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Abstract. This paper shows that the accuracy of learned text classifiers can be improved by
augmenting a small number of labeled training documents with a large pool of unlabeled docu-
ments. This is important because in many text classification problems obtaining training labels
is expensive, while large quantities of unlabeled documents are readily available.

We introduce an algorithm for learning from labeled and unlabeled documents based on the
combination of Expectation-Maximization (EM) and a naive Bayes classifier. The algorithm first
trains a classifier using the available labeled documents, and probabilistically labels the unlabeled
documents. It then trains a new classifier using the labels for all the documents, and iterates
to convergence. This basic EM procedure works well when the data conform to the generative
assumptions of the model. However these assumptions are often violated in practice, and poor
performance can result. We present two extensions to the algorithm that improve classification
accuracy under these conditions: (1) a weighting factor to modulate the contribution of the
unlabeled data, and (2) the use of multiple mixture components per class. Experimental results,
obtained using text from three different real-world tasks, show that the use of unlabeled data
reduces classification error by up to 30%.

Keywords: text classification, Expectation-Maximization, integrating supervised and unsuper-
vised learning, combining labeled and unlabeled data, Bayesian learning

1. Introduction

Consider the problem of automatically classifying text documents. This problem
is of great practical importance given the massive volume of online text avail-
able through the World Wide Web, Internet news feeds, electronic mail, corporate
databases, medical patient records and digital libraries. Existing statistical text
learning algorithms can be trained to approximately classify documents, given a
sufficient set of labeled training examples. These text classification algorithms have
been used to automatically catalog news articles (Lewis & Gale, 1994; Joachims,
1998) and web pages (Craven, DiPasquo, Freitag, McCallum, Mitchell, Nigam, &
Slattery, 1998; Shavlik & Eliassi-Rad, 1998), automatically learn the reading in-
terests of users (Pazzani, Muramatsu, & Billsus, 1996; Lang, 1995), and automati-
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cally sort electronic mail (Lewis & Knowles, 1997; Sahami, Dumais, Heckerman, &
Horvitz, 1998).

One key difficulty with these current algorithms, and the issue addressed by this
paper, is that they require a large, often prohibitive, number of labeled training
examples to learn accurately. Labeling must often be done by a person; this is a
painfully time-consuming process.

Take, for example, the task of learning which UseNet newsgroup articles are of
interest to a particular person reading UseNet news. Systems that filter or pre-sort
articles and present only the ones the user finds interesting are highly desirable,
and are of great commercial interest today. Work by Lang (1995) found that after a
person read and labeled about 1000 articles, a learned classifier achieved a precision
of about 50% when making predictions for only the top 10% of documents about
which it was most confident. Most users of a practical system, however, would
not have the patience to label a thousand articles—especially to obtain only this
level of precision. One would obviously prefer algorithms that can provide accurate
classifications after hand-labeling only a few dozen articles, rather than thousands.

The need for large quantities of data to obtain high accuracy, and the difficulty
of obtaining labeled data, raises an important question: what other sources of
information can reduce the need for labeled data?

This paper addresses the problem of learning accurate text classifiers from limited
numbers of labeled examples by using unlabeled documents to augment the available
labeled documents. In many text domains, especially those involving online sources,
collecting unlabeled documents is easy and inexpensive. The filtering task above,
where there are thousands of unlabeled articles freely available on UseNet, is one
such example. It is the labeling, not the collecting of documents, that is expensive.

How is it that unlabeled data can increase classification accuracy? At first con-
sideration, one might be inclined to think that nothing is to be gained by access to
unlabeled data. However, they do provide information about the joint probability
distribution over words. Suppose, for example, that using only the labeled data we
determine that documents containing the word “homework” tend to belong to the
positive class. If we use this fact to estimate the classification of the many unla-
beled documents, we might find that the word “lecture” occurs frequently in the
unlabeled examples that are now believed to belong to the positive class. This co-
occurrence of the words “homework” and “lecture” over the large set of unlabeled
training data can provide useful information to construct a more accurate classifier
that considers both “homework” and “lecture” as indicators of positive examples.
In this paper, we explain that such correlations are a helpful source of information
for increasing classification rates, specifically when labeled data are scarce.

This paper uses Expectation-Maximization (EM) to learn classifiers that take ad-
vantage of both labeled and unlabeled data. EM is a class of iterative algorithms for
maximum likelihood or maximum a posteriori estimation in problems with incom-
plete data (Dempster, Laird, & Rubin, 1977). In our case, the unlabeled data are
considered incomplete because they come without class labels. The algorithm first
trains a classifier with only the available labeled documents, and uses the classifier
to assign probabilistically-weighted class labels to each unlabeled document by cal-
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culating the expectation of the missing class labels. It then trains a new classifier
using all the documents—both the originally labeled and the formerly unlabeled—
and iterates. In its maximum likelihood formulation, EM performs hill-climbing in
data likelihood space, finding the classifier parameters that locally maximize the
likelihood of all the data—both the labeled and the unlabeled. We combine EM
with naive Bayes, a classifier based on a mixture of multinomials, that is commonly
used in text classification.

