
1

 CSE4210 Architecture & Hardware for DSP

CChhaapptteerr 22

Review of Number
Systems & Verilog

Instructor: Prof. Peter Lian
Department of Electrical

Engineering & Computer Science
Lassonde School of Engineering

York University

 CSE4210 Architecture & Hardware for DSP

Number Systems

2

Four Important Number Systems
System	
 Why?	
 Remarks	

Decimal Base 10 (10 fingers) Most used
system

Binary Base 2. On/Off
systems

3 times more
digits than
decimal

Octal Base 8.Shorthand
notation for working
with binary

3 times less
digits than binary

Hex Base 16 4 times less
digits than binary

Positional Number Systems
n  Have a radix r (base) associated with them.
n  In the decimal system, r = 10:

n  Ten symbols: 0, 1, 2, ..., 8, and 9
n  More than 9 move to next position, so each

position is power of 10
n  Nothing special about base 10 (used

because we have 10 fingers)
n  What does 642.39110 mean?

6 x 102 + 4 x 101 + 2 x 100 . 3 x 10-1 + 9 x 10-2 + 1 x 10-3

Radix point Increasingly +value
powers of radix

Increasingly -value
powers of radix

3

Positional Number Systems

Base 10
(r)

 102

(100)
101

(10)
100

(1)
10-1

(0.1)
10-2

(0.01)
10-3

(0.001)
Coefficient

(aj)
6 4 2 3 9 1

Product: aj*ri 600 40 2 0.3 0.09 0.001
Value = 600 + 40 + 2 + 0.3 + 0.09 + 0.001 = 642.391

n  What does 642.39110 mean?
Radix point

n Multiply each digit by appropriate power of 10
and add them together

n  In general: i
n

mi
j ra ×∑

−=

Positional Number Systems

Number
system

Radix Symbols

Binary 2 {0,1}

Octal 8 {0,1,2,3,4,5,6,7}

Decimal 10 {0,1,2,3,4,5,6,7,8,9}

Hexadecimal 16 {0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f}

4

Binary Number System
Decimal Binary Decimal Binary
0 0000 8 1000
1 0001 9 1001
2 0010 10 1010
3 0011 11 1011
4 0100 12 1100
5 0101 13 1101
6 0110 14 1110
7 0111 15 1111

Octal Number System
Decimal Octal Decimal Octal

0 0 8 10
1 1 9 11
2 2 10 12
3 3 11 13
4 4 12 14
5 5 13 15
6 6 14 16
7 7 15 17

5

Hexadecimal Number System
Decimal Hex Decimal Hex

0 0 8 8
1 1 9 9
2 2 10 A
3 3 11 B
4 4 12 C
5 5 13 D
6 6 14 E
7 7 15 F

Four Number Systems
Decimal Binary Octal Hex Decimal Binary Octal Hex

0 0000 0 0 8 1000 10 8
1 0001 1 1 9 1001 11 9
2 0010 2 2 10 1010 12 A
3 0011 3 3 11 1011 13 B
4 0100 4 4 12 1100 14 C
5 0101 5 5 13 1101 15 D
6 0110 6 6 14 1110 16 E
7 0111 7 7 15 1111 17 F

6

 CSE4210 Architecture & Hardware for DSP

Conversion Between Number
Systems

Conversion: Binary to Decimal

1 x 23 + 1 x 22 + 0 x 21 + 1 x 20 . 0 x 2-1 + 1 x 2-2 + 1 x 2-3 = 13.37510

Binary point

Binary Decimal

1101.0112 (??)10

r 23(8) 22(4) 21(2) 20(1) 2-1

(0.5)
2-2

(0.25)
2-3

(0.125)

aj 1 1 0 1 0 1 1

aj*r

8 4 0 1 0 0.25 0.125

(1101.011)2= 8 + 4 + 1 + 0.25 + 0.125 = 13.375

7

Conversion: Decimal to Binary

15510 = 100110112

n  A decimal number can be converted to binary by
repeated division by 2 if it is an integer

Arrange
remainders
in reverse
order

number ÷÷2 Remainder

155 77 1 Least Significant
Bit (LSB)

77 38 1
38 19 0
19 9 1
9 4 1
4 2 0
2 1 0
1 0 1 Most Significant

Bit (MSB)

Conversion: Decimal to Binary

Decimal Binary
(27.375)10 (??)2

number ÷÷2 Remainder

27 13 1
13 6 1
6 3 0
3 1 1
1 0 1

Arrange remainders in reverse order: 11011

27.37510=11011.0112 ⇒

Arrange in order: 011

number X2 Integer

0.375 0.75 0
0.75 1.50 1
0.50 1.0 1

  If the number includes a radix point, it is necessary to
separate the number into an integer part and a fraction
part, each part must be converted differently.

8

Conversion: Octal to Binary
Octal Binary

345.56028 (??)2

345.56028=11100101.1011100000102

010000110101101100011

2065 . 543

Conversion: Binary to Octal
Binary Octal

11001110.01011012 (??)8

11
3
! 001

1
!110

6
! . 010

2
! 110

6
! 100

4
!

