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| Boolean Algebra

l Boolean algebra is the basic math used
in digital circuits and computers.
A Boolean variable takes on only 2
values: {0,1} , {T,F}, {Yes, No}, etc.
There are 3 fundamental Boolean

operations:
AND, OR, NOT
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|Fundamenta| Boolean Operations

|
D D e

Z=A*B (AB) Z=A+B z=A
Truth Table Truth Table Truth Table
0 0 0 0 0 0

0o 1 0 0 1 1 bl
10 0 1001 1]0
1011 1011
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| Boolean Algebra

l A truth table specifies output signal logic
values for every possible combination of input
signal logic values
In evaluating Boolean expressions, the
Operation Hierarchy is: 1) NOT 2) AND 3)
OR. Order can be superseded using ( ...)

Example: A=T,B=F,C=T,D=T

What is the value of Z =(A+B)-(C+B-D)?
Z=(T+F)-(C+B-D)=(F +F)-(C+B-D)
=F-(C+B-D)=F
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Deriving Logic Expressions From Truth Tables

Light must be ON when both Truth Table:
switches A and B are OFF, or
when both of them are ON.

Logic Function

r o r o
R o o K

0

0
SWA —| &
| 7 (ight) 1
SW.B —

What is the Boolean expression for Z?

Z=AB+AB
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Minterms and Maxterms

Minterms

AND term of all input variables

For variables with value 0, apply complements
Maxterms

OR factor with all input variables

For variables with value 1, apply complements

0 0 1 AR A+B
0 1 0 AB A+B
1 0 0 AB A+RB
1 1 1 AB A+ B
§ M_(__ Chapter 3 — Arithmetic for Computers — 6
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Minterms and Maxterms

A function with n variables has 2n
minterms (and Maxterms) — exactly equal
to the number of rows in truth table

Each minterm is true for exactly one
combination of inputs

Each Maxterm is false for exactly one
combination of inputs

0 0 1 AB A+B
0 1 0 A.B A+ B
1 Y 0 AB A+8
1 1 1 AB A+ B
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|Equivalent Logic Expressions

l Two equivalent logic expressions can
be derived from Truth Tables:

Sum-of-Products (SOP) expressions:
Several AND terms OR’d together, e.g.

ABC + ABC + ABC

Product-of-Sum (POS) expressions:
Several OR terms AND’d together, e.g.

(A+B+C)(A+B+C)
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Rules for Deriving SOP Expressions

Find each row in TT for which output is
1(rows 1 &4)

For those rows write a minterm of
all input variables.

OR together all minterms found in (2):

| Rules for Deriving POS Expressions

l Find each row in TT for which output is O
(rows 2 & 3)

For those rows write a maxterm

AND together all maxterm found in (2):
Such an expression is called a Canonical

Such an expression is called a POS.
Canonical SOP
0 0 1 AB A+B
0 1 0 E..? A+B Z:(A+E)(K+B)
0 0 1 Al A+B 1 0 0 A /{+}j
0 1 0 AB ‘ A+B == 1 1 1 AB A+B
A 5 5 7 ’7414-1; Z=AB+AB
1 1 1 AB | A+B
§‘ w-Mm-‘<- Chapter 3 — Arithmetic for Computers — 9 ; w-Mm-‘<- Chapter 3 — Arithmetic for Computers — 10
CSOP and CPOS Activity 1
Canonical SOP: z=AB+AB Derive SOP and POS expressions for the following TT.
Canonical POS: Z=(A+B)(A+B) A B G
0 o0 0
Since they represent the same truth o 1 o
table, they should be identical .
Verify that Z=K§+ABE(A+ET)(PT+B)
CPOS and CSOP expressions for the
same TT are logically equivalent. Both
represent the same information.
; WM“SW Chapter 3 — Arithmetic for Computers — 11 ; WM“SW Chapter 3 — Arithmetic for Computers — 12

Chapter 3 — Arithmetic for Computers




Morgan Kaufmann Publishers

23 June, 2014

| Boolean Identities

l Useful for simplifying logic equations.

