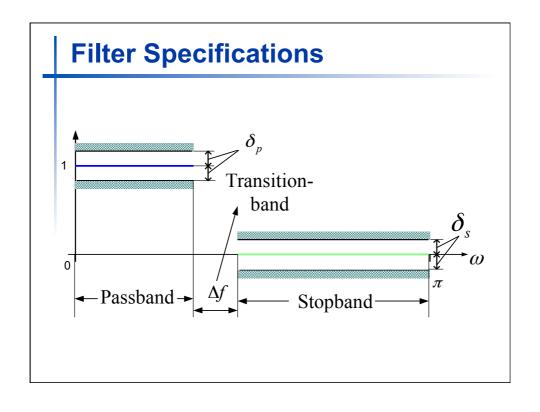
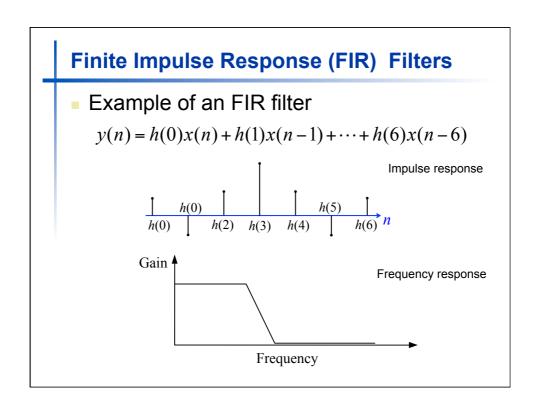
Chapter 5 Digital Filter Instructor: Prof. Peter Lian Department of Electrical Engineering & Computer Science Lassonde School of Engineering York University

Basics of Digital Filter





Representation of an FIR filter

By convolution sum

$$y(n) = h(0)x(n) + h(1)x(n-1) + \dots + h(N-1)x(n-N+1)$$
$$= \sum_{m=0}^{N-1} h(m) x(n-m)$$

By z-transform transfer function

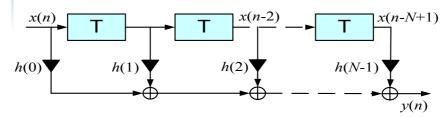
$$H(z) = \sum_{m=0}^{N-1} h(m) z^{-m}$$

$$H(e^{j\omega}) = \sum_{m=0}^{N-1} h(m)e^{-j\omega m}$$
, $\omega = 2\pi fT$

Implementation of FIR Filters

- Three main components:
 - Adder ⊕

 - Delay T



h(n), n=0,...,N-1, are coefficients.

Demonstrations of FIR Filters

Let us consider a low pass FIR filter,

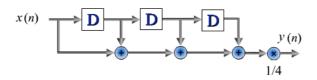
$$y(n) = \frac{1}{4} \left[x(n) + x(n-1) + x(n-2) + x(n-3) \right]$$
 (1)

Its z-transform transfer function is:

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1}{4} \left[1 + z^{-1} + z^{-2} + z^{-3} \right]$$
 (2)

How Does an FIR Filter Works?

$$y(n) = \frac{1}{4} \left[x(n) + x(n-1) + x(n-2) + x(n-3) \right]$$
 (1)



Frequency Response

Consider a complex exponential input sequence

$$x(n) = e^{j\omega n} - \infty < n < \infty$$

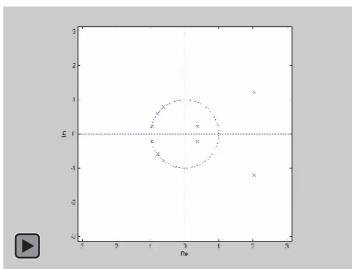
If the impulse response of the system is h(n), the output is:

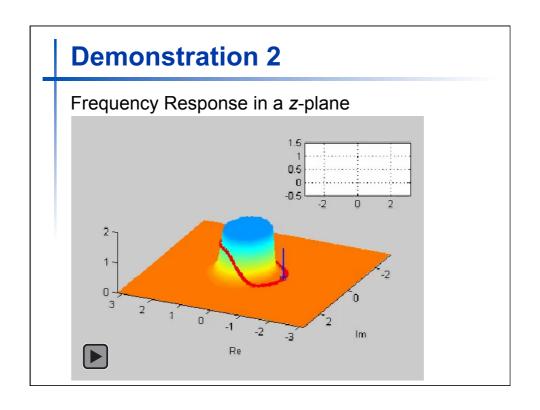
$$y(n) = \sum_{m=-\infty}^{\infty} h(m)e^{j\omega(n-m)} = e^{j\omega n} \sum_{m=-\infty}^{\infty} h(m)e^{-j\omega m}$$
frequency response
$$= H(e^{j\omega})x(n)$$

