
COMPUTERORGANIZATION ANDDESIGN
The Hardware/Software Interface

5
th

Edition

Chapter 3

Arithmetic for Computers

Boolean Algebra

 Boolean algebra is the basic math used
in digital circuits and computers.

 A Boolean variable takes on only 2

values: {0,1} , {T,F}, {Yes, No}, etc.

 There are 3 fundamental Boolean

operations:
 AND, OR, NOT

Chapter 3 — Arithmetic for Computers — 2

Fundamental Boolean Operations

AND OR NOT

Z=A*B (AB) Z=A+B Z=Ā

Truth Table Truth Table Truth Table

A

B

Z A

B

Z ZA

A B Z

0 0 0

0 1 0

1 0 0

1 1 1

A B Z

0 0 0

0 1 1

1 0 1

1 1 1

A Z

0 1

1 0

Chapter 3 — Arithmetic for Computers — 3

Boolean Algebra

 A truth table specifies output signal logic

values for every possible combination of input

signal logic values

 In evaluating Boolean expressions, the

Operation Hierarchy is: 1) NOT 2) AND 3)

OR. Order can be superseded using (…)

 Example:

 What is the value of Z = (A+B)⋅(C +B⋅D)?

Z = (T +F)⋅(C +B⋅D) = (F +F)⋅(C +B⋅D)

= F ⋅(C +B⋅D) = F

A=T,B = F,C =T,D=T

Chapter 3 — Arithmetic for Computers — 4

Deriving Logic Expressions From Truth Tables

SW. A
Z (light)

SW. B

 What is the Boolean expression for Z?

_ _

Z = A.B + A.B

Light must be ON when both

switches A and B are OFF, or

when both of them are ON.

Truth Table:

Logic Function

A B Z

0 0 1

0 1 0

1 0 0

1 1 1

Chapter 3 — Arithmetic for Computers — 5

Minterms and Maxterms

 Minterms

 AND term of all input variables

 For variables with value 0, apply complements

 Maxterms

 OR factor with all input variables

 For variables with value 1, apply complements

A B Z Minterms Maxterms

0 0 1 A+ B

0 1 0

1 0 0

1 1 1

Chapter 3 — Arithmetic for Computers — 6

Minterms and Maxterms

 A function with n variables has 2n

minterms (and Maxterms) – exactly equal

to the number of rows in truth table
 Each minterm is true for exactly one

combination of inputs

 Each Maxterm is false for exactly one

combination of inputs

A B Z Minterms Maxterms

0 0 1 A+ B

0 1 0

1 0 0

1 1 1

Chapter 3 — Arithmetic for Computers — 7

Equivalent Logic Expressions

 Two equivalent logic expressions can

be derived from Truth Tables:

1. Sum-of-Products (SOP) expressions:

 Several AND terms OR’d together, e.g.

ABC + ABC + ABC

2. Product-of-Sum (POS) expressions:

 Several OR terms AND’d together, e.g.

(A + B + C)(A + B + C)

Chapter 3 — Arithmetic for Computers — 8

Rules for Deriving SOP Expressions

1. Find each row in TT for which output is
1 (rows 1 & 4)

2. For those rows write a minterm of
all input variables.

3. OR together all minterms found in (2):

Such an expression is called a
Canonical SOP

A B Z Minterms Maxterms

0 0 1 A+ B

0 1 0

1 0 0

1 1 1

_ _

Z = A B + AB

Chapter 3 — Arithmetic for Computers — 9

Rules for Deriving POS Expressions

1. Find each row in TT for which output is 0
(rows 2 & 3)

2. For those rows write a maxterm

3. AND together all maxterm found in (2):

Such an expression is called a Canonical

POS.

A A B Z Minterms Maxterms

Z = (A+B)(A+B)

0 0 1

0 1 0

1 0 0

1 1 1

A+ B

Chapter 3 — Arithmetic for Computers — 10

CSOP and CPOS

 CPOS and CSOP expressions for the

same TT are logically equivalent. Both

represent the same information.

Z = AB+AB ≡(A+B)(A+B)
Verify that

 Canonical SOP: Z = A B + AB

 Canonical POS: Z = (A + B)(A + B)

 Since they represent the same truth

table, they should be identical

Chapter 3 — Arithmetic for Computers — 11

Activity 1

Derive SOP and POS expressions for the following TT.

