State-Based Testing
Part C — Test Cases

Generating test cases for complex behaviour

Reference: Robert V. Binder
Testing Object-Oriented Systems: Models, Patterns, and Tools
Addison-Wesley, 2000, Chapter 7

Test strategies

s Exhaustive

= All Transitions
= Every transition executed at least once
= EXxercises all transitions, states and actions
= Cannot show incorrect state is a result
= Difficult to find sneak paths

STC-2

Test strategies — 2

= All n-transition sequences
= Can find some incorrect and corrupt states

= All round trip paths
= Generated by N+ test strategy

« What is a round trip path?

STC-3

Test Strategies — 3

= All n-transition sequences
= Can find some incorrect and corrupt states

= All round trip paths
= Generated by N+ test strategy

= A prime path of nonzero length
that starts and ends at the same node

= N+ coverage

STC4

N+ test strategy overview

= Encompasses UML state models

= Testing considerations unique to OO implementations

s |t uses a flattened model

= All implicit transitions are exercised to reveal sneak
paths

STC-5

N+ test strategy overview — 2

= Relies on an the implementation to properly report
resultant state

= More powerful than simpler state-based strategies
= Requires more analysis

= Has larger test suites

= Look at cost/benefit tradeoff

STC-6

N+ coverage reveals

s All state control faults

= All sneak paths

= Many corrupt state bugs

= Because it exercises at flattened scope
= Many super-class / sub-class integration bugs
= Subcontracting bugs

STC-7

N+ coverage reveals — 2

= If more than one o transition exists, faults on each one
s All transitions to the o states

= Can suggest presence of trap doors when used with
program text coverage analyzer

STC-8

N+ test strategy development

= Develop a state-based model of the system
= Validate the model using the checklists
= Flatten the model — Expand the statechart
= Develop the response matrix

= Generate the round-trip path tree

= Generate the round-trip path test cases

STC-9

N+ test strategy development — 2

= Generate the sneak path test cases

s Sensitize the transitions in each test case

= Find input values to satisfy guards for the transitions
in the event path

« Similar to finding path conditions in path testing

STC-10

3-player game example

= We will use an extension of the 2-player game as an
example

= There is now a third player that may win any of the
volleys

STC-11

3-player game Java interface

class ThreePlayerGame extends TwoPlayerGame {

private int p3_points;

public ThreePlayerGame() // Constructor

public void p3_start()

public void p3_WinsVolley()
public void p3_AddPoint()
public boolean p3_isWinner()
public boolean p3_isServer()
public int p3_score()

// P3 serves first

// P3 ends the volley

// Add 1 to P3’s score

// True if P3’s score is 21
// True if P3 is server

// Returns p3’s score

STC-12

TwoPlayerGame statechart

—

TwoPlayerGame

~

TwoPTayerGame

+TwoPlayerGame()
+pl_Start()
+pl_WinsVolley()
—p1_AddPoint()
+pl_IsWinner()
+pl_IsServer()
+pl_Score()
+p2_Start()
+p2_WinsVolley()
-p2_AddPoint()
+p2_IsWinner()
+p2_IsServer()
+p2_Score()

+~()

@ TwoPlayerGame()

p1_WinsVolley()
[this.p1_Score() < 20)/
this.p1_AddPoint()
simulateVolley()
AT

Player 1
Served

p1_WinsVolley()
[this.p1_Score() == 20}/
this.p1_AddPoint()

p1_Start()/ p2_Start()/
simulateVolley() imula

d simulateVolley()

p1_WinsVolley()/
simulateVolley()

p2_WinsVolley()/
simulateVolley()

)

p2_WinsVolley()
[this.p2_Score() < 20)/
this.p2_AddPoint()
simulateVolley()

Player 2
Served

p2_WinsVolley()
[this.p2_Score() == 20}/
this.p1_AddPoint()

p1_IsWinner()/

P!ayer 1 q L
Won

Won

e

return TRUE;

N

Rl

Pl er 2
ay p2_IsWinner()/
return TRUE;

_/

from ThreePlayerGame

STC-13

ThreePlayerGame statechart

to TwoPlayerGame

s

ThreePlayerGame

N

ThreePlayerGame

@ThreePlayerGame()/TwoPlayerGame()

p3_WinsVolley()/
simulateVolley()

LGame Started

)

p3_Start()/
simulateVolley()

p3_WinsVolley()

("~ TwoPlayerGame())

+p3_Start()
+p3_WinsVolley()
—p3_AddPoint()
+p3_IsWinner()
+p3_IsServer()
+p3_Score()