| Boolean Identities

l The right side is the dual of the left side

; @ l Duals formed by replacing
2 A e A he0- ) Aewme A Be1m k) AND —» OR
3 A+true=1tue (A+1=1) A false = false (A-0=0)
4 At+A=h _ AtA=A _ OR — AND
5 A+A=tme (A+A=1) A-A=false (A-A=0)
6 A+B=B+A AB=B-A 0o — 1
7 +B)+C=A+(B+0C) A'B-C=(AB)-C=A-(B-C)
8 CBHAC A+B-C=(A+BHA+C 1 —» 0
9 A-B=A+B
0 (A +B)A +B)=A .
. MazB-b The dual of any true statement in Boolean
A-B Brac  AYBASOBLO=ATBALO algebra is also a true statement.
13
M_‘S" Chapter 3 — Arithmetic for Computers — 13 WM_‘S" Chapter 3 — Arithmetic for Computers — 14
| Boolean Identities | Activity 2
l - DeMorgan’s laws very useful: 9a and 9b l Proofs of some Identities:
A+B=AB 12b:  A+AB=A+B
A% ‘“\Y o A4 i _ _
8 ‘," s = s o 13a: AB+AC+BC=AB+AC
E gate /All gate rep.
AB=A+B
A, \\_‘i — S T
B—o J 7 B o ’_,,/_
D g;e —Alt gate rep.
«_M_S“ Chapter 3 — Arithmetic for Computers — 15 «_M_S“ Chapter 3 — Arithmetic for Computers — 16
Simplifying Logic Equations — Why? Simplifying Logic Equations
" Simplifying logic expressions can lead to using )
5 (a) Canonical sum-of-products smaller number of gates (parts) to implement the logic
e expression
F=AB+AB+AB Can be done using
E Boolean Identities (algebraic)
Karnaugh Maps (graphical)
_ A minimum SOP (MSOP) expression is one that has
F=A+B no more AND terms or variables than any other

(b) Minimal-cost realization

Chapter 3 — Arithmetic for Computers — 17
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equivalent SOP expression.

A minimum POS (MPOS) expression is one that has
no more OR factors or variables than any other
equivalent POS expression.

There may be several MSOPs of an expression

Chapter 3 — Arithmetic for Computers — 18
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| Example of Using Boolean Identities

Find an MSOP for

F =XW +Y +Z(Y + XW)

| Activity 3

Find an MSOP for

F=WXYZ +WXYZ+WXYZ

=XYZ(W+W)+WXY (Z+2)
= XW+Y+ZY +ZXW =XYZ(@Q)+WXY (1)
_ _ _ =XYZ+WXY
= XW(l+2)+Y (1+2) =XY (Z+W)
=XW +Y
«M'S« Chapter 3 — Arithmetic for Computers — 19 § «M'S« Chapter 3 — Arithmetic for Computers — 20
| Digital Circuit Classification | Multiplexer

l Combinational circuits
Output depends only solely on the current
combination of circuit inputs
Same set of input will always produce the same
outputs
Consists of AND, OR, NOR, NAND, and NOT gates
Sequential circuits

Output depends on the current inputs and state of
the circuit (or past sequence of inputs)

Memory elements such as flip-flops and registers
are required to store the “state”
Same set of input can produce completely different

l A multiplexer (MUX) selects data from one of N
inputs and directs it to a single output, just like a
railyard switch

4-input Mux needs 2 select lines to indicate which input to
route through
N-input Mux needs log,(N) selection lines

outputs
Mﬂ_(_‘ Chapter 3 — Arithmetic for Computers — 21 % Mﬂ_(_‘ Chapter 3 — Arithmetic for Computers — 22
Multiplexer (2) Decoder
A decoder is a circuit element that will decode an
N-bit code.

