ENG2210 Electronic Circuits Chapter 4 MOSFET

Mokhtar A. Aboelaze York University

Disclaimer: Most of the slides are skeletons that will be filled/modified in the lecture. Please do not assume that you can know the material just by reading the slides.

Chapter Objectives

- Learn the physical structure of the MOSFET and how it works.
- How to analyze circuits that contains MOSFET.
- How to obtain linear amplification from a nonlinear MOSFET.
- The three basic ways for connecting a MOSFET to construct amplifiers.
- Practical circuits for MOSFET.

MOSFET- Metal Oxide Semiconductor Field Effect Transistor

- Transistors (3 terminal devices) diodes are 2 terminal devices – more complicated.
- One terminal usually control the current between the other two terminals.
- Used in digital and analog circuits
- Mainly MOSFET and BJT (vast majority of IC's are MOSFET)
 - Smaller
 - Loss power than BJT very important -

MOSFET

 This is not a course on semiconductor (nor this is a physics course). However, understanding how the device work is very important.

MOSFET Operation

- We start by explaining how things work, then we use mathematics to derive equations.
- Start with n-MOS

V_G=0, because of the back-to-back diodes, no current flows from source to destination

V_G>0, Holes are repelled by the positive gate voltage and leaving behind negative ions forming a depletion region

As V_G increases (Threshold voltage), Electrons are attracted to the surface forming a channel where current might flow

From Fundamentals of microelectronics – Behzad Razavi

From Fundamentals of microelectronics – Behzad Razavi

ullet Or vary V_D and keeping V_G constant

- As V_D increases, at some distance x, $V_G V_D < V_{TH}$ and the channel does not exist anymore.
- Does that mean No current? No, The high electric field in the depletion region carry them through, but V_D does not control the current anymore (constant current source)

Small
$$v_{DS}$$

$$i_D = \left[(\mu_n C_{ox}) \left(\frac{W}{L} \right) V_{ov} \right] v_{DS}$$
Conductance
$$g_{DS} = (\mu_n C_{ox}) \left(\frac{W}{L} \right) V_{ov}$$

$$r_{DS} = \frac{1}{(\mu_n C_{ox}) \left(\frac{W}{L} \right) V_{ov}}$$
Linear resistance

Not Small v_{DS}

- As v_{DS} increases we can not assume a constant voltage between the gate and any point along the channel.
- The voltage at one end of the channel is 0, while at the other end is v_{DS}

$$v_{DS} > = V_{ov}$$

- $\bullet\,$ As V_{DS} grows, the channel pinches off.
- When $v_{DS} = V_{ov}$ the channel depth is zero
- Increasing v_{DS} beyond that has no effect.
- The drain current saturates (saturation region)
- Electrons can still go through the depletion region

$$i_D = \frac{1}{2} k_n \left(\frac{W}{L}\right) V_{ov}^2$$

Example

- Find R_s and R_d such that
- I_d=0.4 mA, V_D=+0.5 V
- V_t =0.7 V, $\mu_n C_{ox}$ =100 μ A/V²
- L=1μm, W=32μm.

Figure 5.21 Circuit for Example 5.3.

Microelectronic Circuits, Sixth Edition

Sedra/Smith

Copyright © 2010 by Oxford University Press, Inc.

Large Signal Equivalent Circuit

Figure 5.18 Large-signal equivalent circuit model of the n-channel MOSFET in saturation, incorporating the output resistance r_{σ} . The output resistance models the linear dependence of i_{D} on v_{DS} and is given by Eq. (5.23).

Microelectronic Circuits, Sixth Edition

Sedra/Smith

Copyright © 2010 by Oxford University Press, Inc.

