TWO PROBLEMS WITH BACKPROPAGATION
AND OTHER STEEPEST-DESCENT LEARNING PROCEDURES FOR NETWORKS

Richard S. Sutton*
GTE Laboratories Incorporated
Waltham, MA 02254

ABSTRACT

This article contributes to the theory of network learning procedures by identifying
and analyzing two problems with the backpropagation procedure of Rumelhart, Hinton,
and Williams (1985) that may slow its learning. Both problems are due to backpropaga-
tion’s being a gradient- or steepest-descent method in the weight space of the network. The
first problem is that steepest descent is a particularly poor descent procedure for surfaces
containing ravines—places which curve more sharply in some directions than others—and
such ravines are common and pronounced in performance surfaces arising from networks.
The second problem is that steepest descent results in a high level of interference between
learning with different patterns, because those units that have so far been found most use-
ful are also those most likely to be changed to handle new patterns. The same problems
probably also arise with the Boltzmann machine learning procedure (Ackley, Hinton and
Sejnowski, 1985) and with reinforcement learning procedures (Barto and Anderson, 1985),
as these are also steepest-descent procedures. Finally, some directions in which to look
for improvements to backpropagation based on alternative descent procedures are briefly
considered. ‘

Recent years have seen the development of the first effective learning procedures for
connectionist networks that have interior or “hidden” units not directly associated with in-
put or output: the Boltzmann machine learning procedure (Ackley, Hinton and Sejnowski,
1985), the backpropagation learning procedure (Rumelhart, Hinton and Williams, 1985),
and the Ap_p reinforcement learning procedure (Barto and Anderson, 1985; Williams,
1986). The theory behind these new learning procedures is that of gradient or steepest
descent in the space of “weights”—the modifiable memory parameters weighting the ef-
ficacy of each connection of the network. At each time step, a step is taken in weight
space in the direction in which performance improves most rapidly. Letting J (w) denote
the performance measure to be minimized, where w denotes the vector of weights, the
steepest-descent strategy can be written

Aw = —pVJ(w), (1)

where Aw is the change in the weight vector, p is a positive learning-rate parameter, and

* I have received help and ideas contributing to this article from a large number of people. I wish
to particularly acknowledge Steve Epstein, Andy Barto, John Aspinall, Martha Steenstrup, Ron
Williams, Glenn Iba, and Oliver Selfridge.

SUTTON

the gradient VJ(w) is the vector of first partial derivatives

VJ(w) = (a_J(’."_) QJ_(_'Q>’

dw; ° ’ dwpy

where N is the number of weights. Most single-unit and single-layer learning procedures

are also steepest-descent procedures, including the perceptron (Rosenblatt, 1962) and the
Widrow-Hoff rule (Widrow and Hoff, 1960).

Steepest-descent procedures make their largest changes to those weights where the
first partial derivatives are greatest.* This may seem a good strategy, but there are at
least two reasons for doing exactly the opposite. First, a small derivative may indicate
a shallow, wide, gently-curving part of the surface, where large steps need to be made,
whereas a large derivative may indicate a very steep and sharply curving part, where the
step size must be reduced to prevent instability. Second, the derivative can only be large
for weights and units to the extent that they affect performance. It follows that those
with large derivatives will be those that already play a role in the behavior of the network,
for example, those that have already formed features of use to the rest of the network.
When the network has need to adapt and create new features for a new situation, it should
do so while minimizing interference with the existing useful features, meaning that these
large-derivative weights should be changed least.

The rest of this paper elaborates on these two problems as they arise in Rumelhart
et al.’s backpropagation learning procedure. We concentrate on backpropagation because
most results obtained so far suggest that it is significantly more efficient than the other net-
work learning procedures (Anderson, in prep.; Hinton, personal communication), and its
capabilities have been impressively demonstrated (e.g., Sejnowski and Rosenburg, 1986).
The backpropagation procedure also illustrates the problems we wish to point out particu-
larly clearly. As steepest-descent methods, the other network learning procedures are also
subject to the same problems to various degrees.

Rumelhart et al.’s backpropagation procedure is the application of steepest descent to
acyclic networks receiving signed multi-dimensional errors as their teaching signals (see
Figure 1). In acyclic or feedforward networks, information flows in one direction only: if
there is a connection from unit A to unit B, then there can be no connection or series
of connections from B back to A. At each time step, a set of input units take on the
values of an input pattern, activity is propagated through interior or “hidden” units to a
set of output units, and then the net is told what each output unit’s activity should have
been. The acyclic interconnection means that the propagation of activity can occur in
one sweep, updating the activity of each unit only after the activity of all its inputs have
already been updated.