A B Carry

0 0 0

0 1 0

1 0 0

1 1 1

Chapter 3 — Arithmetic for Computers — 12

Boolean Identities

13

 Useful for simplifying logic equations.

Duals

1

2

3

4

5

6

7

8

9

10

11

12

13

Chapter 3 — Arithmetic for Computers — 13

Boolean Identities

 The right side is the dual of the left side

1. Duals formed by replacing

2. The dual of any true statement in Boolean

algebra is also a true statement.

AND

OR
OR

AND

1

0

0

1

Chapter 3 — Arithmetic for Computers — 14

Boolean Identities

NOR gate Alt gate rep.

Alt gate rep.
NAND gate

• DeMorgan’s laws very useful: 9a and 9b

A+B = A.B

AB = A+B

Chapter 3 — Arithmetic for Computers — 15

Activity 2

12b:

13a:

A+AB=A+B

AB+ AC +BC = AB+ AC

Proofs of some Identities:

Chapter 3 — Arithmetic for Computers — 16

Simplifying Logic Equations – Why?

F

(b) Minimal-cost realization

A

B

(a) Canonical sum-of-products

F = A.B+A.B+A.B

F

F = A+B

A

B

Chapter 3 — Arithmetic for Computers — 17

Simplifying Logic Equations

 Simplifying logic expressions can lead to using
smaller number of gates (parts) to implement the logic
expression

 Can be done using

 Boolean Identities (algebraic)

 Karnaugh Maps (graphical)

 A minimum SOP (MSOP) expression is one that has

no more AND terms or variables than any other

equivalent SOP expression.

 A minimum POS (MPOS) expression is one that has

no more OR factors or variables than any other

equivalent POS expression.

 There may be several MSOPs of an expression

Chapter 3 — Arithmetic for Computers — 18

Example of Using Boolean Identities

 Find an MSOP for

F =XW +Y +Z(Y + XW)

= XW + Y +ZY + Z XW

= XW (1+Z) + Y (1+Z)

=XW + Y

Chapter 3 — Arithmetic for Computers — 19

Activity 3

 Find an MSOP for

F =W XY Z + W XY Z + W X Y Z

= XYZ (W + W) + W X Y (Z + Z)

= XYZ (1) + W X Y (1)

= XYZ + W X Y

= X Y (Z + W)

Chapter 3 — Arithmetic for Computers — 20

Digital Circuit Classification

 Combinational circuits

 Output depends only solely on the current

combination of circuit inputs

 Same set of input will always produce the same

outputs

 Consists of AND, OR, NOR, NAND, and NOT gates

 Sequential circuits

 Output depends on the current inputs and state of
the circuit (or past sequence of inputs)

 Memory elements such as flip-flops and registers

are required to store the “state”

 Same set of input can produce completely different

outputs

Chapter 3 — Arithmetic for Computers — 21

Multiplexer

 A multiplexer (MUX) selects data from one of N

inputs and directs it to a single output, just like a

railyard switch

 4-input Mux needs 2 select lines to indicate which input to

route through

 N-input Mux needs log2(N) selection lines

Chapter 3 — Arithmetic for Computers — 22

Multiplexer (2)

 An example of 4-input Mux

I0

I1

In-1

Selection

control

Z

4-input MUX

I0

I1

I2

I3

S1 S0

Z

Functional block diagram

1 0

Truth Table

S1 S0 Z

0 0 I0

0 1 I1

1 0 I2

1 1 I3

Chapter 3 — Arithmetic for Computers — 23

Decoder
 A decoder is a circuit element that will decode an

N-bit code.

 It activates an appropriate output line as a
function of the applied N-bit input code

Truth Table

3-to-8 decoder

Functional block diagram

Z0

A2 Z1

Z2

Z3

A1

Z4

Z5

A0 Z6

Z7

A2 A1 A0 Z0 Z1 Z2 Z3 Z4 Z5 Z6 Z7

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

Chapter 3 — Arithmetic for Computers — 24

Why Bit Storage ?

 Flight attendant call button

 Press call: light turns on

 Stays on after button
released

 Press cancel: light turns off

 Logic gate circuit to
implement this?

