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| Filter Specifications

Transition—

/ band

<«— Passband —»

' Finite Impulse Response (FIR) Filters

Example of an FIR filter
y(n)=h0)x(n)+h(DHx(n=1)+---+h(6)x(n-6)
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| Representation of an FIR filter

| By convolution sum

y(n)=h(0)x(n)+ A1) x(n=1)+- -+ h(N— l)x(n -N+ 1)
= ZO h(m) x(n —m)

By z-transform transfer function

| Implementation of FIR Filters

| Three main components:

Adder- P
Multiplier - —pp—
Delay — T
x(n)= T > T i(nﬁ) — T X(n-N+1)
1))\ 4 A1) i h(z)i h(N-1) i
(D > _— —
y(n)

h(n), n=0,...,N-1, are coefficients.




l Demonstrations of FIR Filters

‘ Let us consider a low pass FIR filter,
y(n)= %[x(n) +x(n—1D+x(n—2)+ x(n— 3)] (D

Its z-transform transfer function is:

Y(z) 1 1, -2, -3
X(Z):Z[1+z +z°°+z2 } (2)

H(z)=

l How Does an FIR Filter Works?

‘ y(n)= %[x(n) +x(n—1)+x(n—2)+ x(n— 3)] (1)
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Click to begin demo JeEF2 -





| Frequency Response

‘ Consider a complex exponential input sequence

jan

x(n)=e’" —o<n<o

If the impulse response of the system is h(n), the
output is :

Jjw(n-m) jan - jom
H(e’")iscalled y(n) ]”:E_fl(lﬂ)e ¢ ,,,:E_Zl(m)e
frequency -
responsg = H(e" )x(n)
Oo,

H(e")= Shimye”™ = H(z)|_,,

m=—x

l Demonstration 1

z-plane Representation of an FIR Filter







Demonstration 2

Frequency Response in a z-plane

Demonstration 3

Peel off the Frequency Response










| Compute Frequency Response

| Magnitude and phase response

( /(/) ’H(e/m) jO(w)

Magnitude Phase

response response
Compute frequency response using Matlab
[H,w]=freqz(b,a,N); g "

4 r~s 4 b k
-- returns the N-point frequency g7 = B(2) _ 2ok
vector w in radians and the N- A(z) ia(k)z—k
k=0

point complex frequency response
vector H of the B(z)/A(z).

| Example 1: H(z) =1+ 2™
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| Example 2: H(z)=1-z"
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‘ HE)=1-e7'"=¢’

¥(n)

| Properties of FIR Filter

1. ‘H(ej“’)‘ - \H(e—f"”)\
2 JH('”) = -/ H(e/*)
. N_l .

Proof: H(e™”)= Y h(m)e"

m=0

N-1 Y

=< > h(m)e’*" s , h(m) real
m=0

=H (/)




| Properties of FIR Filter

| 3 H(eja)) — H(ej(a)+2.71m))

N-1
Proof © H(e/@™ 0y = S Ji(n) e~/ (@+2mmn
( ) nzo ( )

_ NEOI h(n)e”™ = H(e')

For h(n) real, knowledge of H (e/~) between
w = 0 and w = n = knowledge of H (e/®)
w for any w.

| Linear Phase FIR Filter

| An FIR filter may be designed to have
linear phase characteristics.
The phase response of a linear phase
FIR filter is either -aw or B-aw where
a =(N-1)/2 , wis the frequency,
p==0.57, and N is the filter length. |
Its frequency response is given by e’
or ejjz[‘sz_l‘”R(w), where R(w) is a real
function.

“R(w)




| Linear Phase FIR Filter

| Its impulse response is either
symmetrical or anti-symmetrical.

If its impulse response is symmetrical,
its phase response is -aw.

If its impulse response is anti-
symmetrical, its phase response is

B - aw.

| Symmetrical Impulse Response, N odd

N=17 Centre of symmetry
a=3 /
h(n)
B
n
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l Symmetrical Impulse Response, N even

‘ N=28 Centre of symmetry

a=3.5
h(n)
1 | 6
: n
0 2 3 4 5 7

lAnti-symmetricaI Impulse Response, N odd

Centre of antisymmetry

Il
(S IEN

‘ N
a

h(n)
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‘Anti-symmetrical Impulse Response, N even

N=6 Centre of antisymmetry

‘Frequency Response of Linear Phase FIR Filter

4 types, depending on whether N is odd
or even and whether the impulse
response is symmetrical or anti-
symmetrical.
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‘ Type 1:Symmetrical Impulse Response, N odd.

| -1

HE)=e7"7N a(n)cos(w n)
a(0)=h(25) Y, a(n) cos(an)
a(n)=2hNT‘1—n), '
n=1,2,..., &

p
0 \ /

| Proof:

% . N-1 Nl .
| H(e) =Y h(m)e™" + h(2)e™ = + 2 h(n)e "
n=0 n=T+1

—e T [Néh(n){ejw U5tn) e (Nz_l_")} +h (NT_I)]

n=0
e [Samefofsn]ent)|
_ ejw’vzl{ SZh(NT_I_m) coswm+h(%)}
m=1
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l Type 2 :Symmetrical Impulse Response, N even

N
_N-l 3

H@E")=e 2 E b(n)cos(a)(n - %))

n=1

b(n)=2h(5-n), n=12L &
Y b(n) cos(w(n - %))

n
/\ /H(eja’)= 0 at w=nm
0 A

lType 3:Anti-symmetrical Impulse Response, N odd

‘ ) —J'wM jg%
H(e”) = e?

c(n)sin(a)n) h (NT_l) =0

c(n) = 2h(——n) =1,2,L M

Y c(n) sin(wn)
n
He®”) =0 at w=0 or x
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11ype 4:Anti-symmetrical Impulse Response, N even

H(e') = e_j]vz_lwejgid(n)sin (w(n-1))
n=1

d(")=2h(g—n), n=1,2,---,%
S d(n) sin(w(n — %))

HE)= 0at a)=(\
w

0 T

| FIR filter length estimation

—201log(,/0 6.)—-13
L= &y9,0,) +1
14.6Af

0, <1, Passband ripple,
0, <1, Stopband ripple/attenuation
Af = Normalized transition-width

= |stopband edge - passband edge|
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| Filter length and complexity

| FIR filter transfer function:

—1 -2 -
H(z)=a,+az +a,z" +L +a,z

N

Filter length=the order of transfer function

+1.

Complexity=No. of taps (coefficients) for a

filter.

For a symmetric filter, the filter complexity
is about the half of the filter length.

| Complexity of a FIR Filter

~20log(,[6.6.)-13
I g(,/9,9,) ol
14.6Af

where o, and
are passband and
stopband ripple;

Filter Length

Af'is the transition
width.

2000

15001

10008

5001

passband ripple: 0.01
stopband ripple: -40 dB

0.005 0.01 0.015 0.02
Normalize Transition Width
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| FIR Filters

Advantages :
Exact linear-phase characteristic.
Intrinsically stable implementation.
Disadvantages :

Require a high-order transfer function
compared with infinite-duration
impulse response filters.

| FIR Filter Design

Windowing

Frequency sampling

Weighted Chebyshev approximation
Demos are available in e-Learning Hub

under “simulation” =2 “Virtual simulation
5”
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Parks-McClellan Optimal Equiriple FIR Filter
Design Using Matlab

Matlab functions for design FIR filter: “firpmord”

and “firpm”.

How to use the functions:
[N,Fi,Ai,W]=firpmord(F,A,Dev,Fs);

B=firom(N,Fi,Ai,W) returns the coefficients of the
resulting FIR filter which has the best approximation

to the desired frequency response described by F, A,

and Dev, where
F is a vector of filter bandedges in Hz.

A is a real vector indicate the desired amplitude on the
bands defined by F.

Dev is a vector of maximum deviations or ripples allowable
for each band. Dev must have the same length as A.

Fs is the sampling frequency.

Example: a lowpass filter with fpass=1500Hz,
fstop=2000Hz,fsample=8000Hz, rp=rs=0.01

F=[1500, 2000];A=[1,0]; Dev=[0.01,0.01]

Using Matlab command “firpmord” to
estimate the filter length.

[N,Fi,Ai, W]=firpmord(F,A,Dev,8000);
Find the coefficients:
B=firpm(N,Fi,Ai,W);

Plot frequency response : freqz(B,1);
Need help: type “help firpm” in Matlab.
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| Coefficients

h(0)=
h(1)=
h(2)=
h(3)=
h(4)=
h(5)=
h(6)=
h(7)=
h(8)=
h(9)=
h(10)= 0.0479=h(21)
h(11)= -0.0064=h(20)
h(12)= -0.0855=h(19)
h(13)= -0.0358=h(18)
h(14)= 0.1853=h(17)
h(15)= 0.4033=h(16)

0.0029=h(31)
0.0094=h(30)
-0.0037=h(29)
-0.0109=h(28)
-0.0014=h(27)
0.0167=h(26)
0.0100=h(25)
-0.0204=h(24)
-0.0249=h(23)
0.0190=h(22)

| Frequency Response

Phase (degrees)

(dB)

Magnitude

-1000

A

Normalized Frequency (xmtrad/sample)

0.1 0.2

0.3 0.4 0.5 0.6 0.7 0.8
Normalized Frequency (xmrad/sample)

0.9 1
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