
Functional Testing Review

Chapter 8

FTR–2

Functional Testing

  We saw three types of functional testing
  Boundary Value Testing

  Equivalence Class Testing

  Decision Table-Based Testing

  What is the common thread among the above
methods?

FTR–3

Functional Testing – 2

  The common thread among these techniques
  they all view a program as a mathematical function that maps

its inputs to its outputs.

FTR–4

Functional Testing – 3

  What do we look at when comparing functional
testing methods?

FTR–5

Functional Testing – 4

  Look at
  testing effort

  testing efficiency

  testing effectiveness

FTR–6

Boundary Value Test Cases

Test Case a b c Expected Output

1 100 100 1 Isosceles

2 100 100 2 Isosceles

3 100 100 100 Equilateral

4 100 100 199 Isosceles

5 100 100 200 Not a Triangle

6 100 1 100 Isosceles

7 100 2 100 Isosceles

8 100 100 100 Equilateral

9 100 199 100 Isosceles

10 100 200 100 Not a Triangle

11 1 100 100 Isosceles

12 2 100 100 Isosceles

13 100 100 100 Equilateral

14 199 100 100 Isosceles

15 200 100 100 Not a Triangle

FTR–7

Equivalence Class Test Cases

Test Case a b c Expected
Output

WN1 5 5 5 Equilateral

WN2 2 2 3 Isosceles

WN3 3 4 5 Scalene

WN4 4 1 2 Not a Triangle

WR1 -1 5 5 a not in range

WR2 5 -1 5 b not in range

WR3 5 5 -1 c not in range

WR4 201 5 5 a not in range

WR5 5 201 5 b not in range

WR6 5 5 201 c not in range

FTR–8

Decision Table Test Cases

Case ID a b c Expected Output

DT1 4 1 2 Not a Triangle

DT2 1 4 2 Not a Triangle

DT3 1 2 4 Not a Triangle

DT4 5 5 5 Equilateral

DT5 ??? ??? ??? Impossible

DT6 ??? ??? ??? Impossible

DT7 2 2 3 Isosceles

DT8 ??? ??? ??? Impossible

DT9 2 3 2 Isosceles

DT10 3 2 2 Isosceles

DT11 3 4 5 Scalene

FTR–9

Testing Effort Sophistication

  Describe the level of sophistication of the following
test methods for how the methods are used to
generate test cases?
  Boundary value

  Equivalence classes

  Decision tables

FTR–10

Testing Effort Sophistication Boundary Value

  Has no recognition of data or logical dependencies

  Mechanical generation of test cases

FTR–11

Testing Effort Sophistication Equivalence Classes

  Takes into account data dependencies

  More thought and care is required to define the equivalence

classes

  Mechanical generation after that

FTR–12

Testing Effort Sophistication Decision Tables

  The most sophisticated

  It requires that we consider both data and logical dependencies.

  Iterative process

  Allows manual identification of redundant test cases

  Tradeoff between test identification effort and test execution effort

FTR–13

Trend Line Testing Effort

  What does the trend line look like for the following
axes?
  Number of test cases

  Test method – boundary, equivalence, decision

FTR–14

Trend Line Testing Effort – number of test cases

Boundary
value

Equivalence
class

Decision
table

Sophistication

high

low

Number of Test Cases

FTR–15

Trend Line Testing Effort – 2

  What does the trend line look like for the following
axes?
  Effort to identify test cases

  Test method – boundary, equivalence, decision

FTR–16

Trend Line Testing Effort – identifying test cases

Boundary
value

Equivalence
class

Decision
table

Sophistication

high

low

Effort to Identify Test Cases

FTR–17

Testing Limitations

  What are the fundamental limitation of functional testing?

FTR–18

Testing Limitations – 2

  Fundamental limitations of functional testing

  Gaps of untested functionality

  Redundant tests

FTR–19

Testing Efficiency

  What is the "Testing efficiency" question?

  What problem are we trying to solve?

FTR–20

Testing Efficiency – 2

  Testing efficiency question
  How can we create a set of test cases that is “just right”?

  Difficult to answer
  Can only rely on the general knowledge that more

sophisticated techniques, such as decision tables, are usually
more efficient

  Structural testing methods will allow us to define more
interesting metrics for efficiency

FTR–21

Testing Efficiency Example

  The worst case boundary analysis for the NextDate program
generated 125 cases.
  Redundancy

  check January 1 for five different years
  only a few February cases

  Gaps
  None on February 28, and February 29
  No major testing for leap years

FTR–22

Testing Efficiency Example – 2

  The strong equivalence class test cases generated 36 test
cases
  11 of which are impossible.

  The decision table technique generated 22 test cases
  Fairly complete

FTR–23

Testing Effectiveness

  How effective is a method or a set of test cases for
finding faults present in a program?

FTR–24

Testing Effectiveness – 2

  Difficult to answer because

  It presumes we know all faults in a program

  It is impossible to prove that a program is free of faults
(equivalent to solving the halting problem)

  What is the best we can do?

FTR–25

Testing Effectiveness – 3

  Given a fault type we can choose testing methods that are
likely to reveal faults of that type

  Track kinds and frequencies of faults in the software
applications we develop

  Use knowledge related to the most likely kinds of faults to occur

FTR–26

Guidelines

  What guidelines can you give for functional testing?
  What attributes/properties do you consider?

FTR–27

Guidelines – 2

  Kinds of faults may reveal some pointers as to which testing
method to use.

  If we do not know the kinds of faults that are likely to occur
in the program then the attributes most helpful in choosing
functional testing methods are:
  Whether the variables represent physical or logical quantities

  Whether or not there are dependencies among variables

  Whether single or multiple faults are assumed

  Whether exception handling is prominent

FTR–28

Guidelines – 3

  If the variables refer to physical quantities and/or are
independent, domain testing and equivalence testing can be
considered.

  If the variables are dependent, decision table testing can be
considered

  If the single-fault assumption is plausible to assume,
boundary value analysis and robustness testing can be
considered

FTR–29

Guidelines – 4

  If the multiple-fault assumption is plausible to assume, worst
case testing, robust worst case testing, and decision table
testing can be considered

  If the program contains significant exception handling,
robustness testing and decision table testing can be
considered

  If the variables refer to logical quantities, equivalence class
testing and decision table testing can be considered

FTR–30

Functional Testing Decision Table

C1: Variables (P=Physical, L=Logical)? P P P P P L L L L L

C2: Independent Variables? Y Y Y Y N Y Y Y Y N

C3: Single fault assumption? Y Y N N - Y Y N N -

C4: Exception handling? Y N Y N - Y N Y N -

A1: Boundary value analysis X

A2: Robustness testing X

A3: Worst case testing X

A4: Robust worst case testing X

A5: Weak robust equivalence testing X X X X

A6: Weak normal equivalence testing X X X X

A7: Strong normal equivalence testing X X X X X X

A8: Decision table X X

