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Four Important Number Systems 
System	
   Why?	
   Remarks	
  

Decimal Base 10 (10 fingers) Most used 
system 

Binary Base 2. On/Off 
systems 

3 times more 
digits than 
decimal 

Octal Base 8.Shorthand 
notation for working 
with binary 

3 times less 
digits than binary 

Hex Base 16 4 times less 
digits than binary 

Positional Number Systems 
n  Have a radix r (base) associated with them. 
n  In the decimal system, r = 10: 

n  Ten symbols: 0, 1, 2, ..., 8, and 9 
n  More than 9 move to next position, so each 

position is power of 10 
n  Nothing special about base 10 (used 

because we have 10 fingers) 
n  What does 642.39110 mean? 

6 x 102 + 4 x 101 + 2 x 100   .   3 x 10-1 + 9 x 10-2 + 1 x 10-3 

Radix point Increasingly +value 
powers of radix 

Increasingly -value 
powers of radix 
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Positional Number Systems 

Base 10 
(r) 

 102 

(100) 
101 

(10) 
100 

(1) 
10-1 

(0.1) 
10-2 

(0.01) 
10-3 

(0.001) 
Coefficient 

(aj) 
6 4 2 3 9 1 

Product: aj*ri 600 40 2 0.3 0.09 0.001 
Value = 600 + 40 + 2 + 0.3 + 0.09 + 0.001 = 642.391 

n  What does 642.39110 mean? 
Radix point 

n Multiply each digit by appropriate power of 10 
and add them together 

n  In general:  i
n

mi
j ra ×∑

−=

Positional Number Systems 

Number 
system 

Radix Symbols 

Binary 2 {0,1} 

Octal 8 {0,1,2,3,4,5,6,7} 

Decimal 10 {0,1,2,3,4,5,6,7,8,9} 

Hexadecimal 16 {0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f} 
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Binary Number System 
Decimal Binary Decimal Binary 
0 0000 8 1000 
1 0001 9 1001 
2 0010 10 1010 
3 0011 11 1011 
4 0100 12 1100 
5 0101 13 1101 
6 0110 14 1110 
7 0111 15 1111 

Octal Number System 
Decimal Octal Decimal Octal 

0 0 8 10 
1 1 9 11 
2 2 10 12 
3 3 11 13 
4 4 12 14 
5 5 13 15 
6 6 14 16 
7 7 15 17 
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Hexadecimal Number System 
Decimal Hex Decimal Hex 

0 0 8 8 
1 1 9 9 
2 2 10 A 
3 3 11 B 
4 4 12 C 
5 5 13 D 
6 6 14 E 
7 7 15 F 

Four Number Systems 
Decimal Binary Octal Hex Decimal Binary Octal Hex 

0 0000 0 0 8 1000 10 8 
1 0001 1 1 9 1001 11 9 
2 0010 2 2 10 1010 12 A 
3 0011 3 3 11 1011 13 B 
4 0100 4 4 12 1100 14 C 
5 0101 5 5 13 1101 15 D 
6 0110 6 6 14 1110 16 E 
7 0111 7 7 15 1111 17 F 
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Conversion Between Number 
Systems 

Conversion: Binary to Decimal 

1 x 23 + 1 x 22 + 0 x 21 + 1 x 20  .   0 x 2-1 + 1 x 2-2 + 1 x 2-3 = 13.37510 

Binary point 

Binary Decimal 

1101.0112 (??)10 

r 23(8) 22(4) 21(2) 20(1) 2-1 

(0.5) 
2-2 

(0.25) 
2-3 

(0.125) 

aj 1 1 0 1 0 1 1 

aj*r 
 

8 4 0 1 0 0.25 0.125 

(1101.011)2= 8 + 4 + 1 + 0.25 + 0.125 = 13.375 
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Conversion: Decimal to Binary  

15510 = 100110112  

n  A decimal number can be converted to binary by 
repeated division by 2 if it is an integer 

Arrange 
remainders 
in reverse 
order 

number ÷÷2 Remainder 

155 77 1 Least Significant 
Bit (LSB) 

77 38 1 
38 19 0 
19 9 1 
9 4 1 
4 2 0 
2 1 0 
1 0 1 Most Significant 

Bit (MSB) 

Conversion: Decimal to Binary 

Decimal Binary  
(27.375)10 (??)2 

number ÷÷2 Remainder 

27 13 1 
13 6  1 
6 3  0 
3 1  1 
1 0  1 

Arrange remainders in reverse order: 11011 

27.37510=11011.0112 ⇒

Arrange in order: 011 

number X2 Integer 

0.375 0.75 0 
0.75 1.50  1 
0.50 1.0  1 

  If the number includes a radix point, it is necessary to 
separate the number into an integer part and a fraction 
part, each part must be converted differently.   
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Conversion: Octal to Binary 
Octal Binary  

345.56028 (??)2 

345.56028=11100101.1011100000102 

010000110101101100011

2065 . 543

Conversion: Binary to Octal 
Binary Octal 

11001110.01011012 (??)8 

11
3
! 001

1
!110

6
! . 010

2
! 110

6
! 100

4
!