Group by 3’s
Add trailing zeros if necessary

Group by 3’s
 Add leading zeros if necessary

11001110.01011012 = 316.2648

 Note trailing zeros

9

Conversion: Binary to Hex
Binary Hex

11100101101.11110101112 (??)16

 = 72D.F5C16

110001011111.11010010 111

Group by 4’s
Add trailing zeros if
necessary

Group by 4’s
Add leading zeros if

necessary

 Note trailing zeros

7 2 D C5F

Conversion: Hex to Binary
Hex Binary

B9A4.E6C16 (??)2

 1011100110100100.1110011011002

CEAB
110001101110.0100101010011011

649

10

Conversion: Hex to Decimal
Hex Decimal

B63.4C16 (??)10

10
21012 296875.29151612164.1631661611 =×+××+×+× −−

162 161 160 16-1 16-2

B (=11) 6 3 4 C (=12)
= 2816 + 96 + 3 + 0.25 + 0.046875 = 2915.296875

Quiz Time!!!
n  Convert (10111100.00001110)b to Octal

form
A.  (274.034)o
B.  (570.016)o
C.  (270.014)o
D.  (574.034)o

11

Binary Arithmetic

Binary Addition

Truth Table
a b sum carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

a + b

1

+1

2

Let a = 1, b = 1, what is the sum?

1
+1

(sum=0, carry=1) 1 0

12

Binary Addition – Examples

1 1 0
1 1

+ 1 1 1
1 0 0 0 0

6
3
7

16

1 1 0 1 1 . 1 0 1
+ 1 0 1 0 . 1 1 1
1 0 0 1 1 0 . 1 0 0

27.625
10.875

38.5

Note: Addition rule for binary non-integers same as
for integers.

Binary Subtraction

a b Difference Borrow

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

a - b

Truth table

a = minuend
b = subtrahend

0

- 1

(diff=1, borrow=1) 1

13

14
- 4
10

Binary Subtraction – Examples

1 1 1 0
- 1 0 0
1 0 1 0

Note: Subtraction rule for binary non-integers same as
for integers.

13
- 2
11

1 1 0 1
- 1 0

1 0 1 1

49
- 19

30

1 1 0 0 0 1
- 1 0 0 1 1

1 1 1 1 0

Binary Multiplication

a b Product

0 0 0

0 1 0

1 0 0

1 1 1

a x b

Truth table

14

Binary Multiplication – Example

1 1 0 1 . 1
x 1 0 1 0 . 1

 1 1 0 1 1
 0 0 0 0 0

 1 1 0 1 1
 0 0 0 0 0

 1 1 0 1 1
1 0 0 0 1 1 0 1.1 1

Note: Rule for positioning binary point identical to that in decimal
number system.

Binary Numbers

n  Number of permutations double with every extra
bit

n  2n unique numbers can be represented by n bits

No. of
bits

Distinct nos.

1 2 {0,1}

2 4 {00, 01, 10, 11}

3 8 {000, 001, 010, 011, 100, 101, 110, 111}

n 2n

n  How many distinct numbers can be represented by n bits?

15

Signed Binary Numbers

Negative numbers representation

n  Three kinds of representations are common:
1.  Signed Magnitude (SM)
2.  One’s Complement
3.  Two’s Complement

16

Signed Magnitude Representation

[0,1] {…………}

8 bit representation for +13 is 0 0001101

8 bit representation for -13 is 1 0001101

Sign bit
(left most)

(n -1)
magnitude bits

n  0 indicates +value
n  1 indicates -value

1’’s Complement Notation

n  The idea is to leave positive numbers as is, but to
represent negative numbers by the 1’s Complement of
their magnitude.

n  Example: Let n = 4. What is the 1’s Complement
representation for +6 and -6?
n  +6 is represented as 0110 (as usual in binary)
n  -6 is represented by 1’s complement of its magnitude (6)

Let N be an n-bit number and Ñ(1) be the 1’s
Complement of the number. Then,

Ñ(1) = 2n - 1 - N

17

1’’s Complement Notation

n  1’s C representation can be computed in 2 ways:
n  Method 1: 1’s C representation of -6 is:
 24 - 1 - |N| = (16 – 1 – 6)10 = (9)10 = (1001)2

n  Method 2: For -6, the magnitude = 6 =
(0110)2

n  The 1’s C representation is obtained by
complementing the bits of the magnitude:
(1001)2

n  24 - 1 - |N| = (16)10 – 1 – |N| = (15)10 – |N|
 = (1111)2 – |N|

2’’s Complement Notation

n  Again, the idea is to leave positive numbers as is, but to
represent negative numbers by the 2’s C of their
magnitude.

n  Example: Let n = 5. What is the 2’s C representation for
+11 and -13?
n  +11 is represented as 01011 (as usual in binary)
n  -13 is represented by 2’s complement of its magnitude (13)