We also propose two augmentations to the basic EM scheme. In order for basic
EM to improve classifier accuracy, several assumptions about how the data are
generated must be satisfied. The assumptions are that the data are generated by
a mixture model, and that there is a correspondence between mixture components
and classes. When these assumptions are not satisfied, EM may actually degrade
rather than improve classifier accuracy. Since these assumptions rarely hold in real-
world data, we propose extensions to the basic EM/naive-Bayes combination that
allow unlabeled data to still improve classification accuracy, in spite of violated
assumptions. The first extension introduces a weighting factor that dynamically
adjusts the strength of the unlabeled data’s contribution to parameter estimation
in EM. The second reduces the bias of naive Bayes by modeling each class with
multiple mixture components, instead of a single component.

Over the course of several experimental comparisons, we show that (1) unlabeled
data can significantly increase performance, (2) the basic EM algorithm can suf-
fer from a misfit between the modeling assumptions and the unlabeled data, and
(3) each extension mentioned above often reduces the effect of this problem and
improves classification.

The reduction in the number of labeled examples needed can be dramatic. For
example, to identify the source newsgroup for a UseNet article with 70% classifi-
cation accuracy, a traditional learner requires 2000 labeled examples; alternatively
our algorithm takes advantage of 10000 unlabeled examples and requires only 600
labeled examples to achieve the same accuracy. Thus, in this task, the technique
reduces the need for labeled training examples by more than a factor of three. With
only 40 labeled documents (two per class), accuracy is improved from 27% to 43%
by adding unlabeled data. These findings illustrate the power of unlabeled data in
text classification problems, and also demonstrate the strength of the algorithms
proposed here.

The remainder of the paper is organized as follows. Section 2 describes, from
a theoretical point of view, the problem of learning from labeled and unlabeled
data. Sections 3 and 4 present the formal framework for naive Bayes. In Section 5,
we present the combination of EM and naive Bayes, and our extensions to this
algorithm. Section 6 describes a systematic experimental comparison using three
classification domains: newsgroup articles, web pages, and newswire articles. The
first two domains are multi-class classification problems where each class is relatively
frequent. The third domain is treated as binary classification, with the “positive”
class having a frequency between 1% and 30%, depending on the task. Related
work is discussed in Section 7. Finally, advantages, limitations, and future research
directions are discussed in Section 8.
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Figure 1. Classification by a mixture of Gaussians. If unlimited amounts of unlabeled data are
available, the mixture components can be fully recovered, and labeled data are used to assign labels
to the individual components, converging exponentially quickly to the Bayes-optimal classifier.

2. Argument for the Value of Unlabeled Data

How are unlabeled data useful when learning classification? Unlabeled data alone
are generally insufficient to yield better-than-random classification because there is
no information about the class label (Castelli & Cover, 1995). However, unlabeled
data do contain information about the joint distribution over features other than
the class label. Because of this they can sometimes be used—together with a sample
of labeled data—to significantly increase classification accuracy in certain problem
settings.

To see this, consider a simple classification problem—one in which instances are
generated using a Gaussian mixture model. Here, data are generated according to
two Gaussian distributions, one per class, whose parameters are unknown. Figure 1
illustrates the Bayes-optimal decision boundary (x > d), which classifies instances
into the two classes shown by the shaded and unshaded areas. Note that it is
possible to calculate d from Bayes rule if we know the Gaussian mixture distribution
parameters (i.e., the mean and variance of each Gaussian, and the mixing parameter
between them).

Consider when an infinite amount of unlabeled data is available, along with a
finite number of labeled samples. It is well known that unlabeled data alone, when
generated from a mixture of two Gaussians, are sufficient to recover the original
mixture components (McLachlan & Krishnan, 1997, section 2.7). However, it is
impossible to assign class labels to each of the Gaussians without any labeled data.
Thus, the remaining learning problem is the problem of assigning class labels to
the two Gaussians. For instance, in Figure 1, the means, variances, and mixture
parameter can be learned with unlabeled data alone. Labeled data must be used
to determine which Gaussian belongs to which class. This problem is known to
converge exponentially quickly in the number of labeled samples (Castelli & Cover,
1995). Informally, as long as there are enough labeled examples to determine the
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class of each component, the parameter estimation can be done with unlabeled data
alone.

