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Folding 

Instructor: Prof. Peter Lian 
Department of Electrical 

Engineering & Computer Science 
Lassonde School of Engineering 

York University 

Introduction to Folding 
n  Folding is a technique to reduce the silicon area 

by time-multiplexing many algorithm operations 
into single functional unit.  

n  The hardware is reduced by a factor of N, the 
time is increased by the same factor. 

n  In general, the data on the input of a folded 
realization is assumed to be valid for N cycles 
before changing. 

n  May lead to a large number of registers, thus 
need to minimize the registers. 
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A Folding Example 

A 

C 
B 

D 

Cycle  A     B  E             C    D 
0   a(0)     b(0)  a(0)+b(0)                 ⎯   ⎯ 
1          a(0)+b(0)   c(0)  a(0)+b(0)+c(0)       a(0)+b(0)   ⎯  
2          a(1)     b(1)  a(1)+b(1)   a(0)+b(0)+c(0)  a(0)+b(0)+c(0) 
3          a(1)+b(1)    c(1)  a(1)+b(1)+c(1)  a(1)+b(1)   ⎯ 
4          a(2)     b(2)  a(2)+b(2)  a(1)+b(1)+c(1)  a(1)+b(1)+c(1) 
5          a(2)+b(2)    c(2)  a(2)+b(2)+c(2)  a(2)+b(2)   ⎯ 
6          a(3)     b(3)  a(3)+b(3)  a(2)+b(2)+c(2)  a(2)+b(2)+c(2) 

E 

Valid for 2 
cycles 

y(n) = a(n)+ b(n)+ c(n)

Folding Transformation 
n  The objective is to provide a systematic 

technique for designing control circuits for 
hardware where several algorithm 
operations are mapped to the same piece 
of hardware via time-multiplexing of 
course. 

n  The folding transformation starts with a 
DFG for the algorithm. 
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Definitions in Folding Transformation 
n  U and V are two nodes in the original DFG. 
n  U and V are connected via an edge e with a 

delay w(e), i.e.  

n  Folding factor is N 
n  Node U (computation):  lth iteration is performed 

at time Nl +u 
n  Node V (computation): lth iteration is performed 

at time Nl +v 
n  u and v are folding order of the nodes U and V 

that satisfy 0≤u,v≤N-1 

U w(e)! →!! V

n  Hu and Hv are the hardware units used at 
U and V for performing computation. 

n  Hu and Hv are pipelined by Pu and Pv 
stages 

Definitions in Folding Transformation 
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Folding Transformation 
n  The results of the lth iteration of node U is 

available at Nl+u+Pu 

n  Since there are w(e) delays between U 
and V, the result of the lth iteration of the 
node U is used by the (l+w(e))th iteration of 
the node V, which is executed at N(l+w(e))
+v.  

n  The result must be stored for  
DF (U

e!→! V ) = N(l +w(e))+ v[ ] − Nl +Pu +u[ ]
= Nw(e)−Pu + v−u

Folding Set 
n  Is an ordered set of operations executed by the 

same functional unit. 
n  Each folding set contains N entries (some of 

which may be  null operations) 
n  The jth position within the folding set is executed 

during the time partition j 
n  For example the folding set S1= {A1, 0, A2} for N=3 
n  A1 is performed during the 0th time partition S1|0, while 

A2 is done in the 2nd time partition S1|2 
n  Due to null operation in position 1, the function unit is 

not used at time instances 3l+1 
n  Folding set is obtained using a scheduling and 

allocation algorithm 
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Example of a Biquad Filter 
n  A biquad filter is a second-order recursive filter. 
n  The z-transform transfer function is: 

n  Direct Form implementations ( 
 

Direct Form 1 Direct Form 2 

Example of a Biquad Filter 
n  N=4, the iteration period of the folded hardware is 4 u.t., 

i.e. each node is executed exactly once every 4 u.t. 
n  Folding set is given for an adder S1={4,2,3,1} and a 

multiplier S2={5,8,6,7} 
n  TA=1 u.t., TM=2 u.t., and Pa=1, Pm=2 
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Writing Folding Equations 
uvPeNwVUD u

e
F −+−=⎯→⎯ )()(

Folded Biquad Filter 
uvPeNwVUD u

e
F −+−=⎯→⎯ )()(Nodes 1, 2, 3, 4 are adders 

Nodes 5, 6, 7, 8 are multipliers 
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Folding Condition 
n  For a folded system to be realizable, DF  ≥≥ 

0 must hold for all of the edges in the 
DFG. 

n  What if some of the DF’s are negative? 
n  Of course we can not implement it. 

n  We can apply retiming to the original graph 
to get a valid DF‘s 

n  Recall, retiming equation  U à V 

0)()()()( ≥−+= UrVrewewr
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Retiming for Folding 
n  We can use the techniques in Chapter 4 to 

solve for retiming. 
n  Then we fold the retimed DFG 

Activity 1 
Given the biquad filter below, (1) find folding 
equations, (2) can it be folded? If not, 
retiming it. 
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             CSE4210 Architecture & Hardware for DSP 

Register Minimization 

Registers Minimization Techniques 
n  The objective is to minimize the number of 

registers in the implementation of a DSP 
algorithm.  

n  Techniques involved 
n  Life time analysis 
n  Data allocation using forward-backward 

register allocation 
n  Register minimization in folded architecture 
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Life Time Analysis 
n  A data sample (variable) is alive from the time it 

is produced, until the time it is consumed (dead). 
n  During that time, the variable is stored in a 

register. 
n  The maximum number of live variables at any 

time is the minimum number of registers required 
for the implementation. 

n  We use the convention that the variable is not 
alive during the cycle it is produced in, and alive 
during the cycle it is consumed in. 

