COMPUTER ORGANIZATION AND DESIGN 5th

The Hardware/Software Interface =dition

Chapter 4

The Processor

Introduction

CPU performance factors

Instruction count
Determined by ISA and compiler

CPI and Cycle time
Determined by CPU hardware
We will examine two MIPS implementations
A simplified version
A more realistic pipelined version

Simple subset, shows most aspects
Memory reference: 1w, sw

Arithmetic/logical: add, sub, and, or, s1t
Control transfer: beq, j

Chapter 4 — The Processor — 2

Instruction Execution

PC — Instruction memory, fetch instruction
Register numbers — register file, read registers

Depending on instruction class

Use ALU to calculate
Arithmetic result
Memory address for load/store
Branch target address

Access data memory for load/store
PC « target address or PC + 4

Chapter 4 — The Processor — 3

CPU Overview

*r———»
4 —»
zdd X Add
L)\
Data
Register #
| PC (&> Address Instruction { Registers Address
_ Register # Data
Instruction " memor ||
memory ¢>| Register # T y
» Data

Chapter 4 — The Processor — 4

Multiplexers

2 Can'’t just join
™

L wires together

T > Use multiplexers
%dd _|Add

A

3
|-> Data J
Register #
| PC (&> Address Instruction '{ Registers Address
_ Register # Data
Instruction -
: [4 memory
memory o> Register #
Data

Chapter 4 — The Processor — 5

Control

Branch
7
NN
M |-
u
O
o—>
4 —»

%dd . Add M)

> - u

X <

N
ALU operation
Data |
¢+ Reqister # MemWrite
| PC @ Address Instruction €— Registers " >ALU > Address
&> Register # Zero
Instruction u meD:'lt:r |
memory ¢~ Register # Regwrite X y
» Data
MemRead
\
Control

% M< Chapter 4 — The Processor — 6

MORGAN KAUFMANN

Logic Design Basics

Information encoded in binary

Low voltage = 0, High voltage = 1

One wire per bit

Multi-bit data encoded on multi-wire buses
Combinational element

Operate on data

Output is a function of input
State (Sequential) elements

Store information

Chapter 4 — The Processor — 7

Combinational Elements

AND-gate Adder
Y=A&B Y=A+B
A —
g :} Y B aa‘v
Multiplexer Arithmetic/Logic Unit
Y=S?2I,:1, Y = F(A, B)
:O I\ljl Y A —
o SALU— Y
S B ™

F
Chapter 4 — The Processor — 8

Multiplexors(1)

A two-input multiplexor has two data inputs (A and B)
labeled O and 1, one selector input (S), and an output C.

Chapter 4 — The Processor — 9

Multiplexors(2)

Select Select

A multiplexor is
arrayed 32 AN At —(
times to u PR~ u | cat
perform a B 3\ B31 —={
selection
between two As0 —(
32-bit inputs. u C30
One data B30 —=| ~]
selection signal
used for all 32 AQ —
1-bit o
multiplexors. BO —

a. A 32-bit wide 2-to-1 multiplexor b. The 32-bit wide multiplexor is actually

an array of 32 1-bit multiplexors

Chapter 4 — The Processor — 10

Sequential Elements

Register: stores data in a circuit

Uses a clock signal to determine when to
update the stored value

Edge-triggered: update when Clk changes
fromOtol

Chapter 4 — The Processor — 11

Sequential Elements

Register with write control

Only updates on clock edge when write
control inputis 1

Used when stored value is required later

Clk -

Write — D | !
S M : ' =
e [IX s

Chapter 4 — The Processor — 12

Clocking Methodology

Combinational logic transforms data during
clock cycles

Between clock edges

Input from state elements, output to state
element

Longest delay determines clock period

State State
element Combinational logic element
1 2 | State Combinational logic
element

Clock cycle —

Chapter 4 — The Processor — 13

Building a Datapath

Datapath

Elements that process data and addresses
In the CPU

Registers, ALUs, mux’s, memories, ...

We will build a MIPS datapath
iIncrementally

Refining the overview design

Chapter 4 — The Processor — 14

Instruction Fetch

32-bit
register

4 ——»
| PC —o—] R(?;d \ Increment by
/ adaress 4 for next
. instruction
Instruction ——
Instruction
memory

> Add

A portion of the datapath used for fetching instructions and
Incrementing the program counter. The fetched instruction is
used by other parts of the datapath.