It is important to notice that this result depends on the critical assumption that
the data indeed have been generated using the same parametric model as used in
classification, something that almost certainly is untrue in real-world domains such
as text classification. This raises the important empirical question as to what extent
unlabeled data can be useful in practice in spite of the violated assumptions. In the
following sections we address this by describing in detail a parametric generative
model for text classification and by presenting empirical results using this model
on real-world data.

3. The Probabilistic Framework

This section presents a probabilistic framework for characterizing the nature of
documents and classifiers. The framework defines a probabilistic generative model
for the data, and embodies two assumptions about the generative process: (1) the
data are produced by a mixture model, and (2) there is a one-to-one correspondence
between mixture components and classes.1 The naive Bayes text classifier we will
discuss later falls into this framework, as does the example in Section 2.

In this setting, every document is generated according to a probability distribution
defined by a set of parameters, denoted θ. The probability distribution consists of a
mixture of components cj ∈ C = {c1, ..., c|C|}. Each component is parameterized by
a disjoint subset of θ. A document, di, is created by first selecting a mixture com-
ponent according to the mixture weights (or class prior probabilities), P(cj |θ), then
having this selected mixture component generate a document according to its own
parameters, with distribution P(di|cj; θ).2 Thus, we can characterize the likelihood
of document di with a sum of total probability over all mixture components:

P(di|θ) =
|C|∑
j=1

P(cj |θ)P(di|cj; θ). (1)

Each document has a class label. We assume that there is a one-to-one corre-
spondence between mixture model components and classes, and thus (for the time
being) use cj to indicate the jth mixture component as well as, the jth class. The
class label for a particular document di is written yi. If document di was generated
by mixture component cj we say yi = cj. The class label may or may not be known
for a given document.

4. Text Classification with Naive Bayes

This section presents naive Bayes—a well-known probabilistic classifier—and de-
scribes its application to text. Naive Bayes is the foundation upon which we will
later build in order to incorporate unlabeled data.

The learning task in this section is to estimate the parameters of a generative
model using labeled training data only. The algorithm uses the estimated param-
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eters to classify new documents by calculating which class was most likely to have
generated the given document.

4.1. The Generative Model

Naive Bayes assumes a particular probabilistic generative model for text. The model
is a specialization of the mixture model presented in the previous section, and thus
also makes the two assumptions discussed there. Additionally, naive Bayes makes
word independence assumptions that allow the generative model to be characterized
with a greatly reduced number of parameters. The rest of this subsection describes
the generative model more formally, giving a precise specification of the model
parameters, and deriving the probability that a particular document is generated
given its class label (Equation 4).

First let us introduce some notation to describe text. A document, di, is con-
sidered to be an ordered list of word events, 〈wdi,1 , wdi,2, . . .〉. We write wdi,k for
the word wt in position k of document di, where wt is a word in the vocabulary
V = 〈w1, w2, . . . , w|V |〉.

When a document is to be generated by a particular mixture component, cj, a
document length, |di|, is chosen independently of the component. (Note that this
assumes that document length is independent of class.3) Then, the selected mixture
component generates a word sequence of the specified length. We furthermore
assume it generates each word independently of the length.

Thus, we can expand the second term from Equation 1, and express the probabil-
ity of a document given a mixture component in terms of its constituent features:
the document length and the words in the document. Note that, in this general
setting, the probability of a word event must be conditioned on all the words that
precede it.

P(di|cj; θ) = P(〈wdi,1 , . . . , wdi,|di|〉|cj; θ) = P(|di|)
|di|∏
k=1

P(wdi,k |cj; θ;wdi,q , q < k) (2)

Next we make the standard naive Bayes assumption: that the words of a document
are generated independently of context, that is, independently of the other words
in the same document given the class label. We further assume that the probability
of a word is independent of its position within the document; thus, for example,
the probability of seeing the word “homework” in the first position of a document
is the same as seeing it in any other position. We can express these assumptions
as:

P(wdi,k |cj; θ;wdi,q , q < k) = P(wdi,k |cj; θ). (3)

Combining these last two equations gives the naive Bayes expression for the prob-
ability of a document given its class:

P(di|cj; θ) = P(|di|)
|di|∏
k=1

P(wdi,k |cj; θ). (4)
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Thus the parameters of an individual mixture component are a multinomial dis-
tribution over words, i.e. the collection of word probabilities, each written θwt |cj ,
such that θwt |cj = P(wt|cj; θ), where t = {1, . . . , |V |} and

∑
t P(wt|cj; θ) = 1. Since

we assume that for all classes, document length is identically distributed, it does
not need to be parameterized for classification. The only other parameters of the
model are the mixture weights (class prior probabilities), written θcj , which indicate
the probabilities of selecting the different mixture components. Thus the complete
collection of model parameters, θ, is a set of multinomials and prior probabilities
over those multinomials: θ = {θwt|cj : wt ∈ V, cj ∈ C ; θcj : cj ∈ C}.

