
COMPUTERORGANIZATION ANDDESIGN
The Hardware/Software Interface

5
th

Edition

Chapter 4

The Processor

Chapter 4 — The Processor — 2

Introduction

 CPU performance factors
 Instruction count

 Determined by ISA and compiler

 CPI and Cycle time
 Determined by CPU hardware

 We will examine two MIPS implementations
 A simplified version

 A more realistic pipelined version

 Simple subset, shows most aspects
 Memory reference: lw, sw

 Arithmetic/logical: add, sub, and, or, slt

 Control transfer: beq, j

§
4
.1

 In
tro

d
u
c
tio

n

Chapter 4 — The Processor — 3

Instruction Execution

 PC  instruction memory, fetch instruction

 Register numbers  register file, read registers

 Depending on instruction class

 Use ALU to calculate

 Arithmetic result

 Memory address for load/store

 Branch target address

 Access data memory for load/store

 PC  target address or PC + 4

Chapter 4 — The Processor — 4

CPU Overview

Chapter 4 — The Processor — 5

Multiplexers

 Can’t just join

wires together

 Use multiplexers

Chapter 4 — The Processor — 6

Control

Chapter 4 — The Processor — 7

Logic Design Basics
§

4
.2

 L
o
g
ic

 D
e
s
ig

n
 C

o
n
v
e

n
tio

n
s

 Information encoded in binary

 Low voltage = 0, High voltage = 1

 One wire per bit

 Multi-bit data encoded on multi-wire buses

 Combinational element

 Operate on data

 Output is a function of input

 State (Sequential) elements

 Store information

Chapter 4 — The Processor — 8

Combinational Elements

 AND-gate

 Y = A & B

A

B
Y

I0
I1

Y
M

u

x

S

 Multiplexer

 Y = S ? I1 : I0

A

B

Y+

A

B

YALU

F

 Adder

 Y = A + B

 Arithmetic/Logic Unit

 Y = F(A, B)

Chapter 4 — The Processor — 9

Multiplexors(1)

A two-input multiplexor has two data inputs (A and B)

labeled 0 and 1, one selector input (S), and an output C.

Chapter 4 — The Processor — 10

Multiplexors(2)

 A multiplexor is

arrayed 32

times to

perform a

selection

between two

32-bit inputs.

 One data

selection signal

used for all 32

1-bit

multiplexors.

Chapter 4 — The Processor — 11

Sequential Elements

 Register: stores data in a circuit

 Uses a clock signal to determine when to

update the stored value

 Edge-triggered: update when Clk changes

from 0 to 1

D

Clk

Q

Clk

D

Q

Chapter 4 — The Processor — 12

Sequential Elements

 Register with write control

 Only updates on clock edge when write

control input is 1

 Used when stored value is required later

D

Clk

Q

Write

Write

D

Q

Clk

Chapter 4 — The Processor — 13

Clocking Methodology

 Combinational logic transforms data during
clock cycles

 Between clock edges

 Input from state elements, output to state
element

 Longest delay determines clock period

Chapter 4 — The Processor — 14

Building a Datapath

 Datapath

 Elements that process data and addresses

in the CPU

 Registers, ALUs, mux’s, memories, …

 We will build a MIPS datapath

incrementally

 Refining the overview design

§
4
.3

 B
u
ild

in
g
 a

 D
a
ta

p
a
th

Chapter 4 — The Processor — 15

Instruction Fetch

32-bit

register

Increment by

4 for next

instruction

A portion of the datapath used for fetching instructions and

incrementing the program counter. The fetched instruction is

used by other parts of the datapath.

Chapter 4 — The Processor — 16

R-Format Instructions

 Read two register operands

 Perform arithmetic/logical operation

 Write register result

Chapter 4 — The Processor — 17

Load/Store Instructions

 Read register operands

 Calculate address using 16-bit offset
 Use ALU, but sign-extend offset

 Load: Read memory and update register

 Store: Write register value to memory

Chapter 4 — The Processor — 18

Branch Instructions

 Read register operands

 Compare operands

 Use ALU, subtract and check Zero output

 Calculate target address

 Sign-extend displacement

 Shift left 2 places (word displacement)

 Add to PC + 4

 Already calculated by instruction fetch

Chapter 4 — The Processor — 19

Branch Instructions

Just

re-routes

wires

Sign-bit wire

replicated

Chapter 4 — The Processor — 20

Composing the Elements

 Simple data path does one instruction in

one clock cycle

 Each datapath element can only do one

function at a time

 Hence, we need separate instruction and data

memories

 Use multiplexers where alternate data

sources are used for different instructions

Chapter 4 — The Processor — 21

R-Type/Load/Store Datapath

Chapter 4 — The Processor — 22

Full Datapath

Chapter 4 — The Processor — 23

ALU Control

 ALU used for

 Load/Store: F = add

 Branch: F = subtract

 R-type: F depends on funct field

§
4
.4

 A
 S

im
p
le

 Im
p
le

m
e
n

ta
tio

n
 S

c
h
e
m

e

ALU control Function

0000 AND

0001 OR

0010 add

0110 subtract

0111 set-on-less-than

1100 NOR

Chapter 4 — The Processor — 24

ALU Control (2)

