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| DSP Algorithms

| DSP algorithms are described by nonterminating
programs, which execute the same code
repetitively.
Y(n)=a*x(n)+b*x(n-1)+c*x(n-2), for n=1to oo
An iteration — execution of all the computations in
the algorithm once.

Critical path — the longest path between inputs
and outputs in combinational logic circuit.

Latency — the difference between the time an
output is generated and the time at which its
corresponding input was received by the system.

| Representation of DSP Algorithms

| Graphical representations are efficient for
investigating and analyzing data flow
properties of DSP algorithms.
Good for map DSP algorithms to hardware
implementations

Four methods for graphical representation
Block diagram
Signal-flow graph (SFG)
Data-flow graph (DFG)
Dependence graph (DG)




| Block Diagram

| Consists of functional blocks connected with
directed edges, which represent data flow from
its input block to its output block.

Edges may or may not contain delay elements.
Example

Y(n)=a*x(n)+b*x(n-1)+c*x(n-2)

x(n) . x(n-1) . x(n-2)
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| Signal-Flow Graph (SFG)

| SFG: a collection of nodes and directed edges
Nodes: represent computations and/or task, sum all
incoming signals
Directed edge (j,k): denotes a linear transformation
from the input signal at node j to the output signal at
node k.

Linear SFGs can be transformed into different forms
without changing the system functions.

Usually used for linear time-invariant DSP systems
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| Data-Flow Graph (DFG) (1)

DFG: nodes represent computation(or functions or
subtasks), while the directed edges represent data paths
(data communications between nodes), each edge has a
nonnegative number of delays associated with it.

DFG: captures the data-driven property of DSP
algorithm: any node can fire (perform its computation)
whenever all its input data are available.
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DFG Constraints(2)

Each edge describes a precedence
constraint between two nodes

Intra-iteration precedence constraint: if the
edge has zero delays.

Inter-iteration precedence constraint: if the
edge has one or more delays.
DFGs and Block Diagrams can be used to
describe both linear single-rate and
nonlinear multi-rate DSP systems.




| Examples of DFG

| Nodes are complex blocks (coarse-grain)
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Nodes can describe expanders/decimators
in multi-rate DFGs
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| Example of DFG(2)
| y(n)=a*y(n-1)+x(x)
x(n) y(n) ( (2 1
a @ 1 )

DFG Synchronous DFG




| Synchronous DFG (SDFG)

SDFG is a special case of data-flow graph.

In SDFG, the number of data samples produced
or consumed are specified a priori.

For example, node B needs 1 data unit to fire
and produces one data unit after completion.

In multi-rate systems, that number could be
greater than 1.

By using node replication, a multi-rate system
could be changed to a single-rate system.

| Dependence Graph (DG)

DG is a directed graph that shows the
dependence of the computations in an
algorithm

The nodes represent computations and the
edges represent precedence constraints
among nodes.

The DFG nodes are executed repetitively,
while nodes in a dependence graph
contains computations for all iterations.

DFs are used for systolic array design.




| Dependence Graph
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| Iteration bound

Iteration: execution of all computations in
the algorithm once.

lteration period: the time required to
perform the iteration (sample period).

Feedback imposes an inherent bound on
the iteration period,

Iteration bound is a characteristic of the
representation of an algorithm in the form
of DFG. Different representations of the
same algorithm may lead to different
iteration bounds.

| Iteration bound

The feedback imposes an inherent
fundamental lower bound on the
achievable iteration period.

It is not possible to achieve iteration period
less than the iteration bound even if we
have an infinite processing power.




| Determine Iteration Bound

| Edges describe a precedence constraints
intra-iteration denotes “—”
inter-iteration denotes “="

Critical path is the path with the longest
computation time among all paths that contains
no delay.

A non-recursive DFG contains no loops
A recursive DFG contains at least one loop.

A loop is a directed path that begins and ends at
the same node.

| Precedence Constraints

| y(n)
(2)
(2)
or
x(n) “ D

1D

The edge from A to B enforces the intra-iteration
precedence, the k" iteration of A must be done
before the k" iteration of B. Ax — By

The edge from B to A enforces the inter-iteration
precedence. The ki iteration of B must be executed
before the (k+1)!" iteration of A. Bx = Ay.4

Ay—>B,=A —-B,=A,—B, ...




| Critical Path

| Non-recursive DFG

i (2)—(4)
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Critical path 6->3->2->1 = 5 unit of time (u.t.)

5->3->2->1 5 u.t.

Recursive DFG

(2) (4)
1D

Critical Path A->B 6 u.t.

| Determine Iteration Bound

For recursive DFG, there is a fundamental lower

bound “iteration bound’ T,

Loop bound of the /-th loop = t/w,

¢, is loop computation time,
w;is the delay in the loop.

The critical loop is the loop with the maximum loop

bound.

The loop bound of the critical loop is the iteration

bound.
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| Iteration bound: Example

| 2)
ol

1D

Precedence
Ay—-B,=A,—-B;,=A,—-B,=A;— B,
If 2D instead of 1D; loop bound =6/2=3

A,— By =|A, = B,|=|A,— B,/=|A;— B
A,— B|=A; = B;]=|A; = Bj=|A, = B,

| Iteration bound: Example

‘ lteration bound . _ {fz}
L, = max

leL wy

Example
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Algorithms for Computing
Iteration Bound

| Longest Path Matrix Algorithm

A series of matrices are constructed L™,
m=1,2,..d, where d is the number of delays
in the DFG.

The value of EE ™) is the longest
computation timé of all paths from delay
element d; to delay element dz that passes

through m-1 de)lay elements, if no such
path, then g =
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| Longest Path Matrix Algorithm

| First determine ¢\ > L
Then high order matrices are computed by

(m+1) _ {1 , pim)
bij = Iknéa[?(‘ LGk +£k7:1j)

where K is the set of integers k in the interval
[1,d] such that neither ¢}, =-1nor ¢{’. =-1 holds

2
T, = max o
imel,2,.dy| m

Longest Path Matrix Algorithm

O (N =2+1+1+1=5
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| Longest Path Matrix Algorithm
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