4.2. Training a Classifier

Learning a naive Bayes text classifier consists of estimating the parameters of the
generative model by using a set of labeled training data, D = {d1, . . . , d|D|}. This
subsection derives a method for calculating these estimates from the training data.

The estimate of θ is written θ̂. Naive Bayes uses the maximum a posteriori
estimate, thus finding arg maxθ P(θ|D). This is the value of θ that is most probable
given the evidence of the training data and a prior.

The parameter estimation formulae that result from this maximization are the
familiar ratios of empirical counts. The estimated probability of a word given a
class, θ̂wt|cj , is simply the number of times word wt occurs in the training data for
class cj , divided by the total number of word occurrences in the training data for
that class—where counts in both the numerator and denominator are augmented
with “pseudo-counts” (one for each word) that come from the prior distribution
over θ. The use of this type of prior is sometimes referred to as Laplace smooth-
ing. Smoothing is necessary to prevent zero probabilities for infrequently occurring
words.

The word probability estimates θ̂wt|cj are:

θ̂wt|cj ≡ P(wt|cj; θ̂) =
1 +

∑|D|
i=1 N(wt, di)P(yi = cj|di)

|V |+
∑|V |
s=1

∑|D|
i=1 N(ws, di)P(yi = cj|di)

, (5)

where N(wt, di) is the count of the number of times word wt occurs in document
di and where P(yi = cj|di) ∈ {0, 1} as given by the class label.

The class prior probabilities, θ̂cj , are estimated in the same manner, and also
involve a ratio of counts with smoothing:

θ̂cj ≡ P(cj |θ̂) =
1 +

∑|D|
i=1 P(yi = cj |di)
|C|+ |D| . (6)

The derivation of these “ratios of counts” formulae comes directly from maxi-
mum a posteriori parameter estimation, and will be appealed to again later when
deriving parameter estimation formulae for EM and augmented EM. Finding the
θ that maximizes P(θ|D) is accomplished by first breaking this expression into
two terms by Bayes’ rule: P(θ|D) ∝ P(D|θ)P(θ). The first term is calculated by
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the product of all the document likelihoods (from Equation 1). The second term,
the prior distribution over parameters, we represent by a Dirichlet distribution:
P(θ) ∝

∏
cj∈C

(
(θcj )α−1

∏
wt∈V (θwt |cj)

α−1
)
, where α is a parameter that effects

the strength of the prior, and is some constant greater than zero.4 In this paper, we
set α = 2, which (with maximum a posteriori estimation) is equivalent to Laplace
smoothing. The whole expression is maximized by solving the system of partial
derivatives of log(P(θ|D)), using Lagrange multipliers to enforce the constraint
that the word probabilities in a class must sum to one. This maximization yields
the ratio of counts seen above.

4.3. Using a Classifier

Given estimates of these parameters calculated from the training documents ac-
cording to Equations 5 and 6, it is possible to turn the generative model backwards
and calculate the probability that a particular mixture component generated a
given document. We derive this by an application of Bayes’ rule, and then by
substitutions using Equations 1 and 4:

P(yi = cj|di; θ̂) =
P(cj |θ̂)P(di|cj; θ̂)

P(di|θ̂)

=
P(cj |θ̂)

∏|di|
k=1 P(wdi,k |cj; θ̂)∑|C|

r=1 P(cr |θ̂)
∏|di|
k=1 P(wdi,k |cr; θ̂)

. (7)

If the task is to classify a test document di into a single class, then the class with
the highest posterior probability, arg maxj P(yi = cj |di; θ̂), is selected.

4.4. Discussion

Note that all four assumptions about the generation of text documents (mixture
model, one-to-one correspondence between mixture components and classes, word
independence, and document length distribution) are violated in real-world text
data. Documents are often mixtures of multiple topics. Words within a document
are not independent of each other—grammar and topicality make this so.

Despite these violations, empirically the Naive Bayes classifier does a good job of
classifying text documents (Lewis & Ringuette, 1994; Craven et al., 1998; Yang &
Pederson, 1997; Joachims, 1997; McCallum, Rosenfeld, Mitchell, & Ng, 1998). This
observation is explained in part by the fact that classification estimation is only a
function of the sign (in binary classification) of the function estimation (Domingos
& Pazzani, 1997; Friedman, 1997). The word independence assumption causes
naive Bayes to give extreme (almost 0 or 1) class probability estimates. However,
these estimates can still be poor while classification accuracy remains high.