An example of 4-input Mux

4-input MUX
Io
—e
T
—Nz
'
gt
0 0 lo
Se‘lmn . . o 1| I
control Functional block diagram 1 0 I,
I I,
Truth Table
M< Chapter 3 — Arithmetic for Computers — 23
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It activates an appropriate output line as a
function of the applied N-bit input code

Truth Table
3108 decoder
z—
0O 0 01 0 0 0O O O O O
—_—| 2 -
2 0 0 1 0 1 0 0 0 0O O O
2 0 1 0 0 0O 1 0 0O O O O
A 0 1 1 0 0 0 1 0 0 0 O
z 1.0 00 000 10 00
o 2 10 1 0 0 0 0 0 1 0 O
z 11 00 0 0 0 0 0 1 O
11 1 0 0 0 0 0 0 0 1
Functional block diagram
; M< Chapter 3 — Arithmetic for Computers — 24
et
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| Why Bit Storage ? | Bit Storage Using SR Latch
l Flight attendant call button PN - Simplest memory elements are Latch and
Press call: light turns on buton ol Flip-Flops
Cancel ™| Storage [~ | .
Stays on after button puton SR (set-reset) latch is an un-clocked latch
releaSed 1. Call button pressed — light turns on Output Q:l When S:]. R:0 (Set Condition)
Press cancel: light turns off e Output Q=0 when S=0, R=1 (reset condition)
_|_og|c gate circuit to Cancel = ] Problem - Q is undefined if S=1 and R=1
implement this? aen
Call Q 2. Call button released — light stays on
Cancel huuc:: T
Doesn’ t work. Q=1 when Call=1, but b S o | o
doesn’ t stay 1 when Call returns to 0 cancel -‘ . sue g
button
Need some form of “memory” in the circuit e
3. Cancel button pressed — light turns off 3“’”‘ li'i
§ «M'S« Chapter 3 — Arithmetic for Computers — 25 § «M'S« Chapter 3 — Arithmetic for Computers — 26
| Clocks |Clock and Change of State
l Clock period: time interval between l Clock controls when the state of a memory
pulses element changes

example: period = 20 ns
Clock frequency: 1/period

example: frequency =1/ 20 ns = 50 100 MHz 10ns
MHz 10 MHz 100 ns

Edge-triggered clocking: all state
changes occur on a clock edge.

Edge-triggered clocking: all state

St S
changes occur on a clock edge. —— . N
1 2

Falling edge
| |~ l | | Clock cycle J I_I_
Clock period Rising edge
% Mﬂ_(_‘ Chapter 3 — Arithmetic for Computers — 27 % Mﬂ_(_‘ Chapter 3 — Arithmetic for Computers — 28
Clock Edge Triggered Bit Storage Setup and Hold Time

Flip-flop - Bit storage that stores on clock edge, not level Setup time
D Flip-flop The minimum amount of time the data signal should

Two latches, master and slave latches. :

Output of the first goes to input of second, slave latch has be held Steady before the clock edge arrives.

inverted clock signal (falling-edge trigger, Hold time

The minimum amount of time the data signal should
be held steady after the clock edge.

Clock

Setup Time.

Hold Time

)

D Input to Flop

; M< Chapter 3 — Arithmetic for Computers — 29 ; M< Chapter 3 — Arithmetic for Computers — 30

Chapter 3 — Arithmetic for Computers 5



Morgan Kaufmann Publishers

23 June, 2014

| N-Bit Register

l Cascade N number of D flip-flops to form a
N-bit register
An example of 8-bit register formed by
8 edge-triggered D flip-flops

Clk
Dy Dy D D3 D4 D5 Dg D
Qy o1 Q2 Qg Q4 Qg Qg Q7

M< Chapter 3 — Arithmetic for Computers — 31

| Half Adders

Need to add bits {0,1} of A; and B;
Associate Co
binary bit 0 < logic value F (0) A:4,...4.4...4
binary bit 1 < logic value T (1) B:B,...B B...B,
5,

This leads to the following truth table
A B sum caa  SUM = AB +AB =A @& B,

0 0 0 0
0o 1 1 0 CARRY;,; = A/B;
1 0 1 0
1 1 0 1
% M< Chapter 3 — Arithmetic for Computers — 32
Sttt

| Half Adder Circuit

SUM, =AB,+AB =A & B,
CARRY,,, = A;B

M< Chapter 3 — Arithmetic for Computers — 33

| Half Adder Limitations

Half adder circuits do not suffice for
general addition because they do not
include the carry bit from the previous
stage of addition, e.g.