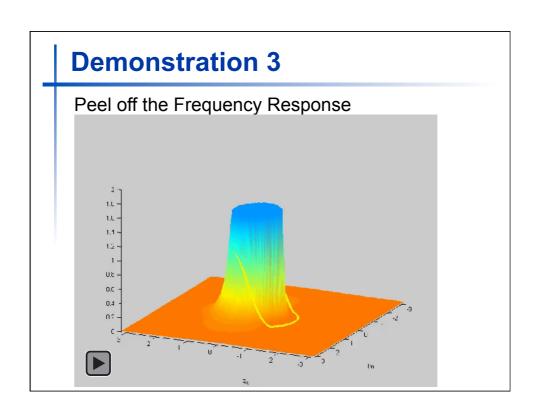
$$H(e^{j\omega}) = \sum_{m=-\infty}^{\infty} h(m)e^{-j\omega m} = H(z)|_{z=e^{j\omega}}$$

Demonstration 1

z-plane Representation of an FIR Filter







Compute Frequency Response

Magnitude and phase response

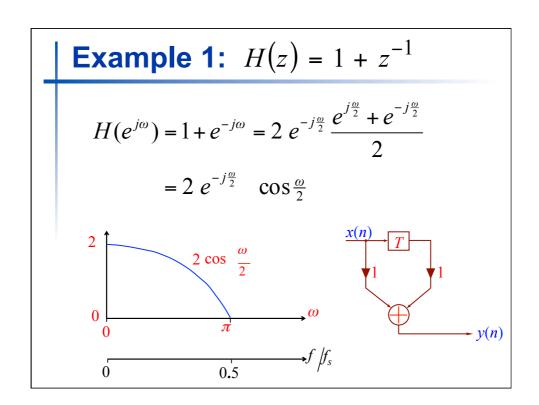
$$H(e^{j\omega}) = \left| H(e^{j\omega}) \right| e^{j\theta(\omega)}$$

Magnitude response Phase response

Compute frequency response using Matlab

[H,w]=freqz(b,a,N);
-- returns the N-point frequency vector w in radians and the N-point complex frequency response vector H of the B(z)/A(z).

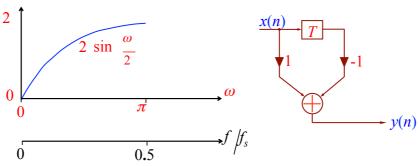
$$H(z) = \frac{B(z)}{A(z)} = \frac{\sum_{k=0}^{q} b(k) z^{-k}}{\sum_{k=0}^{p} a(k) z^{-k}}$$



Example 2:
$$H(z) = 1 - z^{-1}$$

$$H(e^{j\omega}) = 1 - e^{-j\omega} = e^{j\frac{\pi}{2}} e^{-j\frac{\omega}{2}} 2 \frac{e^{j\frac{\omega}{2}} - e^{-j\frac{\omega}{2}}}{2j}$$

$$= 2 e^{j(\frac{\pi}{2} - \frac{\omega}{2})} \sin \frac{\omega}{2}$$



Properties of FIR Filter

$$1. \left| H(e^{j\omega}) \right| = \left| H(e^{-j\omega}) \right|$$

2.
$$/H(e^{j\omega}) = -//H(e^{-j\omega})$$

Proof:
$$H(e^{-j\omega}) = \sum_{m=0}^{N-1} h(m) e^{j\omega m}$$

$$= \left\{ \sum_{m=0}^{N-1} h(m) e^{-j\omega m} \right\}^*, \quad h(m) \text{ real}$$

