
1

 CSE4210 Architecture & Hardware for DSP

CChhaapptteerr 88

Folding

Instructor: Prof. Peter Lian
Department of Electrical

Engineering & Computer Science
Lassonde School of Engineering

York University

Introduction to Folding
n  Folding is a technique to reduce the silicon area

by time-multiplexing many algorithm operations
into single functional unit.

n  The hardware is reduced by a factor of N, the
time is increased by the same factor.

n  In general, the data on the input of a folded
realization is assumed to be valid for N cycles
before changing.

n  May lead to a large number of registers, thus
need to minimize the registers.

2

A Folding Example

A

C
B

D

Cycle A B E C D
0 a(0) b(0) a(0)+b(0) ⎯ ⎯
1  a(0)+b(0) c(0) a(0)+b(0)+c(0) a(0)+b(0) ⎯
2  a(1) b(1) a(1)+b(1) a(0)+b(0)+c(0) a(0)+b(0)+c(0)
3  a(1)+b(1) c(1) a(1)+b(1)+c(1) a(1)+b(1) ⎯
4  a(2) b(2) a(2)+b(2) a(1)+b(1)+c(1) a(1)+b(1)+c(1)
5  a(2)+b(2) c(2) a(2)+b(2)+c(2) a(2)+b(2) ⎯
6  a(3) b(3) a(3)+b(3) a(2)+b(2)+c(2) a(2)+b(2)+c(2)

E

Valid for 2
cycles

y(n) = a(n)+ b(n)+ c(n)

Folding Transformation
n  The objective is to provide a systematic

technique for designing control circuits for
hardware where several algorithm
operations are mapped to the same piece
of hardware via time-multiplexing of
course.

n  The folding transformation starts with a
DFG for the algorithm.

3

Definitions in Folding Transformation
n  U and V are two nodes in the original DFG.
n  U and V are connected via an edge e with a

delay w(e), i.e.

n  Folding factor is N
n  Node U (computation): lth iteration is performed

at time Nl +u
n  Node V (computation): lth iteration is performed

at time Nl +v
n  u and v are folding order of the nodes U and V

that satisfy 0≤u,v≤N-1

U w(e)! →!! V

n  Hu and Hv are the hardware units used at
U and V for performing computation.

n  Hu and Hv are pipelined by Pu and Pv
stages

Definitions in Folding Transformation

4

Folding Transformation
n  The results of the lth iteration of node U is

available at Nl+u+Pu

n  Since there are w(e) delays between U
and V, the result of the lth iteration of the
node U is used by the (l+w(e))th iteration of
the node V, which is executed at N(l+w(e))
+v.

n  The result must be stored for
DF (U

e!→! V) = N(l +w(e))+ v[] − Nl +Pu +u[]
= Nw(e)−Pu + v−u

Folding Set
n  Is an ordered set of operations executed by the

same functional unit.
n  Each folding set contains N entries (some of

which may be null operations)
n  The jth position within the folding set is executed

during the time partition j
n  For example the folding set S1= {A1, 0, A2} for N=3
n  A1 is performed during the 0th time partition S1|0, while

A2 is done in the 2nd time partition S1|2
n  Due to null operation in position 1, the function unit is

not used at time instances 3l+1
n  Folding set is obtained using a scheduling and

allocation algorithm

5

Example of a Biquad Filter
n  A biquad filter is a second-order recursive filter.
n  The z-transform transfer function is:

n  Direct Form implementations (

Direct Form 1 Direct Form 2

Example of a Biquad Filter
n  N=4, the iteration period of the folded hardware is 4 u.t.,

i.e. each node is executed exactly once every 4 u.t.
n  Folding set is given for an adder S1={4,2,3,1} and a

multiplier S2={5,8,6,7}
n  TA=1 u.t., TM=2 u.t., and Pa=1, Pm=2

6

Writing Folding Equations
uvPeNwVUD u

e
F −+−=⎯→⎯)()(

Folded Biquad Filter
uvPeNwVUD u

e
F −+−=⎯→⎯)()(Nodes 1, 2, 3, 4 are adders

Nodes 5, 6, 7, 8 are multipliers

7

Folding Condition
n  For a folded system to be realizable, DF ≥≥

0 must hold for all of the edges in the
DFG.

n  What if some of the DF’s are negative?
n  Of course we can not implement it.

n  We can apply retiming to the original graph
to get a valid DF‘s

n  Recall, retiming equation U à V

0)()()()(≥−+= UrVrewewr

Retiming for Folding

()

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ ⎯→⎯
≤−

⎯→⎯
≤−

≥−+⎯→⎯=⎯→⎯ʹ′

−+−+−=⎯→⎯ʹ′

−+−−+=⎯→⎯ʹ′

−+−=⎯→⎯

⎯→⎯ʹ′

N
VUDVrUr

N
VUDVrUr

UNrVNrVUDVUD

UNrVNruvPeNwVUD

uvPUrVrewNVUD

uvPeNwVUD

VUD

e
F

e
F

e
F

e
F

u
e

F

u
e

F

u
e

F

e
F

)()()(

)()()(

0)()()()(

)()()()(

)()()()(

)()(

graph retimed folded thein delays theis)(

8

Retiming for Folding
n  We can use the techniques in Chapter 4 to

solve for retiming.
n  Then we fold the retimed DFG

Activity 1
Given the biquad filter below, (1) find folding
equations, (2) can it be folded? If not,
retiming it.