* Here, and throughout, by greatest we mean greatest in the unsigned sense, that is, greatest in
absolute value.

SUTTON

SIGNED
ERRORS
O—<-_\
INPLT
—_— ouTPUT
PATTERN
—>
_w__J . J o\ J
INPOUT HIDDEN OUTPUT
UNITS UNITS UNITS

Figure 1. An acyclic network with hidden
units and signed-error teaching signals.

In backpropagation, a squared-error performance measure, summed over input pat-
terns, is typically used for J(w). In order for its gradient with respect to the weights
to exist, each unit’s output activity must be a continuously-differentiable function of its
input activity. Typically, each input to a unit is modulated by a separate weight, and the
weighted sum of all input is passed through an S-shaped function from ® to [0, 1]. Fi-
nally, the name “backpropagation” refers to the way information is propagated in a single
sweep in the backward direction, the reverse that of the propagation of activity, to exactly
compute the gradient of performance on a step with respect to each weight in the network.
This is then averaged or summed over steps to approximate VJ (w) . We will not need to
consider the details of the gradient computation.

STEEPEST DESCENT AND RAVINES

Consider the surface whose contour map is shown in Figure 2a. In region A the surface
slopes gently, whereas in region B it is steep. To find one’s way from A through B to the
optimum in the minimum number of steps, one would clearly want to make larger steps
in A than in Bj a flat, shallow surface suggests the optimum is far away, and thus that
large steps be taken. In this way it is inherently a part of the idea of descent that larger
steps should be taken where the gradient is smallest. Equation 1, however, results in the
opposite, in a step size proportional to the size of the gradient. To acheive the desired step
size, the learning-rate parameter p must be made much smaller in large-gradient regions
such as B than it is in small-gradient regions such as A.

The problem is more serious when the gentle and steep slopes occur simultaneously
along different dimensions, as in the surface shown in Figure 2b. Such places, in which the

SUTTON

2b
Za

A sorface with different slopes A ravine: A sorface with different
n different r\ues. slopcs in different divections.

Figure 2.

surface curves much more steeply in one direction than in another, are called ravines. As
before, we would like to take large steps where the surface is gently sloping—here, along
the ravine—and small steps where the surface is steep—across the ravine. Also as before,
the magnitude of the gradient is just the opposite of what is desired; it is large across
and small along the ravine. Here, however, we cannot solve the problem by varying the
learning rate p over time. In effect, we need the learning rate to be different in different
directions. Since this would alter the direction of the step, it is precisely what is ruled out
by steepest-descent procedures, which by definition step directly in the direction of the
gradient (i.e., perpendicular to the contour lines; see Figure 2b). If the learning rate is the
same in all directions, then it will have to be small enough to prevent instability in any
direction, and this means that it will have to be much smaller than optimal in almost all .
directions, and learning will be very slow and inefficient.

Figure 3 illustrates how ravines arise naturally from the structure of networks. The
output unit O receives input from three hidden units A, B, and C, across connections
with weights of wq = 0.1, wp = 1.0, and wg = 10.0. The output unit O can effect
performance directly, the other three units only through affecting O . Other things being
equal, then, changes in C’s (input) weights will have ten times the effect on performance
as changes in B’s weights, and 100 times the effect of changing A’s weights. The corre-
sponding ravines will curve approximately 10 and 100 times faster along the dimensions
of C’s weights than they will along the dimensions of B’s and A’s weights. Thus, simple
variations in the magnitude of weights produce many deep ravines, even more so in deeper
and more layered networks. As the signals produced by some units are found to be useful

SUTTON

Figure 3. A network fragment. Numbers indi-
cate weight values.

while those produced by others are found not to be, such weight variations undoubtedly
will occur. '

A possible saving grace is that ravines created in this way always have their principal
axes parallel to the principal dimensions of the space (those corresponding to the weights).
In two dimensions, for example, such ravines are either horizontal or vertical. Diagonally-
oriented ravines occur only in cases of strong interaction between the changes made at
different weights. For example, a 45° ravine would mean performance remained good as
long as the two weights went up and down together, but worsened quickly if they stepped
in different directions. Such interactions certainly can occur in the problems we would
like networks to solve, but are not naturally created by network structures the way the
weight-axis-aligned ravines are. This observation is important in looking for solutions
to the ravine problem; as long as the ravines are aligned with the weight axes, it may
be possible to alter or eliminate their effect simply by having different learning rates for
each weight, so that larger steps are made along some dimensions, perhaps those of small
derivative, than along others, perhaps those of large derivative. Some such possibilities
are briefly discussed in a later section.