Let N be an n bit number and Ñ(2) be the 2’s
C of the number. Then,

Ñ(2) = 2n - N

18

2’’s Complement Notation

n  2’s C representation can be computed in 2 ways:
n  Method 1: 2’s C representation of -13 is:
 25 - |N| = (32 – 13)10 = (19)10 = (10011)2

n  Method 2: For -13, the magnitude = 13 =
(01101)2

n  The 2’s C representation is obtained by adding
1 to the 1’s C of the magnitude

n  25 - |N| = (25 – 1 – |N|) + 1 = 1’s C + 1

100111001001101 1 '1 ⎯⎯→⎯⎯⎯→⎯ addCs

Comparing all Signed Notations (4-bit)

n  In all 3 representations, a
–ve number has a 1 in
MSB location

n  To handle –ve numbers
using n bits,
n  2n-1 symbols can be used

for positive numbers
n  2n-1 symbols can be used

for negative umbers

n  In 2’s C notation, only 1
combination used for 0

4-bit No. SM 1’’s C 2’’s C

0000 +0 +0 0
0001 1 1 1

0010 2 2 2

0011 3 3 3

0100 4 4 4

0101 5 5 5

0110 6 6 6

0111 7 7 7

1000 -0 -7 -8

1001 -1 -6 -7

1010 -2 -5 -6

1011 -3 -4 -5

1100 -4 -3 -4

1101 -5 -2 -3

1110 -6 -1 -2

1111 -7 -0 -1

≅

≅

19

Addition of Signed Numbers
n  SM notation awkward for computations
n  1’s C is better, but not as widely used as 2’s

C which is very convenient
n  The 4 combinations that need to be

considered for signed number addition are
1.  (+) + (+)
2.  (-) + (+)
3.  (+) + (-)
4.  (-) + (-)

Addition of Signed Numbers
Examples below are shown for 4-bit 2’s C arithmetic.

 (+5)
+(+2)

 (+7)

 0101
+0010

 0111

 1. (-5)
+(+2)

 (-3)

 1011
+0010

 1101

 2.

 (+5)
+(-2)

 (+3)

 0101
+1110

 0011

 3.

 1
 ignore the carry

 (-5)
+(-2)

 (-7)

 1011
+1110

 1001

 4.

 1
 ignore the carry

What’s the meaning of overflow? When does it occur?
How can subtraction be done in 2’s C arithmetic?

20

Overflow
n  Example: 7 + 6 (each number in signed 4-bit)

 + 7: 0111
+ 6: 0110
+13: 1101 à -3

n  Overflow if result out of range
Overflow

Operation Operand A Operand B Result Indicating
overflow

A+B ≥0 ≥0 <0
A+B <0 <0 ≥0
A-B ≥0 <0 <0
A-B <0 ≥0 ≥0

 CSE4210 Architecture & Hardware for DSP

Verilog

21

 CSE4210 Architecture & Hardware for DSP

BBaassiicc VVeerriilloogg CCoonncceeppttss

Comments
Identifiers
Logic Values
Data Types
Numbers
Strings

Verilog Comments
n  Single line comments:

n  Begin with "//" and end with a carriage return
n  May begin anywhere on the line.

n  Multiple line comments:
n  Begin with "/*" and end with a "*/"
n  May begin and end anywhere on the line
n  Everything in between is commented out

n  Coding style tip - Use single line comments for
comments. Reserve multi-line comments for
commenting out a section of code.

22

An Example
module pound_one;
reg [7:0] a,a$b,b,c; // register declarations
reg clk;

initial
 begin
 clk=0; // initialize the clock
 c = 1;
 forever #25 clk = !clk;
 end
/* This section of code implements
 a pipeline */
always @ (posedge clk)
 begin
 a = b;
 b = c;
 end
endmodule

Identifiers
n  Identifiers are names assigned by the user

to Verilog objects such as modules,
variables, tasks etc.

n  An identifier may contain any sequence of
letters, digits, a dollar sign '$' , and the
underscore '_' symbol.

n  The first character of an identifier must be
a letter or underscore; it cannot be a dollar
sign '$' , for example. We cannot use
characters such as '-' (hyphen), brackets,
or '#' in Verilog names (escaped identifiers
are an exception).