9

 CSE4210 Architecture & Hardware for DSP

Register Minimization

Registers Minimization Techniques
n  The objective is to minimize the number of

registers in the implementation of a DSP
algorithm.

n  Techniques involved
n  Life time analysis
n  Data allocation using forward-backward

register allocation
n  Register minimization in folded architecture

10

Life Time Analysis
n  A data sample (variable) is alive from the time it

is produced, until the time it is consumed (dead).
n  During that time, the variable is stored in a

register.
n  The maximum number of live variables at any

time is the minimum number of registers required
for the implementation.

n  We use the convention that the variable is not
alive during the cycle it is produced in, and alive
during the cycle it is consumed in.

Linear Lifetime Chart

Linear lifetime
chart, N=6

Cycle
0
1
2
3
4
5
6
7

#live
0
1
2
2
2
2
2
2

a b c

Periodic with a
period of N=6

The number of live
variables at time
partition n>=N, is
the sum of the live
variables due to the
0th iteration at
cycles n and n-kN
for 0<=k<=n-k

2
0

Showing 3 periods

11

Example

i h g f e d c b a
Matrix

Transpose

i f c h e b g d a

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ihg
fed
cba

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ifc
heb
gdaTranspose

Example

Sample
a
b
c
d
e
f
g
h
i

Tinput
0
1
2
3
4
5
6
7
8

Tzlout
0
3
6
1
4
7
2
5
8

Tdiff
0
2
4
-2
0
2
-4
-2
0

Toutput
4
7
10
5
8
11
6
9
12

Life
0→4
1 →7
2 →10
3 →5
4 →8
5 →11
6 →6
7 →9
8 →12

Output time with zero latency Tdiff = Tzlout −Tinput

+Tlat = −(−4)

The latency, Tlat, is the most negative value of Tdiff

12

Example
Life period
0→4
1 →7
2 →10
3 →5
4 →8
5 →11
6 →6
7 →9
8 →12

Sample
a
b
c
d
e
f
g
h
i

n-kN=9-1*9=0
n-kN=10-1*9=1
n-kN=11-1*9=2
n-kN=12-1*9=3

N=9

Circular Life-Time Chart
n  Useful to represent the

periodic nature of the DSP
programs

n  The point marked I (0≤i≤N-1)
represents the time partition I
and all time instances Nl+I

n  Variable produced during time
unit j and consumed during
time unit k is shown to be alive
from j+1 to k

n  The numbers in the bracket in
the adjacent figure correspond
to the number of live variable
at each time partition.

13

Data Allocation
Step 1: Determine the min. number of registers using

lifetime analysis
Step 2: Input each variable at the time step

corresponding to the beginning of its lifetime.
If multiple variables are input in a given cycle,
use multiple registers such that the variable
with longest lifetime is allocated to the initial
register.

Step 3: Each variable is allocated in a forward
manner until it is dead or reaches the last
register

Data Allocation
Step 4: Since the allocation is periodic, the allocation

of the current iteration also repeats itself after
N.

Step 5: For variables that reach the last register and
not yet dead, the remaining life period is
calculated, and these variables are allocated
to a register in a backward manner on a first-
come first-served basis. (if more than one,
choose one that has been allocated
backward before, then forward again and so
on).

Step 6: Repeat steps 4 and 5 until the allocation is
complete.

14

Data Allocation Example
Sample
a
b
c
d
e
f
g
h
i

Life period
0→4
1 →7
2 →10
3 →5
4 →8
5 →11
6 →6
7 →9
8 →12

Note: Hashing is done to
avoid conflict during backward
allocation

Data Allocation Example
Sample
a
b
c
d
e
f
g
h
i

Life period
0→4
1 →7
2 →10
3 →5
4 →8
5 →11
6 →6
7 →9
8 →12

Note: Hashing is done to
avoid conflict during
backward allocation

15

Synthesized Architecture

Activity 2
Given the linear lifetime chart below, (1)
derive the data allocation using forward-
backward register allocation; (2) synthesis
the architecture.

16

Register Minimization for Folded Architecture

Step 1: Perform retiming for folding
Step 2: Write the folding equations
Step 3: Use the folding equations to construct a

lifetime table
Step 4: Draw the lifetime chart and determine the

minimum number of registers
Step 5: Perform forward-backward register

allocation
Step 6: Draw the folded architecture that uses the

minimum number of registers

Example: Biquad Filter
n  Consider the Biquad filter example presented in slide

10.

n  Steps 1 & 2 have already been done.