Group by 3’s 
Add trailing zeros if necessary 

Group by 3’s 
 Add leading zeros if necessary 

11001110.01011012  =  316.2648 

 Note trailing zeros 
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Conversion: Binary to Hex 
Binary Hex 

11100101101.11110101112 (??)16 

 = 72D.F5C16 

110001011111.11010010 111 

Group by 4’s 
Add trailing zeros if 
necessary 

Group by 4’s 
Add leading zeros if 

necessary 

 Note trailing zeros 

7 2 D C5F

Conversion: Hex to Binary 
Hex Binary 

B9A4.E6C16 (??)2 

 1011100110100100.1110011011002 

CEAB
110001101110.0100101010011011

649
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Conversion: Hex to Decimal 
Hex Decimal 

B63.4C16 (??)10 

10
21012 296875.29151612164.1631661611 =×+××+×+× −−

162 161 160 16-1 16-2 

B (=11) 6 3 4 C (=12) 
= 2816 + 96 + 3 + 0.25 + 0.046875 = 2915.296875 

Quiz Time!!! 
n  Convert (10111100.00001110)b to Octal 

form 
A.  (274.034)o 
B.  (570.016)o 
C.  (270.014)o 
D.  (574.034)o 
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Binary Arithmetic 

Binary Addition 

Truth Table 
a    b sum carry 

0    0 0 0 

0    1 1 0 

1    0 1 0 

1    1 0 1 

a + b 

1 

+1    

2 

Let a = 1, b = 1, what is the sum? 

1 
+1    

(sum=0, carry=1) 1 0 
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Binary Addition – Examples 

1  1  0 
1  1    

+  1  1  1 
1  0  0  0   0 

6 
3 
7 

16 

1  1  0  1  1  .  1  0  1 
+     1  0  1  0  .  1  1  1 
1  0  0  1  1  0  .  1  0  0 

27.625 
10.875 

38.5 

Note: Addition rule for binary non-integers same as 
for integers. 

Binary Subtraction 

a    b Difference Borrow 

0    0 0 0 

0    1 1 1 

1    0 1 0 

1    1 0 0 

a - b 

Truth table 

a = minuend 
b = subtrahend 

0 

- 1    

(diff=1, borrow=1) 1 
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14 
- 4 
10 

Binary Subtraction – Examples 

1  1  1  0 
-  1  0  0 
1  0  1  0 

Note: Subtraction rule for binary non-integers same as 
for integers. 

13 
- 2 
11 

1  1  0  1 
- 1  0 

1  0  1  1 

49 
- 19 

30 

1  1  0  0  0  1 
- 1  0  0  1  1 

1  1  1  1  0 

Binary Multiplication 

a    b Product 

0    0 0 

0    1 0 

1    0 0 

1    1 1 

a x b 

Truth table 
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Binary Multiplication – Example 

1  1  0  1  .  1 
x  1  0  1  0  .  1 

                           1  1  0  1 1 
                    0  0  0  0  0 

            1  1  0  1  1 
    0  0  0  0  0  

           1  1  0  1  1 
1     0  0  0  1  1  0  1.1  1 

Note: Rule for positioning binary point identical to that in decimal 
number system. 

Binary Numbers 

n  Number of permutations double with every extra 
bit 

n  2n unique numbers can be represented by n bits 

No. of 
bits 

Distinct nos. 

1 2 {0,1} 

2 4 {00, 01, 10, 11} 

3 8 {000, 001, 010, 011, 100, 101, 110, 111}     

n 2n 

n  How many distinct numbers can be represented by n bits? 
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Signed Binary Numbers 

Negative numbers representation 

n  Three kinds of representations are common: 
1.  Signed Magnitude (SM) 
2.  One’s Complement  
3.  Two’s Complement 
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Signed Magnitude Representation 

[0,1] {…………} 

8 bit representation for +13 is   0 0001101 
 
8 bit representation for -13 is    1 0001101 

Sign bit 
(left most) 

(n -1) 
magnitude bits 

n  0 indicates +value  
n  1 indicates -value 

1’’s Complement Notation 

n  The idea is to leave positive numbers as is, but to 
represent negative numbers by the 1’s Complement of 
their magnitude. 

n  Example: Let n = 4. What is the 1’s Complement 
representation for +6 and -6? 
n  +6 is represented as 0110 (as usual in binary) 
n  -6 is represented by 1’s complement of its magnitude (6) 

Let N be an n-bit number and Ñ(1) be the 1’s 
Complement of the number. Then,  

Ñ(1) = 2n - 1 - N     
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1’’s Complement Notation  

n  1’s C representation can be computed in 2 ways: 
n  Method 1: 1’s C representation of -6 is: 
   24 - 1 - |N| = (16 – 1 – 6)10 = (9)10 = (1001)2 

n  Method 2: For -6, the magnitude = 6 = 
(0110)2  

n  The 1’s C representation is obtained by 
complementing the bits of the magnitude: 
(1001)2 

n  24 - 1 - |N| = (16)10 – 1 – |N| = (15)10 – |N|  
   = (1111)2 – |N| 

2’’s Complement Notation 

n  Again, the idea is to leave positive numbers as is, but to 
represent negative numbers by the 2’s C of their 
magnitude. 

n  Example: Let n = 5. What is the 2’s C representation for 
+11 and -13? 
n  +11 is represented as 01011 (as usual in binary) 
n  -13 is represented by 2’s complement of its magnitude (13) 

