
State-Based Testing 
Part C – Test Cases"

Generating test cases for complex behaviour!

!

!
Reference:!Robert V. Binder  

	Testing Object-Oriented Systems: Models, Patterns, and Tools  
	Addison-Wesley, 2000, Chapter 7!

STC–2

Test strategies"

  Exhaustive  
!

  All Transitions!
  Every transition executed at least once"
  Exercises all transitions, states and actions"
  Cannot show incorrect state is a result"
  Difficult to find sneak paths"

STC–3

Test strategies – 2"

  All n-transition sequences!
  Can find some incorrect and corrupt states  
"

  All round trip paths!
  Generated by N+ test strategy"

  What is a round trip path?"

STC–4

Test Strategies – 3"

  All n-transition sequences!
  Can find some incorrect and corrupt states  
"

  All round trip paths!
  Generated by N+ test strategy"
  A prime path of nonzero length 

that starts and ends at the same node"
  N+ coverage"

STC–5

N+ test strategy overview"

  Encompasses UML state models 
!

  Testing considerations unique to OO implementations 
!

  It uses a flattened model  
!

  All implicit transitions are exercised to reveal sneak
paths!

STC–6

N+ test strategy overview – 2"

  Relies on an the implementation to properly report
resultant state  
!

  More powerful than simpler state-based strategies!
  Requires more analysis  
"

  Has larger test suites  
"

  Look at cost/benefit tradeoff"

STC–7

N+ coverage reveals"

  All state control faults 
!

  All sneak paths 
!

  Many corrupt state bugs 
!

  Because it exercises at flattened scope!
  Many super-class / sub-class integration bugs"
  Subcontracting bugs"

STC–8

N+ coverage reveals – 2"

  If more than one α transition exists, faults on each one  
!

  All transitions to the ω states 
!

  Can suggest presence of trap doors when used with
program text coverage analyzer!

STC–9

N+ test strategy development"

  Develop a state-based model of the system!
  Validate the model using the checklists"
  Flatten the model – Expand the statechart"
  Develop the response matrix  
"

  Generate the round-trip path tree  
!

  Generate the round-trip path test cases!

STC–10

N+ test strategy development – 2"

  Generate the sneak path test cases 
!

  Sensitize the transitions in each test case!
  Find input values to satisfy guards for the transitions

in the event path"
  Similar to finding path conditions in path testing"

STC–11

3-player game example"

  We will use an extension of the 2-player game as an
example  
!

  There is now a third player that may win any of the
volleys!

3-player game Java interface"

class ThreePlayerGame extends TwoPlayerGame {"

 private int p3_points; 
 public ThreePlayerGame() "// Constructor  
 public void p3_start() " "// P3 serves first 
 public void p3_WinsVolley() "// P3 ends the volley  
 public void p3_AddPoint()" "// Add 1 to P3ʼs score  
 public boolean p3_isWinner() "// True if P3ʼs score is 21  
 public boolean p3_isServer() "// True if P3 is server  
 public int p3_score() " "// Returns p3ʼs score"

}"

STC–12

TwoPlayerGame statechart"

from ThreePlayerGame
STC–13

ThreePlayerGame statechart"

STC–14

to TwoPlayerGame

Transition Diagram" Flattened state model

STC–15

STC–16

Response matrix"

See key in slide SEI-11

SEI–17

Possible responses to illegal events"

STC–18

Generate Round-Trip Path Tree (GRTPT)"

  Root!

  Initial state – use α state with multiple constructors  
"

  First edges!
  Draw for each transition out of initial state and add

node for resultant state"

STC–19

GRTPT – 2"

  Remaining edges!
  Draw for each transition out of a leaf node and add

node for resultant state  
"

  Mark new leaf nodes as terminal nodes, if new leaf is"
  Already in the tree"
  A final state"

  An ω state"

STC–20

GRTPT– Traversing the FSM"

  How can one traverse a FSM?"

STC–21

GRTPT– Traversing the FSM"

  Breadth-first!
  Many short test sequences  
"

  Depth-first!
  Fewer long test sequences"

STC–22

Transition 
tree for the  
3-player  
game"

STC–23

Guarded transitions – model true conditions"

  If several conditional variants can make a guard true,
transcribe one transition for each variant!