QCall

Cancel

Doesn’t work. Q=1 when Call=1, but

doesn’t stay 1 when Call returns to 0

Need some form of “memory” in the circuit

a

a

Bit
Storage

Blue lightCall
button

Cancel
button

1. Call button pressed – light turns on

Bit
Storage

Blue lightCall
button

Cancel
button

2. Call button released – light stays on

Bit
Storage

Blue lightCall
button

Cancel
button

3. Cancel button pressed – light turns off

Chapter 3 — Arithmetic for Computers — 25

Bit Storage Using SR Latch

 Simplest memory elements are Latch and
Flip-Flops

 SR (set-reset) latch is an un-clocked latch

 Output Q=1 when S=1, R=0 (set condition)

 Output Q=0 when S=0, R=1 (reset condition)

 Problem - Q is undefined if S=1 and R=1

R

S

Q

Call

but ton

Blue light

Cancel
but ton

Chapter 3 — Arithmetic for Computers — 26

Clocks

 Clock period: time interval between
pulses

 example: period = 20 ns

 Clock frequency: 1/period

 example: frequency = 1 / 20 ns = 50

MHz

 Edge-triggered clocking: all state
changes occur on a clock edge.

Freq Period

100 GHz

10 GHz

1 GHz

100 MHz

10 MHz

0.01 ns

0.1 ns

1 ns

10 ns

100 ns

Chapter 3 — Arithmetic for Computers — 27

Clock and Change of State

 Clock controls when the state of a memory
element changes

 Edge-triggered clocking: all state

changes occur on a clock edge.

Chapter 3 — Arithmetic for Computers — 28

Clock Edge Triggered Bit Storage

 Flip-flop - Bit storage that stores on clock edge, not level

 D Flip-flop

 Two latches, master and slave latches.
 Output of the first goes to input of second, slave latch has

inverted clock signal (falling-edge trigger)

Chapter 3 — Arithmetic for Computers — 29

Setup and Hold Time

 Setup time

 The minimum amount of time the data signal should

be held steady before the clock edge arrives.

 Hold time

 The minimum amount of time the data signal should
be held steady after the clock edge.

Chapter 3 — Arithmetic for Computers — 30

N-Bit Register

 Cascade N number of D flip-flops to form a
N-bit register

 An example of 8-bit register formed by

8 edge-triggered D flip-flops

Chapter 3 — Arithmetic for Computers — 31

Half Adders

i Need to add bits {0,1} of Ai and B

 Associate

 binary bit 0 ↔ logic value F (0)

 binary bit 1 ↔ logic value T (1)

 This leads to the following truth table

SUM
i
= A

i
B

i
+ A

i
B

i
= A

i
⊕ B

i

CARRYi+1 = Ai Bi

Ai Bi Sumi Carryi+1

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Chapter 3 — Arithmetic for Computers — 32

Half Adder Circuit

SUMi

CARRYi+1

Ai

Bi

SUM
i
= A

i
B

i
+ A

i
B

i
= A

i
⊕ B

i

CARRYi+1 = Ai Bi

Chapter 3 — Arithmetic for Computers — 33

Half Adder Limitations

 Half adder circuits do not suffice for

general addition because they do not

include the carry bit from the previous

stage of addition, e.g.

Carry 0 1 1 0

A 0 1 1 0

B + 0 0 1 1

SUM 1 0 0 1

Chapter 3 — Arithmetic for Computers — 34

Full Adders (1-Bit ALU)

 Full adders can use the carry bit from the

previous stage of addition

Full adder

Ai

Current

Bi

Ci

Si

Ci+1
carry-in from

previous stg

carry-out to

next stg

Current

sum

Ai Bi Ci Si
Ci+1

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Chapter 3 — Arithmetic for Computers — 35

Full Adder Logic Expressions

Sum

SUM=AiBiCi +AiBiCi +AiBiCi +AiBiCi

=Ai(BiCi +BiCi)+Ai(BiCi +BiCi)

=Ai(Bi ⊕Ci)+Ai(Bi ⊕Ci)

=Ai ⊕Bi ⊕Ci

Carry

Ci+1 =AiBi +AiBiCi +AiBiCi

=AiBi +Ci (AiBi +AiBi)

=AiBi +Ci (Ai ⊕Bi)

Chapter 3 — Arithmetic for Computers — 36

Full Adder Circuit

SUMi

Ci+1

Ci

Ai

Bi

Full adder

half adder half adder

Ci+1 = Ai Bi + Ci (Ai ⊕ Bi)SUM = (Ai ⊕ Bi) ⊕ Ci

Note: A full adder adds 3 bits. Can also consider as first

adding first two and then the result with the carry

Chapter 3 — Arithmetic for Computers — 37

Enhancement to 1-bit Adder(1)

