
1

Chapter 2 — Instructions: Language of the Computer — 67

Representing Instructions

 Instructions are encoded in binary

 Called machine code

 MIPS instructions

 Encoded as 32-bit instruction words

 Small number of formats encoding operation code

(opcode), register numbers, …

 Regularity!

 Register numbers

 $t0 – $t7 are reg’s 8 – 15

 $t8 – $t9 are reg’s 24 – 25

 $s0 – $s7 are reg’s 16 – 23

§
2

.5
 R

e
p

re
s
e

n
tin

g
 In

s
tru

c
tio

n
s
 in

 th
e
 C

o
m

p
u
te

r

Chapter 2 — Instructions: Language of the Computer — 68

MIPS R-format Instructions

 Instruction fields

 op: operation code (opcode)

 rs: first source register number

 rt: second source register number

 rd: destination register number

 shamt: shift amount (00000 for now)

 funct: function code (extends opcode)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 69

R-format Example

add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

000000100011001001000000001000002 = 0232402016

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 70

Hexadecimal

 Base 16

 Compact representation of bit strings

 4 bits per hex digit

0 0000 4 0100 8 1000 c 1100

1 0001 5 0101 9 1001 d 1101

2 0010 6 0110 a 1010 e 1110

3 0011 7 0111 b 1011 f 1111

 Example: eca8 6420

 1110 1100 1010 1000 0110 0100 0010 0000

Chapter 2 — Instructions: Language of the Computer — 71

MIPS I-format Instructions

 Immediate arithmetic and load/store instructions
 rt: destination or source register number

 Constant: –215 to +215 – 1

 Address: offset added to base address in rs

 Design Principle 4: Good design demands good
compromises
 Different formats complicate decoding, but allow 32-bit

instructions uniformly

 Keep formats as similar as possible

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

Chapter 2 — Instructions: Language of the Computer — 72

MIPS I-format Example

lw $t0, 32($s3) # Temporary reg $t0 gets A[8]

35 19 8 32

6 bits 5 bits 5 bits 16 bits

lw $s3 $t0 address

6 bits 5 bits 5 bits 16 bits

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

100011 10011 01000 0000000000100000

6 bits 5 bits 5 bits 16 bits

2

Chapter 2 — Instructions: Language of the Computer — 73

Stored Program Computers

 Instructions represented in
binary, just like data

 Instructions and data stored
in memory

 Programs can operate on
programs
 e.g., compilers, linkers, …

 Binary compatibility allows
compiled programs to work
on different computers
 Standardized ISAs

The BIG Picture

Chapter 2 — Instructions: Language of the Computer — 74

Logical Operations

 Instructions for bitwise manipulation

Operation C Java MIPS

Shift left << << sll

Shift right >> >>> srl

Bitwise AND & & and, andi

Bitwise OR | | or, ori

Bitwise NOT ~ ~ nor

 Useful for extracting and inserting

groups of bits in a word

§
2
.6

 L
o
g
ic

a
l O

p
e
ra

tio
n
s

Chapter 2 — Instructions: Language of the Computer — 75

Shift Operations

 shamt: how many positions to shift

 Shift left logical

 Shift left and fill with 0 bits

 sll by i bits multiplies by 2i

 Shift right logical

 Shift right and fill with 0 bits

 srl by i bits divides by 2i (unsigned only)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 76

AND Operations

 Useful to mask bits in a word

 Select some bits, clear others to 0

and $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0000 1100 0000 0000$t0

Chapter 2 — Instructions: Language of the Computer — 77

OR Operations

 Useful to include bits in a word

 Set some bits to 1, leave others unchanged

or $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0011 1101 1100 0000$t0

Chapter 2 — Instructions: Language of the Computer — 78

NOT Operations

 Useful to invert bits in a word

 Change 0 to 1, and 1 to 0

 MIPS has NOR 3-operand instruction

 a NOR b == NOT (a OR b)

nor $t0, $t1, $zero

0000 0000 0000 0000 0011 1100 0000 0000$t1

1111 1111 1111 1111 1100 0011 1111 1111$t0

Register 0: always

read as zero

3

Chapter 2 — Instructions: Language of the Computer — 79

Conditional Operations

 Branch to a labeled instruction if a
condition is true

 Otherwise, continue sequentially

 beq rs, rt, L1
 if (rs == rt) branch to instruction labeled L1;