23

Escaped Identifiers
n  The use of escaped identifiers allow any character

to be used in an identifier.
n  Escaped identifiers start with a backslash (\) and end with

white space (White space characters are space, tabs,
carriage returns).

n  Gate level netlists generated by EDA tools (like DC) often
have escaped identifiers

n  Examples:
n  \/clock = 0;
n  \a*b = 0;
n  \5-6
n  \bus_a[0]
n  \bus_a[1]

 module identifiers; /* Multiline comments in Verilog look like C comments
 and // is OK in here. */
 // Single-line comment in Verilog.
 reg legal_identifier, two__underscores;
 reg _OK,OK_,OK_$,OK_123,CASE_SENSITIVE, case_sensitive;
 reg \/clock ,\a*b ; // Add white_space after escaped identifier.
 //reg $_BAD,123_BAD; // Bad names even if we declare them!
 initial begin
 legal_identifier = 0; // Embedded underscores are OK,
 two__underscores = 0; // even two underscores in a row.
 _OK = 0; // Identifiers can start with underscore
 OK_ = 0; // and end with underscore.
 OK$ = 0; // $ sign is OK.
 OK_123 =0; // Embedded digits are OK.
 CASE_SENSITIVE = 0; // Verilog is case-sensitive (unlike VHDL).
 case_sensitive = 1;
 \/clock = 0; // An escaped identifier with \ breaks rules
 \a*b = 0; // but be careful to watch the spaces!
 $display("Variable CASE_SENSITIVE= %d",CASE_SENSITIVE);
 $display("Variable case_sensitive= %d",case_sensitive);
 $display("Variable \/clock = %d",\/clock);
 $display("Variable \\a*b = %d",\a*b);
 end
 endmodule

An Example

24

Simulation Result of the Example

Variable CASE_SENSITIVE= 0
Variable case_sensitive= 1
Variable /clock = 0
Variable \a*b = 0

Logic values
n  Verilog has 4 logic Values:

n  ‘‘0’’ represents zero, low, false, not
asserted.

n  ‘‘1’’ represents one, high, true, asserted.
n  ‘‘z’’ or ‘‘Z’’ represent a high-impedance

value, which is usually treated as an 'x'
value.

n  ‘‘x’’ or ‘‘X’’ represent an uninitialized or an
unknown logic value--an unknown value is
either '1' , '0' , 'z' , or a value that is in a
state of change.

25

Data Types
n  Three data type classes:

n  Nets
n  Physical connections between devices

n  Registers
n  Storage devices, variables.

n  Parameters
n  Constants

Nets
n  Most common Net types

n  wire and tri (which are identical);
n  supply1 and supply0 (which are equivalent to the positive

and negative power supplies respectively).
n  The wire data type is analogous to a wire in an ASIC.

A wire cannot store or hold a value. A wire must be
continuously driven by an assignment statement. The
default initial value for a wire is 'z’

example:
 wire a,b; // scalar wires

26

Registers
n  A register data type is declared using the keyword

reg and is comparable to a variable in a
programming language.

n  A storage device. But a reg is not always equivalent
to a hardware register, flip-flop, or latch.

n  On the LHS of an assignment a register data type is
updated immediately and holds its value until
changed again.

n  The default initial value for a reg is 'x' .

reg a; // scalar reg variable
reg [7:0] in_bus; // vectored reg variable

Parameters
n  parameters:

n  run-time constant
n  used anywhere a literal may
n  for synthesis, must be integer and must

be defined before being used
 syntax:
parameter <[msb:lsb]> identifier = value <, identifier = value ...> ;

examples:
 parameter [2:0] a = 1; // 3-bit
 parameter

 depth = 32, // default depth
 width = 8; //default width

27

Numbers
n  Constant numbers are integer or real constants .
n  Integers may be sized or unsized.

n  Syntax: <size>'<base><value>
 where:

n  <size> is the number of bits
n  <base is b or B (binary), o or O (octal), d or D (decimal), h

or H (hex)
n  <value> is 0-9 a-f A-F x X z Z ? _
n  Examples: 2'b01, 6'o243, 78, 4'ha,

n  Default radix is decimal, i.e. 1=1'd1
n  underscores (_) are ignored (use them as you

would commas), e.g. 836_234_408_566_343
n  a "?" is interpreted as Z (high impedance), 2'b??

=2'bzz
n  When <size> is less than <value> - the upper bits

are truncated, e.g. 2'b101->2'b01, 4'hfcba->4'ha

Points to Note
n  When <size> is greater than <value>, and the left-most bit

of <value> is 0 or 1, then zero's are extended to <size>
bits.

n  4'b01 -> 4'b0001, 16'h0 -> 16'h0000
n  4'b11 -> 4'b0011, 16'h1 -> 16'h0001

n  When <size> is greater than <value>, and the left-most bit
of <value> is an x then the x value is extended to <size>
bits

n  4'bx1 -> 4'bxxx1, 16'hx -> 16'hxxxx

n  When <size> is greater than <value>, and the left-most bit
of <value> is a z then the z value is extended to <size>
bits

n  4'bz1 -> 4'bzzz1, 16'hz ->16'hzzzz

n  Real numbers may be either in decimal or scientific
notation
n  Syntax: <value>.<value> or <mantissa>e<exp>

n  6.439 or 5.3e6

28

Examples
n  3.14 decimal notation
n  6.4e3 scientific notation for 6400.0
n  16'bz 16 bit z (z is extended to 16 bits)
n  83 unsized decimal
n  8'h0 8 bits with 0 extended to 8 bits
n  2'ha5 2 bits with upper 6 bits truncated

 (binary equivalent = 01)
n  2_000_000 2 million
n  16'h0x0z 16'b0000xxxx0000zzzz
n  Coding style tip - don't use " ? " in a number to

indicate high impedance. It only adds confusion. If
you want high impedance use " z "!!