Linear Lifetime Chart 

Linear lifetime 
chart, N=6 

Cycle 
0 
1 
2 
3 
4 
5 
6 
7 

#live 
0 
1 
2 
2 
2 
2 
2 
2 

a    b     c 

Periodic with a 
period of N=6 

The number of live 
variables at time 
partition n>=N, is 
the sum of the live 
variables due to the 
0th iteration at 
cycles n and n-kN 
for 0<=k<=n-k 

 

2 
0 

Showing 3 periods 
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Example 

i h g f e d c b a 
Matrix 

Transpose 

i f c h e b g d a 
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Example 

Sample 
a 
b 
c 
d 
e 
f 
g 
h 
i 

Tinput 
0 
1 
2 
3 
4 
5 
6 
7 
8 

Tzlout 
0 
3 
6 
1 
4 
7 
2 
5 
8 

Tdiff 
0 
2 
4 
-2 
0 
2 
-4 
-2 
0 

Toutput 
4 
7 
10 
5 
8 
11 
6 
9 
12 

Life 
0→4 
1 →7 
2 →10 
3 →5 
4 →8 
5 →11 
6 →6 
7 →9 
8 →12 

Output time with zero latency Tdiff = Tzlout −Tinput

+Tlat = −(−4)

The latency, Tlat,  is the most negative value of Tdiff  
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Example 
Life period 
0→4 
1 →7 
2 →10 
3 →5 
4 →8 
5 →11 
6 →6 
7 →9 
8 →12 

Sample 
a 
b 
c 
d 
e 
f 
g 
h 
i 

n-kN=9-1*9=0  
n-kN=10-1*9=1 
n-kN=11-1*9=2 
n-kN=12-1*9=3 
 

N=9 

Circular Life-Time Chart 
n  Useful to represent the 

periodic nature of the DSP 
programs 

n  The point marked I (0≤i≤N-1) 
represents the time partition I 
and all time instances Nl+I 

n  Variable produced during time 
unit j and consumed during 
time unit k is shown to be alive 
from j+1 to k 

n  The numbers in the bracket in 
the adjacent figure correspond 
to the number of live variable 
at each time partition. 
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Data Allocation 
Step 1: Determine the min. number of registers using 

lifetime analysis 
Step 2: Input each variable at the time step 

corresponding to the beginning of its lifetime. 
If multiple variables are input in a given cycle, 
use multiple registers such that the variable 
with longest lifetime is allocated to the initial 
register. 

Step 3: Each variable is allocated in a forward 
manner until it is dead or reaches the last 
register 

Data Allocation 
Step 4: Since the allocation is periodic, the allocation 

of the current iteration also repeats itself after 
N. 

Step 5: For variables that reach the last register and 
not yet dead, the remaining life period is 
calculated, and these variables are allocated 
to a register in a backward manner on a first-
come first-served basis. (if more than one, 
choose one that has been allocated 
backward before, then forward again and so 
on). 

Step 6: Repeat steps 4 and 5 until the allocation is 
complete. 
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Data Allocation Example 
Sample 
a 
b 
c 
d 
e 
f 
g 
h 
i 

Life period 
0→4 
1 →7 
2 →10 
3 →5 
4 →8 
5 →11 
6 →6 
7 →9 
8 →12 

Note: Hashing is done to 
avoid conflict during backward 
allocation 

Data Allocation Example 
Sample 
a 
b 
c 
d 
e 
f 
g 
h 
i 

Life period 
0→4 
1 →7 
2 →10 
3 →5 
4 →8 
5 →11 
6 →6 
7 →9 
8 →12 

Note: Hashing is done to 
avoid conflict during 
backward allocation 
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Synthesized Architecture 

Activity 2 
Given the linear lifetime chart below, (1) 
derive the data allocation using forward-
backward register allocation; (2) synthesis 
the architecture. 
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Register Minimization for Folded Architecture 

Step 1: Perform retiming for folding 
Step 2: Write the folding equations 
Step 3: Use the folding equations to construct a 

lifetime table 
Step 4: Draw the lifetime chart and determine the 

minimum number of registers 
Step 5: Perform forward-backward register 

allocation 
Step 6: Draw the folded architecture that uses the 

minimum number of registers 

Example: Biquad Filter 
n  Consider the Biquad filter example presented in slide 

10. 

n  Steps 1 & 2 have already been done. 
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Step 3: Construct a lifetime table 

