
System Testing!

Chapter 14!

!

ST–2

Overview system testing!

  Common experience!
  In everyday live – not just programming!
  Use functional testing 
!

  Looking for correct behaviour, not looking for faults!

  Intuitively familiar!
  Too informal!

ST–3

Overview system testing – 2!

  Little test time due to delivery deadlines!
  Too informal!

  Need a good understanding and theory!
  Use threads  
!

  Atomic system functions!

ST–4

Possible thread definitions!

  Difficult to define !
  A scenario of normal usage  
!

  A system-level test case  
!

  A stimulus-response pair!

ST–5

Possible thread definitions – 2!

  Behaviour that results from a sequence of system-
level inputs  
!

  An interleaved sequence of port input and output
events  
!

  A sequence of transitions in a state machine
description of the system!

ST–6

Possible thread definitions – 3!

  An interleaved sequence of object messages and
executions  
!

  A sequence of!
  Machine instructions ! Program statements  
!

  MM-paths ! ! ! Atomic system  
! ! ! ! functions!

ST–7

Thread levels!

  Threads can occur at what levels?!

ST–8

Thread levels – 2!

  Unit level!

  Integration level!

  System level!

!

ST–9

Unit level thread!

  Describe a unit level thread?!

ST–10

Unit level thread – 2!

  An execution-time path of program text statements /
fragments!

  A sequence of DD-paths!

  Tests individual functions!

ST–11

Integration level thread!

  Describe an integration level thread.!

ST–12

Integration level thread – 2!

  An MM-path!

  Tests interactions among units!

ST–13

System level thread!

  Describe a system level thread.!

ST–14

System level thread – 2!

  A sequence of atomic system functions!
  Results in an interleaved sequence of port input and

output events!

  Tests interactions among atomic system functions!

ST–15

Atomic system function!

  Describe an atomic system function.!

ST–16

Definition – atomic system function !

  Is an action that is observable at the system level in
terms of!
  Port input events!
  Port output events!

  Separated by points of event quiescence!
  Analogous to message quiescence at the integration

level!
  Natural end point!

ST–17

Definition – atomic system function – 2 !

  At system level no interest in finer resolution!

  Seam between integration and system testing!
  Largest item for integration testing!
  Smallest for system testing!

ST–18

Atomic system function begin & end!

  Where would an atomic system function!
  Begin?!
  End?!

ST–19

Atomic system function begin & end – 2!

  Begin at a port input event!

  Terminate with a port output event!

ST–20

Atomic system function graph!

  Describe an atomic system function graph.!

ST–21

Atomic system function graph – 2!

  A directed graph where!
  Nodes are ASFs!

  Edges represent sequential flow from ASF to ASF!

ST–22

ASF graph sink & source nodes!

  Describe the sink and source nodes of an ASF
graph.!

ST–23

ASF graph sink & source nodes – 2!

  A source node is an entry point in the graph!
  In SATM the card entry function is a source!

  A sink node is an exit node in the graph!
  In SATM the session termination function is a sink!

ST–24

ASF graph thread!

  Describe a thread in an ASF graph.!

ST–25

ASF graph thread – 2!

  A path from a source ASF to a sink ASF!

ST–26

Thread graph!

  Describe a thread graph.!

ST–27

Thread graph – 2!

  A directed graph where  
!

  Nodes are system threads  
!

  Edges represent sequential execution of
threads!

ST–28

Basis for requirements specifications !

  All requirement specifications are composed of the
following basis set of constructs!
  Data ! ! Events ! Threads!
  Actions! ! Devices!

  All systems can be described in terms of the basis set of
constructs!

ST–29

Thread graph!

  Describe a thread graph.!

ST–30

Basis concepts E/R model!

1 .. n is read as many!

ST–31

Data!

  In a system what is data.!

ST–32

Data!

  Focus on information used and created by the system 
!

  Data is described using!
  Variables, data structures, fields, records, data stores

and files  
!

  Entity-relationship models describe highest level 
!

  Regular expressions used at more detailed level!
  Structure charts!

  from Jackson System Development!

ST–33

Data view!

  For what is a data view!
  Good?!
  Bad?!

ST–34

Data view – 2!

  Good for transaction view of systems!

  Poor for user interface!

ST–35

Data and thread relationships!

  Threads can sometimes be identified from the data
model!
  1-1, N-1, 1-N and N-N relationships have thread

implications!
  Need additional data to identify which of many

entities is being used!
  e.g. account numbers!

  Read-only data is an indicator of source atomic system
functions!

ST–36

Actions!

  What is the relationship between a system and
actions?!

ST–37

Actions – 2!

  Action-centered modeling is a common form for
requirements specification  
!

  Actions have input and output!
  Either data events!
  Or port events  
!

  Synonyms!
  Transform, data transform, control transform,

process, activity, task, method and service!

ST–38

Actions – 3!

  Used in functional testing !

  They can be refined (decomposed)!
  Basis of structural testing!

ST–39

Devices!

  What is the relationship between systems and
devices?!

ST–40

Devices – 2!

