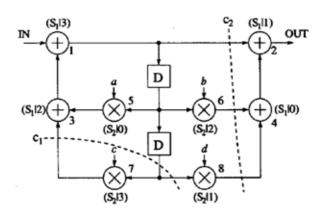
CSE4210 Architecture & Hardware for DSP

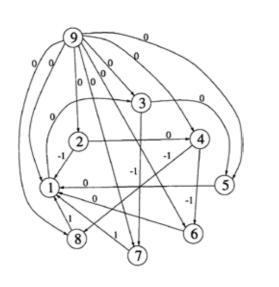

Chapter 8

Activities

Instructor: Prof. Peter Lian
Department of Electrical
Engineering & Computer Science
Lassonde School of Engineering
York University

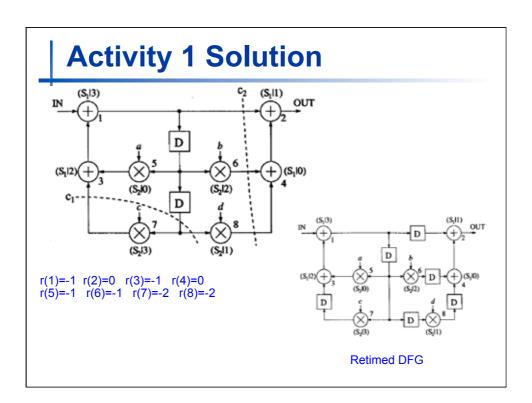
Activity 1

Given the biquad filter below, (1) find folding equations, (2) can it be folded? If not, retiming it.

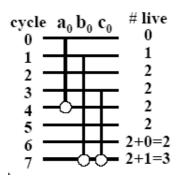


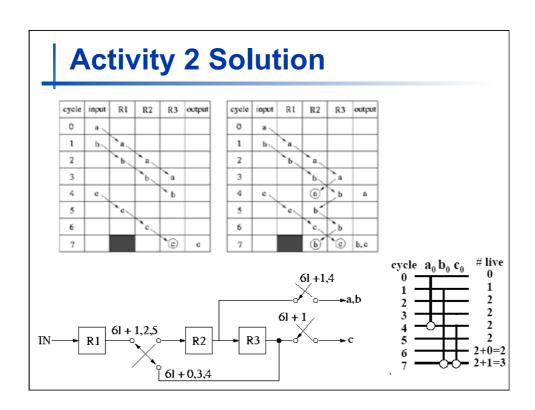
Activity 1 Solution

$$D_F(U \xrightarrow{e} V) = Nw(e) - P_u + v - u \qquad r(U) - r(V) \le \left\lfloor \frac{D_F(U \xrightarrow{e} V)}{N} \right\rfloor$$


Edge	Folding Equation	Retiming for Folding Constraint
$1 \rightarrow 2$	$D_F(1 \to 2) = -3$	$r(1) - r(2) \le -1$
$1 \rightarrow 5$	$D_F(1 \to 5) = 0$	$r(1) - r(5) \le 0$
$1 \rightarrow 6$	$D_F(1 \to 6) = 2$	$r(1) - r(6) \le 0$
$1 \rightarrow 7$	$D_F(1 \rightarrow 7) = 7$	$r(1) - r(7) \le 1$
$1 \rightarrow 8$	$D_F(1 \rightarrow 8) = 5$	$r(1) - r(8) \le 1$
$3 \rightarrow 1$	$D_F(3\to 1)=0$	$r(3) - r(1) \le 0$
$4 \rightarrow 2$	$D_F(4\to 2)=0$	$r(4) - r(2) \le 0$
$5 \rightarrow 3$	$D_F(5\to 3)=0$	$r(5) - r(3) \le 0$
$6 \rightarrow 4$	$D_F(6\to 4)=-4$	$r(6) - r(4) \le -1$
$7 \rightarrow 3$	$D_F(7 \rightarrow 3) = -3$	$r(7) - r(3) \le -1$
$8 \rightarrow 4$	$D_F(8\to 4)=-3$	$r(8) - r(4) \le -1$

Activity 1 Solution


Activity 1 Solution


- One solution is found from the constraint graph using Bellman-Ford Algorithm
- r(1)=-1 r(2)=0 r(3)=-1 r(4)=0
- r(5)=-1 r(6)=-1 r(7)=-2 r(8)=-2

Activity 2

Given the linear lifetime chart below, (1) derive the data allocation using forward-backward register allocation; (2) synthesis the architecture.