Strings
n  Strings are enclosed in double quotes and

are specified on one line.
n  Verilog recognizes normal C escape

Characters (\t, \n, \\, \",%%).

examples:
 parameter A_String = "abc";
 // string constant, must be on one line
 parameter Say = "Say \"Hey!\"";
 // use escape quote \" for an embedded quote
 parameter Tab = "\t"; // tab character

29

 CSE4210 Architecture & Hardware for DSP

CCooddee SSttrruuccttuurree

Design Entities
Verilog Module Basics

Design Entities
n  The module is the basic unit of code in the

Verilog language.
n  Example
 module holiday_1(sat, sun,weekend);
 input sat, sun;
 output weekend;
 assign weekend = sat | sun;
 endmodule

30

Verilog Module
 Modules contain

 declarations
  functionality
  timing

syntax:
module module_name (signal, signal,... signal) ;
. ; //content of module
.
..
.
endmodule

module name (port_names);

module port declarations

data type declarations

procedural blocks

continuous assignments

user defined tasks & functions

primitive instances

module instances

specify blocks

endmodule

Basic Modeling Structure

always @ (posedge clk)....

assign #3 out=(sel)?in0:in1;

 Body
Instances
Concurrent blocks

Ports

Module

Pins, Interface

Levels of
abstractions

Multilevel

31

Module Port Declarations

n  Scalar (1bit) port declarations:
n  port_direction port_name, port_name ... ;

n  Vector (Multiple bit) port declarations:
n  port_direction [port_size] port_name, port_name ... ;

n  port_direction : input, inout (bi-directional) or output
n  port_name : legal identifier
n  port_size : is a range from [msb:lsb]

input a, into_here, george; // scalar ports
input [7:0] in_bus, data; //vectored ports
output [31:0] out_bus; //vectored port
inout [maxsize-1:0] a_bus; //parameterized port

Port Connection Rules
n  Inputs:

n  Internally must be of net data type.
n  Externally the inputs may be connected to a reg or net

data type.
n  Inouts

n  Internally must be of net data type.
n  Externally must be connected to a net data type.

n  Outputs
n  Internally may be of net or reg data type.
n  Externally must be connected to a net data type.

32

Module Instances

syntax for instantiation with port order:
module_name instance_name (signal, signal,...);

syntax for instantiation with port name:
module_name instance_name (.port_name(signal), .port_name (signal),...);

  A module may be instantiated within another module.
  There may be multiple instances of the same module.
  Ports are either by order or by name.
  Use by order unless there are lots of ports
  Use by name for libraries and other peoples code
  Can not mix the two syntax's in one instantiation

module example (a,b,c,d);
input a,b;
output c,d;
. . . .
endmodule

example ex_inst_1(in_1, in_2, w, z);
example ex_inst_2(in_1, in_2, , z); // skip a port
example ex_inst_3 (.a(w), .d(x), .c(y), .b(z));

Gate-level Primitives
n  Verilog has pre-defined primitives that

implement basic logic functions.
n  Structural modeling with the primitives is

similar to schematic level design.
 and nand or nor xor xnor

buf not bufif0 bufif1 notif0 notif1

module
gate_level_ex(in_1,in_2,c);
output c;
input in_1,in_2;

nand (a, in_1, in_2);
not (b, a);
or or_1(c, in_2, b);

endmodule

in_1
in_2 c

b a

or_1

33

An Example
Module simple_latch (q, qBar, set, clear);

 input set, clear;
 output q, qBar;
 nand #2 n1(q,qBar,set);
 nand #2 n2(qBar,q,clear);

endmodule

n1

n2

q

qBar

set

clear

User-Defined Primitives
n  We can define primitive gates (a user-defined

primitive or UDP) using a truth-table specification.
The first port of a UDP must be an output port, and
this must be the only output port (we may not use
vector or inout ports).

n  An example
 primitive Adder(Sum, InA, InB);
 output Sum;
 input InA, InB;
 table // inputs : output
 00 : 0;
 01 : 1;
 10 : 1;
 11 : 0;
 endtable
 endprimitive

34

User-Defined Functions
n  Similar to functions in other programming languages. Functions

are useful to model combinational logic (rather like a subroutine)

n  size is optional and is of form [msb:lsb]
n  type is optional and is either integer or real
n  Returns the value assigned to the name of the function.
n  Functions may not contain timing controls.
n  Functions must have at least one input.
n  Looks local first then global to module for referenced variables.
n  Functions may be called

n  within a continuous assignment e.g. assign b = func(a);
n  indirectly within an instantiation e.g. mod U1 (one, func (a, b));
n  nested within another function

syntax:
function <[size or type]> name_of_function;
input declarations
local variable declarations
statement or statement_group
endfunction