$$= H^*(e^{j\omega})$$

Properties of FIR Filter

3.
$$H(e^{j\omega}) = H(e^{j(\omega+2\pi m)})$$

Proof:
$$H(e^{j(\omega+2m\pi)}) = \sum_{n=0}^{N-1} h(n) e^{-j(\omega+2m\pi)n}$$

= $\sum_{n=0}^{N-1} h(n) e^{-j\omega n} = H(e^{j\omega})$

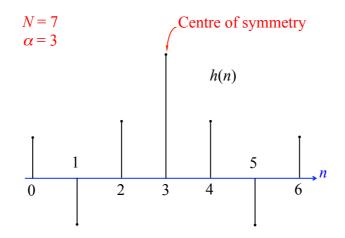
For h(n) real, knowledge of $H(e^{j\omega})$ between $\omega = 0$ and $\omega = \pi \Rightarrow knowledge$ of $H(e^{j\omega})$ ω for any ω .

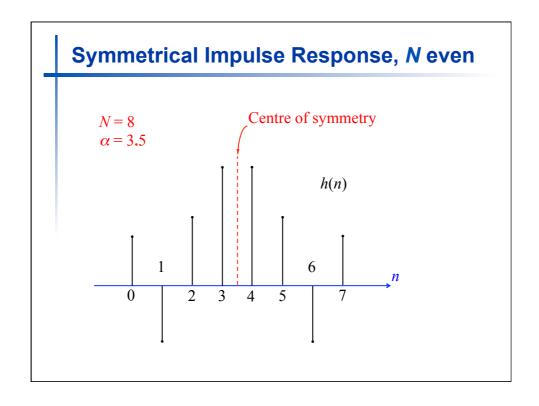
Linear Phase FIR Filter

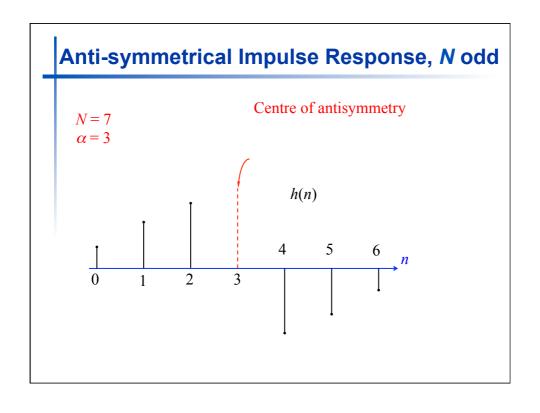
- An FIR filter may be designed to have linear phase characteristics.
- The phase response of a linear phase FIR filter is either $-\alpha\omega$ or β - $\alpha\omega$ where $\alpha = (N-1)/2$, ω is the frequency, $\beta = \pm 0.5\pi$, and N is the filter length.
- Its frequency response is given by $e^{-j\frac{\omega}{2}}R(\omega)$ or $e^{j\frac{\pi}{2}-j\frac{N-1}{2}\omega}R(\omega)$, where $R(\omega)$ is a real function.

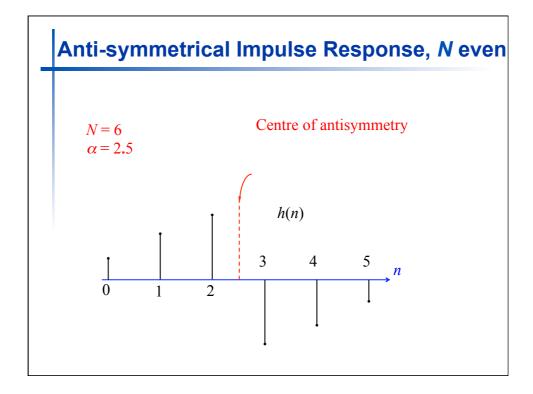
Linear Phase FIR Filter

- Its impulse response is either symmetrical or anti-symmetrical.
- If its impulse response is symmetrical, its phase response is $-\alpha\omega$.
- If its impulse response is antisymmetrical, its phase response is β $\alpha\omega$.









Frequency Response of Linear Phase FIR Filter

 4 types, depending on whether N is odd or even and whether the impulse response is symmetrical or antisymmetrical.