Carry 0110
A 0110
B + 0011
SUM 1001
; «.M-—.(... Chapter 3 — Arithmetic for Computers — 34

Full Adders (1-Bit ALU)

Full adders can use the carry bit from the
previous stage of addition

Full adder

Current
A S sum
Current

carry-infrom cany-outto
previous sig [¢] Cin Textstg

P PP P OOOO
P P OORPRPR OO
P Or ORrOPr O
kO ORr ORRO
kPP OROOO

M< Chapter 3 — Arithmetic for Computers — 35
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Full Adder Logic Expressions

Sum

SUM=ABC, +ABC, +ABC, +ABC,
=A(BC, +BC)+A(BC +BC)
=A(B 6C)+A(B ©C)
=A ®B, oC,

Carry
C|+1 =A|B| +A|7B|C| +7A|B|C|

=AB, +C/(AB; +AB)
:A|B| +C| (A| $B|)

§ M< Chapter 3 — Arithmetic for Computers — 36
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| Full Adder Circuit

l SUM= (A @ B;) ® C, C.i=AB +C(A @ B)

Full adder

Caryin

half adder half adder
Ai
SUM 1
B 1) D—+—171 >-
17 P
aji s
o|
! |
.
Camyut

Note: A full adder adds 3 bits. Can also consider as first
adding first two and then the result with the carry

Chapter 3 — Arithmetic for Computers — 37

| Enhancement to 1-bit Adder(1)

l 1-bit ALU with AND,
OR, and addition

Supplemented with AND
and OR gates

A multiplexer controls
which gate is connected to
the output = Result
Operation Result
00 AND b
01 OR ]
10 Addition CamryOut
; M.S.. Chapter 3 — Arithmetic for Computers — 38

| Enhancement to 1-bit Adder(2)

Canryin
—
o
.
:D %

l 1-bit ALU for
subtraction

Subtraction is
performed using 2's
complement, i.e.

bfe—o {
a-b=a+b+l ‘Do'
'

Binvert Carryln Operation  Result CarryOut

0 0 00 AND

0 0 01 OR

0 0 10 Addition

1 1 10 Subtraction
% M< Chapter 3 — Arithmetic for Computers — 39

Setterueast

| Enhancement to 1-bit Adder(3)

Bir Carryin
l 1-bit ALU for NOR I ‘
operation -|>° 1) 7
AMIPS ALU also

needs a NOR 1l D I T,
function o I . .Ij
(a+b) =ac b P
Garyou
Ainvert Binvert Carryln Operation  Result
0 0 0 00 AND
1 1 0 00 NOR
0 0 0 01 OR
0 0 0 10 Addition
0 i, il 10 Subtraction
% M< Chapter 3 — Arithmetic for Computers — 40

S tsoh

Enhancement to 1-bit Adder(4)

1-bit ALU for SLT
operations i
slt $s1, $s2, $s3
If ($s2<$s3), $s1=1, |
else $s1=0
adding one input less
if (a<b), setless to 1 or
if (a-b)<0, setlessto1 ;|
If the result of
subtraction is negative,
setlessto 1 Less

How to determine if the

result is negative?

2 MK

Carryout

Chapter 3 — Arithmetic for Computers — 41
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Enhancement to 1-bit Adder(5)

How to determine if 1™ einer Garyin
the result is
negative?
Negative >-> Sign
bit value=1
Create a new output
“Set” direct output
from the adder
and use only for slt tes
An overflow - set
detection is included e s L+ overton
for the most M
significant bit ALU

Chapter 3 — Arithmetic for Computers — 42
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| N-Bit Adders (Ripple Carry)