Function - Example
`define FALSE 0
`define TRUE 1
module function_ex (clk);
input clk;
reg r1,r2,r3;

function error; // the function definition
input[7:0] a,b,c;
 if ((a !=b) && (a !=c))
 error = `FALSE; // assign value to the name of the function
 else error = `TRUE;
endfunction

always @ (posedge clk)
if (error(r1,r2,r3)) // call of the function
$display ("error in reg compare");

// another example call below
reg d;
always @ (posedge clk)
 d = error(r1,r2,r3);
endmodule

  A function can be called where a
value may be placed in your code

35

Operators
n  Verilog operators (in increasing order of precedence)

n  ?: (conditional)
n  || (logical or)
n  && (logical and)
n  | (bitwise or)
n  ~| (bitwise nor)
n  ^ (bitwise xor)
n  ^~ ~^ (bitwise xnor, equivalence)
n  & (bitwise and)
n  ~& (bitwise nand)
n  == (logical) != (logical) === (case) !== (case)
n  < (lt)
n  <= (lt or equal)
n  > (gt)
n  >= (gt or equal)
n  << (shift left)
n  >> (shift right)
n  + (addition)
n  - (subtraction)
n  * (multiply)
n  / (divide)
n  % (modulus)

 CSE4210 Architecture & Hardware for DSP

PPrroocceedduurreess aanndd
AAssssiiggnnmmeennttss

Procedural Assignment
Continuous Assignment
Control Statement

36

Procedures
n  A Verilog procedure is an always or

initial statement, a task , or a function .
n  The statements within a sequential block

(statements that appear between a begin
and an end) that is part of a procedure
execute sequentially in the order in which
they appear, but the procedure executes
concurrently with other procedures.

Procedural Blocks
n  There are two types of procedural blocks:

n  initial blocks - executes only once
n  always blocks - executes in a loop

n  Multiple Procedural blocks may be used, if so the
multiple blocks are concurrent.

n  Procedural blocks may have:
n  Timing controls - which delays when a statement may be

executed
n  Procedural assignments
n  Programming statements

37

Procedural Statement Groups
n  When there is more than one statement within a

procedural block the statements must be grouped.
n  Sequential grouping: statements are enclosed within

the keywords begin and end.
n  An example
 always

begin
a = 5; // executed 1st
c = 4; // executed 2nd
wake_up = 1; // executed 3rd

end

Timing Controls (procedural delays)
n  #delay - simple delay

n Delays execution for a specific number of time steps.
 #5 reg_a = reg_b;

n  @ (edge signal) - edge-triggered timing control
n Delays execution until a transition on signal occurs.
n  edge is optional and can be specified as either posedge or
negedge.
n Several signal arguments can be specified using the
keyword or.
n An example : always @ (posedge clk) reg_a = reg_b;

n  wait (expression) - level-sensitive timing control
n Delays execution until expression evaluates true.
n wait (cond_is_true) reg_a = reg_b;

38

Time & Event Queues
time

t

t+1

t+2

t+3

Event Queues

  Time can only advance forward.
  Time advances when every event scheduled at that time step is

executed.
  Simulation completes when all event queues are empty
  An event at time t may schedule another event at time t or any other

time t+n

Procedural assignments
n  Assignments made within procedural

blocks are called procedural assignments.
n  Value of the RHS of the equal sign is

transferred to the LHS
n  LHS must be a register data type (reg,

integer, real). NO NETS!
n  RHS may be any valid expression or signal

always @ (posedge clk)
begin

a = 5; // procedural assignment
c = 4*32/6; // procedural assignment
wake_up =$time; // procedural assignment

end

39

Blocking Assignments
n  Blocking assignments.

n  RHS expression evaluated and assignment is
scheduled.

n  Delayed Blocking assignments.
n  Evaluation of the assignment is delayed by

the timing control.
n  RHS expression evaluated and assignment is

scheduled.
Blocking assignment:
initial

begin
a = b;
c = d;

end

Delayed Blocking assignments:
initial

begin
#1 a = b;
#1 c = d;

end

Blocking Assignments Example

n  RHS expression evaluated.
n  Assignment is scheduled in sequence.

initial
begin

a = b;
c = d;
e = f;

end

t
t+1
t+2
t+3

Event Queues Time

<-- Execution order

a<-b(t) c<-d(t) e<-f(t)

40

Non Blocking Assignments
n  The nonblocking procedural assignment

statement allows execution in a sequential block
to continue and registers are all updated
together at the end of the current time step.
n  RHS expression evaluated.
n  Assignment is scheduled at the end of the queue .
n  Assignment is made at end of the time step.

initial
begin

a <= b;
end

Non-blocking Assignments Example

n  RHS expression evaluated.
n  Assignment is scheduled at the end of

the queue .

initial
begin

a <= b;
end

t
t+1
t+2
t+3

Event Queues Time

<-- Execution order

a<-b(t)