 Assume 2-bit ALUOp derived from opcode

 Combinational logic derives ALU control

opcode ALUOp Operation funct ALU function ALU control

lw 00 load word XXXXXX add 0010

sw 00 store word XXXXXX add 0010

beq 01 branch equal XXXXXX subtract 0110

R-type 10 add 100000 add 0010

subtract 100010 subtract 0110

AND 100100 AND 0000

OR 100101 OR 0001

set-on-less-than 101010 set-on-less-than 0111

Chapter 4 — The Processor — 25

The Main Control Unit

 Control signals derived from instruction

0 rs rt rd shamt funct

31:26 5:025:21 20:16 15:11 10:6

35 or 43 rs rt address

31:26 25:21 20:16 15:0

4 rs rt address

31:26 25:21 20:16 15:0

R-type

Load/

Store

Branch

opcode always

read

read,

except

for load

write for

R-type

and load

sign-extend

and add

Chapter 4 — The Processor — 26

The Main Control Unit (2)

Chapter 4 — The Processor — 27

The Main Control Unit (3)

Chapter 4 — The Processor — 28

Datapath With Control

Chapter 4 — The Processor — 29

Datapath With Control (2)

• The setting of the control lines is completely determined by the opcode fields

of the instruction.

• The first row of the table corresponds to the R-format instructions (add, sub,

AND, OR, and slt). For all these instructions, the source register fields are rs

and rt, and the destination register field is rd; this defines how the signals

ALUSrc and RegDst are set. R-type instruction writes a register (Reg Write =

1), but neither reads nor writes data memory.

• When the Branch control signal is 0, the PC is unconditionally replaced with

PC + 4; otherwise, the PC is replaced by the branch target if the Zero output

of the ALU is also high.

• The ALUOp field for R-type instructions is set to 10 to indicate that the ALU

control should be generated from the funct field.

Chapter 4 — The Processor — 30

R-Type Instruction

Chapter 4 — The Processor — 31

R-Type Instruction (2)

For example, add $t1,$t2,$t3

Four steps to execute the instruction in one clock cycle

1. The instruction is fetched, and the PC is incremented

2. Registers $t2 and $t3 are read from the register file.

Also, the main control unit computes the setting of the

control lines during this step

3. The ALU operates on the data read from the register file,

using the function code (bits 5:0, funct field) to generate

the ALU function

4. The result from the ALU is written into the register file

using bits 15:11 of the instruction to select the

destination register ($t1)

Chapter 4 — The Processor — 32

Load Instruction

Chapter 4 — The Processor — 33

Load Instruction (2)
For example, lw $t1, offset($t2)

Five steps to execute the instruction in one clock cycle

1. Instruction is fetched from the instruction memory and

PC is Incremented

2. Register ($t2) value is read from the register file

3. ALU computes the sum of the value read from register

file and sign-extended offset

4. Sum from ALU is used as the address for the data

memory

5. Data from the memory unit is written into register file.

Register destination is given by bits 20:16 of the

instruction ($t1)

Chapter 4 — The Processor — 34

Branch-on-Equal Instruction

Chapter 4 — The Processor — 35

Branch-on-Equal Instruction (2)

For example, beq $t1, $t2, offset

Four steps to execute the instruction in one clock cycle

1. An instruction is fetched from instruction memory

and PC is incremented

2. Register ($t2) value is read from the register file

3. ALU performs a subtract on the data values read

from the register file. PC + 4 is added to sign-

extended offset shifted left by two; result is branch

target address

4. Zero result from ALU is used to decide which adder

result to store into PC

Chapter 4 — The Processor — 36

Implementing Jumps

 Jump uses word address

 Update PC with concatenation of

 Top 4 bits of old PC

 26-bit jump address

 And 00 at the right

 Need an extra control signal decoded from

opcode

2 address

31:26 25:0

Jump

Chapter 4 — The Processor — 37

Datapath With Jumps Added

Chapter 4 — The Processor — 38

Performance Issues

 Longest delay determines clock period

 Critical path: load instruction

 Instruction memory  register file  ALU 

data memory  register file

 Not feasible to vary period for different

instructions

 Violates design principle

 Making the common case fast

 We will improve performance by pipelining

Chapter 4 — The Processor — 39

Pipelining Analogy

 Pipelined laundry: overlapping execution

 Parallelism improves performance

§
4
.5

 A
n
 O

v
e
rv

ie
w

 o
f P

ip
e
lin

in
g Four loads:

 Speedup

= 8/3.5 = 2.3

 Non-stop:

 Speedup

= 2n/(0.5n+1.5) ≈ 4

= number of stages

Chapter 4 — The Processor — 40

MIPS Pipeline

 Five stages, one step per stage

1. IF: Instruction fetch from memory

2. ID: Instruction decode & register read

3. EX: Execute operation or calculate address

4. MEM: Access memory operand

5. WB: Write result back to register

Chapter 4 — The Processor — 41

Pipeline Performance

 Assume time for stages is

 100ps for register read or write

 200ps for other stages

 Compare pipelined datapath with single-cycle

datapath

Instr Instr fetch Register

read

ALU op Memory

access

Register

write

Total time

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

Chapter 4 — The Processor — 42

Pipeline Performance

Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)

Chapter 4 — The Processor — 43

Pipeline Speedup

 If all stages are balanced

 i.e., all take the same time

 Time between instructionspipelined

= Time between instructionsnonpipelined

Number of stages

 If not balanced, speedup is less

 Speedup due to increased throughput

 Latency (time for each instruction) does not

decrease

Chapter 4 — The Processor — 44

Pipelining and ISA Design

 MIPS ISA designed for pipelining

 All instructions are 32-bits
 Easier to fetch and decode in one cycle

 c.f. x86: 1- to 17-byte instructions

 Few and regular instruction formats
 Can decode and read registers in one step

 Load/store addressing
 Can calculate address in 3rd stage, access memory

in 4th stage

 Alignment of memory operands
 Memory access takes only one cycle

Chapter 4 — The Processor — 45

Hazards

 Situations that prevent starting the next
instruction in the next cycle

 Structure hazards

 A required resource is busy

 Data hazard

 Need to wait for previous instruction to
complete its data read/write

 Control hazard

 Deciding on control action depends on
previous instruction

Chapter 4 — The Processor — 46

Structure Hazards

 Conflict for use of a resource

 In MIPS pipeline with a single memory

 Load/store requires data access

 Instruction fetch would have to stall for that

cycle

 Would cause a pipeline “bubble”

 Hence, pipelined datapaths require

separate instruction/data memories

 Or separate instruction/data caches

Chapter 4 — The Processor — 47

Data Hazards

 An instruction depends on completion of

data access by a previous instruction

 add $s0, $t0, $t1
sub $t2, $s0, $t3

Chapter 4 — The Processor — 48

Forwarding (aka Bypassing)

 Use result when it is computed

 Don’t wait for it to be stored in a register

 Requires extra connections in the datapath

Chapter 4 — The Processor — 49

Load-Use Data Hazard

 Can’t always avoid stalls by forwarding

 If value not computed when needed

 Can’t forward backward in time!

Chapter 4 — The Processor — 50

Code Scheduling to Avoid Stalls

 Reorder code to avoid use of load result in

the next instruction

 C code for A = B + E; C = B + F;

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

11 cycles13 cycles

Chapter 4 — The Processor — 51

Control Hazards

 Branch determines flow of control

 Fetching next instruction depends on branch
outcome

 Pipeline can’t always fetch correct instruction
 Still working on ID stage of branch

 In MIPS pipeline

 Need to compare registers and compute
target early in the pipeline

 Add hardware to do it in ID stage

Chapter 4 — The Processor — 52

Stall on Branch

 Wait until branch outcome determined

before fetching next instruction

Chapter 4 — The Processor — 53

Branch Prediction

 Longer pipelines can’t readily determine

branch outcome early

 Stall penalty becomes unacceptable

 Predict outcome of branch

 Only stall if prediction is wrong

 In MIPS pipeline

 Can predict branches not taken

 Fetch instruction after branch, with no delay

Chapter 4 — The Processor — 54

MIPS with Predict Not Taken

Prediction

correct

Prediction

incorrect

Chapter 4 — The Processor — 55

More-Realistic Branch Prediction

 Static branch prediction

 Based on typical branch behavior

 Example: loop and if-statement branches

 Predict backward branches taken

 Predict forward branches not taken

 Dynamic branch prediction

 Hardware measures actual branch behavior

 e.g., record recent history of each branch

 Assume future behavior will continue the trend

 When wrong, stall while re-fetching, and update history

Chapter 4 — The Processor — 56

Pipeline Summary

 Pipelining improves performance by

increasing instruction throughput

 Executes multiple instructions in parallel

 Each instruction has the same latency

 Subject to hazards

 Structure, data, control

 Instruction set design affects complexity of

pipeline implementation

The BIG Picture

The slides are adopted from Computer

Organization and Design, 5th Edition

by David A. Patterson and John L. Hennessy

2014, published by MK (Elsevier)

Acknowledgement

Chapter 4 — The Processor — 57