Chapter 4 — The Processor — 15

R-Format Instructions

Read two register operands
Perform arithmetic/logical operation
Write register result

2 | Read 4+ ALU operation
register 1 Read)
— ——
Register) 5 |Read data 1
numbers \ register 2 > Zero —»
. Data ALU ALy
5 | \Write Registers sl ,
\ reg|ster Read
: data 2
Data Write J
Data
RegWrite
a. Reqisters b. ALU

Chapter 4 — The Processor — 16

| oad/Store Instructions

Read register operands

Calculate address using 16-bit offset
Use ALU, but sign-extend offset

Load: Read memory and update register
Store: Write register value to memory

‘ MemWrite

Read

—| Address data —

Sign-
Data extend

Write ~ Mmemory
data

MemRead

a. Data memory unit b. Sign extension unit

Chapter 4 — The Processor — 17

Branch Instructions

Read register operands

Compare operands
Use ALU, subtract and check Zero output

Calculate target address
Sign-extend displacement

Shift left 2 places (word displacement)

Add to PC + 4
Already calculated by instruction fetch

Chapter 4 — The Processor — 18

Branch Instructions

PC +4 from instruction datapath —
Just S Branch
re-routes Add Sum target
wires
Read ALU operation
Instruction register 1 Read .
Read data 1 -
register 2
Registers >ALU Zero -(I:-gn?rr;r}ggic
Write
register Read .
Write data 2]
data
RegWrite
16 .| Sign- 32
~ | extend
Sign-bit wire
replicated

/g\ M(Chapter 4 — The Processor — 19

MORGAN KAUFMANN

Composing the Elements

Simple data path does one instruction in
one clock cycle

Each datapath element can only do one
function at a time

Hence, we need separate instruction and data
memories

Use multiplexers where alternate data
sources are used for different instructions

Chapter 4 — The Processor — 20

R-Type/Load/Store Datapath

.| Read ALU operation
register 1 Read
Read data 1 o
Instruction | register 2 ALUSrc AL
Write Registers poaq 0 v r:sIIJLIJt Address
register data 2 '\L’Il
»| Write > 1x
data
»| Write
RegWrite data
s, | Sign- 32
~ | extend

MemWrite
MemtoReg
Read (7
data M
u
X
>0
Data
memory
MemRead

Chapter 4 — The Processor — 21

Full Datapath

PCSrc
M
Add ® > u
LU X
A
4 >Add result
Read ALUST ALU operation
Read . C 4 p
—|PC address register 1 Read |, MemWrite
Read data 1 MemtoReg
Instruction register 2
Write Registers g4 ALU ALy Address Read
Instruction register data 2 result data
memory _
! data
| Write Data
RegWrite "|data memory
16 Sign 32 MemRead
O -
" | extend

/g\ M(Chapter 4 — The Processor — 22

MORGAN KAUFMANN

ALU Control

ALU used for
Load/Store: F = add
Branch: F = subtract

R-type: F depends on funct field
ALU control Function
0000 AND
0001 OR
0010 add
0110 subtract
0111 set-on-less-than
1100 NOR

Chapter 4 — The Processor — 23

ALU Control (2)

Assume 2-bit ALUOp derived from opcode
Combinational logic derives ALU control

opcode ALUOp | Operation funct ALU function ALU control
lw 00 load word XXXXXX | add 0010
SwW 00 store word XXXXXX | add 0010
beq 01 branch equal XXXXXX | subtract 0110
R-type 10 add 100000 | add 0010
subtract 100010 | subtract 0110
AND 100100 | AND 0000
OR 100101 | OR 0001
set-on-less-than 101010 | set-on-less-than 0111

Chapter 4 — The Processor — 24

The Main Control Unit

Control signals derived from instruction

R-type

Load/
Store

Branch

0 rs rt rd shamt funct
31:26 25:21 20:16 ‘\15:11 10:6 5:0
35 0r43 rs rt \ address
31:26 25:21 20:16 \ \ 150 1
4 rs rt \ \ address
31:26 25:21 20:16 \\ 15:0 \
opcode always read, write for sign-extend
read except R-type and add
for load and load

Chapter 4 — The Processor — 25

The Main Control Unit (2)