 bne rs, rt, L1
 if (rs != rt) branch to instruction labeled L1;

 j L1
 unconditional jump to instruction labeled L1

§
2

.7
 In

s
tru

c
tio

n
s
 fo

r M
a

k
in

g
 D

e
c
is

io
n
s

Chapter 2 — Instructions: Language of the Computer — 80

Compiling If Statements

 C code:

if (i==j) f = g+h;
else f = g-h;

 f, g,h in $s0, $s1, $s2

 Compiled MIPS code:

bne $s3, $s4, Else
add $s0, $s1, $s2
j Exit

Else: sub $s0, $s1, $s2
Exit: …

Assembler calculates addresses

Chapter 2 — Instructions: Language of the Computer — 81

Compiling Loop Statements

 C code:

while (save[i] == k) i += 1;

 i in $s3, k in $s5, address of save in $s6

 Compiled MIPS code:

Loop: sll $t1, $s3, 2
add $t1, $t1, $s6
lw $t0, 0($t1)
bne $t0, $s5, Exit
addi $s3, $s3, 1
j Loop

Exit: …

Chapter 2 — Instructions: Language of the Computer — 82

Basic Blocks

 A basic block is a sequence of instructions

with

 No embedded branches (except at end)

 No branch targets (except at beginning)

 A compiler identifies basic

blocks for optimization

 An advanced processor

can accelerate execution

of basic blocks

Chapter 2 — Instructions: Language of the Computer — 83

More Conditional Operations

 Set result to 1 if a condition is true

 Otherwise, set to 0

 slt rd, rs, rt

 if (rs < rt) rd = 1; else rd = 0;

 slti rt, rs, constant

 if (rs < constant) rt = 1; else rt = 0;

 Use in combination with beq, bne
slt $t0, $s1, $s2 # if ($s1 < $s2)
bne $t0, $zero, L # branch to L

Chapter 2 — Instructions: Language of the Computer — 84

Branch Instruction Design

 Why not blt, bge, etc?

 Hardware for <, ≥, … slower than =, ≠

 Combining with branch involves more work

per instruction, requiring a slower clock

 All instructions penalized!

 beq and bne are the common case

 This is a good design compromise

4

Chapter 2 — Instructions: Language of the Computer — 85

Signed vs. Unsigned

 Signed comparison: slt, slti

 Unsigned comparison: sltu, sltui

 Example

 $s0 = 1111 1111 1111 1111 1111 1111 1111 1111

 $s1 = 0000 0000 0000 0000 0000 0000 0000 0001

 slt $t0, $s0, $s1 # signed

 –1 < +1  $t0 = 1

 sltu $t0, $s0, $s1 # unsigned

 +4,294,967,295 > +1  $t0 = 0

Procedure Calling

 Procedure (function) performs a specific
task and returns results to caller.

Chapter 2 — Instructions: Language of the Computer — 86

Procedure Calling

 Calling program

 Place parameters in registers $a0 - $a3

 Transfer control to procedure

 Called procedure

 Acquire storage for procedure, save values of
required register(s) on stack $sp

 Perform procedure’s operations, restore the
values of registers that it used

 Place result in register for caller $v0 - $v1

 Return to place of call by returning to
instruction whose address is saved in $ra

Chapter 2 — Instructions: Language of the Computer — 87 Chapter 2 — Instructions: Language of the Computer — 88

Register Usage

 $a0 – $a3: arguments (reg’s 4 – 7)

 $v0, $v1: result values (reg’s 2 and 3)

 $t0 – $t9: temporaries
 Can be overwritten by callee

 $s0 – $s7: saved
 Must be saved/restored by callee

 $gp: global pointer for static data (reg 28)

 $sp: stack pointer for dynamic data (reg 29)

 $fp: frame pointer (reg 30)

 $ra: return address (reg 31)