+~()

+ThreePlayerGame() |

p1_WinsVolley()/
simulateVolley()

[this.p3_Score() < 20)/
this.p3_AddPoint()
simulateVolley()

(

A4 J}‘—__‘——_

p2_WinsVolley()/
simulateVolley()

Player 3

Served

p3_WinsVolley()
[this.p3_Score() == 20}/
this.p3_AddPoint()

Y

{ Player 3

Won

' p3_IsWinner()/

~()
e

T | return TRUE;

_/

STC-14

p1_WinsVolley()

{this.p1_Score() < 20}

this.ptAddPoint()
simulateVolley()

@ ThreePlayerGame()/TwoPlayerGame()

p1_Start()/
simulateVoiley()

p3_Start()/

laame Started 1
L _J

simulateVolley()

p1_WinsVolley()/
simulateVolley()

p2_Start()/
simulateVolley()

vy

—

Player 1
Served

p1_WinsVolley()
[this.p1_Score() ==
this.p1AddPoint()

pi_IsWinner()/

20)

p1_WinsVolley()/

p2_WinsVolley()
[this.p2_Score() < 20)/
this.p2AddPoint()
simulateVoliey()

Flattened state model

p3_WinsVolley()
[this.p3_Score() < 20}/
this.p3AddPoint()
simulateVolley()

simulateVolley()
-o—

{

p2_WinsVoliey()/
simulateVolley()

\ 4

return TRUE;

Player 1
Won

A S L G R

~()

p3_WinsVolley()
simulateVolley()

p2_isWinner()/

+ p2_WinsVolley()/ v |
imulateVolle
— Player2 . Simula y()r Player 3 1‘—_
Served %l Served
p3_WinsVolley()/
simulateVolley() p3_WinsVolley()
[this.p3_Score() == 20}/
this.p3AddPoint()
p2_WinsVolley()
[this.p2_Score() == 20}/
this.p1AddPoint()
\ 4 4 p3_IsWinner()/
Player 2 j Player 3 J return TRUE;
Won Won I SE—

return TRUE; l
s

~()

~()

I

STC-15

Response matrix

¢ dwape

See key in slide SEI-11

| ctor 6 6 6 6 6 6 6 6
p1_Start v - 4 4 4 4 4 6
p2_Start v 4 4 4 4 4 4 6
p3_Start % 4 4 4 4 4 4 6
p1_WinsVolley | p1_score < 20| p1_Score == 20

DC 4 v v 4 4 4 6
F E 6
e T v/
T Z v
T T
p2_WinsVolley | p2_score < 20| p2_Score == 20
DC DC 4 v v/ 4 4 4 6
F - 6 R
F T v P s
T F 7 S
T T P T e
p3_WinsVolley | p3_score < 20 | p3_Score == 20
DC DC 4 £ o 4 4 4 6
F F 6
F =3 v
i [E v
T - 3
p1_isWinner v > 4 v v v v s/ 6
p2_isWinner v v v v v e v 6
p3_isWinner v 4 v v v v v 6
Other Public v v v v v v v 6
il . s EEe - - v 6

STC-16

TABLE7.3 Response Codes for lllegal Events

N

o oA W

Possible responses to illegal events

Accept
Queue

Ignore

Flag
Reject
Mute
Abend

Perform the explicitly specified transition

Place the illegal event in a queue for subsequent evaluation
and ignore

No action or state change is to be produced, no error is re-
turned, no exception raised

Return a nonzero error code
Raise an I11egalEventException
Disable the source of the event and ignore

Invoke abnormal termination services (e.g., core dump) and
halt the process

SEI-17

Generate Round-Trip Path Tree (GRTPT)

= Root

= Initial state — use O state with multiple constructors

= First edges

= Draw for each transition out of initial state and add
node for resultant state

STC-18

GRTPT -2

= Remaining edges

= Draw for each transition out of a leaf node and add
node for resultant state

= Mark new leaf nodes as terminal nodes, if new leaf is
» Already in the tree
« A final state

= An (0 state

STC-19

i GRTPT- Traversing the FSM

= How can one traverse a FSM?