PCSrc
> »{ 0
Add l > I\Llll
X
ALU
4 — >Addresult L
RegWrite
Instruction [25:21] Read
Read > ; MemWrite
PO address Instruction [20:16] I:Q'Sdte” the ac1j >
nstruction [20: ea ata
_ > register 2 ALUSrc MemtoReg
Instruction _I | 0
(31:0] M| | Write Read 0 Address Rdeaﬁg 1
Instruction | | nstruction [15:11]| % | | fegister GelELR M I\J
memory | ¢ >~ 1 9 X
| data. Regist 1 -
ata Registers
RegDst g | Wiite mormary
data
Instruction [15:0] Sign-
extend
MemRead
Instruction [5:0]
ALUOp

/Z\ M< Chapter 4 — The Processor — 26

MORGAN KAUFMANN

The Main Control Unit (3)

Signal
name Effect when deasserted Effect when asserted

RegDst The register destination number for the | The register destination number for the Write
Write register comes from the rt field register comes from the rd field (bits 15:11).
(bits 20:16).
RegWrite None. The register on the Write register input is
written with the value on the Write data input.
ALUSrc The second ALU operand comes from the | The second ALU operand is the sign-
second register file output (Read data 2). | extended, lower 16 bits of the instruction.
PCSrc The PC is replaced by the output of the The PC is replaced by the output of the adder
adder that computes the value of PC + 4. | that computes the branch target.
MemRead | None. Data memory contents designated by the
address input are put on the Read data output.
MemWrite | None. Data memory contents designated by the
address input are replaced by the value on
the Write data input.
MemtoReg | The value fed to the register Write data | The value fed to the register Write data input
input comes from the ALU. comes from the data memory.

Chapter 4 — The Processor — 27

Datapath With Control

A

™ —

ALU
result

RegDst /
I_

4 —» Add

Branch _
MemRead
Instruction [31—26] MemtoReg
» Control ALUOp
MemWrite
/ ALUSrc
RegWrite

Instruction [25-21] Read
L > .
register 1 Read
Instruction [20—-16] Read data 1 "
Instruction __I " | register 2
[31-0] Write Read 0
|nstructi0n |n5tructi0n [1 5_1 1] register data 2
memory 1 -
Write

data Registers

Read
address

Zero
ALU ALy
result

Read

Address data

“xc=2C

“xc2
Oxecz-

L

Write Data
data memory

Instruction [15-0] 16 Sign- 32
extend/

Instruction [5-0]

MORGAN KAUFMANN

/g\ M(Chapter 4 — The Processor — 28

Datapath With Control (2)

Memto Reg- | Mem-
RegDst Write | Read ALUOpO

R-format 0 0 1 0
Tw 0 1 1 1 1 0 0 0 0
SW X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

« The setting of the control lines is completely determined by the opcode fields
of the instruction.

« The first row of the table corresponds to the R-format instructions (add, sub,
AND, OR, and slt). For all these instructions, the source register fields are rs
and rt, and the destination register field is rd; this defines how the signals
ALUSrc and RegDst are set. R-type instruction writes a register (Reg Write =
1), but neither reads nor writes data memory.

« When the Branch control signal is 0, the PC is unconditionally replaced with
PC + 4; otherwise, the PC is replaced by the branch target if the Zero output
of the ALU is also high.

« The ALUORp field for R-type instructions is set to 10 to indicate that the ALU
control should be generated from the funct field.

Chapter 4 — The Processor — 29

R-Type Instruction

> Add

4 —»| Add

L o—
3
1
-~ xg=2 O

ALU
result

RegDst

Branch | |

MemRead

Instruction [31—26] MemtoReg
»| Control ALUOD
MemWrite
/ ALUSrc
RegWrite

Instruction [25—21]
| PC |ox| Fead T = rRe%?sﬂer 1
address] Read -
Instruction [20—16] Read data 1
Instruction __I |_> register 2
[31-0] Write Read »(0

Instruction | | |instruction [15—11] register data2
memory | |¢ -

Zero
ALU ALU
result

Read

Address data

“xc=2C

Oxe=2—

Write .
data Registers

Write Data
memory

data
Instruction [15—0] 16 ® 32 I

Instruction [5—0]

MORGAN KAUFMANN

/Z\ M< Chapter 4 — The Processor — 30

R-Type Instruction (2)