17

Step 3: Construct a lifetime table

DF(U,V)=Nw(e)-Pu+v-u

Node Tinput → Toutput
1 4 → 9
2 -----
3 3 → 3
4 1 → 1
5 2 → 2
6 4 → 4
7 5 → 6
8 3 → 4

Node U produces data at time u+Pu :Tinput = u+Pu,
Tout for node U = u+Pu +max

V
{DF (U→V)}

Example: Node 1 is created at time 4 and
consumed at 4+max(1,0,2,3,5)=9

Step 4: Construct lifetime chart

Node Tinput → Toutput

1 4 → 9

2 -----

3 3 → 3

4 1 → 1

5 2 → 2

6 4 → 4

7 5 → 6

8 3 → 4

18

Step 5: Register allocation

{2}

Step 6: Draw folded architecture

19

Synthesize
n  To synthesize the

architecture, which is
shown in the previous
slide, let’s build partial
architecture by
considering each edge
based on the folding
equations.

n  The final architecture is
the combination of these
partial architectures.

⊕ D ⊗ 2D R1 R2

IN

OUT

a b c d

{1}

{3}

{2}

{0}

1 2 delay 1 (Adder to adder)
n  N1 is produced at time 0 (4l+0) needed by N2 at time 1

(a delay of 1)
n  An edge from R1 (where the result will be available after

1 time unit) to node 2 (adder) that switches at time 4l+1
n  Also, input is switched at 4l+3 and output at 4l+2

20

⊕ D ⊗ 2D R1 R2

IN

OUT

a b c d

{0}

{0}

1 5 delay 0(adder to multiplier)
n  created at 0 consumed at 0
n  A path from output of adder to input of multiplier switches

at 4l+0

⊕ D ⊗ 2D R1 R2

IN

OUT

a b c d

{0}

{1}
{2}

1 6 (adder to multiplier)
n  N1 produces at time 0, needed after a delay of 2 at

multiplier at 2
n  Need a switch to move it from adder to R1 at 0, R1 to R2

at 1, R2 to multiplier at 2

21

⊕ D ⊗ 2D R1 R2

IN

OUT

a b c d

{0}

{1}

{2}
{3}

1 7 delay of 3 (A to M)
n  N1 produced at 0, needed after 3 at 3
n  We need a switch to go from adder to R1 at 0, R1 à R2

at 1, R2 à R2 at 2, R2 à multiplier at 3

⊕ D ⊗ 2D R1 R2

IN

OUT

a b c d

{0}

{1}

{2,3,0}
{1}

1 8 delay of 5 (A to M)
n  N1 produces result at 0, needed after 5 at multiplier 4l+1
n  Need a switch to go from Adder to R1 at 0, R1 àR2 at 1,

R2 àR2 at 2, R2 à R2 at 3. R2 àR2 at 4 (4l+0), R2 à
Multiplier at 5 (4l+1)

22

⊕ D ⊗ 2D R1 R2

IN

OUT

a b c d

{3}

3 1 delay of 0 (A to A)
n  N3 (adder) produces result at 3, needed at

3 at adder

⊕ D ⊗ 2D R1 R2

IN

OUT

a b c d

{1}

4 2 delay of 0 (A to A)
n  N4 produces result at 1, needed at adder at 1 no delay

n  Switch from output of adder to input of adder with no
delay at 1

23

⊕ D ⊗ 2D R1 R2

IN

OUT

a b c d

{2}

5 3 delay of 0 (M to A)
n  N5 produces at 2, needed at adder with no delay

n  A switch from output of multiplier to input of adder at 2

⊕ D ⊗ 2D R1 R2

IN

OUT

a b c d
{0}

6 4 delay of 0 (M to A)
n  N6 produces at 4 i.e. 4l+0, needed with no delay at adder

n  A switch from output of multiplier to input of adder at 0

24

⊕ D ⊗ 2D R1 R2

IN

OUT

a b c d

{1}

{2}

7 3 delay of 1 (M to A)
n  N7 produces at 5, i.e. 4l+1, needed after 1 delay at adder

n  A switch from multiplier to R1 at 1, R1 à adder at 2

⊕ D ⊗ 2D R1 R2

IN

OUT

a b c d

{3}

{0}

8 4 delay of 1 (M to A)
n  N8 produces at 3 needed after one delay to input of

adder

n  A switch from Multiplier à R1 at 3 and R1 à adder at 0

25

{0,1,2}

{3}
IN

⊕ D ⊗ 2D R1 R2

OUT

a b c d
{0, 2, 3, 1}

{0,2,3}
{01,2,3}

{0,2} {1,3}
{1,3}

{0}

{0}

{2}

Final structure
n  Superimposing the switches produces the final

architecture

n  Note that constants a,b,c,d are muxed into multiplier at
{0,2,3,1}