Let N be an n bit number and Ñ(2) be the 2’s 
C of the number. Then,  

Ñ(2) = 2n - N     
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2’’s Complement Notation 

n  2’s C representation can be computed in 2 ways: 
n  Method 1: 2’s C representation of -13 is: 
   25 - |N| = (32 – 13)10 = (19)10 = (10011)2 

n  Method 2: For -13, the magnitude = 13 = 
(01101)2  

n  The 2’s C representation is obtained by adding 
1 to the 1’s C of the magnitude  

n  25 - |N| = (25 – 1 – |N|) + 1 = 1’s C  + 1 

100111001001101 1  '1 ⎯⎯→⎯⎯⎯→⎯ addCs

Comparing all Signed Notations (4-bit) 

n  In all 3 representations, a 
–ve number has a 1 in 
MSB location 

n  To handle –ve numbers 
using n bits,  
n      2n-1 symbols can be used 

for positive numbers 
n      2n-1 symbols can be used 

for negative umbers 

n  In 2’s C notation, only 1 
combination used for 0 

4-bit No. SM 1’’s C 2’’s C 

0000 +0 +0 0 
0001 1 1 1 

0010 2 2 2 

0011 3 3 3 

0100 4 4 4 

0101 5 5 5 

0110 6 6 6 

0111 7 7 7 

1000 -0 -7 -8 

1001 -1 -6 -7 

1010 -2 -5 -6 

1011 -3 -4 -5 

1100 -4 -3 -4 

1101 -5 -2 -3 

1110 -6 -1 -2 

1111 -7 -0 -1 

≅

≅
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Addition of Signed Numbers 
n  SM notation awkward for computations 
n  1’s C is better, but not as widely used as 2’s 

C which is very convenient 
n  The 4 combinations that need to be 

considered for signed number addition are 
1.  (+) + (+) 
2.  (-)  + (+) 
3.  (+) + (-) 
4.  (-)  + (-) 

Addition of Signed Numbers 
Examples below are shown for 4-bit 2’s C arithmetic. 

  (+5) 
+(+2) 

  (+7) 

  0101 
+0010 

  0111 

  1.   (-5) 
+(+2) 

  (-3) 

  1011 
+0010 

  1101 

  2. 

    (+5) 
+(-2) 

  (+3) 

  0101 
+1110 

  0011 

  3. 

  1 
  ignore the carry 

                 

  

  (-5) 
+(-2) 

  (-7) 

  1011 
+1110 

  1001 

  4. 

  1 
  ignore the carry 

What’s the meaning of overflow? When does it occur?  
How can subtraction be done in 2’s C arithmetic? 
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Overflow 
n  Example: 7 + 6 (each number in signed 4-bit ) 

 +  7:   0111 
+  6:   0110 
+13:       1101  à -3 

n  Overflow if result out of range 
Overflow 

Operation Operand A Operand B Result Indicating 
overflow 

A+B ≥0 ≥0 <0 
A+B <0 <0 ≥0 
A-B ≥0 <0 <0 
A-B <0 ≥0 ≥0 

             CSE4210 Architecture & Hardware for DSP 

Verilog 
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BBaassiicc  VVeerriilloogg  CCoonncceeppttss  

Comments 
Identifiers 
Logic Values 
Data Types 
Numbers 
Strings 

Verilog Comments  
n  Single line comments: 

n  Begin with "//" and end with a carriage return 
n  May begin anywhere on the line. 

n   Multiple line comments: 
n  Begin with "/*" and end with a "*/" 
n  May begin and end anywhere on the line 
n  Everything in between is commented out 

n  Coding style tip - Use single line comments for 
comments.  Reserve multi-line  comments for 
commenting out a section of code. 
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An Example 
module pound_one; 
reg [7:0] a,a$b,b,c; // register declarations 
reg clk; 
 
initial 
 begin 
        clk=0;  // initialize the clock 
        c = 1; 
        forever  #25 clk = !clk; 
 end 
/*  This section of code implements 
     a pipeline */ 
always @ (posedge clk) 
 begin 
        a = b; 
        b = c; 
 end 
endmodule 

Identifiers 
n  Identifiers are names assigned by the user 

to Verilog objects such as modules, 
variables, tasks etc. 

n  An identifier may contain any sequence of 
letters, digits, a dollar sign '$' , and the 
underscore '_' symbol.  

n  The first character of an identifier must be 
a letter or underscore; it cannot be a dollar 
sign '$' , for example. We cannot use 
characters such as '-' (hyphen), brackets, 
or '#' in Verilog names (escaped identifiers 
are an exception).  
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Escaped Identifiers 
n  The use of escaped identifiers allow any character 

to be used in an identifier. 
n  Escaped identifiers start with a backslash (\) and end with 

white space (White space characters are space, tabs, 
carriage returns). 

n  Gate level netlists generated by EDA tools (like DC)  often 
have escaped identifiers 

n  Examples:  
n  \/clock = 0;       
n  \a*b = 0;  
n  \5-6 
n  \bus_a[0] 
n  \bus_a[1] 

         module identifiers; /* Multiline comments in Verilog   look like C comments  
     and // is OK in here. */  
     // Single-line comment in Verilog.  
        reg legal_identifier, two__underscores;  
        reg _OK,OK_,OK_$,OK_123,CASE_SENSITIVE, case_sensitive;  
       reg \/clock ,\a*b ; // Add white_space after escaped identifier.  
        //reg $_BAD,123_BAD; // Bad names even if we declare them!  
        initial begin  
      legal_identifier = 0; // Embedded underscores are OK,  
       two__underscores = 0; // even two underscores in a row.  
       _OK = 0; // Identifiers can start with underscore  
      OK_ = 0; // and end with underscore.  
       OK$ = 0; // $ sign is OK.  
       OK_123 =0; // Embedded digits are OK.  
       CASE_SENSITIVE = 0; // Verilog is case-sensitive (unlike VHDL).  
       case_sensitive = 1; 
       \/clock = 0; // An escaped identifier with \ breaks rules 
       \a*b = 0; // but be careful to watch the spaces!  
       $display("Variable CASE_SENSITIVE= %d",CASE_SENSITIVE); 
       $display("Variable case_sensitive= %d",case_sensitive);  
       $display("Variable \/clock = %d",\/clock );  
       $display("Variable \\a*b = %d",\a*b );  
        end  
    endmodule 