  A port is a point at which an I/O device is attached to a
system!

  Physical actions occur on devices and enter / leave
system through ports!
  Physical to logical translation on input!
  Logical to physical translation on output 
!

  Port input and output is handled by devices!

ST–41

Devices – 3!

  System testing can be moved to the logical level!
  Ports!

  No need for devices  
!

  Thinking about ports helps testers define the input space
and output space for functional testing!

ST–42

Events!

  What is the relationship between systems and
events?!

ST–43

Events – 2!

  A system-level input / output that occurs on a port device!

  Data-like characteristic!
  Input / output actions!
  Discrete!

ST–44

Events – 3!

  Action-like characteristic!
  The physical – logical translation done at ports!

  From the tester's viewpoint think of it as a physical event!
  Logical event is a part of integration testing!

ST–45

On continuous events!

  No such thing!
  Textbook is incorrect 
!

  Events have the following properties!
  Occur instantaneously – No duration!

  A person can start eating and stop eating!
  No corresponding event eating!

  Take place in the real world, external to the system!
  Are atomic, indivisible, no substructure!
  Events can be common among entities!

ST–46

On continuous events – 2!

  To handle duration!
  Need start and end events!
  Time-grain markers to measure the duration!

  Events are detected at the system boundary by the
arrival of a message!

  For testing, events are also the output of a message!
  The entry of the message to the real world is the event!

ST–47

On the temperature event!

  Temperature is not an a continuous event!
  To be continuous a continuous message would have

to arrive at the system boundary!
  A continuous message is not a meaningful concept!
  Messages are discrete!

ST–48

On the temperature event – 2!

  In practice, thermometers do not send messages to a
system, instead a system reads a thermometer!
  Reading is at the discretion of the receiver not the

sender!
  Called a statevector connection 
!

  The other option is message sending which is at the
option of the sender, receiver can only read after the
message is sent!

  Called a data stream connection!

ST–49

Threads!

  Almost never occur in requirements specifications!
  Testers have to search for them in the interactions

among data, actions and events!
  Can occur in rapid prototyping with a scenario

recorder  
!

  Behaviour models of systems make it easy to find
threads!
  Problem is they are models – not the system!

ST–50

Modeling with basis concepts!

Also called!
control model!

Weak connection!

ST–51

Behaviour model!

  Need appropriate model!
  Not too weak to express important behaviours!
  Not too strong to obscure interesting behaviours  
!

  Decision tables!
  Computational systems!

ST–52

Behaviour model – 2!

  Finite state machines!
  Menu driven systems  
!

  Petri nets!
  Concurrent systems!
  Good for analyzing thread interactions!

ST–53

Finding threads in finite state machines!

  Construct a machine such that!
  Transitions are caused by port input events  
!

  Actions on transitions are port output events!
  Definition of the machine may be hierarchical,

where lower levels are sub-machines – may be
used in multiple contexts!

ST–54

Finding threads in finite state machines – 2!

  Test cases follow a path of transitions!
  Take note of the port input and output events along

the path 
!

  Problem is path explosion!
  Have to choose which paths to test!

ST–55

Structural strategy for thread testing !!

  Bottom-up!
  The only one!

ST–56

Structural coverage metrics!

  Given a finite state machine with input and output
ports, what structural coverage metrics could we
use?!

ST–57

Structural coverage metrics – 2!

  Use same coverage metrics as for paths in unit testing!
  Finite state machine is a graph 
!

  Node coverage is analogous to statement coverage!
  The bare minimum 
!

  Edge (transition) coverage is the better minimum
standard!
  If transitions are in terms of port events, then edge

coverage implies port coverage!

ST–58

Functional strategies for thread testing!

  What are they?!
  Look at slides ST-28 and ST-30 for a hint !

ST–59

Functional strategies for thread testing – 2!

  Event-based!
  Recall that events are port input and output!

  Port-based!

  Data-based!

ST–60

Port input thread coverage metrics!

  Five port input thread coverage metrics are useful  
!
  PI1: Each port input event occurs!

  Inadequate bare minimum  
!

  PI2: Common sequences of port input events occur!
  Most common!
  Corresponds to intuitive view of testing!
  Problem:!

  What is a common / uncommon sequence?!

ST–61

Port input thread coverage metrics – 2!

  PI3: Each port input event occurs in every relevant
data context 
!

  Physical input where logical meaning is determined
by the context in which they occur  
!

  Example is a button that has different actions
depending upon where in a sequence of buttons it
is pressed!

ST–62

Port input thread coverage metrics – 3!

  PI4: For a given context, all inappropriate input events
occur!

  Start with a context and try different events  
!

  Often used on an informal basis to try to break the
system  
!

  Partially a specification problem!
  Difference between prescribed and proscribed

behaviour 
!

  Proscribed behaviour is difficult to enumerate!

ST–63

Port input thread coverage metrics – 4!

  PI5: For a given context, all possible input events
occur 
!

  Start with a context and try all different events!

ST–64

Event-based thread testing!

  PI4 & PI5 are effective!
  How does one know what the expected output is? 
!