For example, add $t1,$t2,$t3

Four steps to execute the instruction in one clock cycle

1. The instruction is fetched, and the PC is incremented

2. Registers $t2 and $t3 are read from the register file.
Also, the main control unit computes the setting of the
control lines during this step

3. The ALU operates on the data read from the register file,
using the function code (bits 5:0, funct field) to generate
the ALU function

4. The result from the ALU is written into the register file
using bits 15:11 of the instruction to select the
destination register ($t1)

Chapter 4 — The Processor — 31

Load Instruction

> Add

4 —| Add

L o—
Y
- xe2 O

ALU
result

RegDst

Branch | |

MemRead

Instruction [31—26] MemtoReg
= Control ALUOD
MemWrite
/ ALUSrc
RegWrite

Instruction [25—21] Read
Read T | register 1 goaqg
address) ea >
Instruction [20—16] Read data 1
Instruction __I | ~ | register 2
[31_0] Write Read
Instruction Instruction [15—11] register data?
memory ¢ > _
| Write

data Registers

Zero
ALU ALU
result

Read 7
Address’ joio —* 1

“xc=2C

Write Data

> data Memory

Instruction [15—0]

Instruction [5—0]

MORGAN KAUFMANN

% M< Chapter 4 — The Processor — 32

Load Instruction (2)

For example, lw $t1, offset($t2)

Five steps to execute the instruction in one clock cycle

1. Instruction is fetched from the instruction memory and
PC is Incremented

2. Register ($t2) value is read from the register file

3. ALU computes the sum of the value read from register
file and sign-extended offset

4. Sum from ALU is used as the address for the data
memory

5. Data from the memory unit is written into register file.
Register destination is given by bits 20:16 of the
instruction ($t1)

Chapter 4 — The Processor — 33

Branch-on-Equal Instruction

RegDst

Branch | __

MemRead

Y

- xec2 O

ALU
>Add result

Instruction [31—26] MemtoReg
»| Control ALUOpD
MemWrite
/ ALUSrc
RegWrite

Instruction [25—21] Read

Read b "~ | register 1 Read

address ea .
Instruction [20—16] Read data 1

register 2

Write Read ~(0
register data2

Instruction _I

[31-0] o
u
X

Instruction Instruction [15—11]
memory ® >

Read

Address data

-

“xc=
Oxe=

Write P .
data Registers

Write Data
data mMemory

Instruction [15-0]

Instruction [5—0]

MORGAN KAUFMANN

/Z\ M< Chapter 4 — The Processor — 34

Branch-on-Equal Instruction (2)

For example, beq $tl1, $t2, offset

Four steps to execute the instruction in one clock cycle

1. An instruction is fetched from instruction memory
and PC is incremented

2. Regqgister ($t2) value is read from the reqgister file

3. ALU performs a subtract on the data values read
from the register file. PC + 4 is added to sign-
extended offset shifted left by two; result is branch
target address

4. Zero result from ALU is used to decide which adder
result to store into PC

Chapter 4 — The Processor — 35

Implementing Jumps

Jump 2 address
31:26 25:0

Jump uses word address

Update PC with concatenation of
Top 4 bits of old PC
26-bit jJump address
And 00 at the right

Need an extra control signal decoded from
opcode

Chapter 4 — The Processor — 36

Datapath With Jumps Added

Instruction [25-0] . Jump address [31-0]
<. [Shift\,
S \eft2/
QGU% PC + 4 [31-28] 0 |—>1
Add l —=\ i m
X X
4— Add £ it g\ 0
RegDst Y
Jump /
\ Branch
MemRead
Instruction [31-26] MemtoReg
» Control ALUOp
MemWrite
| ALUSrc
RegWrite
Road Instruction [25-21] Read
ea * > :
L-| PC [0 address register 1 Read
Instruction [20—16] Read data 1
Instruction '.II 5 " | register 2
[31-0] M| | write ~ Read (0 Address F‘deaig 1
Instruction | || |nsiucion [15-11]| & || register data 2 M ndl
memory | e 1 _ g X
SPE— 2t :
egisters Write Data
*| data Memory
Instruction [15-0] 16 @ 32
Instruction [5-0]