An Example 
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Simulation Result of the Example 

Variable CASE_SENSITIVE= 0  
Variable case_sensitive= 1  
Variable /clock = 0  
Variable \a*b = 0 

Logic values 
n  Verilog has 4 logic Values: 

n  ‘‘0’’ represents zero, low, false, not 
asserted. 

n  ‘‘1’’ represents one, high, true, asserted. 
n  ‘‘z’’ or ‘‘Z’’ represent a high-impedance 

value, which is usually treated as an 'x' 
value.  

n  ‘‘x’’ or ‘‘X’’  represent an uninitialized or an 
unknown logic value--an unknown value is 
either '1' , '0' , 'z' , or a value that is in a 
state of change.  
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Data Types 
n  Three data type classes: 

n  Nets 
n  Physical connections between devices 

n  Registers 
n  Storage devices, variables. 

n  Parameters 
n  Constants 

Nets 
n  Most common Net types  

n  wire and tri (which are identical);  
n  supply1 and supply0 (which are equivalent to the positive 

and negative power supplies respectively).  
n  The wire data type is analogous to a wire in an ASIC. 

A wire cannot store or hold a value. A wire must be 
continuously driven by an assignment statement. The 
default initial value for a wire is 'z’  

example: 
 wire a,b;  // scalar wires 
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Registers 
n  A register data type is declared using the keyword 

reg and is comparable to a variable in a 
programming language.  

n  A storage device. But a reg is not always equivalent 
to a hardware register, flip-flop, or latch.  

n  On the LHS of an assignment a register data type is 
updated immediately and holds its value until 
changed again.  

n  The default initial value for a reg is 'x' .  

reg a;  // scalar reg variable 
reg [7:0] in_bus;  // vectored reg variable 

Parameters 
n  parameters: 

n  run-time constant 
n  used anywhere a literal may 
n  for synthesis, must be integer  and must 

be defined before being used  
 syntax: 
parameter <[msb:lsb]> identifier = value <, identifier = value ...> ;  
 

examples: 
 parameter [2:0] a = 1;  // 3-bit 
 parameter 

 depth = 32,  // default depth 
 width = 8;  //default width 
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Numbers 
n  Constant numbers are integer or real constants . 
n  Integers may be sized or unsized. 

n  Syntax:  <size>'<base><value> 
     where: 

n  <size> is the number of bits 
n  <base is b or B (binary), o or O (octal), d or D (decimal), h 

or H (hex) 
n  <value> is 0-9 a-f A-F x X z Z ? _ 
n  Examples:  2'b01,  6'o243,    78,   4'ha,   

n  Default radix is decimal, i.e. 1=1'd1 
n  underscores ( _  ) are ignored (use them as you 

would commas), e.g. 836_234_408_566_343 
n  a "?" is interpreted as Z (high impedance), 2'b??

=2'bzz 
n  When <size> is less than <value> - the upper bits 

are truncated, e.g. 2'b101->2'b01,   4'hfcba->4'ha 

Points to Note 
n  When <size> is greater than <value>, and the left-most bit 

of <value> is 0 or 1, then zero's are extended to <size> 
bits. 

n  4'b01 -> 4'b0001,   16'h0 -> 16'h0000 
n  4'b11 -> 4'b0011,   16'h1 -> 16'h0001 

n  When <size> is greater than <value>, and the left-most bit 
of <value> is an x then the x  value is extended to <size> 
bits 

n  4'bx1   -> 4'bxxx1,   16'hx  -> 16'hxxxx 

n  When <size> is greater than <value>, and the left-most bit 
of <value> is a z then the z  value is extended to <size> 
bits 

n  4'bz1 -> 4'bzzz1,   16'hz  ->16'hzzzz 

n  Real numbers may be either in decimal or scientific 
notation 
n  Syntax:  <value>.<value>  or <mantissa>e<exp> 

n  6.439    or   5.3e6 
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Examples 
n  3.14   decimal notation 
n  6.4e3   scientific notation for 6400.0 
n  16'bz   16 bit z (z is extended to 16 bits) 
n  83    unsized decimal 
n  8'h0   8 bits with 0 extended to 8 bits 
n  2'ha5   2 bits with upper 6 bits truncated                       

   (binary equivalent = 01) 
n  2_000_000  2 million 
n  16'h0x0z   16'b0000xxxx0000zzzz 
n  Coding style tip - don't use " ? "  in a number to 

indicate high impedance. It only adds confusion.  If 
you want high impedance use " z "!! 