DF(U,V)=Nw(e)-Pu+v-u 

Node        Tinput →  Toutput  
1    4 → 9 
2                       ----- 
3      3 → 3 
4    1 → 1 
5    2 → 2 
6    4 → 4 
7    5 → 6 
8    3 → 4 

Node U produces data at time u+Pu :Tinput = u+Pu,  
Tout  for node U = u+Pu +max

V
{DF (U→V )}

Example: Node 1 is created at time 4 and  
consumed at 4+max(1,0,2,3,5)=9 

Step 4: Construct lifetime chart 

Node        Tinput →  Toutput  

1    4 → 9 

2                       ----- 

3      3 → 3 

4    1 → 1 

5    2 → 2 

6    4 → 4 

7    5 → 6 

8    3 → 4 
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Step 5: Register allocation 

{2} 

Step 6: Draw folded architecture 
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Synthesize  
n  To synthesize the 

architecture, which is 
shown in the previous 
slide, let’s build partial 
architecture by 
considering each edge 
based on the folding 
equations. 

n  The final architecture is 
the combination of these 
partial architectures. 

⊕ D ⊗ 2D R1 R2 

IN 

OUT 

a b c d 

{1} 

{3} 

{2} 

{0} 

1  2 delay 1 (Adder to adder) 
n  N1 is produced at time 0 (4l+0) needed by N2 at time 1 

(a delay of 1) 
n  An edge from R1 (where the result will be available after 

1 time unit) to node 2 (adder) that switches at time 4l+1 
n  Also, input is switched at 4l+3 and output at 4l+2 
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⊕ D ⊗ 2D R1 R2 

IN 

OUT 

a b c d 

{0} 

{0} 

1  5 delay 0(adder to multiplier) 
n  created at 0 consumed at 0 
n  A path from output of adder to input of multiplier switches 

at 4l+0 

⊕ D ⊗ 2D R1 R2 

IN 

OUT 

a b c d 

{0} 

{1} 
{2} 

1  6  (adder to multiplier) 
n  N1 produces at time 0, needed after a delay of 2 at 

multiplier at 2 
n  Need a switch to move it from adder to R1 at 0, R1 to R2 

at 1, R2 to multiplier at 2 
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⊕ D ⊗ 2D R1 R2 

IN 

OUT 

a b c d 

{0} 

{1} 

{2} 
{3} 

1  7 delay of 3 (A to M) 
n  N1 produced at 0, needed after 3 at 3 
n  We need a switch to go from adder to R1 at 0, R1 à R2 

at 1, R2 à R2 at 2, R2 à multiplier at 3 

⊕ D ⊗ 2D R1 R2 

IN 

OUT 

a b c d 

{0} 

{1} 

{2,3,0} 
{1} 

1   8 delay of 5 (A to M) 
n  N1 produces result at 0, needed after 5 at multiplier 4l+1 
n  Need a switch to go from Adder to R1 at 0, R1 àR2 at 1, 

R2 àR2 at 2, R2 à R2 at 3. R2 àR2 at 4 (4l+0), R2 à 
Multiplier at 5 (4l+1) 
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⊕ D ⊗ 2D R1 R2 

IN 

OUT 

a b c d 

{3} 

3  1 delay of 0 (A to A) 
n  N3 (adder) produces result at 3, needed at 

3 at adder 

⊕ D ⊗ 2D R1 R2 

IN 

OUT 

a b c d 

{1} 

4  2 delay of 0 (A to A) 
n  N4 produces result at 1, needed at adder at 1 no delay 

n  Switch from output of adder to input of adder with no 
delay at 1 
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⊕ D ⊗ 2D R1 R2 

IN 

OUT 

a b c d 

{2} 

5  3 delay of 0 (M to A) 
n  N5 produces at 2, needed at adder with no delay 

n  A switch from output of multiplier to input of adder at 2 

⊕ D ⊗ 2D R1 R2 

IN 

OUT 

a b c d 
{0} 

6  4 delay of 0 (M to A) 
n  N6 produces at 4 i.e. 4l+0, needed with no delay at adder 

n  A switch from output of multiplier to input of adder at 0 
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⊕ D ⊗ 2D R1 R2 

IN 

OUT 

a b c d 

{1} 

{2} 

7  3 delay of 1 (M to A) 
n  N7 produces at 5, i.e. 4l+1, needed after 1 delay at adder 

n  A switch from multiplier to R1 at 1, R1 à adder at 2 

⊕ D ⊗ 2D R1 R2 

IN 

OUT 

a b c d 

{3} 

{0} 

8  4 delay of 1 (M to A) 
n  N8 produces at 3 needed after one delay to input of 

adder 

n  A switch from Multiplier à R1 at 3 and R1 à adder at 0 
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{0,1,2} 

{3} 
IN 

⊕ D ⊗ 2D R1 R2 

OUT 

a b c d 
{0, 2, 3, 1} 

{0,2,3} 
{01,2,3} 

{0,2} {1,3} 
{1,3} 

{0} 

{0} 

{2} 

Final structure 
n  Superimposing the switches produces the final 

architecture 

n  Note that constants a,b,c,d are muxed into multiplier at 
{0,2,3,1} 