Type 1:Symmetrical Impulse Response, N odd.

$$H(e^{j\omega}) = e^{-j\omega \frac{N-1}{2}} \sum_{n=0}^{\frac{N-1}{2}} a(n) \cos(\omega n)$$

$$a(0) = h(\frac{N-1}{2})$$

$$a(n) = 2h(\frac{N-1}{2} - n),$$

$$n = 1, 2, \dots, \frac{N-1}{2}$$

Proof:

Proof:

$$H(e^{j\omega}) = \sum_{n=0}^{\frac{N-3}{2}} h(n)e^{-j\omega n} + h\left(\frac{N-1}{2}\right)e^{-j\omega \frac{N-1}{2}} + \sum_{n=\frac{N-1}{2}}^{N-1} h(n)e^{-j\omega n}$$

$$= e^{-j\omega \frac{N-1}{2}} \left[\sum_{n=0}^{\frac{N-3}{2}} h(n) \left\{ e^{j\omega \left(\frac{N-1}{2}-n\right)} + e^{-j\omega \left(\frac{N-1}{2}-n\right)} \right\} + h\left(\frac{N-1}{2}\right) \right]$$

$$= e^{-j\omega \frac{N-1}{2}} \left\{ \sum_{n=0}^{\frac{N-3}{2}} 2h(n) \cos \left[\omega \left(\frac{N-1}{2}-n\right)\right] + h\left(\frac{N-1}{2}\right) \right\}$$

$$= e^{-j\omega \frac{N-1}{2}} \left\{ \sum_{m=1}^{\frac{N-1}{2}} 2h\left(\frac{N-1}{2}-m\right) \cos \omega m + h\left(\frac{N-1}{2}\right) \right\}$$

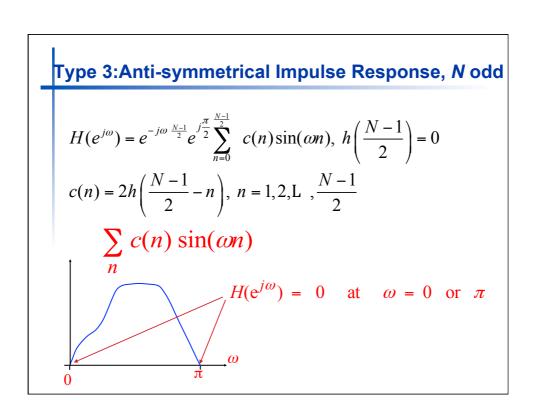
Type 2 :Symmetrical Impulse Response,
$$N$$
 even
$$H(e^{j\omega}) = e^{-j\omega\frac{N-1}{2}} \sum_{n=1}^{\frac{N}{2}} b(n) \cos\left(\omega(n-\frac{1}{2})\right)$$

$$b(n) = 2h(\frac{N}{2}-n), \ n = 1,2,L \ ,\frac{N}{2}$$

$$\sum_{n=1}^{\infty} b(n) \cos(\omega(n-\frac{1}{2}))$$

$$\frac{1}{n}$$

$$H(e^{j\omega}) = 0 \quad \text{at} \quad \omega = \pi$$



Type 4:Anti-symmetrical Impulse Response, N even

$$H(e^{j\omega}) = e^{-j\frac{N-1}{2}\omega} e^{j\frac{\pi}{2}} \sum_{n=1}^{\frac{N}{2}} d(n) \sin \left(\omega(n-\frac{1}{2})\right)$$
$$d(n) = 2h(\frac{N}{2}-n), \quad n = 1, 2, \dots, \frac{N}{2}$$

$$H(e^{j\omega}) = e^{-j\frac{N-1}{2}\omega} e^{j\frac{\pi}{2}} \sum_{n=1}^{\frac{N}{2}} d(n) \sin \left(\omega(n-\frac{1}{2})\right)$$

$$d(n) = 2h(\frac{N}{2}-n), \quad n = 1, 2, \dots, \frac{N}{2}$$

$$\sum_{n=1}^{\infty} d(n) \sin(\omega(n-\frac{1}{2}))$$

$$H(e^{j\omega}) = 0 \text{ at } \omega = 0$$

FIR filter length estimation

$$L = \frac{-20\log(\sqrt{\delta_p \delta_s}) - 13}{14.6\Delta f} + 1$$

 δ_p < 1, Passband ripple,

 δ_s < 1, Stopband ripple/attenuation

 Δf = Normalized transition-width

= stopband edge - passband edge

Filter length and complexity

FIR filter transfer function:

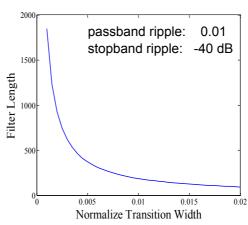
$$H(z) = a_0 + a_1 z^{-1} + a_2 z^{-2} + L + a_N z^{-N}$$

- Filter length=the order of transfer function
 +1
- Complexity=No. of taps (coefficients) for a filter.
- For a symmetric filter, the filter complexity is about the half of the filter length.