Strings 
n  Strings are enclosed in double quotes and 

are specified on one line. 
n  Verilog recognizes normal C  escape 

Characters (\t, \n, \\, \",%%). 

examples: 
      parameter A_String = "abc";  
      // string constant, must be on one line 
      parameter Say = "Say \"Hey!\"";   
      // use escape quote \" for an embedded quote  
      parameter Tab = "\t"; // tab character  



29 

             CSE4210 Architecture & Hardware for DSP 

CCooddee  SSttrruuccttuurree    

Design Entities 
Verilog Module Basics 
 
 

Design Entities 
n  The module is the basic unit of code in the 

Verilog language. 
n  Example 
   module holiday_1(sat, sun,weekend);    
     input sat, sun;  
     output weekend;    
     assign weekend = sat | sun;  
   endmodule 
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Verilog Module 
 Modules contain 

 declarations 
  functionality 
  timing 

syntax: 
module module_name  (signal, signal,...  signal  ) ; 
.        ; //content of module 
. 
.. 
. 
endmodule 

module name (port_names); 
 

module port declarations 
 
data type declarations 
 
procedural blocks 
 
continuous assignments 
 
user defined tasks & functions 
 
primitive instances 
 
module instances 
 
specify blocks 
 

endmodule 

Basic Modeling Structure 

always @ (posedge clk).... 
 
assign #3 out=(sel)?in0:in1; 

  Body 
Instances 
Concurrent blocks 

Ports 

Module 

Pins, Interface 

Levels of 
abstractions 

Multilevel 
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Module Port Declarations 

n  Scalar (1bit) port declarations: 
n  port_direction  port_name, port_name ... ;  

n  Vector (Multiple bit) port declarations: 
n  port_direction  [port_size]  port_name, port_name ... ; 

n  port_direction  :  input, inout (bi-directional) or output 
n  port_name :  legal identifier 
n  port_size :  is a range from [msb:lsb] 

input a, into_here, george; // scalar ports 
input [7:0] in_bus, data;  //vectored ports 
output [31:0] out_bus;  //vectored port 
inout [maxsize-1:0] a_bus; //parameterized port 

Port Connection Rules 
n  Inputs: 

n  Internally must be of net data type. 
n  Externally the inputs may be connected to a reg or net 

data type. 
n  Inouts 

n  Internally must be of net data type. 
n  Externally must be connected to a net data type. 

n  Outputs 
n  Internally may be of net or reg data type. 
n  Externally must be connected to a net data type. 
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Module Instances 

syntax for instantiation with port order: 
module_name instance_name  (signal, signal,...); 
 
syntax for instantiation with port name: 
module_name instance_name  (.port_name(signal), .port_name (signal),... ); 

  A module may be instantiated within another module. 
  There may be multiple instances of the same module. 
  Ports are either by order or by name. 
  Use by order unless there are lots of ports 
  Use by name for libraries and other peoples code  
  Can not mix the two syntax's in one instantiation 

 

module example (a,b,c,d); 
input a,b; 
output c,d; 
.  .  .  . 
endmodule 
 
example ex_inst_1(in_1, in_2, w, z); 
example ex_inst_2(in_1, in_2, , z);  // skip a port 
example ex_inst_3 (.a(w), .d(x), .c(y), .b(z)); 

Gate-level Primitives 
n  Verilog has pre-defined primitives that 

implement basic logic functions. 
n  Structural modeling with the primitives is 

similar to schematic level design. 
 and  nand  or  nor  xor  xnor 

buf  not  bufif0  bufif1  notif0  notif1 

module 
gate_level_ex(in_1,in_2,c); 
output c; 
input in_1,in_2; 
 
nand (a, in_1, in_2); 
not (b, a); 
or or_1(c, in_2, b); 
 
endmodule 

in_1 
in_2 c 

b a 

or_1 
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An Example 
Module simple_latch (q, qBar, set, clear); 

 input set, clear; 
 output q, qBar; 
 nand #2 n1(q,qBar,set); 
 nand #2 n2(qBar,q,clear); 

endmodule 

n1

n2

q

qBar

set

clear

User-Defined Primitives  
n  We can define primitive gates (a user-defined 

primitive or UDP) using a truth-table specification. 
The first port of a UDP must be an output  port, and 
this must be the only output port (we may not use 
vector or inout ports). 

n  An example 
 primitive Adder(Sum, InA, InB);  
  output Sum;  
  input InA, InB;  
  table // inputs : output  
  00 : 0;  
  01 : 1;  
  10 : 1;  
  11 : 0;  
  endtable  
 endprimitive 
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User-Defined Functions 
n  Similar to functions in other programming languages. Functions 

are useful to model combinational logic (rather like a subroutine) 

 
n  size is optional and is of form [msb:lsb] 
n  type is optional and is either integer  or real 
n  Returns the value assigned to the name of the function. 
n  Functions may not  contain timing controls. 
n  Functions must have at least one input. 
n  Looks local first then global to module for referenced variables. 
n  Functions may be called 

n  within a continuous assignment  e.g.  assign b = func(a); 
n  indirectly within an instantiation  e.g.  mod U1 (one, func (a, b) ); 
n  nested within another function 

syntax: 
function <[  size or type ]> name_of_function; 
input declarations 
local variable declarations 
statement or statement_group  
endfunction 

Function - Example 
`define FALSE 0 
`define TRUE 1 
module function_ex (clk); 
input clk; 
reg r1,r2,r3; 
 
function error;  // the function definition 
input[7:0] a,b,c; 
  if ((a !=b) && (a !=c))  
     error = `FALSE;  // assign value to the name of the function 
  else error = `TRUE; 
endfunction 
 
always @ (posedge clk) 
if (error(r1,r2,r3))  // call of the function 
$display ("error in reg compare"); 
 