  Add new transition to the tree  
"

  Guard is a simple Boolean expression, or contains
only logical "and""

  Then only one transition is needed"
  [x = 0]"
  [(x = 0) and (z != 42)]"

STC–24

Guarded transitions – model true conditions – 2"

  Guard is compound Boolean expression with at least
one logical "or" operator"

  Then one transition is required for each predicate
combination that yields a true result 
"

  [x = 0] or [z != 42]"
  Need true / false and false / true!

STC–25

Guarded transitions – model true conditions – 3"

  Guard specifies a relationship that occurs only after
repeating some event such as [counter ≥ 10] 
"

  Test sequence requires at least the number of
iterations to satisfy the condition. 
"

  The transition is graphed with a single arc
annotated with an asterisk."

STC–26

Guarded transitions – model false conditions"

  Model at least one false combination  
!

  Models to cover each guard's false variants are
developed for the sneak attack tests!
  Recall variant testing for decision tables"

  There are other variations"

STC–27

Generated 
test cases  
part 1"

STC–28

Generated 
test cases  
part 2"

 "

STC–29

Sneak path testing"

  Look for Illegal transitions and evading guards 
 !

  Transition tree tests explicit behaviour 
 !

  We need to test each stateʼs illegal events 
!

  A test case for each non-checked, non-excluded
transition cell in the response matrix 
!

  Confirm that the actual response matches the specified
response!

STC–30

Testing one sneak path"

  Put IUT (Implementation Under Test) into the
corresponding state!
  May need to have a special built-in test method, as

getting there may take too long or be unstable  
"

  Can use any debugged test sequences that reach the
state"

  Be careful if there are changes in the test suite"

STC–31

Testing one sneak path – 2"

  Apply the illegal event by sending a message or forcing
the virtual machine to generate the desired event 
!

  Check that the actual response matches the specified
response  
!

  Check that the resultant state is unchanged!
  Sometimes a new concrete state is acceptable  
"

  Test passes if response and resultant state are as
expected!

STC–32

Sneak Path Test Suite Part 1"

STC–33

Sneak  
Path 
Test 
Suite  
Part 2"

STC–34

Checking Resultant state"

  State reporter!
  Can evaluate state invariant to determine state of

object"
  Implement assertion functions"

" "bool isGameStarted() { … }"
  After each event appropriate state reporter is

asserted 
"

  Test repetition – good for corrupt states!
  Repeat test and compare results"
  Corrupt states may not give the same result"
  Not as reliable as state reporter method"

STC–35

Checking Resultant state – 2"

  State revealing signatures!
  Identify and determine a signature sequence"

  A sequence of output events that are unique for the
state"

  Analyze specification 
"

  Expensive and difficult"

STC–36

Major test strategies in increasing power"

  Piecewise!
  Every state, every event, every action at least once  
"

  Does not correspond to state model 
"

  Inadequate for testing"

STC–37

Major test strategies in increasing power – 2"

  All transitions – minimum acceptable!
  Every transition is exercised at least once  
"

  Implies all states, all events, all actions  
"

  Incorrect / Missing event / action pairs are guaranteed 
"

  Does not show incorrect state is a result 
"

  Unless completely specified, sneak paths are not
found"

STC–38

Major test strategies in increasing power – 3"

  All transition k-tuples!
  Exercise every transition sequence of k events at least

once"
  1-tuple is equivalent to all transitions  
"

  Not necessarily all incorrect or corrupt states are
found"

STC–39

Major test strategies in increasing power – 4"

  All round-trip paths!
  Called N+ coverage  
"

  Shortest trip is to loop back once to the same state  
"

  The longest trip depends upon the structure of the
FSM 
"

  Any sequence that goes beyond a round trip must be
part of a sequence that belongs to another round trip"

STC–40

Major test strategies in increasing power – 5"

  All round-trip paths – contʼd!
  Finds all incorrect or missing event/action pairs  
"

  Can find some incorrect or invalid states "
  E.g. enter state that mimics correct behaviour for

10 events but becomes corrupt on the 11'th 
"

  N+ strategy relies on state inspector"

STC–41

Major test strategies in increasing power – 6"

  M-length signature!
  Used for opaque systems – cannot determine current

state  
"

  A state signature is used to determine the current
state of the IUT"

  A sequence of output actions unique for the state"
  If the actual state signature is the expected one,

then in the correct state  
"

  To find corrupt states, need to try sequences long
enough to get beyond any possible number of corrupt
states, which is guessed as being M"

STC–42

Major test strategies in increasing power – 7"

  Exhaustive!

STC–43

Test Suite Size"

STC–44

Power comparison state-based testing strategies"

