
State-Based Testing 
Part C – Test Cases"

Generating test cases  for complex behaviour!

!

!
Reference:!Robert V. Binder  

	Testing Object-Oriented Systems: Models, Patterns, and Tools  
	Addison-Wesley, 2000, Chapter 7!
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Test strategies"

  Exhaustive  
!

  All Transitions!
  Every transition executed at least once"
  Exercises all transitions, states and actions"
  Cannot show incorrect state is a result"
  Difficult to find sneak paths"
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Test strategies – 2"

  All n-transition sequences!
  Can find some incorrect and corrupt states  
"

  All round trip paths!
  Generated by N+ test strategy"

  What is a round trip path?"
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Test Strategies – 3"

  All n-transition sequences!
  Can find some incorrect and corrupt states  
"

  All round trip paths!
  Generated by N+ test strategy"
  A prime path of nonzero length 

that starts and ends at the same node"
  N+ coverage"
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N+ test strategy overview"

  Encompasses UML state models 
!

  Testing considerations unique to OO implementations 
!

  It uses a flattened model  
!

  All implicit transitions are exercised to reveal sneak 
paths!
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N+ test strategy overview – 2"

  Relies on an the implementation to properly report 
resultant state  
!

  More powerful than simpler state-based strategies!
  Requires more analysis  
"

  Has larger test suites  
"

  Look at cost/benefit tradeoff"
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N+ coverage reveals"

  All state control faults 
!

  All sneak paths 
!

  Many corrupt state bugs 
!

  Because it exercises at flattened scope!
  Many super-class / sub-class integration bugs"
  Subcontracting bugs"
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N+ coverage reveals – 2"

  If more than one α transition exists, faults on each one  
!

  All transitions to the ω states 
!

  Can suggest presence of trap doors when used with 
program text coverage analyzer!
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N+ test strategy development"

  Develop a state-based model of the system!
  Validate the model using the checklists"
  Flatten the model – Expand the statechart"
  Develop the response matrix  
"

  Generate the round-trip path tree  
!

  Generate the round-trip path test cases!
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N+ test strategy development – 2"

  Generate the sneak path test cases 
!

  Sensitize the transitions in each test case!
  Find input values to satisfy guards for the transitions 

in the event path"
  Similar to finding path conditions in path testing"
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3-player game example"

  We will use an extension of the 2-player game as an 
example  
!

  There is now a third player that may win any of the 
volleys!



3-player game  Java interface"

class ThreePlayerGame extends TwoPlayerGame {"

  private int   p3_points; 
  public         ThreePlayerGame()  "// Constructor  
  public void p3_start() " "// P3 serves first 
  public void p3_WinsVolley() "// P3 ends the volley  
  public void p3_AddPoint()" "// Add 1 to P3ʼs score  
  public boolean p3_isWinner() "// True if P3ʼs score is 21  
  public boolean p3_isServer() "// True if P3 is server  
  public int   p3_score() " "// Returns p3ʼs score"

}"
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TwoPlayerGame statechart"

from ThreePlayerGame
STC–13 



ThreePlayerGame statechart"
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to TwoPlayerGame



Transition Diagram" Flattened state model 
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Response matrix"

See key in slide SEI-11 
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Possible responses to illegal events"
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Generate Round-Trip Path Tree (GRTPT)"

  Root!

  Initial state – use α state with multiple constructors  
"

  First edges!
  Draw for each transition out of initial state and add 

node for resultant state"
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GRTPT – 2"

  Remaining edges!
  Draw for each transition out of a leaf node and add 

node for resultant state  
"

  Mark new leaf nodes as terminal nodes, if new leaf is"
  Already in the tree"
  A final state"

  An ω state"
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GRTPT– Traversing the FSM"

  How can one traverse a FSM?"
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GRTPT– Traversing the FSM"

  Breadth-first!
  Many short test sequences  
"

  Depth-first!
  Fewer long test sequences"
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Transition 
tree for the  
3-player  
game"
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Guarded transitions – model true conditions"

  If several conditional variants can make a guard true, 
transcribe one transition for each variant!