// another example call below 
reg d; 
always @ (posedge clk) 
  d = error(r1,r2,r3); 
endmodule 

  A function can be called where a 
value may be placed in your code 
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Operators 
n  Verilog operators (in increasing order of precedence) 

n  ?: (conditional)  
n  || (logical or)  
n  && (logical and) 
n  | (bitwise or)  
n  ~| (bitwise nor)  
n  ^ (bitwise xor)  
n  ^~ ~^ (bitwise xnor, equivalence) 
n  & (bitwise and)  
n  ~& (bitwise nand)  
n  == (logical) != (logical) === (case) !== (case) 
n  < (lt)  
n  <= (lt or equal) 
n  > (gt)  
n  >= (gt or equal)  
n  << (shift left)  
n  >> (shift right) 
n  + (addition)  
n  - (subtraction) 
n  * (multiply) 
n   / (divide)  
n  % (modulus) 

             CSE4210 Architecture & Hardware for DSP 

PPrroocceedduurreess  aanndd  
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Procedural Assignment 
Continuous Assignment 
Control Statement 
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Procedures 
n  A Verilog procedure is an always or 

initial statement, a task , or a function .  
n  The statements within a sequential block 

(statements that appear between a begin 
and an end ) that is part of a procedure 
execute sequentially in the order in which 
they appear, but the procedure executes 
concurrently with other procedures.  

Procedural Blocks 
n  There are two types of procedural blocks: 

n  initial blocks - executes only once 
n  always blocks - executes in a loop 

n  Multiple Procedural blocks may be used, if so the 
multiple blocks are concurrent. 

n  Procedural blocks may have: 
n  Timing controls - which delays when a statement may be 

executed 
n  Procedural assignments 
n  Programming statements 
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Procedural Statement Groups 
n  When there is more than one statement within a 

procedural block the statements must be grouped. 
n  Sequential grouping: statements are enclosed within 

the keywords begin and end. 
n  An example 
     always 

begin 
a = 5;    // executed 1st 
c = 4;    // executed 2nd 
wake_up = 1;  // executed 3rd 

end 
 

Timing Controls (procedural delays) 
n  #delay - simple delay  

n Delays execution for a specific number of time steps. 
  #5 reg_a = reg_b; 

n  @ (edge signal) - edge-triggered timing control  
n Delays execution until a transition on signal occurs. 
n  edge is optional and can be specified as either posedge  or 
negedge. 
n Several signal arguments can be specified using the 
keyword or. 
n An example : always @ (posedge clk) reg_a = reg_b; 

n  wait (expression) - level-sensitive timing control  
n Delays execution until expression evaluates true. 
n wait (cond_is_true) reg_a = reg_b; 
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Time & Event Queues 
time 

t 

t+1 

t+2 

t+3 

Event Queues 

  Time can only advance forward. 
  Time advances when every event scheduled at that time step is 

executed. 
  Simulation completes when all event queues are empty 
  An event at time t may schedule another event at time t or any other 

time t+n 

Procedural assignments 
n  Assignments made within procedural 

blocks are called procedural assignments. 
n  Value of the RHS of the equal sign is 

transferred to the LHS 
n  LHS must be a register data type (reg, 

integer, real).   NO NETS! 
n  RHS may be any valid expression or signal 

always @ (posedge clk) 
begin 

a = 5;  // procedural assignment 
c = 4*32/6;  // procedural assignment 
wake_up =$time;  // procedural assignment 

end 
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Blocking Assignments 
n  Blocking assignments. 

n  RHS expression evaluated and assignment is 
scheduled. 

n  Delayed Blocking assignments. 
n  Evaluation of the assignment is delayed by 

the timing control. 
n  RHS expression evaluated and assignment is 

scheduled. 
Blocking assignment: 
initial 

begin 
a = b; 
c = d; 

end 

Delayed Blocking assignments: 
initial 

begin 
#1 a = b; 
#1 c = d; 

end 

Blocking Assignments Example 

n  RHS expression evaluated. 
n  Assignment is scheduled in sequence. 
 

initial 
begin 

a = b; 
c = d; 
e = f; 

end 

t 
t+1 
t+2 
t+3 

Event Queues Time 

<-- Execution order 

a<-b(t) c<-d(t) e<-f(t) 
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Non Blocking Assignments 
n  The nonblocking procedural assignment 

statement allows execution in a sequential block 
to continue and registers are all updated 
together at the end of the current time step. 
n  RHS expression evaluated. 
n  Assignment is scheduled at the end of the queue . 
n  Assignment is made at end of the time step. 

initial 
begin 

a <= b; 
end 

Non-blocking Assignments Example 

n  RHS expression evaluated. 
n  Assignment is scheduled at the end of 

the queue . 

initial 
begin 

a <= b; 
end 

t 
t+1 
t+2 
t+3 

Event Queues Time 

<-- Execution order 

a<-b(t) 
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Assignments and Synthesis (1) 
module two_stage(Q, D, CLK); 
input D, CLK; 
output Q; 
 
reg Q, P; 
 
always @ (posedge CLK) 
   begin 
      Q = P; 
      P = D; 
 end 

Q3.  Does this simulate a pipe ? 
A3.  _____ 
 
 
Q4. Which does it synthesize into? 
A4.  ___________ 
 
 
 
