
Issues in OO Testing!

Chapter 16!

!

ISS–2!

OO context!

  OO based on hope that objects could be reused without!
  Modification!
  Additional testing!

  Based on notion that objects encapsulate functions
and data that belong together!

  Consensus now is that such optimism is unwarranted!
  OO programs has more severe testing problems than

traditional programs!

ISS–3!

OO context – 2!

  Looking to other models that can be combined with OO
to ameliorate the problems!
  Aspect-oriented programs!

  Aspect-orientation can be combined with any
programming language!

ISS–4!

Problems to address!

  Levels of testing!
  What is a unit?!

  Implications of composition strategy of OO!
  Compare to functional decomposition!
  OO programs!

  Inheritance, encapsulation and polymorphism!
  How can traditional testing be extended?!

ISS–5!

OO unit!

  Two definitions!
  A unit is the smallest program component that can be

compiled and executed!

  A unit is a program component that would be
developed by one person!

  Could be a sub-part of one class!

ISS–6!

Unit is 1-person development!

  Traditional testing works well  
!

  Shifts much of the burden of testing to the integration
level  
!

  Does not take encapsulation into account!
  Know about themselves!
  Operate on their own!

ISS–7!

Unit is compilable & executable!

  Can describe behaviour!
  Model with FSM – Statechart!
  Very useful for identifying test cases!

  Integration testing is easier!
  Integrate by combining already tested classes!
  Similar to traditional testing!

ISS–8!

Composition & Encapsulation!

  A class may be combined with other unknown classes!
  Goal of reuse!
  Need high cohesion, low coupling!

  Need very good unit testing!

  Reality is that burden of testing is still on integration
testing!

ISS–9!

SWW– SSD 1!

All communication channels are  
data stream!
!
Channel P is a rough merge of the  
data streams from Lever and Dial!

Low coupling 
between Wiper  
Lever and Dial!

System Specification Diagram !

ISS–10!

SWW– SSD 2!

Channel DL is a  
statevector read 
of Dial by Lever!

High coupling  
between Lever and Dial!
!
When does Lever read DL?!

ISS–11!

SWW – SSD 3!

High coupling between 
Wiper and Lever  
Wiper and Dial!

When does Wiper read 
LW and DW? !

ISS–12!

Complication of inheritance!

  Unit is more difficult to define when inheritance is
involved!
  Suggestion is to use the flat definition!

  Becomes complicated with multiple inheritance!

  Flattening solves inheritance problem!
  Flattened classes are not a part of the system!

  Cannot be certain they are properly tested!

ISS–13!

Complication of inheritance – 2!

  May not have necessary methods for testing!
  Can add test methods!

  Should they be a part of the delivered system?!
  Analogous to having instrumented program text!

  Test methods need to be tested !!! …!

See Figures 16.2 & 16.3!

ISS–14!

Complication of polymorphism!

  Testing with different objects!
  Redundant tests on inherited methods!

  Lose hoped for economies!

  Similarly testing polymorphism introduces redundant
testing!

ISS–15!

Levels of testing – Methods are units!

  Four levels!
  Method!

  Unit testing 
!

  Class!
  Intraclass integration testing 

!

  Integration!
  Interclass integration testing 

!

  System!
  At port level – same as traditional testing!

ISS–16!

Levels of testing – Classes are units!

  Three levels!
  Class!

  Unit testing!

  Integration!
  Interclass testing!

  System!
  At port level!

ISS–17!

Dataflow testing!

  Need analogue to dataflow testing of units in traditional
programs 
!
  Use a revised Petri net definition to handle method

calls between classes  
!

  See Chapter 18, OO-integration testing!

