N. Pr-zulj et al. 2004b)
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An example off relationship
between network properties
and disease
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Protein essentiality

Minimum spanning tree K TRIEOR Bl Articulation point is a

_ : vertex that, if removed,
(MST): an acyclic 13 D<I results in a

connected subgraph »
. disconnected graph
that contains all the grap

vertices of the graph, DRarees:

and the edges that give N(s1) = N(s2) = N(s3) = {v3, 04} |

the minimum sum of 5 vy s If 2 vertices have the

i .. %  same neighborhood

edge weights S g ’
7 ’ ¢ " then they are

Hubs: highly Hubs: iy and hs.  Siblings: sy, s5, and s;. siblings

connected vertices in

the MST

(N. Przulj et al., 2004) Graph theoretic properties. Partial Fig. 1B of
Functional topology in a network of protein interactions

(N. Pr7zulj etal., 2004)
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Protein essentiality

Lethal proteins: more frequent
in the top 3% of degree vertices
Viable proteins: more frequent

Lethal proteins were not only
hubs, but they were articulation

: : : oints
in the vertices with degree 1 P
ny Articulation point: a.
no a
73
Degrees.

T Viable proteins were more
i 25 frequent in the group of vertices
TN U5 that belonged to the sibling

'v vy group
V2
Hubs: »; and hy Siblings: s, 5, and s;.
Graph theoretic properties. Partial Fig. 1B of Functional topology in a (N. Przulj etal., 2004)

network of protein interactions



Grahplets




RRRRRRRRRRRRRRRRRRREA:

Biological hetwork
comparisons
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Biological network comparisons
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Graphlets

- 2 local measures based on graphlets have
developed

= Relative graphlet frequency distance (RGF-
distance)

= Graphlet degree distribution agreement (GDD-
agreement)

(N. Przulj et al. 2004b, N. Pr~zulj 2007 )
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Graphlet frequency

3-node graphlets d-node graphlets

 The count of how many

; /\ E A I:Y@A graphlets of each type
§ © BT 8 B P (ranging from 1 to 29)

i A’" » e f%@?x@ - Not limited to 3 to 5

o 10 11 “u¥ 14 node graphlets
@f&c@ Ag@@w@ « If more graphlets can
1, b v be computed, a greater
S number of local

All 3 to 5 node graphlets, graphlet No. 1to 29. Fig. 1 constrains are lmposed
of Modeling interactome: scale-free or geometric on Simil arity measures

(N. Pr-zulj et al. 2004b)
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Relative graphlet frequency

relative frequency of graphlets is
defined to be: ;)

r(G)

N;(G) is the number of graphlets of type i,
i€ [1,...,29] in graph G

T(G) =¥ZNi(G)

(N. Pr-zulj et al. 2004b)
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Relative graphlet frequency distance
(RGF - distance)

relative graphlet frequency distance
between graphs G and H, D(G,H):

29
D(G.H) = ;|F}(G)—F}(H)|=

where F;(G) = —lag%

(N. Pr-zulj et al. 2004b)
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Graphlet frequencies comparison
in S. cerevisiae 1

Graphlet Frequencies in Yeast PPI and GEO-2D Networks
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andom 4 — .
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I - ||.|| any distance norm
in space
D.l | | | | | p
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Figure 2D of (N. Pr>zulj et al. 2004b)
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Graphlet frequencies comparison
in S. cerevisiae 2

Graphlet Frequencies in Yeast PPl and ER-DD Networks

le+09

High Confidence PPI Graph
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Random 2
Random 3

ER-DD:

lﬂ+l}?' R 1 _1_ . 7 .
- Erdos—Rényi random
andom 3
le+06 -
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Frequency

Same degree
distribution

s §
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Figure 2B of (N. Przulj et al. 2004b)
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Graphlet degree distribution (GDD)

- Direct generalization of degree distribution
- Imposes 73 local constraints to the structure of
networks

» When used as similarity measure between
networks, increases the possibility that the
networks are indeed similar

(N. Pr-zulj, 2007)
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Graphlet degree distribution (GDD)

 Direct generalization of degree - Imposes 73 local constrains to
distribution the structure of networks

Topological Issue:

Degree distribution: .
How many vertices ‘touch’ one G,? ‘HOW many vertices ®
How many vertices ‘touch’ two G,? touch’ G,? -

® ¢

How many vertices ‘touch’ k G,?

Graphlet degree distribution:

Apply the above also to the 29 ™ -
graphlets Go, Gy, ..., Gag a
1

(N. Pr-zulj, 2007)
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Graphlet degree distribution 2

¢ rap% ¢ 3-node graphlets 4-node graphlets ° 73 graphlet degree
”I J é % (I\ I—' '?'” y distributions
G § . . .
u G 66 G G, G + Each distributions answers

::; 5- node graphlets

- § u questions such as
I7Q .
5 ?i. X Qﬁ ', XQ = how many vertices touch 1

e o e 39L 85 .
Go Guw Gy G] Gl Gu (]H Ge Gy Gys G orbit 2 of G1

Y A / n @ How many vertices touch 2
5l ,—;:3 05‘ OI‘bit 2 Of Gl

Gy Gy G2 Gx Gy Gag Gy ° How many vertices touch k

orbit 2 of G:
2-5 node graphlets with automorphism orbits o .. 72.
Fig. 1 of Biological network comparison.

