MOSFET Amplifier Configuration

- Single stage
- The signal is fed to the amplifier represented as v_{sig} with an internal resistance R_{sig}.
- MOSFET is represented by its small signal model.
- Generally interested of gain, input and output resistance (overall amplifier circuit not only the small signal model).

![MOSFET Amplifier Configuration Diagrams](image)

- Considering only the small signal not the bias

(a) Common Source (CS) (b) Common Gate (CG) (c) Common Drain (CD)
Characterizing Amplifiers

- Find gain, input and output resistance

\[R_{in} = \frac{v_i}{i_i} \]

\[A_{vo} = \frac{v_o}{v_i} \mid_{R_L=\infty}, \quad A_v = \frac{v_o}{v_i} \]

\[G_v = \frac{v_o}{v_{sig}} \] Overall voltage gain

Amplifier Configuration

- Common Source
- Common Source with a source resistance
- Common gate
- Common drain or voltage follower
Amplifiers

\[v_o = A_{vo} v_i \frac{R_L}{R_L + R_o} \]

\[v_i = v_{sig} \frac{R_{in}}{R_{in} + R_{sig}} \]

\[A_v = A_{vo} \frac{R_L}{R_L + R_o} \]

\[G_v = \frac{v_o}{v_{sig}} = \frac{R_{in}}{R_{in} + R_{sig}} A_{vo} \frac{R_L}{R_L + R_o} \]

Common Source

- Most widely used configuration
- In multistage amplifiers, the bulk of the gain is from common source.
- The source is grounded, making it common between input and output.
- We can use hybrid π model.
Common Source

For R_o, set $v_i = 0$

$$R_o = r_0 \parallel R_D$$

$$A_{vo} = -g_m (r_0 \parallel R_D)$$

Common Source with Source R

- For simplicity, r_0 is not included.
- No effect on discrete implementation, not so for IC’s
- R_s provides a negative feedback to control the magnitude of the signal to prevent nonlinear distortion.
- Also reduces the voltage gain and extends the useful bandwidth.
Common Source with Source R

\[v_{gs} = -g_m v_i \left(\frac{1}{g_m} + R_S \right) \]

\[v_{gs} = \frac{v_i}{1 + g_m R_S} \]

Common Gate Amplifier
Common Drain Amplifier – Source Follower

Since there is a resistance R_L connected to the source, it is easier to use the T-model.

Common Source – Voltage Follower

$R_i = \infty$
Comparison

<table>
<thead>
<tr>
<th></th>
<th>CS</th>
<th>CS+RS</th>
<th>CG</th>
<th>CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rin</td>
<td>∞</td>
<td>∞</td>
<td>$\frac{1}{g_m}$</td>
<td>∞</td>
</tr>
<tr>
<td>Rout</td>
<td>$R_D \parallel R_o$</td>
<td>R_D</td>
<td>R_D</td>
<td>$\frac{1}{g_m}$</td>
</tr>
<tr>
<td>G</td>
<td>$-\frac{g_m(R_D \parallel R_L)}{r_o}$</td>
<td>$A_v = \frac{g_m(R_D \parallel R_L)}{1 + g_m R_S}$</td>
<td>$G_v = \frac{(R_D \parallel R_L)}{1/g_m + R_{diss}}$</td>
<td>$G_v = \frac{A_v}{R_L}$</td>
</tr>
</tbody>
</table>

Example E5.37

Given:
- $V_{DD} = V_{SS} = 10V$, $I = 0.5 mA$, $R_G = 4.7\, \Omega$, $R_D = 15K\, \Omega$,
- $V_t = 1.5V$, $k_i = 1mA/V^2$, $V_A = 75V$.

Find V_{DS}, V_{GS}, V_{GS}, V_D, g_{m}, r_o.

What is the max. possible voltage swing at drain and the MOSFET remains in saturation?
Example 5.38

Find \(R_{in}, A_{vo}, R_{o}, G_{m} \) with and without \(r_o \). \(R_{seg} = 100\text{K}\Omega \) and \(R_L = 15\text{K}\Omega \).

Biasing in MOS Amplifiers

- How to choose the operating point?
- Want a stable Q-point (known \(I_D \) and \(V_{DS} \)) to ensure operation in the saturation region.
Biasing -- Fixing V_{GS}

- I_D depends on μ, C_{ox}, W/L and V_t, and V_{GS}
- C_{ox}, V_{GS} (even W/L) can vary across devices of the same type.
- Constant V_{GS} Not a good idea.
- μ, C_{ox} are a $f(t)$

Biasing – Fixing V_G and R_S

- R_S provides a negative feedback to stabilize I_D
Biasing – Fixing V_G and R_S

- Uses one power supply
- What is the effect on input resistance when you add V_{gs} signal

![Circuit Diagram](image)

Figure 5.53 Circuit for Example 5.12.
Biasing – D-to-G Resistor

- \(V_{GS} = V_{DS} = V_{DD} - I_D R_D \)
- \(V_{DD} = V_{GS} + I_D R_D \)
- Provides a feedback resistor to stabilize \(I_D \)

Biasing – Constant Current Source

Figure 5.55 (a) Biasing the MOSFET using a constant-current source \(I \). (b) Implementation of the constant-current source \(I \) using a current mirror.
Frequency Response

- Low-frequency band
 - Gain falls off due to the effect of C_g, C_k, and C_C
 - All capacitances can be neglected

- Midband
 - 3 dB

- High-frequency band
 - Gain falls off due to the internal capacitive effects of the MOSFET

$20 \log | \frac{V_o}{V_{in}} |$ (dB)