Chapter 2 — Instructions: Language of the Computer — 89

Procedure Call Instructions

 Procedure call: jump and link

jal ProcedureLabel

 Address of following instruction put in $ra

 Jumps to target address

 Procedure return: jump register

jr $ra

 Copies $ra to program counter

 Can also be used for computed jumps

 e.g., for case/switch statements

Chapter 2 — Instructions: Language of the Computer — 90

Leaf Procedure Example

 C code:

int leaf_example (int g, h, i, j)
{ int f;

f = (g + h) - (i + j);
return f;

}

 Arguments g, …, j in $a0, …, $a3

 f in $s0 (hence, need to save $s0 on stack)

 Result in $v0

5

Chapter 2 — Instructions: Language of the Computer — 91

Leaf Procedure Example (2)

 MIPS code:
leaf_example:

addi $sp, $sp, -4
sw $s0, 0($sp)
add $t0, $a0, $a1
add $t1, $a2, $a3
sub $s0, $t0, $t1
add $v0, $s0, $zero
lw $s0, 0($sp)
addi $sp, $sp, 4
jr $ra

Save $s0 on stack

Procedure body

Restore $s0

Result

Return

 MIPS code for calling function:

main:

…

jal leaf_example

…

Chapter 2 — Instructions: Language of the Computer — 92

Leaf Procedure Example (3)

Chapter 2 — Instructions: Language of the Computer — 93

Non-Leaf Procedures

 Procedures that call other procedures

 For nested call, caller needs to save on the

stack:

 Its return address

 Any arguments and temporaries needed after

the call

 Restore from the stack after the call

Chapter 2 — Instructions: Language of the Computer — 94

Non-Leaf Procedure Example (2)

 C code:

int fact (int n)
{

if (n < 1) return 1;
else return n * fact(n - 1);

}

 Argument n in $a0

 Result in $v0

Chapter 2 — Instructions: Language of the Computer — 95

 MIPS code:
fact:

addi $sp, $sp, -8 # adjust stack for 2 items
sw $ra, 4($sp) # save return address
sw $a0, 0($sp) # save argument
slti $t0, $a0, 1 # test for n < 1
beq $t0, $zero, L1
addi $v0, $zero, 1 # if so, result is 1
addi $sp, $sp, 8 # pop 2 items from stack
jr $ra # and return

L1: addi $a0, $a0, -1 # else decrement n
jal fact # recursive call
lw $a0, 0($sp) # restore original n
lw $ra, 4($sp) # and return address
addi $sp, $sp, 8 # pop 2 items from stack
mul $v0, $a0, $v0 # multiply to get result
jr $ra # and return

Non-Leaf Procedure Example (3)

Chapter 2 — Instructions: Language of the Computer — 96

Non-Leaf Procedure Example (4)

6

Chapter 2 — Instructions: Language of the Computer — 97

Non-Leaf Procedure Example (5)

Chapter 2 — Instructions: Language of the Computer — 98

Non-Leaf Procedure Example (6)

Chapter 2 — Instructions: Language of the Computer — 99

Non-Leaf Procedure Example (7)

Chapter 2 — Instructions: Language of the Computer — 100

Non-Leaf Procedure Example (8)

6

Chapter 2 — Instructions: Language of the Computer — 101

Local Data on the Stack

 Local data allocated by callee
 e.g., C automatic variables

 Procedure frame (activation record)
 Used by some compilers to manage stack storage

Chapter 2 — Instructions: Language of the Computer — 102

Memory Layout

 Text: program code

 Static data: global
variables
 e.g., static variables in C,

constant arrays and strings

 $gp initialized to address
allowing ±offsets into this
segment

 Dynamic data: heap
 E.g., malloc in C, new in

Java

 Stack: automatic storage

7

Register Summary

 The following registers are preserved on call

 $s0 - $s7, $gp, $sp, $fp, and $ra

Chapter 2 — Instructions: Language of the Computer — 103 Chapter 2 — Instructions: Language of the Computer — 104

Character Data

 Byte-encoded character sets

 ASCII: (7-bit) 128 characters

 95 graphic, 33 control

 Latin-1: (8-bit) 256 characters

 ASCII, +96 more graphic characters

 Unicode: 32-bit character set

 Used in Java, C++ wide characters, …

 Most of the world’s alphabets, plus symbols

 UTF-8, UTF-16: variable-length encodings

§
2
.9

 C
o
m

m
u
n
ic

a
tin

g
 w

ith
 P

e
o
p
le

ASCII Representation of Characters

Chapter 2 — Instructions: Language of the Computer — 105

ASCII Characters

 American Standard Code for Information

Interchange (ASCII).