 1-bit ALU with AND,
OR, and addition

 Supplemented with AND

and OR gates

 A multiplexer controls

which gate is connected to

the output

Operation Result

00 AND

01 OR

10 Addition

Chapter 3 — Arithmetic for Computers — 38

Enhancement to 1-bit Adder(2)

 1-bit ALU for

subtraction

 Subtraction is

performed using 2’s

complement, i.e.

a − b = a + b +1

Binvert CarryIn Operation Result

0 0 00 AND

0 0 01 OR

0 0 10 Addition

1 1 10 Subtraction

Chapter 3 — Arithmetic for Computers — 39

Enhancement to 1-bit Adder(3)

 1-bit ALU for NOR

operation

 A MIPS ALU also

needs a NOR

function

(a + b) = a . b

Ainvert Binvert CarryIn Operation Result

0 0 0 00 AND

1 1 0 00 NOR

0 0 0 01 OR

0 0 0 10 Addition

0 1 1 10 Subtraction

Chapter 3 — Arithmetic for Computers — 40

Enhancement to 1-bit Adder(4)

 1-bit ALU for SLT

operations

 slt $s1, $s2, $s3

 If ($s2<$s3), $s1=1,

else $s1=0

 adding one input less

 if (a<b), set less to 1 or

if (a-b)<0, set less to 1

 If the result of

subtraction is negative,

set less to 1

 How to determine if the

result is negative?

Chapter 3 — Arithmetic for Computers — 41

Enhancement to 1-bit Adder(5)

 How to determine if

the result is

negative?

 Negative  Sign

bit value=1

 Create a new output

“Set” direct output

from the adder

and use only for slt

 An overflow

detection is included

for the most

significant bit ALU

Chapter 3 — Arithmetic for Computers — 42

N-Bit Adders (Ripple Carry)

Stage 3

FA

A3 B3

S3

Stage 0

FA

A0 B0

S0

Stage 2

FA

A2 B2

S2

Stage 1

FA

A1 B1

S1

C3 C2 C1 C0

0
C4carry-out

Note: no carry-in

MSB LSB

Ai Bi

Ci+1 CiFull

Adder

Si

Chapter 3 — Arithmetic for Computers — 43

C4 C3 C2 C1

A3 A2 A1 A0

B B B B
3 2 1 0

Ripple Carry Adders

 4 FA’s cascaded to form a 4-bit adder

 In general, N-FA’s can be used to form a

N-bit adder

 Carry bits have to propagate from one stage

to the next. Inherent propagation delays

associated with this

 Output of each FA is therefore not stable until

the carry-in from the previous stage is

calculated

Chapter 3 — Arithmetic for Computers — 44

32-Bit ALU

 OR and INV gates

are added to

support conditional

branch instruction,

i.e. test the result of
a-b if the result is
0.

Chapter 3 — Arithmetic for Computers — 45

32-Bit ALU

 The symbol

commonly used to

represent an ALU

 This symbol is also

used to represent an

adder, so it is normally

labeled either with

ALU or Adder

Chapter 3 — Arithmetic for Computers — 46

Chapter 3 — Arithmetic for Computers — 47

Arithmetic for Computers

 Operations on integers

 Addition and subtraction

 Multiplication and division

 Dealing with overflow

 Floating-point real numbers

 Representation and operations

§
3
.1

 In
tro

d
u
c
tio

n

Chapter 3 — Arithmetic for Computers — 48

Integer Addition

 Example: 7 + 6

§
3
.2

 A
d
d
itio

n
 a

n
d
 S

u
b
tra

c
tio

n

 Overflow if result out of range

 Adding +ve and –ve operands, no overflow

 Adding two +ve operands

 Overflow if result sign is 1

 Adding two –ve operands

 Overflow if result sign is 0

Chapter 3 — Arithmetic for Computers — 49

Integer Subtraction

 Add negation of second operand

 Example: 7 – 6 = 7 + (–6)

+7: 0000 0000 … 0000 0111

–6: 1111 1111 … 1111 1010

+1: 0000 0000 … 0000 0001

 Overflow if result out of range

 Subtracting two +ve or two –ve operands, no overflow

 Subtracting +ve from –ve operand

 Overflow if result sign is 0

 Subtracting –ve from +ve operand

 Overflow if result sign is 1

Chapter 3 — Arithmetic for Computers — 50

Dealing with Overflow

 Some languages (e.g., C) ignore overflow
 Use MIPS addu, addui, subu instructions