 

module two_stage(Q, D, CLK); 
input D, CLK; 
output Q; 
 
reg Q, P; 
 
always @ (posedge CLK) 
   begin 
      P = D; 
      Q = P; 
end 

Q1.  Does this simulate a pipe ? 
A1.  _____ 
 
 
Q2. Which does it synthesize into? 
A2.  ___________ 
 
 
 

Conclusion:  Blocking assignments are order dependent! 
( for both simulation and synthesis ) 

D 

CLK 

P 

   Q 

D 

CLK 

P 

   Q 

is_a_pipe 

not_a_pipe 

Assignments and Synthesis (2) 

module two_stage(Q, D, CLK); 
input D, CLK; 
output Q; 
 
reg Q, P; 
 
always @ (posedge CLK) 
   begin 
      Q <= P; 
      P <= D; 
 end 

Synthesizes into this... 
 
 

module two_stage(Q, D, CLK); 
input D, CLK; 
output Q; 
 
reg Q, P; 
 
always @ (posedge CLK) 
   begin 
      P <= D; 
      Q <= P; 
end 

Synthesizes into this... 
 
 

Conclusion:  Non-blocking assignments are order independent! 

D 

CLK 

P 

   Q 

D 

CLK 

P 

   Q 



42 

An Example  
module pound; 
 
reg [7:0] a,b,c,d,e,f; 
reg clk; 
initial 
 begin 
        clk=0; 
        f = 1; 
        forever 
                #25 clk = !clk; 
 end 
/*** group 1 ***/ 
always @ (posedge clk) // group 1 
 begin 
        e = f; 
 end 
/*** group 2 ***/ 
always @ (posedge clk) // group 2 
 begin 
        c = d; 
        d = e; 
 end 
 

/*** group 3 ***/ 
always @ (posedge clk) // group 3 
 begin 
        a = b; 
        b = c; 
 end 
/*** group 4 ***/ 
always @ (posedge clk) // group 4 
 begin 
        f = f + 1; 
 end 
initial 
$monitor (f,,e,,d,,c,,b,,a); 
initial 
   #700 $stop; 
endmodule 

Procedural Assignment Example 

Expected output: 
f e d c b a 
1 x x x x x 
2 1 x x x x 
3 2 1 x x x 
4 3 2 1 x x 
5 4 3 2 1 x 
6 5 4 3 2 1 
7 6 5 4 3 2 
and so on 

f f + 1 e d c b a 
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Continuous Assignment 
n  Continuous assignment assigns a value to a 

wire in a similar way that a real logic gate 
drives a real wire. 

n  The main use for continuous assignments is to 
model combinatorial logic.   

     module continuous (Ain, Aout); 
  input Ain; 
  output Aout; 
  assign Aout = ~Ain //continuous assignment. 
 endmodule 

AoutAin

syntax:  Explicit continuous assignment: 
assign  net_name = expression; 

where net_name  is a net  that has been previously declared 

Illustration of Assignment Statements  
module assignments  

 //... Continuous assignments go here.  
 always // beginning of a procedure    
  begin // beginning of sequential block    
  //... Procedural assignments go here.    
  end  

endmodule 
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Control Statements  

n  Two types of programming statements: 
n  Conditional 
n  Looping 

n  Programming statements only used in 
procedural blocks 

syntax: 
if(expression) statement 

If the expression evaluates to true then execute the statement (or 
statement group) 
 

if(expression) statement1 
else statement2 

If the expression evaluates to true then execute statement1,  
if false, then execute statement2 (or corresponding statement groups). 

 module if_ex(clk); 
    input clk; 
    reg red,blue,pink,yellow,orange,color,green; 
    always @ (posedge clk) 
    if (red || (blue && pink)) 
      begin 
        $display ("color is mixed up"); 
         color <= 0;  // reset the color 
      end 
    else  if (blue && yellow) 
      $display ("color is greenish"); 
    else  if (yellow && (green || orange)) 
      $display ("not sure what color is"); 
    else $display ("color is black"); 
endmodule 

if and if-else 
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syntax: 
case (expression) 

case_item_1:  statement or statement_group 
case_item_2, 
case_item_3:          statement or statement_group 
case_item_n:  statement or statement_group 
default:  statement or statement_group 

endcase 
  Does an identity comparison (But only simulation will match x, z) 
  Compares expression with each case_item_(n) in turn.  
  If none match,  the default code is executed. 
  default clause is ideal to catch unknown/unspecified values 

case 

reg [2:0] reg_a, reg_b; 
always @ (posedge clk) 

case (reg_a) 
3'b000:  reg_b <= 0; 
3'b001:  reg_b <= 1; 
3'b010,   
3'b011:  reg_b <= 3; 
default:  reg_b <= 5; 

endcase 

casez, casex 
  casez - special version of case that allows the Z 
logic value in the case-items (z or ? treated as a 
don’t care).  
  casex - special version of case that allows the Z or 
X logic value in the case-items (x or z or ? treated 
as don’t cares). 
 reg [2:0] reg_a, reg_b; 

always @ (posedge clk) 
casex (reg_a) 

3'b000:  reg_b <= 0; 
3'b001:  reg_b <= 1; 
3'b01?:  reg_b <= 2; 
3'b011:  reg_b <= 3; 
3'b1x0:  reg_b <= 4; 
default:   reg_b <= 5; 

endcase 

Coding style tip - to save confusion use " ? "  as the don't care 
indicator.  
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Which to use: case or if-else ? 

n  Some general rules to remember: 
n  Use if-else where you MUST have priority 

encoded logic 
n  Use case for non-priority encoded logic 

n  case items are mutually exclusive 
n  Always specify a default clause in case statements 

Inferred latches in Synthesis 
Latches can be accidentally inferred from Verilog RTL 

code  
 
An example: 

 When using if - else and case all possible states and 
values must be specified including default or else 
storage devices are added 
 

The following generates a mux: 
reg out, sel, a, b;     
always @ (sel or a or b) 
if(sel) 

out = a; 
else out = b; 

The following infers a latch: 
always @ (sel or a or b) 
if(sel) 

out = a; 
 

Can you see why? 
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Avoiding Inferred latches 

Specify all case/if structures thoroughly! 
 