CiCs3C, Cy
Ay Ay AL Ay

B3 BZ Bl BO

Pt
e L

| Ripple Carry Adders

l 4 FA’ s cascaded to form a 4-bit adder
In general, N-FA’ s can be used to form a
N-bit adder
Carry bits have to propagate from one stage
to the next. Inherent propagation delays
associated with this
Output of each FA is therefore not stable until
the carry-in from the previous stage is

calculated
M$ Chapter 3 — Arithmetic for Computers — 43 ; M$ Chapter 3 — Arithmetic for Computers — 44
| 32-Bit ALU | 32-Bit ALU
| OR and INV gates | ALU operation
are added to | P l
support conditional iz e T € Q0 The symbol
branch instruction, | R commonly used to
i.e. test the result of i ___L P represent an ALU
a-b if the result is e _ _ Zaio
0. T camow —;D‘D“-zm Q This symbol is also > ALU St
T | L usail 13 rapresent an i
— Gy
000 0 o—| Mvp |Bee!] adder, soitis no_rmally
o001 ® o =% labeled either with &
0010 a0 1 ALU or Adder
0110 subtract Lt:m»‘m |
0111 set on less tnan o] Garn | Rent
1100 NOR Bit—e  ALUSt b CarryOut
0—af Loss Overtiow
M“S‘ Chapter 3 — Arithmetic for Computers — 45 ; M“S‘ Chapter 3 — Arithmetic for Computers — 46

Arithmetic for Computers

Operations on integers
Addition and subtraction
Multiplication and division
Dealing with overflow

Floating-point real numbers
Representation and operations

M< Chapter 3 — Arithmetic for Computers — 47
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Integer Addition

Example: 7 + 6

(UJ/\ (0)/\ ( U/\ ( 1;/\ (0)/-\ (Carries)
0 \I‘ o | o | 1 \ 1)
| o | o i1 | o

\
0 |
o0 @o @1 (M1 Mo (© 1

Overflow if result out of range
Adding +ve and —ve operands, no overflow
Adding two +ve operands
Overflow if result sign is 1
Adding two —ve operands
Overflow if result sign is 0

% .-.M.S.. Chapter 3 — Arithmetic for Computers — 48
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| Integer Subtraction

l Add negation of second operand
Example: 7 -6 =7 + (-6)
+7: 0000 0000 ... 0000 0111
—6: 11111111 ... 1111 1010
+1: 0000 0000 ... 0000 0001
Overflow if result out of range
Subtracting two +ve or two —ve operands, no overflow
Subtracting +ve from —ve operand
Overflow if result sign is 0
Subtracting —ve from +ve operand
Overflow if result sign is 1

; M( Chapter 3 — Arithmetic for Computers — 49

| Dealing with Overflow

Some languages (e.g., C) ignore overflow
Use MIPS addu, addu1i, subu instructions

Other languages (e.g., Ada, Fortran)
require raising an exception/interrupt
Use MIPS add, add1i, sub instructions
On overflow, invoke exception/interrupt
handler
Save PC in exception program counter (EPC)
register
Jump to predefined handler address
mfcO (move from coprocessor reg) instruction can
retrieve EPC value, to return after corrective action

; M( Chapter 3 — Arithmetic for Computers — 50

| Multiplication

l Start with long-multiplication approach

ot |~ -
1000 Multiplicand
o ]~ 1209

64 bits
1000
0000
0000
1000

—1001000

Length of product is

—
Muliplier
Shift right

b

Product
Write

the sum of operand 64 bits
lengths

% M< Chapter 3 — Arithmetic for Computers — 51
A

| Multiplication Hardware

-—
Multiplicand
Shift left
_l 64 bits

Multiplier

\ Initially 0

Chapter 3 — Arithmetic for Computers — 52

Multiplication Hardware (2)
Choration |———stop | Muttipor | Mutipicand | _Product _

0 | Initial values [ o001 | 00000010 [ 00000000
1 1a: 1= Prod = Prod + Mcand 0011 0000 0010 000 (
2: Shift left Muttiplicand | o011 | 00000100 | 00000010
|3 shift right Mutiplier | 000d | 00000100 | 00000010
2 1a: 1= Prod = Prod + Mcand 0001 0000 0100 000 011
2: Shift left Multiplicand | o001 | 00001000 | 00000110
} 3¢ Shift ight Multiplfer 000 || 100004000 | 00000410
3 1: 0 = No operation 0000 0000 1000 0000 0110
2 Shift left Multiplicand | 0000 | 00010000 | 00000110
| 3: Shift right Multiplier | )0 | 00010000 | 00000110
4 1: 0 = No operation | 0000 | 00010000 | 00000110
2: Shift left Multiplicand 0000 0010 00 0000 0110
3: Shift right Multiplier | X 00100000 | 0000 0110