 Most computers use 8-bit to represent each

character. (Java uses Unicode, which is 16-

bit).

 Signs are combination of characters.

 How to load a byte?

 lb, lbu, sb for byte (ASCII)

 lh, lhu, sh for half-word instruction
(Unicode)

Chapter 2 — Instructions: Language of the Computer — 106

Chapter 2 — Instructions: Language of the Computer — 107

Byte/Halfword Operations

 Could use bitwise operations

 MIPS byte/halfword load/store

 String processing is a common case

lb rt, offset(rs) lh rt, offset(rs)

 Sign extend to 32 bits in rt

lbu rt, offset(rs) lhu rt, offset(rs)

 Zero extend to 32 bits in rt

sb rt, offset(rs) sh rt, offset(rs)

 Store just rightmost byte/halfword

Chapter 2 — Instructions: Language of the Computer — 108

String Copy Example

 C code:

 Null-terminated string

void strcpy (char x[], char y[])
{ int i;

i = 0;
while ((x[i]=y[i])!='\0')

i += 1;
}

 Addresses of x, y in $a0, $a1

 i in $s0

8

Chapter 2 — Instructions: Language of the Computer — 109

String Copy Example

 MIPS code:
strcpy:

addi $sp, $sp, -4 # adjust stack for 1 item
sw $s0, 0($sp) # save $s0
add $s0, $zero, $zero # i = 0

L1: add $t1, $s0, $a1 # addr of y[i] in $t1
lbu $t2, 0($t1) # $t2 = y[i]
add $t3, $s0, $a0 # addr of x[i] in $t3
sb $t2, 0($t3) # x[i] = y[i]
beq $t2, $zero, L2 # exit loop if y[i] == 0
addi $s0, $s0, 1 # i = i + 1
j L1 # next iteration of loop

L2: lw $s0, 0($sp) # restore saved $s0
addi $sp, $sp, 4 # pop 1 item from stack
jr $ra # and return

Chapter 2 — Instructions: Language of the Computer — 110

0000 0000 0011 1101 0000 0000 0000 0000

32-bit Constants

 Most constants are small

 16-bit immediate is sufficient

 For the occasional 32-bit constant

lui rt, constant

 Copies 16-bit constant to left 16 bits of rt

 Clears right 16 bits of rt to 0

lui $s0,61

0000 0000 0011 1101 0000 1001 0000 0000ori $s0,$s0,2304

§
2
.1

0
 M

IP
S

 A
d
d
re

s
s
in

g
 fo

r 3
2

-B
it Im

m
e

d
ia

te
s
 a

n
d

 A
d

d
re

s
s
e

s

Chapter 2 — Instructions: Language of the Computer — 111

Branch Addressing

 Branch instructions specify

 Opcode, two registers, target address

 Most branch targets are near branch

 Forward or backward

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

 PC-relative addressing

 Target address = PC + offset × 4

 PC already incremented by 4 by this time

Chapter 2 — Instructions: Language of the Computer — 112

Jump Addressing

 Jump (j and jal) targets could be

anywhere in text segment

 Encode full address in instruction

op address

6 bits 26 bits

 PseudoDirect jump addressing

 Target address = PC31…28 : (address × 4)
32 bits = 4 bits 28 bits

Chapter 2 — Instructions: Language of the Computer — 113

Target Addressing Example

 Loop code from earlier example

 Assume Loop at location 80000

Loop: sll $t1, $s3, 2 80000 0 0 19 9 4 0

add $t1, $t1, $s6 80004 0 9 22 9 0 32

lw $t0, 0($t1) 80008 35 9 8 0

bne $t0, $s5, Exit 80012 5 8 21 2

addi $s3, $s3, 1 80016 8 19 19 1

j Loop 80020 2 20000

Exit: … 80024

Chapter 2 — Instructions: Language of the Computer — 114

Branching Far Away

 If branch target is too far to encode with

16-bit offset, assembler rewrites the code

 Example

beq $s0,$s1, L1

written as

bne $s0,$s1, L2
j L1

L2: …

9

Chapter 2 — Instructions: Language of the Computer — 115

Addressing Mode Summary

Chapter 2 — Instructions: Language of the Computer — 116

Synchronization (Parallelism)