STC-20

i GRTPT- Traversing the FSM

= Breadth-first

= Many short test sequences

= Depth-first

= Fewer long test sequences

STC-21

Transition
tree for the
3-player
game

QOUONOObLWLN=

-

11
12
13
14
15
16
17

ThreePlayerGame()

p1_Start()

p2_Start()

p3_Start()

p1_WinsVolley()

p1_WinsVolley()[this.p1_Score() < 20]
p1_WinsVolley() [this.p1_Score() == 20]
p2_WinsVolley()

p2_WinsVolley{) [this.p2_Score() < 20]
p2_WinsVolley{) [this.p2_Score() == 20]

8 Player 2 Served

11

Player 1 Served *7

Player 3 Served

17 omega
Player 1 Won 14
Player 1 Won

*6Y Player 1 Served

*9 | Player 2 Served

3 11 Player 3 Served

omega
Player 2 Won 15
Player 2 Won

5 Player 1 Served

12 Player 3 Served
17 omega
13 Player 3 Won 16

Player 3 Served 8 Player 3 Won

Piayer 2 Served

5\ Player 1 Served

p3_WinsVolley()

p3_WinsVolley() [this.p3_Score() < 20]
p3_WinsVoliey() [this.p3_Score() == 20]
p1_IsWinner()

p2_lIsWinner()

p3_IsWinner()

~()

STC-22

Guarded transitions — model true conditions

= If several conditional variants can make a guard true,
transcribe one transition for each variant

= Add new transition to the tree

= Guard is a simple Boolean expression, or contains
only logical "and"

« Then only one transition is needed
[x=0]
[(x=0)and (z!=42)]

STC-23

Guarded transitions — model true conditions — 2

= Guard is compound Boolean expression with at least
one logical "or" operator

« Then one transition is required for each predicate
combination that yields a true result

« [X=0]or[z!=42]
Need true/false and false/true

STC-24

Guarded transitions — model true conditions — 3

= Guard specifies a relationship that occurs only after
repeating some event such as [counter = 10]

« Test sequence requires at least the number of
iterations to satisfy the condition.

« The transition is graphed with a single arc
annotated with an asterisk.

STC-25

Guarded transitions — model false conditions

s» Model at least one false combination

= Models to cover each guard's false variants are
developed for the sneak attack tests

= Recall variant testing for decision tables
« There are other variations

STC-26

Generated
test cases
part 1

G R RGN SR RS B

ThreePlayerGame

1.1 GameStarted
1.2 p1_start simulateVolley Player 1 Served
1.3 p2_WinsVolley simulateVolley Player 2 Served
2.1 ThreePlayerGame GameStarted
2.2 p1_start simulateVolley Player 1 Served
2.3 p3_WinsVolley simulateVolley Player 3 Served
3.1 ThreePlayerGame GameStarted
3.2 pl1_start simulateVolley Player 1 Served
3.3 * * Player 1 Served
3.4 p1_WinsVolley p1_Score == 20 Player 1 Won
3.5 dtor omega

4.1 ThreePlayerGame GameStarted
4.2 p1_start simulateVolley Player 1 Served
4.3 * * Player 1 Served
4.4 p1_WinsVolley p1_Score == 20 Player 1 Won
4.5 p1_lIsWinner return TRUE Player 1 Won
5.1 ThreePlayerGame GameStarted
5.2 p1_start simulateVolley Player 1 Served
5.3 * * Player 1 Served
5.4 p1_WinsVolley p1_Score == 19 simulateVolley Player 1 Served
6.1 ThreePlayerGame GameStarted
6.2 p2_start simulateVolley Player 2 Served
6.3 * * Player 2 Served
6.4 p2_WinsVolley p2_Score == 19 simulateVolley Player 2 Served
71 ThreePlayerGame GameStarted
7.2 p2_start simulateVolley Player 2 Served
7.3 p3_WinsVolley simulateVolley Player 3 Served
8.1 ThreePlayerGame GameStarted
8.2 p2_start simulateVolley Player 2 Served
8.3 * * Player 2 Served
84 p2_WinsVolley p2_Score == 20 Player 2 Won
8.5 dtor omega