The above formulation of naive Bayes uses a generative model that accounts for
the number of times a word appears in a document. It is a multinomial (or in lan-
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guage modeling terms, “unigram”) model, where the classifier is a mixture of multi-
nomials (McCallum & Nigam, 1998). This formulation has been used by numerous
practitioners of naive Bayes text classification (Lewis & Gale, 1994; Joachims, 1997;
Li & Yamanishi, 1997; Mitchell, 1997; McCallum et al., 1998; Lewis, 1998). How-
ever, there is another formulation of naive Bayes text classification that instead uses
a generative model and document representation in which each word in the vocab-
ulary is a binary feature, and is modeled by a mixture of multi-variate Bernoullis
(Robertson & Sparck-Jones, 1976; Lewis, 1992; Larkey & Croft, 1996; Koller & Sa-
hami, 1997). Empirical comparisons show that the multinomial formulation yields
classifiers with consistently higher accuracy (McCallum & Nigam, 1998).

5. Incorporating Unlabeled Data with EM

We now proceed to the main topic of this paper: how unlabeled data can be used
to improve a text classifier. When naive Bayes is given just a small set of labeled
training data, classification accuracy will suffer because variance in the parameter
estimates of the generative model will be high. However, by augmenting this small
set with a large set of unlabeled data, and combining the two sets with EM, we can
improve the parameter estimates.

EM is a class of iterative algorithms for maximum likelihood or maximum a
posteriori estimation in problems with incomplete data (Dempster et al., 1977). In
our case, the unlabeled data are considered incomplete because they come without
class labels.

Applying EM to naive Bayes is quite straightforward. First, the naive Bayes
parameters, θ̂, are estimated from just the labeled documents. Then, the classifier is
used to assign probabilistically-weighted class labels to each unlabeled document by
calculating expectations of the missing class labels, P(cj |di; θ̂). Next, new classifier
parameters, θ̂, are estimated using all the documents—both the originally and newly
labeled. These last two steps are iterated until θ̂ does not change. As shown by
Dempster et al. (1977), at each iteration, this process is guaranteed to find model
parameters that have equal or higher likelihood than at the previous iteration.

This section describes EM and our extensions within the probabilistic framework
of naive Bayes text classification.

5.1. Basic EM

We are given a set of training documents D and the task is to build a classifier in the
form of the previous section. However, unlike previously, in this section we assume
that only some subset of the documents di ∈ Dl come with class labels yi ∈ C, and
for the rest of the documents, in subset Du, the class labels are unknown. Thus we
have a disjoint partitioning of D, such that D = Dl ∪ Du.

As in Section 4.2, learning a classifier is approached as calculating a maximum
a posteriori estimate of θ, i.e. arg maxθ P(θ)P(D|θ). Consider the second term of
the maximization, the probability of all the training data, D. The probability of all
the data is simply the product over all the documents, because each document is
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• Inputs: Collections Dl of labeled documents and Du of unlabeled documents.

• Build an initial naive Bayes classifier, θ̂, from the labeled documents,Dl, only. Use maximum
a posteriori parameter estimation to find θ̂ = arg maxθ P(D|θ)P(θ) (see Equations 5 and 6).

• Loop while classifier parameters improve, as measured by the change in lc(θ|D; z) (the com-
plete log probability of the labeled and unlabeled data, and the prior) (see Equation 10):

• (E-step) Use the current classifier, θ̂, to estimate component membership of each unla-
beled document, i.e., the probability that each mixture component (and class) generated

each document, P(cj |di; θ̂) (see Equation 7).

• (M-step) Re-estimate the classifier, θ̂, given the estimated component membership

of each document. Use maximum a posteriori parameter estimation to find θ̂ =
arg maxθ P(D|θ)P(θ) (see Equations 5 and 6).

• Output: A classifier, θ̂, that takes an unlabeled document and predicts a class label.

Table 1. The basic EM algorithm described in Section 5.1.

independent of the others, given the model. For the unlabeled data, the probability
of an individual document is a sum of total probability over all the classes, as in
Equation 1. For the labeled data, the generating component is already given by
labels yi, and we do not need to refer to all mixture components—just the one
corresponding to the class. Thus, the probability of all the data is:

P(D|θ) =
∏

di∈Du

|C|∑
j=1

P(cj|θ)P(di|cj; θ)

×
∏
di∈Dl

P(yi = cj |θ)P(di|yi = cj; θ). (8)

