!'_ Path Testing + Coverage

Chapter 8

i Structural Testing

= Also known as glass/white/open box testing

= A software testing technique whereby explicit
knowledge of the internal workings of the

item being tested are used to select the test
data

= Functional Testing uses program specification

= Structural Testing is based on specific
knowledge of the source code to define the
test cases and to examine outputs.

i Structural Testing

= Structural testing methods are very
amenable to:
= Rigorous definitions
= Control flow, data flow, coverage criteria
= Mathematical analysis
= Graphs, path analysis

= Precise measurement
= Metrics, coverage analysis

i Program Graph - Definition

= Given a program written in an
imperative programming language, its
program graph is a directed graph in
which nodes are statement fragments,
and edges represent flow of control

= A complete statement is also considered
a statement fragment

iProgram Graph - Example

i DD-Path

= A decision-to-decision path (DD-Path) is a
chain in a program graph such that:
= Casel: it consists of a single node with indeg=0
= Case2: it consists of a single node with outdeg=0

= Case3: it consists of a single node with indeg = 2
or outdeg = 2

= Case4: it consists of a single node with indeg =1,
and outdeg = 1

= Caseb: it is a maximal chain of length > 1
= DD-Paths are also known as segments

i DD-Path Graph

= Given a program written in an
imperative language, its DD-Path
graph is a directed graph, in which
nodes are DD-Paths of its program
graph, and edges represent control flow
between successor DD-Paths.

= Also known as Control Flow Graph

i Control Flow Graph Derivation

= Straightforward process
= Some judgement is required

= The last statement in a segment must
be a predicate, a loop control, a break,
or @ method exit

= Let’ s try an example...

public int displayLastMsg(int nToPrint) {

&& (nToPrint > 0)) {

&& (np < nToPrint)); -j) {

System.out.println(messageBuffer[j]);
++np;

}

if (np < nToPrint

& (np < nToPrint)); —-J) {
System.out.println(messageBuffer[j]);
++np;

+

Control
flow
graph for
previous
slide

10

i Control flow graphs

Depict which program segments may be
followed by others

A segment is a node in the CFG

A conditional transfer of control is a branch

represented by an edge

An entry node (no inbound edges)
represents the entry point to a method

An exit node (no outbound edges)
represents an exit point of a method

11

i Control flow graphs

An entry-exit path is a path from the entry
node to the exit node

Path expressions represent paths as
sequences of nodes

Loops are represented as segments within
parentheses followed by an asterisk

There are 22 different path expressions in our
example

12

i Example path expressions
AL

ABL
ABCDGL

ABCDEGL
ABC(DEF)*DGL
ABC(DEF)*DEGL
ABCDGHIL

ABCDGHIJL
ABCDGH(IJK)*IL
ABC(DEF)*DEGH(IJK)*1]L

iCode coverage models

= Statement Coverage

= Segment Coverage

= Branch Coverage

= Multiple-Condition Coverage

14

i Statement coverage

s Achieved when all statements in a method
have been executed at least once

= A test case that will follow the path
expression below will achieve statement
coverage in our example

ABC(DEF)*DGH(IIK)*IL

= One test case is enough to achieve statement
coverage!

15

i Segment coverage

= Segment coverage counts segments rather
than statements

= May produce drastically different numbers
= Assume two segments P and Q
= P has one statement, Q has nine

= Exercising only one of the segments will give 10%
or 90% statement coverage

= Segment coverage will be 50% in both cases

16

i Statement coverage problems

= Predicate may be tested for only one
value (misses many bugs)

= Loop bodies may only be iterated once

= Statement coverage can be achieved
without branch coverage. Important
cases may be missed

String s = null;
if (x '=y) s = “Hi”;
String s2 = s.substring(l) ;|

i Branch coverage

= Achieved when every path from a node
IS executed at least once

s At least one true and one false
evaluation for each predicate

= Can be achieved with D+1 paths in a
control flow graph with D 2-way
branching nodes and no loops

= Even less if there are loops

18

i Branch coverage problems

= Short-circuit evaluation means that
many predicates might not be evaluated

= A compound predicate is treated as a
single statement. If n clauses, 2"
combinations, but only 2 are tested

= Only a subset of all entry-exit paths is

tested |if (a == b) x++;
if (¢ == d) x--;

19

i Multiple-condition coverage

= All true-false combinations of simple

conditions in compound predicates are

considered at least once
= A truth table may be necessary

= Not necessarily achievable due to lazy

evaluation or mutually exclusive
conditions

if ((x > 0) && (x < 5)) ..

20

i Dealing with Loops

= Loops are highly fault-prone, so they
need to be tested carefully

= Simple view: Every loop involves a
decision to traverse the loop or not

= A bit better: Boundary value analysis on
the index variable

= Nested loops have to be tested
separately starting with the innermost

21

i Creating test cases

= In order to increase the coverage of a
test suite, one needs to generate test
cases that exercise certain statements
or follow a specific path

= This is not always easy to do...