The ravine problem is appreciated by those who have been designing network learning
procedures (e.g., see Derthick, 1984). For example, it is thought that the reason the “mo-
mentum” technique* (Rumelhart et al., 1985) improves performance is that it ameliorates
the ravine problem. What has not been appreciated, however, is that steepest descent

* In this modification to the backpropagation algorithm, the weights are changed partly according to
the current gradient and partly according to recent past gradients, giving weight motions “momen-
tum”. Strictly speaking, this is a departure from steepest descent, but the problems identified here
should still be present. The momentum technique increases the rate of learning, but it is still thought
to be much too slow (Hinton, personal communication).

SUTTON

is only one of many descent procedures, and one which is known to be inefficient in the
presence of ravines (e.g., Tsypkin, 1971; Duda and Hart, 1973; Gill et al., 1981). The
prominence of deep ravines in surfaces generated by networks suggests looking beyond
steepest-descent procedures.

CROSS-PATTERN INTERFERENCE

Our second problem with steepest-descent network learning procedures has to do with
how they handle interference among the various patterns presented to the network. If the
network develops a nice set of features for classifying one set of patterns correctly, and
then we ask it in addition to classify new patterns, we would like it to do so with minimal
interference with the features crafted to classify the first set. If new features are developed
to classify the new patterns, they should preferentially be formed from as-yet-unused units
rather than by making those already in use serve double-duty.

Unfortunately, the steepest-descent procedure again produces the opposite of the de-
sired behavior. In figure 3, output unit O has learned to listen most strongly to unit
C; apparently C has formed a feature of use in solving the problem. Now suppose new
patterns are presented, and new features are needed. As discussed previously, C ’s weights
will have much larger derivatives than B’s and A’s, and so under steepest descent they
will change much more dramatically. Alternatively, once C' was found to no longer be
useful, its incoming weights could have been left unchanged, while its outgoing weight
onto O was reduced. Then, if ever the feature provided by C was again needed, its effect
could quickly be resurrected rather than its function painstakingly recreated. But steep-
est descent does not do this. Steepest-descent procedures preferentially change existing,
already-useful features rather than make new ones from unused units.

The desired logic here is that of generate and test: Responding to current gradients
is the generation process; it is supposed to create any needed new features. The test
of the feature provided by a unit is whether it plays a useful role in the network, which
will be correlated with its weights having large derivatives. In generate and test we make
changes, generate a variety of alternatives, until we find something that passes the test,
which we then keep and insulate in some way from further changes. In steepest descent,
on the other hand, we make greater and greater changes to a unit’s weights the more it is
found to be useful and given control over network output. Units with no effect and zero
derivatives could experiment arbitrarily without degrading performance. Under steepest
descent, however, they will not participate at all in the attempt to find good new features
for new situations.

ALTERNATIVE DESCENT PROCEDURES

This article does not propose any specific alternatives or improvements to steepest
descent and backpropagation. Here, however, we mention several possible directions in

SUTTON

which to look, and report our experiences with them so far.

The alternative to steepest descent is to still descend, but not directly in the direction
of the gradient. A convenient way to think of this is as a distortion of the surface: By
stretching the surface perpendicular to ravines, the eliptical contours of a ravine can be
converted into circular ones, upon which steepest descent is very effective. Such a distortion
of the space is equivalent to distorting individual steps analogously, lengthening them along
ravines, shortening them across.

In general, such a distortion involves multiplying the gradient times an N x N matrix,
where N is the number of weights. We will consider this impractical in that it calls for
every weight to communicate with every other weight. Such communication is unnecessary
if we assume, as discussed earlier, that all ravines are oriented parallel to the weight axes. In
this case inter-weight communication is unnecessary; instead of a full matrix multiplication,
each weight need only have an individual step-size or learning-rate scale factor. Below we
briefly consider three different strategies for setting individual scale factors for each weight.

Squared-error performance measures often result in quadratic or approximately-
quadratic surfaces. For such surfaces the direction and distance of the optimum can
be accurately estimated from the local first and second partial derivatives. The classic
descent procedure that does this is Newton’s method.* It is a matrix method, using the
inverse of the Hessian matrix D of second partial derivatives:

Aw = —pD~ V.

This method normalizes the first derivative according to how fast it itself is changing; if
that rate of change is constant, and p = 1, then the method brings the weight vector
exactly to where VJ =0, i.e., to the optimum, in one step. One way to approximate this
using only a single scale factor per weight is simply to assume all non-diagonal terms of
D are 0, yielding

A aJ /82.]
wy = — -
t pa‘w,; 3'(1)?
2
We note in passing that the second partial derivative g—w‘% can be computed by a backprop-

agation process entirely analogous to that proposed by Rumelhart et al. for computing for
the first derivative.