(N. Pr”zulj, 2007)
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GDD agreement measure

- To compare network similarity

- Reduce the 73 graphlet degree distributions into
a scalar agreement between [0,1]
= 0 — networks are far apart
= 1 - the distributions of the 2 graphs are identical

(N. Pr-zulj, 2007)



GDD agreement

; Is scaled in order to decrease the
dé (k) / effect on large ks

Si(k) =
Té — Z Sé( k) Total area
k=1
_ S J k (_f‘ ;Q;)rmalized with respect to total
Ny (k) =S¢

I

(N. Pr”zulj, 2007)



Distance

Let H be another graph. The distance of the j orbit between two
graphs, G and H is defined to be:

00 | | 2
DI(G, H)= % > [N —f\ﬁ’H(ﬂo]2
k=1

The jth GDD agreement is defined to be:

ANG., Hy=1—D/(G. H) ; forj € {0,1,...,72}

(N. Pr-zulj, 2007)



GDD Agreement

The agreement for graph G and H can be defined as the arithmetic
mean over Al(G;H) for all j:

1 72 _
Aariﬂ'r(GgH) — 7—,.3 ZA"’(GH)
S 20

or the geometric mean over Ai(G;H) for all j:

Ageo(G,H) = (]?_z[f’if((?.~.H))m3
=0

(N. Pr-zulj, 2010)
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Example of graphlet degree

distribution & agreement

(A) Arithmetic Averages of Agreement Between PPI and Model Networks
]2 | | | | | | I I I I | I
ER ——
ER-DD ---s---
SF -
Ir GEO-3D 8- T

Arithmetic Average of Agreement

0.2 .

O. | | ] ] ] | | | | | | |
YHC Y11K YIC YU YICU FE FH WE WC HS HG HB HH HM

PPI Networks

(Fig. 3A of N. Pr”zulj, 2007)
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Example of graphlet degree

distribution & agreement

(B) Geometric Averages of Agreement Between PPI and Model Networks
]2 I I I I I I I I I I I I
ER ——
ER-DD ---=¢---
SF ----=
1 GEO-3D g ]

Geometric Average of Agreement

0.2 .
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(Fig. 3B of N. Pr”zulj, 2007)
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Uncovering biological
network function
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Uncovering Biological Network

Function

- Using neighborhood of proteins to infer protein
functions
= Majority rules

» Graphlets
s Clustering method on node signatures

= Nodes in a cluster do not need to be connected or
in the same neighborhood

(T. Milenkovic, 2008)



1 objective

- Look for proteins with common biological
processes, cellular components, tissue
expressions in a cluster

(T. Milenkovic, 2008)
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Clustering

» For each vertex u in the network

= Vertex v belongs to the cluster if the signature
similarity metric for u, v > threshold

(T. Milenkovic, 2008)
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Weight vector

2-noge
grap C’ 3-node graphlets 4-node graphlfts]3
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(T. Milenkovic, 2008)



Weight

» Weight (w, € [0, 1])
= higher to important orbits (orbits that do not
depend on a lot on other orbits)

= lower to less important orbits (orbits that depend
on lots of other orbits)

- Computed as
where 0;1s the count of

w, =1— log(o,) orbits that affect 1
log(73)

= E.g. 0,. =4, orbit 15 is affected by 0, 1, 4, 15

(T. Milenkovic, 2008)



Distance

« Distance for orbit 1 between node u and v

Zog(uf+ l)— Zog(vf+ l)‘

D, (u,v)= w,
J(u,v)=w, < Zog(ﬁ?ax{”f-’vf}_l_z)

ui— number of times node u
touches orbit i

« Distance between node u and v

"D
D, v) = ]?:20

W.
i=0 !




Distance 2

- Signature similarity - For example
5@ y

S(u,v)=1—D(u, v). 160D
17 @

&

® v

Go

 D(u,v)= 0 (same
signatures)

e S(u,v) =1

(T. Milenkovic, 2008)



Evaluation method

- Hit-rate of cluster C
Hit(C) = max N,/N
= Np - number of vertices in C with protein
property p
= N - number of vertices in C
- Miss-rate of cluster C
Miss(C) = Up/N
» Up - number of vertices in C that do not have any

protein properties p in common with any other
vertices in C

= N - number of vertices in C

(T. Milenkovic, 2008)



Results

Hit-rates for cellular components Miss-rates for cellular components
£ 100% E 100%: H m -
; 0% H90%-100% ; 0% B 90%-100%
s 80% WE0%=89% 5o 00% WE0%=80%
BE 0% O 70%=79% BE 0% O70%=79%
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a 0% ; : o 0%
BIOGRI|D HFRD Rual BIOGRID HPRD Rual
(A) PPI network (B) PPI network

(Fig. 54, B. of T. Milenkovic, 2008)
 Cellular components
= Hit-rates
- All 3 networks, 86% of clusters have hit-rates > 50%
= Miss-rates

- BIOGRID, HPRD, 68% of clusters have miss-rates < 10%
» Rual, 76% of clusters have miss-rates < 29%

(T. Milenkovic, 2008)



Disease genes

- Hypothesis:
= If the topology of a network is related to function,

then cancer genes might have similar graphlet
degree signatures

(T. Milenkovic, 2008)



Cancer genes

- Protein of interest
= TP53
» Look for proteins with signature similarity >=

0.95

 Resulting cluster
Cluster with 10 proteins

Cancer genes: 6 (TP53,
EP300, SRC, BRCA1,
EGFR, AR)

(T. Milenkovic, 2008)



Signature vectors

Signatures of proteins bellonging to the TP53 cluster
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Figure 6. Signature vectors of proteins belonging to the TP53 cluster.

The cluster is formed using the threshold of 0.95. , ,
(T. Milenkovic, 2008)



Conclusion



Concluding remarks

 Graphlets can be used to
= Compare networks
= To infer protein functions

= Characterize the
relationship between
disease and structure of
networks

http://www.toyota.ca/toyota/en/vehicles/prius/gallery
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