  Good feedback for requirements specification 
!

  Good for rapid prototyping!

ST–65

Output port coverage metrics!

  Two output port coverage metrics!
  PO1: Each port output event occurs!

  An acceptable minimum!
  Effective when there are many error conditions

with different messages!

  PO2: Each port output event occurs for each cause!
  Most difficult faults are those where an output

occurs for an unsuspected cause  
!

  Example: Message that daily withdrawal limit
reached when cash in ATM is low!

ST–66

Port-based thread testing!

  For each port!
  Try threads that exercise ports with respect to the

events in which they can engage  
!

  Useful when port devices come from outside suppliers  
!

  The many-to-many relationship between ports and
events should be exercised in each direction!

  See E/R diagram  
!

  Complements event-based testing!

ST–67

Event driven systems!

  Event and port based testing is good for event driven
systems!

  Reactive systems – react to input events, often with
output events!
  Are long running!
  Maintain a relationship with the environment!
  E/R model is simple and not particularly useful!

Note: payroll example when properly designed is a long running  
process. It is a sequence of payroll runs, where each run is in  
the context of previous runs.!

ST–68

Data-based thread testing!

  Good for systems where data is of primary importance!
  Static  
!

  Transformational!
  Support transactions on a database  
!

  E/R model is dominant!

ST–69

Data-based thread testing – 2!

  Data-based coverage metrics – based on E/R model!
  DM1: Exercise the cardinality of every relationship!

  1-1, 1-N, N-1, N-N  
!

  DM2: Exercise the participation of every relationship!
  Does every specified entity participate  
!

  Can have numerical limits!

ST–70

Data-based thread testing – 3!

  DM3: Exercise the functional dependencies among
relationships  
!

  Functional dependencies are explicit logical
connections  
!

  Cannot repair a machine that one does not have!

ST–71

Thread explosion – Pseudo-structural testing!

  Use the graph-based metrics as a cross-check on the
functional coverage metrics!
  Analogous to using DD-paths to identify gaps and

redundancies of functional testing at the unit level 
!

  Pseudo occurs because graph is on the control model,
which is not the system itself!

ST–72

Thread explosion – Pseudo-structural testing – 2!

  Weak method if model is poor!
  used the incorrect model for type of system!

  Can be transformational, interactive, concurrent 
!

  Did not design a good model!

ST–73

Thread explosion – Pseudo-structural testing – 3!

  Decision tables and finite state machines good for
atomic system function testing!

  Thread-based testing is best done with Petri nets!
  Devise tests to cover!

  Every place!
  Every transition!
  Every sequence of transitions!

ST–74

Thread based testing problem!

  What is the big problem of using thread based
system testing?!

ST–75

Thread based testing problem – 2!

  What is the big problem of using thread based
system testing?!
  Thread explosion!

  How do we deal with thread explosion?!

ST–76

Thread based testing problem – 3!

  What is the big problem of using thread based
system testing?!
  Thread explosion!

  How do we deal with thread explosion?!
  Operational profiles!

ST–77

Operational profiles!

  What is an operational profile?!

ST–78

Operational profiles – 2!

  Make use of Zipf's law!
  80% of activities occur in 20% of the activity space  
!

  Make use of the idea that you want to reveal faults!
  Testing is to find cases that when a failure occurs the

location of a fault is revealed 
!

  Make use of the fact!
  Distribution of faults is indirectly related to the

reliability of a system!

Reliability question!

  What is system reliability?!

ST–79

ST–80

Operational profiles – 3!

  Make use of system reliability!
  System reliability is the probability that no failure

occurs within a given time-period 
!

  Faults are on low use threads!
  The system is reliable  
!

  Faults are on high use threads!
  The system is unreliable!

ST–81

Operational profiles – 4!

  When test time is limited maximize probability of finding
faults by finding failures in the most frequently used
threads!

ST–82

Operational profiles – 5!

  Use a decision tree!
  Works well with hierarchy of finite state machines!
  Estimate the probability of each outgoing transition 

(sum to 1)!
  Can get statistics from customer monitoring /

feedback!
  Probabilities in sub-states split the probability of the

parent state!
  The probability of a thread is the product of the

transitions comprising the thread!
  Test from high to low probability!

ST–83

Progressive and regressive testing!

  What are they?!

ST–84

Progressive & regressive testing – 2!

  Use of builds makes a need for regression testing!
  20% of changes to a system create new faults  
!

  Regression testing takes a significant amount of time  
!

  Reduce by looking at difference between progression
and regression testing!

ST–85

Progressive & regressive testing – 3!

  Most common regression testing is to run all the tests 
!

  Progressive testing needs to be diagnostic to isolate
faults more easily!
  Use short threads  
!

  Regressive testing not as concerned with fault isolation!
  Use long threads!

ST–86

Progressive & regressive testing – 4!

  Together have good coverage!
  State & transition coverage sparse for progressive

tests, dense for regressive tests  
!

  Different from operational profiles!
  Good regressive tests have low operational

probability!
  Good progressive tests have high operational

probability!