Newton’s method is an entirely analytic method—based on an exactly computed second
derivative matrix. Another possibility is to measure empirically the extent to which each
weight undergoes changes, and adjust each weight’s scale factor so that all weights change
by the same amount. This would prevent units with small outgoing connections from

* Newton’s method was originally devised to find the zeros of a function. As a descent procedure it is
used to find the zeros of the derivative of a function, and thereby the function’s extrema.

SUTTON

making only tiny changes and thus being wasted, and would prevent highly useful units
from undergoing excessively large changes because of their large derivatives.

Finally, other empirical methods can be taken from the literature on acceleration
of convergence of stochastic approximation methods (e.g., Kesten, 1958; see Fu, 1968;
Tsypkin, 1971, p. 59). For example, Kesten’s method is based on changes in the sign
of the individual steps, in this case of the Awj;; if the sign of the step keeps changing,
oscillation is suggested, and the method reduces the step size. Similarly, repeated steps of
the same sign suggest that the step size should be increased, but little work has been done
pursuing this half of the idea. One particularly interesting possibility is that of using the
steepest-descent concept at a second “meta” level to derive procedures for altering each
weight’s learning rate (as in Barto and Sutton, 1981, Appendix C).

CONCLUSION

Modern network learning procedures such as backpropagation are a significant ada-
vance over previous connectionist learning techniques. This work is particularly exciting
because the learning procedures can be directly related to their basis in the theories of
stochastic approximation and gradient descent. The intent in this article has been to en-
courage the widening of the scope of this advance. Gradient or steepest descent is one of the
simplest descent procedures, but it is neither the only nor the best one. It is unduly slow in
the presence of ravines, which appear ubiquitous in the network domain, and it encourages
the destruction of previously useful features upon task switches. Much is already known
about the problems of steepest descent and various alternatives to it in a general setting.
Just as steepest-descent theory has been successfully carried over to the network domain
to produce backpropagation and the other new network learning algorithms, perhaps this
other knowledge can be carried over to significantly improve the speed with which they
learn.

REFERENCES

Ackley, D.H., Hinton, G.H., & Sejnowski, T.J. (1985) A learning algorithm for Boltzmann
machines. Cognitive Science 9, 147-169.

Anderson, C.W. (in preparation) Learning new terms in connectionist systems. University
of Massachusetts Ph.D. Dissertation.

Barto, A.G. & Anderson, C.W. (1985) Structural learning in connectionist systems. Pro-
ceedings of the Seventh Annual Conference of the Cognitive Science Society, 43—53.

Barto, A.G. & Sutton, R.S. (1981) Goal seeking components for adaptive intelligence:
An initial assessment. Air Force Wright Aeronautical Laboratories/Avionics Laboratory
Technical Report AFWAL-TR-81-1070, Wright-Patterson AFB, Ohio.

SUTTON

Derthick, M. (1984) Variations on the Boltzmann machine learning algorithm. CMU Tech
Report CMU-CS-84-120.

Duda, R.O. & Hart, P.E. (1973) Pattern Classification and Scene Analysis. New York:
Wiley.

Fu, K.S. (1968) Sequential Methods in Paitern Recognition and Machine Learning. New
York: Academic Press.

Gill P.E., Murray W., & Wright, M.H. (1981) Practical Optimization. New York: Aca-
demic Press.

Kesten, H. (1958) Accelerated stochastic approximation. Annals of Mathematical Statistics
29, 41-59. ‘

Rosenblatt, F. (1962) Principles of Neurodynamics. New York: Spartan Books.

Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1985) Learning internal representations
by error propagation. Institute for Cognitive Science Technical Report 8506, UCSD, La
Jolla, CA 92093.

Sejnowski, T.E. & Rosenburg, C.R. (1986) NETtalk: A parallel network that learns to read
aloud. Johns Hopkins University Electrical Engineering and Computer Science Technical
Report JHU/EECS-86/01.

Tsypkin, Y.Z. (1971) Adaptation and Learning in Automatic Systems. New York: Aca-
demic Press.

Widrow B. & Hoff, M.E. (1960) Adaptive switching circuits. 1960 WESCON Convention
Record Part IV, 96-104.

Williams, R.J. (1986) Reinforcement learning in connectionist networks: A mathematical
analysis, Institute for Cognitive Science Technical Report 8605, UCSD, La Jolla, CA 92093.