Complexity of a FIR Filter

$$L = \frac{-20\log(\sqrt{\delta_p \delta_s}) - 13}{14.6\Delta f} + 1$$

where δ_p and δ_s are passband and stopband ripple; Δf is the transition width.



FIR Filters

- Advantages :
 - Exact linear-phase characteristic.
 - Intrinsically stable implementation.
- Disadvantages :
 - Require a high-order transfer function compared with infinite-duration impulse response filters.

FIR Filter Design

- Windowing
- Frequency sampling
- Weighted Chebyshev approximation
- Demos are available in e-Learning Hub <u>http://elearninghub.eng.nus.edu.sg</u> under "simulation" → "Virtual simulation 5"

Parks-McClellan Optimal Equiriple FIR Filter Design Using Matlab

- Matlab functions for design FIR filter: "firpmord" and "firpm".
- How to use the functions:
 - [N,Fi,Ai,W]=firpmord(F,A,Dev,Fs);
 - B=firpm(N,Fi,Ai,W) returns the coefficients of the resulting FIR filter which has the best approximation to the desired frequency response described by F, A, and Dev, where
 - F is a vector of filter bandedges in Hz.
 - A is a real vector indicate the desired amplitude on the bands defined by F.
 - Dev is a vector of maximum deviations or ripples allowable for each band. Dev must have the same length as A.
 - Fs is the sampling frequency.

Example: a lowpass filter with fpass=1500Hz, fstop=2000Hz,fsample=8000Hz, rp=rs=0.01

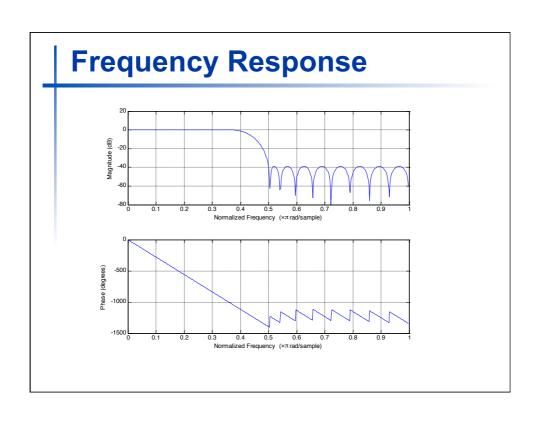
- F=[1500, 2000];A=[1,0]; Dev=[0.01,0.01]
- Using Matlab command "firpmord" to estimate the filter length.

[N,Fi,Ai,W]=firpmord(F,A,Dev,8000);

- Find the coefficients: B=firpm(N,Fi,Ai,W);
- Plot frequency response : freqz(B,1);
- Need help: type "help firpm" in Matlab.

Coefficients

```
h(0) = 0.0029 = h(31)
h(1) = 0.0094 = h(30)
h(2) = -0.0037 = h(29)
h(3) = -0.0109 = h(28)
h(4) = -0.0014 = h(27)
h(5) = 0.0167 = h(26)
h(6) = 0.0100 = h(25)
h(7) = -0.0204 = h(24)
h(8) = -0.0249 = h(23)
h(9) = 0.0190 = h(22)
h(10) = 0.0479 = h(21)
h(11) = -0.0064 = h(20)
h(12) = -0.0855 = h(19)
h(13) = -0.0358 = h(18)
h(14) = 0.1853 = h(17)
h(15) = 0.4033 = h(16)
```



References

- Digital Signal Processing: A Computer-Based Approach, by Sanjit K. Mitra, McGraw Hill.
- Digital Signal Processing: Principles, Algorithms, and Applications, by J.G. Proakis, D.G. Manolakis, Prentice-Hall, 3rd Ed.
- DSP First: A Multimedia Approach, by J.H. McClellan, R.W. Schafer, and M.A. Yoder, Prentice Hall.
- Digital Signal Processing, By A.V. Oppenheim, R.W. Schafer, Prentice-Hall.