  Add new transition to the tree  
"

  Guard is a simple Boolean expression, or contains 
only logical "and""

  Then only one transition is needed"
  [ x = 0 ]"
   [ ( x = 0 ) and ( z != 42 ) ]"
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Guarded transitions – model true conditions – 2"

  Guard is compound Boolean expression with at least 
one logical "or" operator"

  Then one transition is required for each predicate 
combination that yields a true result 
"

  [ x = 0 ] or [ z != 42 ]"
  Need    true / false   and   false / true!
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Guarded transitions – model true conditions – 3"

  Guard specifies a relationship that occurs only after 
repeating some event such as [counter ≥ 10] 
"

  Test sequence requires at least the number of 
iterations to satisfy the condition. 
"

  The transition is graphed with a single arc 
annotated with an asterisk."



STC–26 

Guarded transitions – model false conditions"

  Model at least one false combination  
!

  Models to cover each guard's false variants are 
developed for the sneak attack tests!
  Recall variant testing for decision tables"

  There are other variations"
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Generated 
test cases  
part 1"
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Generated 
test cases  
part 2"

 "
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Sneak path testing"

  Look for Illegal transitions and evading guards 
 !

  Transition tree tests explicit behaviour 
 !

  We need to test each stateʼs illegal events 
!

  A test case for each non-checked, non-excluded 
transition cell in the response matrix 
!

  Confirm that the actual response matches the specified 
response!
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Testing one sneak path"

  Put IUT (Implementation Under Test) into the 
corresponding state!
  May need to have a special built-in test method, as 

getting there may take too long or be unstable  
"

  Can use any debugged test sequences that reach the 
state"

  Be careful if there are changes in the test suite"
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Testing one sneak path – 2"

  Apply the illegal event by sending a message or forcing 
the virtual machine to generate the desired event 
!

  Check that the actual response matches the specified 
response  
!

  Check that the resultant state is unchanged!
  Sometimes a new concrete state is acceptable  
"

  Test passes if response and resultant state are as 
expected!
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Sneak Path Test Suite Part 1"
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Sneak  
Path 
Test 
Suite  
Part 2"
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Checking Resultant state"

  State reporter!
  Can evaluate state invariant to determine state of 

object"
  Implement assertion functions"

" "bool isGameStarted() { … }"
  After each event appropriate state reporter is 

asserted 
"

  Test repetition – good for corrupt states!
  Repeat test and compare results"
  Corrupt states may not give the same result"
  Not as reliable as state reporter method"
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Checking Resultant state  – 2"

  State revealing signatures!
  Identify and determine a signature sequence"

  A sequence of output events that are unique for the 
state"

  Analyze specification 
"

  Expensive and difficult"
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Major test strategies in increasing power"

  Piecewise!
  Every state, every event, every action at least once  
"

  Does not correspond to state model 
"

  Inadequate for testing"
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Major test strategies in increasing power – 2"

  All transitions – minimum acceptable!
  Every transition is exercised at least once  
"

  Implies all states, all events, all actions  
"

  Incorrect / Missing event / action pairs are guaranteed 
"

  Does not show incorrect state is a result 
"

  Unless completely specified, sneak paths are not 
found"



STC–38 

Major test strategies in increasing power – 3"

  All transition k-tuples!
  Exercise every transition sequence of k events at least 

once"
  1-tuple is equivalent to all transitions  
"

  Not necessarily all incorrect or corrupt states are 
found"
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Major test strategies in increasing power – 4"

  All round-trip paths!
  Called N+ coverage  
"

  Shortest trip is to loop back once to the same state  
"

  The longest trip depends upon the structure of the 
FSM 
"

  Any sequence that goes beyond a round trip must be 
part of a sequence that belongs to another round trip"
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Major test strategies in increasing power – 5"

  All round-trip paths – contʼd!
  Finds all incorrect or missing event/action pairs  
"

  Can find some incorrect or invalid states "
  E.g. enter state that mimics correct behaviour for 

10 events but becomes corrupt on the 11'th 
"

  N+ strategy relies on state inspector"
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Major test strategies in increasing power – 6"

  M-length signature!
  Used for opaque systems – cannot determine current 

state  
"

  A state signature is used to determine the current 
state of the IUT"

  A sequence of output actions unique for the state"
  If the actual state signature is the expected one, 

then in the correct state  
"

  To find corrupt states, need to try sequences long 
enough to get beyond any possible number of corrupt 
states, which is guessed as being M"
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Major test strategies in increasing power – 7"

  Exhaustive!
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Test Suite Size"
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Power comparison state-based testing strategies"


