
Chapter 2

Regular Expressions & Finite State

Automata

April 1, 2009

Announcement

• Assignment 1 posted

Due April 8

Overview

• Formal laguages (review)

• Why FSAs?

• Formal definition of regular languages (reprise)

• Extension to regular expressions

• Finite state automata

• Definition, DFSA vs. NFSA, algorithms for using

FSAs, pseudocode, search

• Regular languages vs. applications

Formal languages (review)

• From the point of view of formal languages theory, a
language is a set of strings defined over some alphabet.

• The Chomsky hierarchy is a description of classes of
languages.

• Languages from a single level in the hierarchy can be
described in terms of the same formal devices.

• Regular languages can be described by regular
expressions and by finite-state automata.

• Regular languages < context-free languages < context-
sensitive languages < all languages

Three views on the same subject

(review)

• Regular language: a set of strings

• Regular expression: an expression from a

certain formal language which describes a

regular language

• Finite-state automaton: a simple computing

machine which accepts or generates a regular

language

Why FSAs?

• Relationship between Chomsky Hierarchy,

Generative Grammar

• Useful in morphological analysis, POS

tagging, and more

• Point of entry for linguists into computational

linguistics: Moving from abstract

characterization (what) to algorithm (how).

Formal definition of regular

languages: Symbols (reprise)

• ϵ is the empty string

• ø is the empty set

• Σ is an alphabet (set of symbols)

Formal definition of regular languages

(reprise)

• The class of regular languages over Σ is

formally defined as:

– ø is a regular language

– a  Σ  ϵ, {a} is a regular language.

– If L1 and L2 are regular languages, then so are

• L1 · L2 = {xy | x  L1, y  L2} (concatenation)

• L1  L2 (union or disjunction)

• L1* (Kleene closure)

(Jurafsky & Martin 2009:39)

Examples

• abc

• a|bc

• (a|b)c

• a*b

• [^a]*th[aeiou]+[a-z]*

Regular Expressions: (Re)view

• What are the three fundamental operators?

• What other operators are defined in

Perl/Python (syntactic sugar)?

• What kind of applications might you use

regular expressions in?

Regular Expressions: An Extension

(1/2)

• Parentheses – () in Python or Perl, \(\) in grep –
allow you to „save‟ part of a string and access it
again…

– … to specify regexps with repetition:
/([a-z]+) \1/

– … when you‟re using regular expressions to rewrite
strings:
regexp = re.compile(‘dog(s?)’)

regexp.sub(dawg\g<1>, input)

regexp = re.compile(r’\.(\s+[a-z])’)

regexp.sub(KEEPER\g<1>, input)

Regular Expressions: An Extension

(2/2)

• NB: This extension to Python/grep/MS regular

expression syntax actually takes them beyond

the realm of regular expressions. The

languages generated by regular expressions

augmented with this kind of memory device

are NOT regular languages – i.e., cannot be

recognized by FSAs.

So what’s an FSA anyway? (1/2

• An abstract computing machine

• Consists of a set of states (or nodes in a

directed graph) and a set of transitions (labeled

arcs in the graph)

• Three kinds of states: plain, start, final

So what’s an FSA anyway? (2/2)

• FSAs can also be represented as tables:

Input

State a b c

0 1 3 -

1: 1 2 3

2: - 3 -

3: - - -

Recognizing a regular language

• FSAs can be used to recognize a regular language.

• Take the FSA and a “tape” with the string to be
recognized.

• Start with the start of the tape and the FSA‟s start state.

• For each symbol on the tape, attempt to take the
corresponding transition in the machine.

• If no transition is possible: reject.

• When the string is finished, check whether the current
state is a final state.

• Yes: accept. No: reject.

Notes on Pseudocode

• Basic components of algorithms:

– Loops

– Conditionals

– Variable assignment

– Evaluating expressions (e.g. i + 1)

– Input values

– Return values

D-RECOGNIZE in pseudocode

function D-Recognize(tape, machine) returns accept or reject
index ← Beginning of tape
current-state ← Initial state of machine
loop

if End of input has been reached then
if current-state is an accept state then

return accept
else

return reject
elsif transition-table[current-state, tape[index]] is empty then

return reject
else

current-state ← transition-table[current-state, tape[index]]
index ← index + 1

end

Formal definition of regular languages

(for reference)

• The class of regular languages over Σ is

formally defined as:

– ø is a regular language

– a  Σ  ϵ, {a} is a regular language.

– If L1 and L2 are regular languages, then so are

• L1 · L2 = {xy | x  L1, y  L2} (concatenation)

• L1  L2 (union or disjunction)

• L1* (Kleene closure)

(Jurafsky & Martin 2009:39)

Proof of equivalence between FSAs

and regular languages

• Three basic operations:

– Union

– Concatenation

– Kleene closure

• Why isn‟t Kleene closure a special case of

concatenation?

Regular languages are also closed

under:

• Complementation: Interchange final states and

non-final states

• Intersection: DeMorgan‟s theorem

• Reversal: Use final states as start states, the

start state as the final state, and reverse all

arcs.

• Difference: L – M = the intersection of L and

the complement of M

NFSAs

• The FSAs considered so far are deterministic
(DFSAs): there‟s only one choice at each node.

• NFSAs include more than one choice at at
least one node.

• Those choices might include ϵ-transitions, or
unlabeled arcs that allow one to jump from one
node to another without reading any input.

• Recognizing strings with an NFSA is thus our
first example of “search”.

Two parameters

• Handling choices: backup, look-ahead, or

parallelism

• Systematic exploration: depth-first, breadth-

first, dynamic programming, A*, …

ND-RECOGNIZE (1/3)

Function ND-RECOGNIZE(tape, machine) returns accept or reject
agenda ← {(Initial state of machine, beginning of tape)}
current-search-state ← NEXT(agenda)
loop

if ACCEPT-STATE?(current-search-state) returns true then
return accept

else
agenda ← agenda


GENERATE-NEW-STATES(current-search-state)

if agenda is empty then
return reject

else
current-search-state ← NEXT(agenda)

end

ND-RECOGNIZE (2/3)

function Generate-New-States(current-state)

returns a set of search-states

current-node ← the node the current search state is in

index ← the point on the tape the current search-state is looking at

return a list of search-states from transition table as follows:

(transition-table[current-node, ϵ], index)



(transition-table[current-node, tape[index]], index + 1)

ND-RECOGNIZE (3/3)

Function ACCEPT-STATE?(search-state) returns true or false

current-node ← the node the search-state is in

index ← the point on the tape the search-state is looking at

if index is at the end of the tape

and current-node is an accept state then

return true

else

return false

A bit more on NFSAs

• ND-RECOGNIZE leaves the search strategy

(depth-first or breadth-first) underspecified.

Why?

• Any NFSA can be converted to a DFSA. How?

Regular languages vs. applications of

regexps

• Regular expressions can define sets of strings.

• Applications of regular expressions include:

– Search (and replace)

– Spell checking

• In this case, the strings matched by the regexp are
substrings of larger strings.

• Regexp matching is greedy.

• May or may not match multiple instances.

• Anchors become useful in search.

Look ahead: Morphology

• Find a partner

• Come up with a morphological subsystem that

can be modeled by an FSA

• Write the FSA

Overview

• Formal languages (review)

• Why FSAs?

• Formal definition of regular languages (reprise)

• Extension to regular expressions

• Finite state automata

– Definition, DFSA vs. NFSA

– Algorithms for using FSAs

– Search

• Regular languages vs. applications

