
CSE4210 – Architecture and Hardware for DSP

Project Task 2

FIR Filter Implementation

Introduction
Several techniques were introduced to improve the performance of DSP system
including pipelining and parallel process. In this task, you will first design an FIR
filter based on given specifications. Then you will explore the architecture level
trade-offs in implementing the FIR filter in order to achieve the best
performance, e.g. highest operation speed.

The design should be coded in Verilog, simulated and synthesized using Altera
Quartus II software, and mapped to Altera FPGA Cyclone II EP2C35F672C6 (DE-
2 Development Board). Based on synthesis results, the performance of the filter
will be evaluated in terms of speed (delay), area, and power.

You will use Altera Quartus II software for simulation and Altera DE-2
Development Board as the target device. The Quartus software is available in
LAS 3057. You can borrow the Altera DE-2 Development Board from the Lab
Monitors at LAS 1006 during lab time (11:30am – 1:30pm). You need to return
the board once the lab is over.

Tasks

1. Design a half-band FIR filter using Matlab

Half-band filter is widely used in multi-rate signal processing applications for up-
sampling or down-sampling by a factor of two. Half-band filters have three
important characteristics, (1) it is an odd length filter, (2) the passband and
stoppand ripples must be the same, and (3) the passband edge fp and stopband
edge fs are equidistant from the halfband frequency, i.e. 0.25.

You are required to design a half-band filter that satisfies the following
specifications:

Passband edge: fp/fsample=0.1875
Stopband edge: fs/fsample=0.3125

Passpand ripple: 0.01
Stopband attenuation: 40dB

Design the filter using Matlab and record your filter length and coefficients.

2. Filter coefficient quantization

In order to get rid of multipliers in filter implementation, you are required to
quantize the filter coefficients into 8-bit binary (fractional bits) in the form of
sum(or difference) of two terms of power-of-two (PoT), i.e. coefficient=
2! ± 2! , where n and m are positive or negative integers. For example: 0.625
and 0.375 can be expressed as:
0.625=0.5+0.125=2-1+2-3

0.375=0.5-0.125=2-1-2-3

The filter with quantized coefficients should have at 35dB stopband attenuation.
To quantize the coefficients, follow the steps below.

Step 1: round all coefficients to the nearest two terms of PoT values.
Step 2: examine the frequency response of the filter.
Step 3: If the frequency response meets the design specifications, record the
coefficients. Stop. Otherwise, goto Step 4.
Step 4: adjust the coefficient values and plot the frequency response. Goto Step
3. If your filter still does not meet the specifications after few iterations in Steps
3 and 4, goto Step 5.
Step5: increase the filter length and redesign the filter. Goto Step 1. (Note the
maximum filter length should be less than or equal to 21).

With PoT coefficients, all multiplications can be implemented by shifter and
adder. For example, D=0.625*A can be implemented as:

i. B=Shift A to right by 1
ii. C=Shift A to right by 3
iii. D=B+C

Note no shifter is required in the implementation. You can hardwire B and C (in
above example) to the adder’s inputs.

3. Determine the filter architecture

Assume the filter input is restricted to a range between -1 to 1 and represented
in 8 bits. Further assume that the delay components are implemented by D-flip-
flop or FIFO which has negligible propagation delays compared to adders (you
design in Task1). Note that the results from Task1, i.e. speed, area, power of

different adders, form the base for your design trade-off. Given that the filter
coefficients are presented by 8 fractional bits (total of 9 bits). Your team is
required to evaluate the performance of 4 filters, i.e. (1) the baseline design
(filter without pipelining and parallel), (2) pipelined design, (3) 2-level parallel
design, (4) combined pipelining and 2-level parallel processing in one design.

Important note:
You should only use techniques covered in Chapters 1 to 6 to improve
the performance of the filter.

You are required to predict the performance of these filters, and to identify
which design is the best in terms of speed. Draw the block diagrams of all your
designs.

4. Filter implementation and verification

Develop Verilog codes for your filters.

Develop test benches for the functional verification of these filters. Using Quartus
II to perform your simulation and synthesis.

a. Perform functional simulation to verify your designs.
b. Map your design to Altera DE-2 development board, i.e. to select the

target FPGA device that matches the DE-2 board.
c. Perform timing analysis on your designs, considering the worst case.

Record delays for each filter.
d. From synthesis results, record area (gate counts) and power.

Report
Your report should include the following sections.

1. Introduction: A brief introduction of the theory about the project. A brief
description of software tools used.

2. Task Management: A brief description on how your team is organized in
performing this task, the role of each team member, the contributions of
each team member.

3. Design Procedures: Detailed descriptions of the design procedures
including filter design, coefficient quantization, architecture trade-off, and
performance prediction.

4. Filter Implementation: Detailed description of your HDL design, simulation
setup, simulation results, verification, and comparison figures or tables.

5. Discussion: Does your prediction matches the implemented filter? Discuss
the pros and cons of techniques used in improving the performance.

6. Conclusion
7. Appendix including Verilog code, test benches, and compilation reports.

Resource

1. Tutorials and labs on Quartus II are available at:
http://www.altera.com/education/univ/materials/digital_logic/labs/unv-labs.html
2. FIR filter design using Matlab:
http://www.mathworks.com/help/dsp/examples/designing-low-pass-fir-
filters.html