Instead of trying to maximize P(θ|D) directly we work with log(P(θ|D)) instead,
as a step towards making maximization (by solving the system of partial derivatives)
tractable. Let l(θ|D) ≡ log(P(θ)P(D|θ)). Then, using Equation 8, we write

l(θ|D) = log(P(θ)) +
∑
di∈Du

log
|C|∑
j=1

P(cj |θ)P(di|cj; θ)

+
∑
di∈Dl

log (P(yi = cj |θ)P(di|yi = cj; θ)) . (9)

Notice that this equation contains a log of sums for the unlabeled data, which
makes a maximization by partial derivatives computationally intractable. Consider,
though, that if we had access to the class labels of all the documents—represented
as the matrix of binary indicator variables z, zi = 〈zi1, . . . , zi|C|〉, where zij = 1
iff yi = cj else zij = 0—then we could express the complete log likelihood of the
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parameters, lc(θ|D, z), without a log of sums, because only one term inside the sum
would be non-zero.

lc(θ|D; z) = log(P(θ)) +
∑
di∈D

|C|∑
j=1

zij log (P(cj |θ)P(di|cj; θ)) (10)

If we replace zij by its expected value according to the current model, then
Equation 10 bounds from below the incomplete log likelihood from Equation 9. This
can be shown by an application of Jensen’s inequality (e.g. E[log(X)] ≥ log(E[X])).
As a result one can find a locally maximum θ̂ by a hill climbing procedure. This
was formalized as the Expectation-Maximization (EM) algorithm by Dempster et al.
(1977).

The iterative hill climbing procedure alternately recomputes the expected value
of z and the maximum a posteriori parameters given the expected value of z, E[z].
Note that for the labeled documents zi is already known. It must, however, be
estimated for the unlabeled documents. Let ẑ(k) and θ̂(k) denote the estimates for
z and θ at iteration k. Then, the algorithm finds a local maximum of l(θ|D) by
iterating the following two steps:

• E-step: Set ẑ(k+1) = E[z|D; θ̂(k)].

• M-step: Set θ̂(k+1) = arg maxθ P(θ|D; ẑ(k+1)).

In practice, the E-step corresponds to calculating probabilistic labels P(cj |di; θ̂)
for the unlabeled documents by using the current estimate of the parameters, θ̂, and
Equation 7. The M-step, maximizing the complete likelihood equation, corresponds
to calculating a new maximum a posteriori estimate for the parameters, θ̂, using
the current estimates for P(cj |di; θ̂), and Equations 5 and 6.

Our iteration process is initialized with a “priming” M-step, in which only the
labeled documents are used to estimate the classifier parameters, θ̂, as in Equa-
tions 5 and 6. Then the cycle begins with an E-step that uses this classifier to
probabilistically label the unlabeled documents for the first time.

The algorithm iterates over the E- and M-steps until it converges to a point where
θ̂ does not change from one iteration to the next. Algorithmically, we determine
that convergence has occurred by observing a below-threshold change in the log-
probability of the parameters (Equation 10), which is the height of the surface on
which EM is hill-climbing.

Table 1 gives an outline of the basic EM algorithm from this section.

5.2. Discussion

In summary, EM finds a θ̂ that locally maximizes the likelihood of its parame-
ters given all the data—both the labeled and the unlabeled. It provides a method
whereby unlabeled data can augment limited labeled data and contribute to param-
eter estimation. An interesting empirical question is whether these higher likelihood
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parameter estimates will improve classification accuracy. Section 4.4 discusses the
fact that naive Bayes usually performs classification well despite violations of its
assumptions. Will EM also have this property?

Note that the justifications for this approach depend on the assumptions stated in
Section 3, namely, that the data is produced by a mixture model, and that there is
a one-to-one correspondence between mixture components and classes. When these
assumptions do not hold—as certainly is the case in real-world textual data—the
benefits of unlabeled data are less clear.

Our experimental results in Section 6 show that this method can indeed dramat-
ically improve the accuracy of a document classifier, especially when there are only
a few labeled documents. But on some data sets, when there are a lot of labeled
and a lot of unlabeled documents, this is not the case. In several experiments,
the incorporation of unlabeled data decreases, rather than increases, classification
accuracy.

Next we describe changes to the basic EM algorithm described above that aim to
address performance degradation due to violated assumptions.

5.3. Augmented EM

This section describes two extensions to the basic EM algorithm described above.
The extensions help improve classification accuracy even in the face of somewhat
violated assumptions of the generative model. In the first we add a new parameter
to modulate the degree to which EM weights the unlabeled data; in the second we
augment the model to relax one of the assumptions about the generative model.