22

iCFG question

= What is the control flow graph
for the following?

ifa<bthenc=a+b;d=a*b
elsec=a*b;d=a+b

fc<dthenx=a+c;y=b+d
elsex=a*c;y=b*d

23

iCreating a test case

= What is the key question that
needs to be answered to be able to
create a test for a path?

24

iCreating a test case

= What is the key question that
needs to be answered to be able to
create a test for a path?

= How to make the path execute, if possible.

= Generate input data that satisfies all the conditions
on the path.

25

iCreating a test case

= What are the key items you need
to generate a test case for a path?

26

iCreating a test case

= What are the key items you need
to generate a test case for a path?

= Input vector

= Predicate

» Path predicate

» Predicate interpretation

= Path predicate expression

= Create test input from path predicate
expression

27

*Input Vector

= What is an input vector?

28

ilnput Vector — 2

= What is an input vector?

= A collection of all data entities read by the
routine whose values must be fixed prior to
entering the routine.

29

*Input Vector — 3

= What are the members of an input
vector?

30

ilnput Vector — 4

= What are the members of an input
vector?

= Input arguments to the routine

= Global variables and constants
= Files
= Network connections

= [imers

31

*Predicate

= What is a predicate?

32

Predicate — 2
= What is a predicate?

= A logical function evaluated at a

decision point.

= In the following each of a <bandc < d

are predicates

ifa<bthenc=a+b;d=a*b
elsec=a*b;d=a+b

ifc<dthenx=a+c;y=b+d
elsex=a*c;y=b*d

T

1

]

2

>

3

F

4

l

33

iPath predicate

= What is a path predicate?

34

Path predicate — 2
= [he set of predicates associated with a
path.

ma<b=truer c<d-=false
IS a path predicate

ifa<bthenc=a+b;d=a*b
elsec=a*b;d=a+b 1 2

ifc<dthenx=a+c;y=b+d .
elsex=a*c;y=b*d ’li_%@

l 35

*Path Predicate Expression

= What is a path predicate
expression?

36

iPath Predicate Expression — 2

= What is a path predicate
expression?
= An interpreted path predicate

37

iPredicate Interpretation

= What is a path predicate
interpretation?

38

iPredicate Interpretation — 2

= What is a path predicate
interpretation?

= A path predicate may contain local
variables.

= Local variables cannot be selected
independently of the input variables

= Local variables are eliminated with
symbolic execution

39

i Predicate Interpretation — 3

= What is symbolic execution?

= Symbolically substituting operations along
a path in order to express the predicate

solely in terms of the input vector and a
constant vector.

= A predicate may have different
interpretations depending on how control
reaches the predicate.

40

Attributes of a Path Predicate

*Expression

= What are the attributes of a path
predicate expression?

41

Attributes of a Path Predicate

iExpression -2

= What are the attributes of a path
predicate expression?

= No local variables

= A set of constraints in terms of the input
vector, and, maybe, constants

= Path forcing inputs are generated by
solving the constraints

« If @ path predicate expression has no
solution, the path is infeasible

42

Path Predicate Generating

iInput Values

ifa<bthenc=a+b;d=a*b
elsec=a*b;d=a+b

ifc<dthenx=a+c;y=b+d
elsex=a*c;y=b*d

= Path predicate a<b=true A c<d = false
s Substituteforcandd c=a+b d=a*b

a<b=true A a+b<a*b="false
— a<bAa+b=a*hb

43

Path Predicate Generating
iInput Values — 2

a<bra+b=a*b
= Solve foraandb a=0rb=1
= Solutions are not unique

= A solution exists
= We have a feasible path

= No solution to the constraints
=« Have an infeasible path

44

*Organizing path predicates

= How can we organize the set of
path predicates?

45

iOrganizing path predicates — 2

= How can we organize the set of
path predicates?

= Use a decision table
« How would a decision table be used?

46

Decision table for the example

Al1B3 Al1B4 A2B3 A2B4
A<B T T F F
C<D T F T F
A value 2 0 1 5
B value 5 1 0 2

Paths A1B3 and A2B4 give statement coverage
or Paths A1B4 and A2B3 give statement coverage

47

iSeIecting paths

= A program unit may contain a large
number of paths.

= Path selection becomes a problem
= Some selected paths may be infeasible

= What strategy would you use to
select paths?

48

iSeIecting paths — 2

= What strategy would you use to
select paths?
= Select as many short paths as possible
= Tradeoffs?

= Choose longer paths
= Tradeoffs?

49

iSeIecting paths — 3

= What about infeasible paths?

= What would you do about them?

50

iSeIecting paths — 4

= What about infeasible paths?

= What would you do about them?

=« Make an effort to write program text with
fewer or no infeasible paths.

51