STC-27

Generated
test cases

part 2

9.1

9.2
9.3
9.4

9.5
10.1

ThreePlayerGame

p2_start

*

p2_WinsVolley

p2_ IsWInner -

ThreePlayerGame

p2_Score == 20
10.2 p2_start

103 ”p2 WlnsVolIey 7 -

11 1 ThreePlayerGame

11.2 p3_start

118 ~

11 4 p3 WmsVolley pS_Sch}? ==19
12 1 ThreePlayerGame

12.2 p3_start

123 ~

12.4 p3_WinsVolley p3_Score == 20
12 5 dth -

13.1 ThreePlayerGame

13.2 p3_start

13.3 ~

13.4 p3_WinsVolley p3_Score == 20
135 p3_ Iszner

14.1 - ThreePlayerGame
14.2 p3_start

__143) p2 WlnsVoHey -
v15 1 ThreePiayerGame
15.2 p3_start

15.3 p1_WinsVolley

simulateVolley

*

_return TRUE

simulateVolley

GameStarted
Player 2 Served
Player 2 Served
Player 2 Won
Player 2 Won

GameStarted

Player 2 Served
Player 2 Served

simulate\/o”ey

simulateVolley

*

simulateVQIley

simulateVolley

*

simulateVolley

*

return TRU E

simulateVolley

simulateVolley

simulateVolley
simulateVolley

GameStarted

Player 3 Served
Player 3 Served

GameStarted
Player 3 Served
Player 3 Served
Player 3 Won

omega

Player 3 Served
Player 3 Served
Player 3 Won

GameStarted

Player 3 Served

Player 3 Served

GameStarted

Player 3 Won 7

Player 2 Served

”GameStarted

Player 3 Served
Player 1 Served

STC-28

Sneak path testing

Look for lllegal transitions and evading guards
Transition tree tests explicit behaviour
We need to test each state’s illegal events

A test case for each non-checked, non-excluded
transition cell in the response matrix

Confirm that the actual response matches the specified
response

STC-29

Testing one sneak path

= Put IUT (Implementation Under Test) into the
corresponding state

= May need to have a special built-in test method, as
getting there may take too long or be unstable

= Can use any debugged test sequences that reach the
state
« Be careful if there are changes in the test suite

STC-30

Testing one sneak path — 2

= Apply the illegal event by sending a message or forcing
the virtual machine to generate the desired event

= Check that the actual response matches the specified
response

= Check that the resultant state is unchanged

= Sometimes a new concrete state is acceptable

= Test passes if response and resultant state are as
expected

STC-31

Sneak Path Test Suite Part 1

16.0 ThreePlayerGame Game Started ThreePlayerGame 6 Abend

17.0 ThreePlayerGame Game Started p1_WinsVolley 4 IlegalEventException
18.0 ThreePlayerGame Game Started p2_WinsVolley 4 lllegalEventException
19.0 ThreePIayerGame Game Started p3 WinsVoIIe;Q | 4 IllegaIEventExceptlon

T A

20.0 10.0 Player 1 Served ThreePlayerGame 6 Abend

21.0 5.0 Player 1 Served p1_start 4 lllegalEventException
220 10.0 Player 1 Served p2_start 4 lllegalEventException
23.0 5.0 Player 1 Served p3_start 4 lllegalEventException
24.0 1.0 Player 2 Served ThreePIayerGame 6 Abend

E— s s S i SRS

250 6.0 Player 2 Served p1_start 4 lllegalEventException
260 1.0 Player 2 Served p2_start 4 lllegalEventException
27.0 6.0 Player 2 Served p3_start 4 ItlegalEventException
280 7.0 Player 3 Served ThreePlayerGame 6 Abend

290 20 Player 3 Served p1 start 4 lllegalEventException

R A e e et R ———

STC-32

Sneak

Path
Test
Suite
Part 2

40

4.0
4.0
4.0
4.0

%o

9.0
9.0
9.0

9.0 ..
- 90

9.0

13.0
13.0
13.0

L

13.0

13.0
13.0
12.0

o L,?'”»:_?eéf Case ' Expedeé Resui% ‘,
ce f-:'fes% Smfe o "fAfe’sf!E?enf Lo '{ Caée Aﬁt{}r}

Player 3 Served p2_start 4 IHegalEventExoeption
Player 3 Served p3_start 4 lllegalEventException
Player 1 Won ThreePlayerGame 6 Abend

Player 1 Won p1_start 4 llegalEventException
Player 1 Won p2_start 4 lllegalEventException
Player 1 Won p3_start 4 lllegalEventException
Player 1 Won p1_WinsVolley 4 lllegalEventException
Player 1 Won p2_WinsVolley 4 lllegalEventException
Player 1 Won p3_WinsVoliey 4 lllegalEventException
Player 2 Won ThreePlayerGame 6 Abend

Player 2 Won p1_start 4 lllegalEventException
Player 2 Won p2_start 4 lllegalEventException
Player 2 Won p3_start 4 lllegalEventException
Player 2 Won p1_WinsVolley 4 lllegalEventException
P!ayer 2 Won p2_WinsVolley 4 llegalEventException
Player 2 Won p3_WinsVolley 4 lllegalEventException
Player 3 Won ThreePlayerGame 6 Abend