5.3.1. Weighting the unlabeled data. As described in the introduction, a common
scenario is that few labeled documents are on hand, but many orders of magnitude
more unlabeled documents are readily available. In this case, the great majority of
the data determining EM’s parameter estimates comes from the unlabeled set. In
these circumstances, we can think of EM as almost entirely performing unsuper-
vised clustering, since the model is mostly positioning the mixture components to
maximize the likelihood of the unlabeled documents. The number of labeled data
is so small in comparison to the unlabeled, that the only significant effect of the
labeled data is to initialize the classifier parameters (i.e. determining EM’s starting
point for hill climbing), and to identify each component with a class label.

When the two mixture model assumptions are true, and the natural clusters of the
data are in correspondence with the class labels, then unsupervised clustering with
many unlabeled documents will result in mixture components that are useful for
classification (c.f. Section 2, where infinite amounts of unlabeled data are sufficient
to learn the parameters of the mixture components). However, when the mixture
model assumptions are not true, the natural clustering of the unlabeled data may
produce mixture components that are not in correspondence with the class labels,
and are therefore detrimental to classification accuracy. This effect is particularly
apparent when the number of labeled documents is already large enough to obtain
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reasonably good parameter estimates for the classifier, yet the orders of magnitude
more unlabeled documents still overwhelm parameter estimation and thus badly
skew the estimates.

This subsection describes a method whereby the influence of the unlabeled data
is modulated in order to control the extent to which EM performs unsupervised
clustering. We introduce a new parameter λ, 0 ≤ λ ≤ 1, into the likelihood
equation which decreases the contribution of the unlabeled documents to parameter
estimation. We term the resulting method EM-λ. Instead of using EM to maximize
Equation 10, we instead maximize:

lc(θ|D; z) = log(P(θ)) +
∑
di∈Dl

|C|∑
j=1

zij log (P(cj |θ)P(di|cj; θ))

+ λ

 ∑
di∈Du

|C|∑
j=1

zij log (P(cj|θ)P(di|cj; θ))

 . (11)

Notice that when λ is close to zero, the unlabeled documents will have little
influence on the shape of EM’s hill-climbing surface. When λ = 1, each unlabeled
document will be weighted the same as a labeled document, and the algorithm is
the same as the original EM previously described.

When iterating to maximize Equation 11, the E-step is performed exactly as
before. The M-step is different, however, and entails the following substitutes for
Equations 5 and 6. First define Λ(i) to be the weighting factor λ whenever di in
the unlabeled set, and to be 1 whenever di is in the labeled set:

Λ(i) =
{
λ if di ∈ Du
1 if di ∈ Dl.

(12)

Then the new estimate θ̂wt|cj is again a ratio of word counts, but where the counts
of the unlabeled documents are decreased by a factor of λ:

θ̂wt|cj ≡ P(wt|cj; θ̂) =
1 +

∑|D|
i=1 Λ(i)N(wt, di)P(yi = cj |di)

|V |+
∑|V |
s=1

∑|D|
i=1 Λ(i)N(ws, di)P(yi = cj|di)

. (13)

Class prior probabilities, θ̂cj , are modified similarly:

θ̂cj ≡ P(cj |θ̂) =
1 +

∑|D|
i=1 Λ(i)P(yi = cj|di)
|C|+ |Dl|+ λ|Du| . (14)

These equations can be derived by again solving the system of partial derivatives
using Lagrange multipliers to enforce the constraint that probabilities sum to one.

In this paper we select the value of λ that maximizes the leave-one-out cross-
validation classification accuracy of the labeled training data. Experimental results
with this technique are described in Section 6.3. As shown there, setting λ to some
value between 0 and 1 can result in classification accuracy higher than either λ = 0
or λ = 1, indicating that there can be value in the unlabeled data even when its
natural clustering would result in poor classification.
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5.3.2. Multiple mixture components per class. The EM-λ technique described
above addresses violated mixture model assumptions by reducing the effect of those
violated assumptions on parameter estimation. An alternative approach is to at-
tack the problem head-on by removing or weakening a restrictive assumption. This
subsection takes exactly this approach by relaxing the assumption of a one-to-one
correspondence between mixture components and classes. We replace it with a
less restrictive assumption: a many-to-one correspondence between mixture com-
ponents and classes.

For textual data, this corresponds to saying that a class may be comprised of
several different sub-topics, each best captured with a different word distribution.
Furthermore, using multiple mixture components per class can capture some depen-
dencies between words. For example, consider a sports class consisting of documents
about both hockey and baseball. In these documents, the words “ice” and “puck”
are likely to co-occur, and the words “bat” and “base” are likely to co-occur. How-
ever, these dependencies cannot be captured by a single multinomial distribution
over words in the sports class. On the other hand, with multiple mixture compo-
nents per class, one multinomial can cover the hockey sub-topic, and another the
baseball sub-topic—thus more accurately capturing the co-occurrence patterns of
the above four words.