 Two processors sharing an area of memory

 P1 writes, then P2 reads

 Data race if P1 and P2 don’t synchronize

 Result depends on order of accesses

 Hardware support required

 Atomic read/write memory operation

 No other access to the location allowed between the

read and write

 Could be a single instruction

 E.g., atomic swap of register ↔ memory

 Or an atomic pair of instructions

§
2
.1

1
 P

a
ra

lle
lis

m
 a

n
d
 In

s
tru

c
tio

n
s
: S

y
n
c
h
ro

n
iz

a
tio

n

Chapter 2 — Instructions: Language of the Computer — 117

Synchronization in MIPS

 Load linked: ll rt, offset(rs)

 Store conditional: sc rt, offset(rs)
 Succeeds if location not changed since the ll

 Returns 1 in rt

 Fails if location is changed
 Returns 0 in rt

 Example: atomic swap (to test/set lock variable)
try: add $t0,$zero,$s4 ;copy exchange value

ll $t1,0($s1) ;load linked

sc $t0,0($s1) ;store conditional

beq $t0,$zero,try ;branch store fails

add $s4,$zero,$t1 ;put load value in $s4

Chapter 2 — Instructions: Language of the Computer — 118

C Sort Example

 Illustrates use of assembly instructions
for a C bubble sort function

 Swap procedure (leaf)
void swap(int v[], int k)
{

int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}

 v in $a0, k in $a1, temp in $t0

§
2
.1

3
 A

 C
 S

o
rt E

x
a
m

p
le

 to
 P

u
t It A

ll T
o
g
e
th

e
r

Chapter 2 — Instructions: Language of the Computer — 119

The Procedure Swap

swap: sll $t1, $a1, 2 # $t1 = k * 4

add $t1, $a0, $t1 # $t1 = v+(k*4)

(address of v[k])

lw $t0, 0($t1) # $t0 (temp) = v[k]

lw $t2, 4($t1) # $t2 = v[k+1]

sw $t2, 0($t1) # v[k] = $t2 (v[k+1])

sw $t0, 4($t1) # v[k+1] = $t0 (temp)

jr $ra # return to calling routine

Chapter 2 — Instructions: Language of the Computer — 120

Example
.data

STR: .asciiz "a1b2c3d4e5f6g7h8i9" # STR[0,1,..,17]=a,1,b,..,9 (8 bits)

MAX: .word 0x44556677; # MAX = 0x44556677 (32 bits)

SIZE: .byte 33,22,11; # SIZE[0,1,2] = 33,22,11 (8 bits)

count: .word 0,1,2; # count[0,1,2] = 0,1,2 (32 bits)

#---

.text

main:

la $t0, STR # $t0 = address(STR)

lb $t1, 0($t0) # $t1 = 97 (ascii code for 'a' in decimal)

addi $t2, $t1, -4 # $t2 = 93

lb $t3, 3($t0) # $t3 = 50 (ascii code for '2' in decimal)

lb $t4, 23($t0) # $t4 = 68 = 44 hex

lb $t5, 24($t0) # $t5 = 33

lb $t6, 32($t0) # $t6 = 1

lb $t7, 33($t0) # $t7 = 0

lh $t8, 26($t0) # $t8 = 11 = b hex

lw $t9, 36($t0) # $t9 = 2

#---

jr $ra # return

10

Chapter 2 — Instructions: Language of the Computer — 121

Concluding Remarks

 Design principles

1. Simplicity favors regularity

2. Smaller is faster

3. Make the common case fast

4. Good design demands good compromises

 Layers of software/hardware

 Compiler, assembler, hardware

 MIPS: typical of RISC ISAs

 c.f. x86

§
2

.2
0
 C

o
n

c
lu

d
in

g
 R

e
m

a
rk

s

The slides are adopted from Computer

Organization and Design, 5th Edition

by David A. Patterson and John L. Hennessy

2014, published by MK (Elsevier)

Acknowledgement

Chapter 2 — Instructions: Language of the Computer — 121