Multiply example using flow chart algorithm
The bit examined to determine the next step is circled in color

; M( Chapter 3 — Arithmetic for Computers — 53
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Optimized Multiplier

Perform steps in parallel: add/shift

Shift right

| Proguct
Write

‘ 64 bils. |

One cycle per partial-product addition
That’s ok, if frequency of multiplications is low

; M( Chapter 3 — Arithmetic for Computers — 54
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| MIPS Multiplication

l Two 32-bit registers for product
HI: most-significant 32 bits
LO: least-significant 32-bits
Instructions
mult rs, rt / multu rs, rt
64-bit product in HI/LO
mfhi rd / mflo rd
Move from HI/LO to rd
Can test HI value to see if product overflows 32 bits
mul rd, rs, rt

Least-significant 32 bits of product —> rd

Chapter 3 — Arithmetic for Computers — 55

| Division
l Check for 0 divisor

Long division approach
If divisor < dividend bits

1 bit in quotient, subtract

1001 Otherwise
1000)1001010 0 bit in quotient, bring down next
— / 21000 dividend bit
10 Restoring division
101 Do the subtract, and if remainder
1010 goes < 0, add divisor back

-1000 Signed division
10 Divide using absolute values
. ) _ Adjust sign of quotient and remainder
n-bit operands yield n-bit

: ! as required
quotient and remainder

Chapter 3 — Arithmetic for Computers — 56

| Division Hardware

Initially dividend

Chapter 3 — Arithmetic for Computers — 57

| Division Example

Using a 4-bit version of the algorithm divide 7,, by 2,
or 0000 0111, by 0010,.

0

[ nitial values | 0000 | 00100000 | 00000111
1: Rem = Rem - Div 0000 0010 0000 1
1 2b: Rem<0=>+Div,slQ,Q0=0 | 0000 | 00100000 | 00000111 |
| 3: Shift Div right 0000 | 0001 00« 0000 0111
1: Rem = Rem — Div 0000 | 00010000 | (@11
2 2b: Rem < 0 = +Div, sl Q, Q0 =0 0000|0001 0000 (
| 3: shift Div rignt 0000 | 0000 10« 0000 0111
1: Rem = Rem — Div | 0000 | 00001000 | (@111 111
3 2b: Rem < 0 = +Div, sl Q, Q0 = 0 0000 | 0000 1000 000 011
| 3: Shift Div right 0000 )00 010 0000 0111
1: Rem = Rem - Div | 0000 | 00000100 | ©00000
4 2a: Rem20 => sl Q,Q0 =1 0001 | 00000100 | 00000011
| 3: shift Div right 0001 | 00000010 | 00000011
1: Rem = Rem — Div | 0001 | 00000010 | ©o |
5 2a: Rem>0=>5l1Q,Q0 =1 [ | 00000010 | 00000001
3: Shift Div right 0011 000 00K 0000 0001

Chapter 3 — Arithmetic for Computers — 58

St rums

Optimized Divider

] R —
Remainder Shift left 1\
Write

I 64 bits

One cycle per partial-remainder subtraction
Looks a lot like a multiplier!
Same hardware can be used for both

Chapter 3 — Arithmetic for Computers — 59

Chapter 3 — Arithmetic for Computers

MIPS Division

Use HI/LO registers for result
HI: 32-bit remainder
LO: 32-bit quotient

Instructions
div rs, rt / divu rs, rt
No overflow or divide-by-0 checking
Software must perform checks if required
Use mfhi, mf1o to access result

Chapter 3 — Arithmetic for Computers — 60
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| Floating Point

| Representation for non-integral numbers
Including very small and very large numbers
Like scientific notation

~2.34 %10~ o]
$0:002 X 307+ [iramaied |

+987.02 x 10°

In binary
L XXXXXXX, X 2YYYY
Types float and doublein C

Chapter 3 — Arithmetic for Computers — 61

| Floating Point Standard

| Defined by IEEE Std 754-1985
Developed in response to divergence of
representations