41

Assignments and Synthesis (1)
module two_stage(Q, D, CLK);
input D, CLK;
output Q;

reg Q, P;

always @ (posedge CLK)
 begin
 Q = P;
 P = D;
 end

Q3. Does this simulate a pipe ?
A3. _____

Q4. Which does it synthesize into?
A4. ___________

module two_stage(Q, D, CLK);
input D, CLK;
output Q;

reg Q, P;

always @ (posedge CLK)
 begin
 P = D;
 Q = P;
end

Q1. Does this simulate a pipe ?
A1. _____

Q2. Which does it synthesize into?
A2. ___________

Conclusion: Blocking assignments are order dependent!
(for both simulation and synthesis)

D

CLK

P

 Q

D

CLK

P

 Q

is_a_pipe

not_a_pipe

Assignments and Synthesis (2)

module two_stage(Q, D, CLK);
input D, CLK;
output Q;

reg Q, P;

always @ (posedge CLK)
 begin
 Q <= P;
 P <= D;
 end

Synthesizes into this...

module two_stage(Q, D, CLK);
input D, CLK;
output Q;

reg Q, P;

always @ (posedge CLK)
 begin
 P <= D;
 Q <= P;
end

Synthesizes into this...

Conclusion: Non-blocking assignments are order independent!

D

CLK

P

 Q

D

CLK

P

 Q

42

An Example
module pound;

reg [7:0] a,b,c,d,e,f;
reg clk;
initial
 begin
 clk=0;
 f = 1;
 forever
 #25 clk = !clk;
 end
/*** group 1 ***/
always @ (posedge clk) // group 1
 begin
 e = f;
 end
/*** group 2 ***/
always @ (posedge clk) // group 2
 begin
 c = d;
 d = e;
 end

/*** group 3 ***/
always @ (posedge clk) // group 3
 begin
 a = b;
 b = c;
 end
/*** group 4 ***/
always @ (posedge clk) // group 4
 begin
 f = f + 1;
 end
initial
$monitor (f,,e,,d,,c,,b,,a);
initial
 #700 $stop;
endmodule

Procedural Assignment Example

Expected output:
f e d c b a
1 x x x x x
2 1 x x x x
3 2 1 x x x
4 3 2 1 x x
5 4 3 2 1 x
6 5 4 3 2 1
7 6 5 4 3 2
and so on

f f + 1 e d c b a

43

Continuous Assignment
n  Continuous assignment assigns a value to a

wire in a similar way that a real logic gate
drives a real wire.

n  The main use for continuous assignments is to
model combinatorial logic.

 module continuous (Ain, Aout);
 input Ain;
 output Aout;
 assign Aout = ~Ain //continuous assignment.
 endmodule

AoutAin

syntax: Explicit continuous assignment:
assign net_name = expression;

where net_name is a net that has been previously declared

Illustration of Assignment Statements
module assignments

 //... Continuous assignments go here.
 always // beginning of a procedure
 begin // beginning of sequential block
 //... Procedural assignments go here.
 end

endmodule

44

Control Statements

n  Two types of programming statements:
n  Conditional
n  Looping

n  Programming statements only used in
procedural blocks

syntax:
if(expression) statement

If the expression evaluates to true then execute the statement (or
statement group)

if(expression) statement1
else statement2

If the expression evaluates to true then execute statement1,
if false, then execute statement2 (or corresponding statement groups).

 module if_ex(clk);
 input clk;
 reg red,blue,pink,yellow,orange,color,green;
 always @ (posedge clk)
 if (red || (blue && pink))
 begin
 $display ("color is mixed up");
 color <= 0; // reset the color
 end
 else if (blue && yellow)
 $display ("color is greenish");
 else if (yellow && (green || orange))
 $display ("not sure what color is");
 else $display ("color is black");
endmodule

if and if-else

45

syntax:
case (expression)

case_item_1: statement or statement_group
case_item_2,
case_item_3: statement or statement_group
case_item_n: statement or statement_group
default: statement or statement_group

endcase
  Does an identity comparison (But only simulation will match x, z)
  Compares expression with each case_item_(n) in turn.
  If none match, the default code is executed.
  default clause is ideal to catch unknown/unspecified values

case

reg [2:0] reg_a, reg_b;
always @ (posedge clk)

case (reg_a)
3'b000: reg_b <= 0;
3'b001: reg_b <= 1;
3'b010,
3'b011: reg_b <= 3;
default: reg_b <= 5;

endcase

casez, casex
  casez - special version of case that allows the Z
logic value in the case-items (z or ? treated as a
don’t care).
  casex - special version of case that allows the Z or
X logic value in the case-items (x or z or ? treated
as don’t cares).
 reg [2:0] reg_a, reg_b;

always @ (posedge clk)
casex (reg_a)

3'b000: reg_b <= 0;
3'b001: reg_b <= 1;
3'b01?: reg_b <= 2;
3'b011: reg_b <= 3;
3'b1x0: reg_b <= 4;
default: reg_b <= 5;

endcase

Coding style tip - to save confusion use " ? " as the don't care
indicator.

