SC/CSE 4215 Mobile Communications Winter 2014
Quiz \#1, Thurs. Apr. 3, 2014
Name: \qquad

1. (4 points)

a.) On coordinates (a) sketch the PDF of the received signal amplitude (not power) of a signal coming through a Rayleigh channel and a signal on a Ricean channel with a very high K-factor [i.e. draw 2 curves on (a)].
b.) On coordinates (b) sketch the PDF of the received signal power and indicate what mathematical function best describes your curve.

2. (3 points) Channel measurements show a two impulse channel response, one at $0-\mathrm{dB}$ and $2 \mu \mathrm{~s}$ arrival and a second at -1 dB at $2.8 \mu \mathrm{~s}$. What is the RMS delay spread?

$$
\begin{aligned}
p_{1} & =1 \quad p_{2}=0.7943=10^{-0.1} \\
c t_{k}^{\prime} & =\frac{1 \times 2+0.7943 \times 2.8}{1.7943} \quad\left\langle t_{k}^{2}\right\rangle= \\
& =\frac{1 \times 2^{2}+0.7943 \times 2.8^{2}}{1.7943} \\
\sigma_{d} & =\sqrt{\left\langle t_{k}^{2}\right\rangle-\left\langle t_{k}\right\rangle^{2}} \\
& =0.4213 \mu s
\end{aligned}
$$

3. (3 points) You are designing a receiver in a multipath channel capable of recovering signals with a correlation (ρ) of only 0.1 across frequency. If the rms delay spread of your channel is 2.3 ns what is the size of the spectrum that your system should be able to handle?

$$
\begin{aligned}
0.1 & =\frac{1}{1+2 \pi \Delta f \cdot(2.3 n)} \\
1+2 \pi(2.3 n) \Delta f & =10 \\
\Delta f & =\frac{9}{2 \pi \cdot 2.3 n}<623 \mathrm{MHz}
\end{aligned}
$$

4. (2 points) You are using a $800-\mathrm{MHz}$ cellular system in a car moving at $135 \mathrm{~km} / \mathrm{hr}$. What's the worst case carrier frequency shift that you can expect? Give your answer in Hz .

$$
\begin{aligned}
& \lambda=\frac{c}{f}=\frac{3 \times 10^{2}}{800 \times 10^{6}}=0.375 \mathrm{~m} \\
& v=135 \times 10^{3} \times \frac{1}{60} \times \frac{1}{60}=37.5 \mathrm{~m} / \mathrm{s} \\
& f_{d}=\frac{v}{\lambda}=\frac{37.5}{0.375}=100 \mathrm{~Hz}
\end{aligned}
$$

5. (3 points) You are using a wireless system operating at 500 -kbp that experiences a Doppler shift of $200-\mathrm{Hz}$. Every how many bits will you have to adjust your channel equalizer to make up for temporal changes in the channel?

$$
\begin{aligned}
& T_{\text {con }}=\frac{9}{16 \pi \times 200}=7.2 \mathrm{~ms} \\
& \text { adjust every } 500^{\times 10^{3} \times 7.2 \times 10^{-3}=3600 \text { bits }}
\end{aligned}
$$

$$
\begin{gathered}
E=h f, \quad f=c / \lambda, \quad d=v \cdot t \\
f_{A}(a)=\frac{a}{\sigma^{2}} e^{-a^{2} / 2 \sigma^{2}}, m_{A}=\sigma \sqrt{\frac{\pi}{2}}, F_{A}(a)=\int_{0}^{a} f_{A}(\alpha) d \alpha=\operatorname{Pr}\{A \leq \alpha\}, f_{P}(p)=\frac{1}{\sigma^{2}} e^{-p / \sigma^{2}} \\
\sigma_{d}=\sqrt{\left\langle t_{k}^{2}\right\rangle-\left\langle t_{k}\right\rangle^{2}},\left\langle t_{k}\right\rangle=\sum_{i=1}^{M} p_{i} t_{i} / \sum_{i=1}^{M} p_{i},\left\langle t_{k}^{2}\right\rangle=\sum_{i=1}^{M} p_{i} t_{i}^{2} / \sum_{i=1}^{M} p_{i} \\
\rho=\frac{1}{1+2 \pi\left(f_{2}-f_{1}\right) \sigma_{d}}, B_{c o h}=\frac{1}{5 \sigma_{d}} \\
f_{d}=\frac{v}{\lambda} \cos \theta, \rho=\mathrm{J}_{0}^{2}\left(2 \pi f_{d} \tau\right), T_{c o h}=\frac{9}{16 \pi f_{d}} \\
Q[\mathrm{~dB}]=10 \log (Q), \quad \log (A \cdot B / C)=\log (A)+\log (B)-\log (C)
\end{gathered}
$$