 Other languages (e.g., Ada, Fortran)
require raising an exception/interrupt
 Use MIPS add, addi, sub instructions

 On overflow, invoke exception/interrupt
handler
 Save PC in exception program counter (EPC)

register

 Jump to predefined handler address

 mfc0 (move from coprocessor reg) instruction can
retrieve EPC value, to return after corrective action

Chapter 3 — Arithmetic for Computers — 51

Multiplication

 Start with long-multiplication approach

1000
× 1001

1000
0000
0000
1000
1001000

Length of product is

the sum of operand

lengths

multiplicand

multiplier

product

§
3
.3

 M
u
ltip

lic
a
tio

n

Chapter 3 — Arithmetic for Computers — 52

Multiplication Hardware

Initially 0

Chapter 3 — Arithmetic for Computers — 53

Multiplication Hardware (2)

 Multiply example using flow chart algorithm

 The bit examined to determine the next step is circled in color

Chapter 3 — Arithmetic for Computers — 54

Optimized Multiplier

 Perform steps in parallel: add/shift

 One cycle per partial-product addition

 That’s ok, if frequency of multiplications is low

Chapter 3 — Arithmetic for Computers — 55

MIPS Multiplication

 Two 32-bit registers for product

 HI: most-significant 32 bits

 LO: least-significant 32-bits

 Instructions

 mult rs, rt / multu rs, rt

 64-bit product in HI/LO

 mfhi rd / mflo rd

 Move from HI/LO to rd

 Can test HI value to see if product overflows 32 bits

 mul rd, rs, rt

 Least-significant 32 bits of product –> rd

Chapter 3 — Arithmetic for Computers — 56

Division

 Check for 0 divisor

 Long division approach
 If divisor ≤ dividend bits

 1 bit in quotient, subtract

 Otherwise

 0 bit in quotient, bring down next
dividend bit

 Restoring division
 Do the subtract, and if remainder

goes < 0, add divisor back

 Signed division
 Divide using absolute values

 Adjust sign of quotient and remainder
as required

1001
1000 1001010

-1000
10
101
1010
-1000

10

n-bit operands yield n-bit

quotient and remainder

quotient

dividend

remainder

divisor

§
3
.4

 D
iv

is
io

n

Chapter 3 — Arithmetic for Computers — 57

Division Hardware

Initially dividend

Initially divisor

in left half

Chapter 3 — Arithmetic for Computers — 58

Division Example
Using a 4-bit version of the algorithm divide 710 by 210,

or 0000 01112 by 00102.

Chapter 3 — Arithmetic for Computers — 59

Optimized Divider

 One cycle per partial-remainder subtraction

 Looks a lot like a multiplier!

 Same hardware can be used for both

Chapter 3 — Arithmetic for Computers — 60

MIPS Division

 Use HI/LO registers for result

 HI: 32-bit remainder

 LO: 32-bit quotient

 Instructions

 div rs, rt / divu rs, rt

 No overflow or divide-by-0 checking

 Software must perform checks if required

 Use mfhi, mflo to access result

Chapter 3 — Arithmetic for Computers — 61

Floating Point

 Representation for non-integral numbers

 Including very small and very large numbers

 Like scientific notation

 –2.34 × 1056

 +0.002 × 10–4

 +987.02 × 109

 In binary

 ±1.xxxxxxx2 × 2yyyy

 Types float and double in C

normalized

not normalized

§
3
.5

 F
lo

a
tin

g
 P

o
in

t

Chapter 3 — Arithmetic for Computers — 62

Floating Point Standard

 Defined by IEEE Std 754-1985

 Developed in response to divergence of

representations

 Portability issues for scientific code

 Now almost universally adopted

 Two representations

 Single precision (32-bit)

 Double precision (64-bit)

Chapter 3 — Arithmetic for Computers — 63

IEEE Floating-Point Format

 S: sign bit (0  non-negative, 1  negative)

 Normalize significand: 1.0 ≤ |significand| < 2.0
 Always has a leading pre-binary-point 1 bit, so no need to

represent it explicitly (hidden bit)

 Significand is Fraction with the “1.” restored

 Exponent: excess representation: actual exponent + Bias
 Ensures exponent is unsigned