46

Which to use: case or if-else ?

n  Some general rules to remember:
n  Use if-else where you MUST have priority

encoded logic
n  Use case for non-priority encoded logic

n  case items are mutually exclusive
n  Always specify a default clause in case statements

Inferred latches in Synthesis
Latches can be accidentally inferred from Verilog RTL

code

An example:

 When using if - else and case all possible states and
values must be specified including default or else
storage devices are added

The following generates a mux:
reg out, sel, a, b;
always @ (sel or a or b)
if(sel)

out = a;
else out = b;

The following infers a latch:
always @ (sel or a or b)
if(sel)

out = a;

Can you see why?

47

Avoiding Inferred latches

Specify all case/if structures thoroughly!

-or-

Assign a default value to all outputs before the if/case structure:

module default (out, sel, a);
input sel; a;
output out;
reg out, sel, a;
always @(sel or a)
 begin
 out = 1’’b1;
 if(sel) // no else is no problem now!

out = a;
 end
endmodule

forever
syntax:
forever statement or statement_group
  statement or statement_group is continuously
executed.
  An infinite loop.

module clock_gen;
reg clk;
initial

begin
clk = 0;
forever #25 clk = !clk; //50 time step clock

end
endmodule

48

while
syntax:
while (expression) statement

or statement_group
  statement or statement_group
is continuously executed as
long as expression evaluates
true (or non zero).
  In synthesis, the loop must
contain an edge-triggered
timing control, i.e. @(posedge
clk) or @ (negedge clk)

module while_ex (clk, a,b,c);
input clk;
input [1:0] a,b;
output [1:0] c;
reg [1:0] c;

always
begin
@ (posedge clk)
 while (c < b)
@ (posedge clk)
 c = c + a;
end
endmodule

for
syntax:
for (assignment_init; expression; assignment)

statement or statement_group
  The assignment_init is executed once at the start of
the loop.
  Loop executes as long as expression is true.
  The assignment is executed at the completion of
each loop.

module for_ex1 (clk);
input clk;
reg [31:0] mem [0:9]; // 10x32 memory
integer i;
always @ (posedge clk)
 for (i = 9; i >= 0; i = i-1)

 mem[i] = 0; // init the memory to zeros
endmodule

49

Ever see a hardware for?
HDL Compiler® simply unrolls the loop...

module for_ex2(start_cnt,cnt);
input start_cnt;
output [7:0] cnt;
integer i;
reg [7:0] vec,cnt;
always @ (start_cnt)
 for (i = 0; i <= 3; i = i+1)

 if (vec[i] == 1'b0)
 cnt = cnt + 1;

endmodule

module for_ex3(start_cnt,cnt);
input start_cnt;
output[7:0] cnt;
integer i;
reg [7:0] vec,cnt;
reg start_cnt;
always @ (start_cnt)
begin
 if (vec[0] == 1'b0)
 cnt = cnt + 1;
 if (vec[1] == 1'b0)
 cnt = cnt + 1;
 if (vec[2] == 1'b0)
 cnt = cnt + 1;
 if (vec[3] == 1'b0)
 cnt = cnt + 1;
end
endmodule

unrolls
 into
 this

  You can’t re-assign the loop variable from
within the for loop. It’s supposed to be a constant!

  Beware using complex functions inside a for-loop. They

can easily be replicated unnecessarily by the unrolling.
The example here generates 4 adders!

  For synthesis you can’t embed edge-triggered timing controls in for loops

  Must use constants in expression limit.

 CSE4210 Architecture & Hardware for DSP

SSiimmuullaattiioonn

50

Simulation Environment

Simulator

INPUT OUTPUT

models.v

test vectors

libraries

Assembly/
Microcode

Textual messages

Tabular output

Graphical waveform

Visual drawings

control
commands

Feedback

Simulating the Verilog Code

n  Verilog code of NAND Latch
Module simple_latch (q, qBar, set, clear);

 input set, clear;
 output q, qBar;
 nand #2 n1(q,qBar,set);
 nand #2 n2(qBar,q,clear);

endmodule

n1

n2

q

qBar

set

clear

51

Testbench
n  A testbench generates a sequence of input

values (we call these input vectors) that
test or exercise the verilog code.

n  It provides stimulus to the statement that
will monitor the changes in their outputs.

n  Testbenchs do not have a port declaration
but must have an instantiation of the circuit
to be tested.

A testbench for NAND Latch
Module test_simple_latch;

 wire q, qBar;
 reg set, clear;
 simple_latch SL1(q,qBar,set,clear);
 initial
 begin
 #10 set = 0; clear = 1;

 #10 set = 1;
 #10 clear = 0;

 #10 clear = 1;
 #10 $stop;
 #10 $finish;
 end
 initial
 begin
 $monitor (“%d set= %b clear= %b q=%b qBar=%b”,$time,

 set,clear,q,qBar);
 end

endmodule