MORGAN KAUFMANN

/Z\ M< Chapter 4 — The Processor — 37

Performance Issues

Longest delay determines clock period

Critical path: load instruction

Instruction memory — register file > ALU —
data memory — register file

Not feasible to vary period for different
Instructions

Violates design principle
Making the common case fast

We will improve performance by pipelining

Chapter 4 — The Processor — 38

Pipelining Analogy

Pipelined laundry: overlapping execution
Parallelism improves performance

6 PM 7 8 9 10 11 12 1 2 AM

N &5 Four loads:

. 80=[__ g

] B0=l Speedup

0 80= =8/3.5=2.3

Non-stop:
Speedup
=2n/(0.5n+1.5) =4
= number of stages

Chapter 4 — The Processor — 39

MIPS Pipeline

Five stages, one step per stage
IF: Instruction fetch from memory
ID: Instruction decode & register read
EX: Execute operation or calculate address
MEM: Access memory operand
WB: Write result back to register

Chapter 4 — The Processor — 40

Assume time for stages is

100ps for register read or write
200ps for other stages

Compare pipelined datapath with single-cycle

Pipeline Performance

datapath
Instr Instr fetch | Register | ALU op Memory | Register | Total time
read access write
lw 200ps 100 ps 200ps 200ps 100 ps 800ps
sw 200ps 100 ps 200ps 200ps 700ps
R-format | 200ps 100 ps 200ps 100 ps 600ps
beq 200ps 100 ps 200ps 500ps

Chapter 4 — The Processor — 41

Pipeline Performance

Single-cycle (T.= 800ps)

Program
execution Time 200 400 600 800 1000 1200 1400 1600 1800
order ' | | | | | | | |
(in instructions)
Instruction Dat
lw $1, 100($0) fetch |Fe9| ALU ac:ezs Reg
w $2, 200($0) 800 ps e [Reg| ALU | 08| Reg
Instruction
lw $3, 300($0) 800 ps fetch
: : 800 ps
Pipelined (T.= 200ps)
Program
execution —. 200 400 600 800 1000 1200 1400
order Time : , : : . : .

(in instructions)

I i D
w $1,100(50) "] |reo| | 25, g
Instruction Data
lw $2’ 200($0) 200 ps fetch Reg ALU access Reg
Instruction Data
lw $3, 300($0) 200 pS | fetch Reg| ALU access | o9

200 ps 200 ps 200 ps 200 ps 200 ps

/g\ M(Chapter 4 — The Processor — 42

MORGAN KAUFMANN

Pipeline Speedup

If all stages are balanced
l.e., all take the same time

Time between INStructions i,eined
= Time between instructions
Number of stages

If not balanced, speedup Is less

Speedup due to increased throughput

Latency (time for each instruction) does not
decrease

nonpipelined

Chapter 4 — The Processor — 43

Pipelining and ISA Design

MIPS ISA designed for pipelining

All instructions are 32-bits
Easier to fetch and decode in one cycle
c.f. x86: 1- to 17-byte instructions

Few and regular instruction formats
Can decode and read registers in one step

Load/store addressing

Can calculate address in 3" stage, access memory
in 4t stage

Alignment of memory operands
Memory access takes only one cycle

Chapter 4 — The Processor — 44

Hazards

Situations that prevent starting the next
Instruction in the next cycle

Structure hazards
A required resource Is busy
Data hazard

Need to walit for previous instruction to
complete its data read/write

Control hazard

Deciding on control action depends on
previous instruction

Chapter 4 — The Processor — 45

Structure Hazards

Conflict for use of a resource

In MIPS pipeline with a single memory
Load/store requires data access

Instruction fetch would have to stall for that
cycle
Would cause a pipeline “bubble”
Hence, pipelined datapaths require
separate instruction/data memories

Or separate instruction/data caches

Chapter 4 — The Processor — 46

Data Hazards

An instruction depends on completion of
data access by a previous instruction

add $s0, $t0, $tl
sub $t2, $s0, $t3

, 200 400 600 800 1000 1200 1400 1600
Time T I I I I I I >

add $s0, $t0, $t1 | IF —= 1D %—MEM WB |
bubble bubble bubble bubble bubble
@ @ O @ O
bubble bubble) (" bubble bubble,) (bubble
9 O @ O O

sub $t2, $s0, $t3 IF —E ID %*MEM WBE

Chapter 4 — The Processor — 47

Forwarding (aka Bypassing)

Use result when it is computed
Don’t wait for it to be stored in a register
Requires extra connections in the datapath

Program
execution . 200 400 600 800 1000
order Time T T T T T

(in instructions)
add $s0, $t0, $t1 IF

MEM WB |

sub $t2, $s0, $t3

Chapter 4 — The Processor — 48

Load-Use Data Hazard

Can’t always avoid stalls by forwarding
If value not computed when needed
Can’t forward backward in time!