Portability issues for scientific code
Now almost universally adopted
Two representations

Single precision (32-bit)

Double precision (64-bit)

Chapter 3 — Arithmetic for Computers — 62

| IEEE Floating-Point Format

l single: 8 bits single: 23 bits
double: 11 bits double: 52 bits
‘S‘ Exponent ‘ Fraction ‘

X = (—1)° x (1+Fraction) x 208 -8

S: sign bit (0 = non-negative, 1 = negative)

Normalize significand: 1.0 < |significand| < 2.0
Always has a leading pre-binary-point 1 bit, so no need to
represent it explicitly (hidden bit)
Significand is Fraction with the “1.” restored

Exponent: excess representation: actual exponent + Bias
Ensures exponent is unsigned
Single: Bias = 127; Double: Bias = 1023

A

Chapter 3 — Arithmetic for Computers — 63

| Single-Precision Range

l Exponents 00000000 and 11111111 reserved

Smallest value

Exponent: 00000001
= actual exponent =1 — 127 = -126

Fraction: 000...00 = significand = 1.0
+1.0x 27126 = +1.2 x 1038
Largest value

exponent: 11111110
= actual exponent = 254 — 127 = +127

Fraction: 111...11 = significand = 2.0
2.0 x 2127 = +3.4 x 10*38

; M< Chapter 3 — Arithmetic for Computers — 64

Double-Precision Range

Exponents 0000...00 and 1111...11 reserved

Smallest value
Exponent: 00000000001
= actual exponent = 1 — 1023 = -1022
Fraction: 000...00 = significand = 1.0
+1.0 x 271022 = +2 2 x 10308

Largest value

Exponent: 11111111110
= actual exponent = 2046 — 1023 = +1023

Fraction: 111...11 = significand = 2.0
+2.0 x 21023 =~ +1 8 x 10308

Chapter 3 — Arithmetic for Computers — 65

Chapter 3 — Arithmetic for Computers

Floating-Point Precision

Relative precision
all fraction bits are significant
Single: approx 223
Equivalent to 23 x log,,2 = 23 x 0.3 = 6 decimal
digits of precision
Double: approx 2-52

Equivalent to 52 x log,,2 = 52 x 0.3 = 16 decimal
digits of precision

Chapter 3 — Arithmetic for Computers — 66
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| Floating-Point Example

| Represent -0.75

—0.75=(-1)t x 1.1, x 21

S=

Fraction = 1000...00,

Exponent = -1 + Bias
Single: -1 + 127 = 126 = 01111110,
Double: -1 + 1023 = 1022 = 01111111110,

Single: 1011111101000...00

Double: 1011111111101000...00

Chapter 3 — Arithmetic for Computers — 67
i

2 MK

| Floating-Point Example

What number is represented by the single-
precision float
1000000101000...00
S=
Fraction = 01000...00,
Exponent = 10000001, = 129
X = (_1)1 % (1 + 012) x 2(129-127)
=(-1) x1.25 x 22
=-5.0

Chapter 3 — Arithmetic for Computers — 68

| Floating-Point Addition

Consider a 4-digit decimal example
9.999 x 10! + 1.610 x 101
1. Align decimal points
Shift number with smaller exponent
9.999 x 10! + 0.016 x 10t
2. Add significands
9.999 x 10! + 0.016 x 10! = 10.015 x 10!
3. Normalize result & check for over/underflow

1.0015 x 102
4. Round and renormalize if necessary
1.002 x 102
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| Floating-Point Addition
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Floating-Point Addition

Now consider a 4-digit binary example
1.000, x 271 +-1.110, x 272 (0.5 + —0.4375)
1. Align binary points
Shift number with smaller exponent
1.000, x 271 +-0.111, x 21
2. Add significands
1.000, x 271 + -0.111, x 2-1 = 0.001, x 21
3. Normalize result & check for over/underflow
1.000, x 2-4, with no over/underflow
4. Round and renormalize if necessary
1.000, x 2-* (no change) =0.0625
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FP Adder Hardware