 Single: Bias = 127; Double: Bias = 1023

S Exponent Fraction

single: 8 bits
double: 11 bits

single: 23 bits
double: 52 bits

Bias)(ExponentS 2Fraction)(11)(x 

Chapter 3 — Arithmetic for Computers — 64

Single-Precision Range

 Exponents 00000000 and 11111111 reserved

 Smallest value

 Exponent: 00000001

 actual exponent = 1 – 127 = –126

 Fraction: 000…00  significand = 1.0

 ±1.0 × 2–126 ≈ ±1.2 × 10–38

 Largest value

 exponent: 11111110

 actual exponent = 254 – 127 = +127

 Fraction: 111…11  significand ≈ 2.0

 ±2.0 × 2+127 ≈ ±3.4 × 10+38

Chapter 3 — Arithmetic for Computers — 65

Double-Precision Range

 Exponents 0000…00 and 1111…11 reserved

 Smallest value

 Exponent: 00000000001

 actual exponent = 1 – 1023 = –1022

 Fraction: 000…00  significand = 1.0

 ±1.0 × 2–1022 ≈ ±2.2 × 10–308

 Largest value

 Exponent: 11111111110

 actual exponent = 2046 – 1023 = +1023

 Fraction: 111…11  significand ≈ 2.0

 ±2.0 × 2+1023 ≈ ±1.8 × 10+308

Chapter 3 — Arithmetic for Computers — 66

Floating-Point Precision

 Relative precision

 all fraction bits are significant

 Single: approx 2–23

 Equivalent to 23 × log102 ≈ 23 × 0.3 ≈ 6 decimal

digits of precision

 Double: approx 2–52

 Equivalent to 52 × log102 ≈ 52 × 0.3 ≈ 16 decimal

digits of precision

Chapter 3 — Arithmetic for Computers — 67

Floating-Point Example

 Represent –0.75

 –0.75 = (–1)1 × 1.12 × 2–1

 S = 1

 Fraction = 1000…002

 Exponent = –1 + Bias

 Single: –1 + 127 = 126 = 011111102

 Double: –1 + 1023 = 1022 = 011111111102

 Single: 1011111101000…00

 Double: 1011111111101000…00

Chapter 3 — Arithmetic for Computers — 68

Floating-Point Example

 What number is represented by the single-
precision float

11000000101000…00

 S = 1

 Fraction = 01000…002

 Exponent = 100000012 = 129

 x = (–1)1 × (1 + 012) × 2(129 – 127)

= (–1) × 1.25 × 22

= –5.0

Chapter 3 — Arithmetic for Computers — 69

Floating-Point Addition

 Consider a 4-digit decimal example
 9.999 × 101 + 1.610 × 10–1

 1. Align decimal points
 Shift number with smaller exponent

 9.999 × 101 + 0.016 × 101

 2. Add significands
 9.999 × 101 + 0.016 × 101 = 10.015 × 101

 3. Normalize result & check for over/underflow
 1.0015 × 102

 4. Round and renormalize if necessary
 1.002 × 102

Chapter 3 — Arithmetic for Computers — 70

Floating-Point Addition

Chapter 3 — Arithmetic for Computers — 71

Floating-Point Addition

 Now consider a 4-digit binary example
 1.0002 × 2–1 + –1.1102 × 2–2 (0.5 + –0.4375)

 1. Align binary points
 Shift number with smaller exponent

 1.0002 × 2–1 + –0.1112 × 2–1

 2. Add significands
 1.0002 × 2–1 + –0.1112 × 2–1 = 0.0012 × 2–1

 3. Normalize result & check for over/underflow
 1.0002 × 2–4, with no over/underflow

 4. Round and renormalize if necessary
 1.0002 × 2–4 (no change) = 0.0625

Chapter 3 — Arithmetic for Computers — 72

FP Adder Hardware

 Much more complex than integer adder

 Doing it in one clock cycle would take too

long

 Much longer than integer operations

 Slower clock would penalize all instructions

 FP adder usually takes several cycles

 Can be pipelined

Chapter 3 — Arithmetic for Computers — 73

FP Adder Hardware

Step 1

Step 2

Step 3

Step 4

Chapter 3 — Arithmetic for Computers — 74

Floating-Point Multiplication

 Consider a 4-digit decimal example
 1.110 × 1010 × 9.200 × 10–5

 1. Add exponents
 For biased exponents, subtract bias from sum

 New exponent = 10 + –5 = 5

 2. Multiply significands
 1.110 × 9.200 = 10.212  10.212 × 105

 3. Normalize result & check for over/underflow
 1.0212 × 106

 4. Round and renormalize if necessary
 1.021 × 106

 5. Determine sign of result from signs of operands
 +1.021 × 106

Chapter 3 — Arithmetic for Computers — 75

Floating-Point Multiplication(2)