Program
execution . 200 400 600 800 1000 1200 1400
order Time : : : : . . |
(in instructions)

w $s0, 20($t1) IF

sub $t2, $s0, $t3

Chapter 4 — The Processor — 49

Code Scheduling to Avoid Stalls

Reorder code to avoid use of load result in
the next instruction

CcodeforA =B + E; C = B + F;

Tw $tl, 0($t0) Tw $t1, 0($t0)

1w v

S — add $t3, $tI;(5t2) 1w

sw $t3, 12($t0) add $t3
w ($t4)-8($t0) sw $t3, 12€$t0
o — add $t5, $t1,(5t4) add $t5, $tl,
sw $t5, 16($t0) sw $t5, 16($t0)
13 cycles 11 cycles

Chapter 4 — The Processor — 50

Control Hazards

Branch determines flow of control

Fetching next instruction depends on branch
outcome

Pipeline can’t always fetch correct instruction
Still working on ID stage of branch
In MIPS pipeline

Need to compare registers and compute
target early in the pipeline

Add hardware to do it in ID stage

Chapter 4 — The Processor — 51

Stall on Branch

Wait until branch outcome determined
before fetching next instruction

Program
execution Tim 200 400 600 800 1000 1200 1400 -
order ime T T l T I T T >
(in instructions)

add $4,85,86 "] [Rea| AW | G2 |Reg

Instruction Data
beq $1, $2, 40 m fetch Reg| ALU | ccess |Pe9
bubble/_bubble/(bubble/ bubble’(bubble
@ @ © ©
or $7, $8, $9 < »Instruction Data
y 400 ps fetch Reg| ALU access | °9

Chapter 4 — The Processor — 52

Branch Prediction

Longer pipelines can't readily determine
branch outcome early

Stall penalty becomes unacceptable

Predict outcome of branch
Only stall if prediction is wrong
In MIPS pipeline

Can predict branches not taken
Fetch instruction after branch, with no delay

Chapter 4 — The Processor — 53

MIPS with Predict Not Taken

Program

execution Time 2(')() 4(|]O 6(.)0 890 1OIOO 12{00 14|00 N

order

(in instructions)

Instruction Data
Predlctlon add $4’ $5= $6 fetch Reg ALU access Reg
Instructi Dat
correct beq $1,82,40 <~ Meteh | |Reg| AU | aocess |Ped
-~—— > |nstruction Data

lw $3, 300($0) 200 ps| fetch Reg| ALU access | 19

Y

Program

execution i 200 400 600 800 1000 1200 1400 :

order

(in instructions)

Instruction Data
Predlctlon add $4, $5, $6 fetch Reg ALU access Reg
. Instruction Data
Incorrect beq $1,$2,40 =" ich Reg| ALU | access |9
200 ps
bubble/(bubbl ubbl ubble/(bubble
9
—or $7, $8, $9 - »(Instruction Data
\ 400 ps fetch Reg | ALU access | °9

MORGAN KAUFMANN

/g\ M(Chapter 4 — The Processor — 54

More-Realistic Branch Prediction

Static branch prediction
Based on typical branch behavior

Example: loop and if-statement branches
Predict backward branches taken
Predict forward branches not taken

Dynamic branch prediction
Hardware measures actual branch behavior
e.g., record recent history of each branch

Assume future behavior will continue the trend
When wrong, stall while re-fetching, and update history

Chapter 4 — The Processor — 55

Pipeline Summary

Pipelining improves performance by
Increasing instruction throughput

Executes multiple instructions in parallel
Each instruction has the same latency

Subject to hazards
Structure, data, control

Instruction set design affects complexity of
pipeline implementation

Chapter 4 — The Processor — 56

Acknowledgement

The slides are adopted from Computer
Organization and Design, 5th Edition

by David A. Patterson and John L. Hennessy
2014, published by MK (Elsevier)

Chapter 4 — The Processor — 57