-or- 
 
Assign a default value to all outputs before the if/case structure: 
 

 

module default (out, sel, a); 
input sel; a; 
output out; 
reg out, sel, a;  
always @(sel or a) 
  begin 
    out = 1’’b1; 
    if(sel)  // no else is no problem now! 

out = a; 
  end 
endmodule 

forever 
syntax: 
forever statement or statement_group 
  statement or statement_group is continuously 
executed. 
  An infinite loop. 

module clock_gen; 
reg clk; 
initial 

begin 
clk = 0; 
forever #25 clk = !clk; //50 time step clock 

end 
endmodule 
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while 
syntax: 
while (expression) statement 

or statement_group 
  statement or statement_group 
is continuously executed as 
long as expression evaluates 
true (or non zero). 
  In synthesis, the loop must 
contain an edge-triggered 
timing control, i.e. @(posedge 
clk) or @ (negedge clk) 

module while_ex (clk, a,b,c); 
input clk; 
input [1:0] a,b; 
output [1:0] c; 
reg [1:0] c; 
 
always 
begin 
@ (posedge clk) 
   while (c < b) 
@ (posedge clk) 
    c = c + a; 
end 
endmodule 

for 
syntax: 
for (assignment_init; expression; assignment)   

statement or statement_group 
  The assignment_init is executed once at the start of 
the loop. 
  Loop executes as long as expression is true.   
  The assignment is executed at the completion of 
each loop. 

module for_ex1 (clk); 
input clk; 
reg [31:0] mem [0:9]; // 10x32 memory 
integer i; 
always @ (posedge clk) 
   for (i = 9; i >= 0; i = i-1) 

 mem[i] = 0;  // init the memory to zeros 
endmodule 
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Ever see a hardware for? 
HDL Compiler® simply unrolls the loop... 

module for_ex2(start_cnt,cnt); 
input start_cnt; 
output [7:0] cnt; 
integer i; 
reg [7:0] vec,cnt; 
always @ (start_cnt) 
  for (i = 0; i <= 3; i = i+1) 

 if (vec[i] == 1'b0) 
   cnt = cnt + 1; 

endmodule 

module for_ex3(start_cnt,cnt); 
input start_cnt; 
output[7:0] cnt; 
integer i; 
reg [7:0] vec,cnt; 
reg start_cnt; 
always @ (start_cnt) 
begin 
 if (vec[0] == 1'b0)   
   cnt = cnt + 1; 
 if (vec[1] == 1'b0)   
   cnt = cnt + 1; 
 if (vec[2] == 1'b0)   
   cnt = cnt + 1; 
 if (vec[3] == 1'b0)   
   cnt = cnt + 1; 
end 
endmodule 

unrolls  
          into 
                  this 

  You can’t re-assign the loop variable from  
within the for loop. It’s supposed to be a constant! 

 
  Beware using complex functions inside a for-loop. They 

can easily be replicated unnecessarily by the unrolling. 
The example here generates 4 adders! 

  For synthesis you can’t embed edge-triggered timing controls in  for loops 

  Must use constants in expression limit. 

             CSE4210 Architecture & Hardware for DSP 
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Simulation Environment 

Simulator 

INPUT OUTPUT 

models.v 
 
test vectors 
 
libraries 
 
Assembly/ 
Microcode 

Textual  messages 
 
Tabular output 
 
Graphical waveform 
 
Visual drawings 
 

control 
commands 

Feedback 

Simulating the Verilog Code 

n  Verilog code of NAND Latch 
Module simple_latch (q, qBar, set, clear); 

 input set, clear; 
 output q, qBar; 
 nand #2 n1(q,qBar,set); 
 nand #2 n2(qBar,q,clear); 

endmodule 

n1

n2

q

qBar

set

clear



51 

Testbench  
n  A testbench generates a sequence of input 

values (we call these input vectors ) that 
test or exercise the verilog code. 

n  It provides stimulus to the statement that 
will monitor the changes in their outputs. 

n  Testbenchs do not have a port declaration 
but must have an instantiation of the circuit 
to be tested. 

A testbench for NAND Latch 
Module test_simple_latch; 

 wire q, qBar; 
 reg set, clear; 
 simple_latch SL1(q,qBar,set,clear); 
 initial 
  begin 
    #10 set = 0; clear = 1; 

     #10 set = 1; 
    #10 clear = 0; 

     #10 clear = 1; 
    #10 $stop; 
    #10 $finish; 
  end 
 initial 
  begin 
    $monitor (“%d set= %b clear= %b q=%b qBar=%b”,$time,  

                                   set,clear,q,qBar); 
  end 

endmodule 
    