Much more complex than integer adder
Doing it in one clock cycle would take too
long

Much longer than integer operations

Slower clock would penalize all instructions
FP adder usually takes several cycles

Can be pipelined
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| FP Adder Hardware
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| Floating-Point Multiplication

l Consider a 4-digit decimal example
1.110 x 10%° x 9.200 x 10-5
1. Add exponents
For biased exponents, subtract bias from sum
New exponent=10+-5=5
2. Multiply significands
1.110 x 9.200 = 10.212 = 10.212 x 10°
3. Normalize result & check for over/underflow
1.0212 x 106
4. Round and renormalize if necessary
1.021 x 108
5. Determine sign of result from signs of operands
+1.021 x 108
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| Floating-Point Multiplication(2)
| -
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| Floating-Point Multiplication(3)

l Now consider a 4-digit binary example
1.000, x 2-1 x —1.110, x 22 (0.5 x —0.4375)
1. Add exponents
Unbiased: -1 +-2=-3
Biased: (1 + 127) + (-2 + 127) = -3 + 254 — 127 = -3 + 127
2. Multiply significands
1.000, x 1.110, = 1.110, = 1.110, x 23
3. Normalize result & check for over/underflow
1.110, x 23 (no change) with no over/underflow
4. Round and renormalize if necessary
1.110, x 23 (no change)
5. Determine sign: +ve x —ve = —ve
-1.110, x 23 =-0.21875
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FP Arithmetic Hardware

FP multiplier is of similar complexity to FP
adder

But uses a multiplier for significands instead of
an adder

FP arithmetic hardware usually does

Addition, subtraction, multiplication, division,
reciprocal, square-root

FP < integer conversion
Operations usually takes several cycles
Can be pipelined

2 W
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FP Instructions in MIPS

FP hardware is coprocessor 1
Adjunct processor that extends the ISA
Separate FP registers
32 single-precision: $f0, $f1, ... $f31
Paired for double-precision: $f0/$f1, $f2/$1f3, ...
Release 2 of MIPs ISA supports 32 x 64-bit FP reg’s
FP instructions operate only on FP registers
Programs generally don’t do integer ops on FP data,
or vice versa
More registers with minimal code-size impact
FP load and store instructions
Twcl, 1dcl, swcl, sdcl
e.g., 1dcl $f8, 32($sp)
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| FP Instructions in MIPS

l Single-precision arithmetic
add.s, sub.s, mul.s, div.s
e.g.,add.s $f0, $f1, $f6
Double-precision arithmetic
add.d, sub.d, mul.d, div.d
eg.,mul.d $f4, $f4, $f6
Single- and double-precision comparison
c.xx.s,c.xx.d (xxis eq, 1t, le, ...)
Sets or clears FP condition-code bit
eg.c.lt.s $f3, $f4
Branch on FP condition code true or false

bclt, bclf
e.g., bclt TargetLabel
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| FP Example: °F to °C

l C code:

float f2c (float fahr) {
return ((5.0/9.0)*(fahr - 32.0));

fahr in $f12, result in $f0, literals in global memory
space
Compiled MIPS code:
f2c: Twcl $f16, const5($gp)
Twc2 $f18, const9($gp)
div.s $f16, $fle, $f18
Twcl $f18, const32($gp)
sub.s $f18, $f12, $f18
mul.s $f0, $fle6, $f18
jr $ra
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| Right Shift and Division

by 2
Right shift divides by 21?
Only for unsigned integers
For signed integers
Arithmetic right shift: replicate the sign bit

eg.,-5/4
1111011, >> 2 = 11111110, = -2
Rounds toward —«
c.f. 11111011, >>> 2 = 11110, = +62
; «.M.-.S Chapter 3 — Arithmetic for Computers — 81

| Left shift by i places multiplies an integer
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| Concluding Remarks

| ISAs support arithmetic
Signed and unsigned integers
Floating-point approximation to reals
Bounded range and precision
Operations can overflow and underflow
MIPS ISA

Core instructions: 54 most frequently used
100% of SPECINT, 97% of SPECFP
Other instructions: less frequent
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