Chapter 3 — Arithmetic for Computers — 76

Floating-Point Multiplication(3)

 Now consider a 4-digit binary example
 1.0002 × 2–1 × –1.1102 × 2–2 (0.5 × –0.4375)

 1. Add exponents
 Unbiased: –1 + –2 = –3

 Biased: (–1 + 127) + (–2 + 127) = –3 + 254 – 127 = –3 + 127

 2. Multiply significands
 1.0002 × 1.1102 = 1.1102  1.1102 × 2–3

 3. Normalize result & check for over/underflow
 1.1102 × 2–3 (no change) with no over/underflow

 4. Round and renormalize if necessary
 1.1102 × 2–3 (no change)

 5. Determine sign: +ve × –ve  –ve
 –1.1102 × 2–3 = –0.21875

Chapter 3 — Arithmetic for Computers — 77

FP Arithmetic Hardware

 FP multiplier is of similar complexity to FP
adder

 But uses a multiplier for significands instead of
an adder

 FP arithmetic hardware usually does

 Addition, subtraction, multiplication, division,
reciprocal, square-root

 FP  integer conversion

 Operations usually takes several cycles

 Can be pipelined

Chapter 3 — Arithmetic for Computers — 78

FP Instructions in MIPS

 FP hardware is coprocessor 1
 Adjunct processor that extends the ISA

 Separate FP registers
 32 single-precision: $f0, $f1, … $f31

 Paired for double-precision: $f0/$f1, $f2/$f3, …
 Release 2 of MIPs ISA supports 32 × 64-bit FP reg’s

 FP instructions operate only on FP registers
 Programs generally don’t do integer ops on FP data,

or vice versa

 More registers with minimal code-size impact

 FP load and store instructions
 lwc1, ldc1, swc1, sdc1

 e.g., ldc1 $f8, 32($sp)

Chapter 3 — Arithmetic for Computers — 79

FP Instructions in MIPS

 Single-precision arithmetic
 add.s, sub.s, mul.s, div.s

 e.g., add.s $f0, $f1, $f6

 Double-precision arithmetic
 add.d, sub.d, mul.d, div.d

 e.g., mul.d $f4, $f4, $f6

 Single- and double-precision comparison
 c.xx.s, c.xx.d (xx is eq, lt, le, …)

 Sets or clears FP condition-code bit
 e.g. c.lt.s $f3, $f4

 Branch on FP condition code true or false
 bc1t, bc1f

 e.g., bc1t TargetLabel

Chapter 3 — Arithmetic for Computers — 80

FP Example: °F to °C

 C code:
float f2c (float fahr) {

return ((5.0/9.0)*(fahr - 32.0));
}

 fahr in $f12, result in $f0, literals in global memory
space

 Compiled MIPS code:
f2c: lwc1 $f16, const5($gp)

lwc2 $f18, const9($gp)
div.s $f16, $f16, $f18
lwc1 $f18, const32($gp)
sub.s $f18, $f12, $f18
mul.s $f0, $f16, $f18
jr $ra

Chapter 3 — Arithmetic for Computers — 81

Right Shift and Division

 Left shift by i places multiplies an integer
by 2i

 Right shift divides by 2i?

 Only for unsigned integers

 For signed integers

 Arithmetic right shift: replicate the sign bit

 e.g., –5 / 4
 111110112 >> 2 = 111111102 = –2

 Rounds toward –∞

 c.f. 111110112 >>> 2 = 001111102 = +62

§
3
.9

 F
a
lla

c
ie

s
 a

n
d
 P

itfa
lls

Chapter 3 — Arithmetic for Computers — 82

Concluding Remarks

 ISAs support arithmetic

 Signed and unsigned integers

 Floating-point approximation to reals

 Bounded range and precision

 Operations can overflow and underflow

 MIPS ISA

 Core instructions: 54 most frequently used

 100% of SPECINT, 97% of SPECFP

 Other instructions: less frequent

The slides are adopted from Computer

Organization and Design, 5th Edition

by David A. Patterson and John L. Hennessy

2014, published by MK (Elsevier)

Acknowledgement

Chapter 3 — Arithmetic for Computers — 83