Player 3 Won p1_start 4 lllegalEventException
Player 3 Won p2_start 4 lllegalEventException
Player 3Won p3 start , 4 lllegalEventException
Player 3 Won pi WmsVoHey 4 lllegalEventException
Player 3 Won p2_WinsVolley 4 lllegalEventException
Player 3 Won p3_WinsVolley 4 lllegalEventException
omega any 6 Abend

STC-33

Checking Resultant state

= State reporter

= Can evaluate state invariant to determine state of
object

= Implement assertion functions
bool isGameStarted() { ... }

« After each event appropriate state reporter is
asserted

= Test repetition — good for corrupt states
= Repeat test and compare results
= Corrupt states may not give the same result
= Not as reliable as state reporter method

STC-34

Checking Resultant state — 2

= State revealing signatures

= Identify and determine a signature sequence

« A sequence of output events that are unique for the
state

« Analyze specification

= Expensive and difficult

STC-35

Major test strategies in increasing power

s Piecewise
= Every state, every event, every action at least once

= Does not correspond to state model

= Inadequate for testing

STC-36

Major test strategies in increasing power — 2

= All transitions — minimum acceptable
= Every transition is exercised at least once

= Implies all states, all events, all actions
= Incorrect/ Missing event / action pairs are guaranteed
= Does not show incorrect state is a resulit

= Unless completely specified, sneak paths are not
found

STC-37

Major test strategies in increasing power — 3

= All transition k-tuples

= EXxercise every transition sequence of k events at least
once

« 1-tuple is equivalent to all transitions

= Not necessarily all incorrect or corrupt states are
found

STC-38

Major test strategies in increasing power — 4

= All round-trip paths
= Called N+ coverage

= Shortest trip is to loop back once to the same state

= The longest trip depends upon the structure of the
FSM

= Any sequence that goes beyond a round trip must be
part of a sequence that belongs to another round trip

STC-39

Major test strategies in increasing power — 5

= All round-trip paths — cont’'d
= Finds all incorrect or missing event/action pairs

= Can find some incorrect or invalid states

« E.g. enter state that mimics correct behaviour for
10 events but becomes corrupt on the 11'th

= N+ strategy relies on state inspector

STC-40

Major test strategies in increasing power — 6

= M-length signature

= Used for opaque systems — cannot determine current
state

= A state signature is used to determine the current
state of the IUT

= A sequence of output actions unique for the state

« If the actual state signature is the expected one,
then in the correct state

= To find corrupt states, need to try sequences long
enough to get beyond any possible number of corrupt
states, which is guessed as being M

STC41

Major test strategies in increasing power — 7

s Exhaustive

STC-42

Test Suite Size

TABLE7.12 Size of State-based Test Suite by Strategy and Size of [UT

Test Strategy

s

?eéer;%aﬁve UT Al Transitions N+ W-Method

o8 K W@ s {2} (3} (4]
3Player 7 9 Test Cases 21 32 63 63 63 63
Messages 21 32 147 284 441 3087
Small 10 15 Test Cases 50 75 150 150 150 150
Messages 50 75 500 1125 1500 15000
Med 15 30 TestCases 150 225 450 450 450 450

Messages 150 225 2250 6750 6750 101250

Large 30 100 TestCases 1000 1500 3000 3000 3000 3000
Messages 1000 1500 30000 150000 S0000 2700000 -

Key: n = number of states, k = number of events

(1) Assumes average number of events per test case = k/2.
(2) Assumes average number of evenis per test case = k/3.
(3) Worst case minimum, approximately n2 x k [Chow 78].
(4) Worst case maximum, approximately n® x k [Chow 78].

STC43

Power comparison state-based testing strategies

~ Fault Revealing Power of Some State-based Testing Strategies
beronn o Clserablens o o e G

| Each |Each |Each | | |
. l'Event | State | Action | All. N+ CRAl
FaultClass | Once | Once | Once | Transitions | Cover | Transitions | |

Guard fault 1 1 v 1 1
Missing transition 3 v v v v
Sneak path

(Extra transition) 2 v 2 v
Incorrect action

(wrong or missing) v v v v
Incorrect resultant

state v v v
Missing state v v v v
Corrupt resultant

state (“extra state”) v v 5
Trap door 4 4 4 6 6

(extra event)

Key: Blank = This fault class is not targeted, v = All faults of this class will be revealed.

1. Other published strategies (see Bibliographic Notes) do not consider guards.

2. Guaranteed only if model is completely specified.

3. Guaranteed only if events and {ransitions are one-to-one.

4. Not certain to reveal. Requires post-test, call-path coverage analysis.

5. Will reveal up to m corrupt (extra) states.

6. Opaque assumption precludes coverage analysis. STC—44