For some or all of the classes we now allow multiple multinomial mixture com-
ponents. Note that as a result, there are now “missing values” for the labeled as
well as the unlabeled documents—it is unknown which mixture component, among
those covering the given label, is responsible for generating a particular labeled doc-
ument. Parameter estimation will still be performed with EM except that, for each
labeled document, we must now estimate which mixture component the document
came from.

Let us introduce the following notation for separating mixture components from
classes. Instead of using cj to denote both a class and its corresponding mixture
component, we will now write ta for the ath class (“topic”), and cj will continue
to denote the jth mixture component. We write P(ta|cj; θ̂) ∈ {0, 1} for the pre-
determined, deterministic, many-to-one mapping between mixture components and
classes.

Parameter estimation is again done with EM. The M-step is the same as ba-
sic EM, building maximum a posteriori parameter estimates for the multinomial
of each component. In the E-step, unlabeled documents are treated as before,
calculating probabilistically-weighted mixture component membership, P(cj |di; θ̂).
For labeled documents, the previous P(cj |di; θ̂) ∈ {0, 1} that was considered to
be fixed by the class label is now allowed to vary between 0 and 1 for mixture
components assigned to that document’s class. Thus, the algorithm also calculates
probabilistically-weighted mixture component membership for the labeled docu-
ments. Note, however, that all P(cj |di; θ̂), for which P(yi = ta|cj; θ̂) is zero, are
clamped at zero, and the rest are normalized to sum to one.

Multiple mixture components for the same class are initialized by randomly
spreading the labeled training data across the mixture components matching the
appropriate class label. That is, components are initialized by performing a ran-
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• Inputs: Collections Dl of labeled documents and Du of unlabeled documents.

• [Weighted only]: Set the discount factor of the unlabeled data, λ, by cross-validation (see
Sections 6.1 and 6.3).

• [Multiple only]: Set the number of mixture components per class by cross-validation (see
Sections 6.1 and 6.4).

• [Multiple only]: For each labeled document, randomly assign P(cj |di; θ̂) for mixture com-
ponents that correspond to the document’s class label, to initialize each mixture component.

• Build an initial naive Bayes classifier, θ̂, from the labeled documents only. Use maximum a
posteriori parameter estimation to find θ̂ = arg maxθ P(D|θ)P(θ) (see Equations 5 and 6).

• Loop while classifier parameters improve (0.05 < ∆lc(θ|D; z), the change in complete log
probability of the labeled and unlabeled data, and the prior) (see Equation 10):

• (E-step) Use the current classifier, θ̂, to estimate the component membership of each
document, i.e. the probability that each mixture component generated each document,
P(cj |di; θ̂) (see Equation 7).

[Multiple only]: Restrict the membership probability estimates of labeled documents
to be zero for components associated with other classes, and renormalize.

• (M-step) Re-estimate the classifier, θ̂, given the estimated component membership

of each document. Use maximum a posteriori parameter estimation to find θ̂ =
arg maxθ P(D|θ)P(θ) (see Equations 5 and 6).

[Weighted only]: When counting events for parameter estimation, word and document
counts from unlabeled documents are reduced by a factor λ (see Equations 13 and 14).

• Output: A classifier, θ̂, that takes an unlabeled document and predicts a class label.

Table 2. The Algorithm described in this paper, and used to generate the experimental results
in Section 6. The algorithm enhancements for EM-λ that vary the contribution of the unlabeled
data (Section 5.3.1) are indicated by [Weighted only]. The optional use of multiple mixture
components per class (Section 5.3.2) is indicated by [Multiple only]. Unmarked paragraphs are
common to all variations of the algorithm.

domized E-step in which P(cj |di; θ̂) is sampled from a uniform distribution over
mixture components for which P(ta = yi|cj; θ̂) is one.

When there are multiple mixture components per class, classification becomes a
matter of probabilistically “classifying” documents into the mixture components,
and then summing the mixture component probabilities into class probabilities:

P(ta|di; θ̂) =
∑
cj

P(ta|cj; θ̂)
P(cj|θ̂)

∏|di|
k=1 P(wdi,k |cj; θ̂)∑|C|

r=1 P(cr |θ̂)
∏|di|
k=1 P(wdi,k |cr; θ̂)

. (15)

In this paper, we select the number of mixture components per class by cross-
validation. Table 2 gives an outline of the EM algorithm with the extensions of this
and the previous section.

Experimental results from this technique are described in Section 6.4. As shown
there, when the data are not naturally modeled by a single component per class,
the use of unlabeled data with EM degrades performance. However, when multiple
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mixture components per class are used, performance with unlabeled data and EM
is superior to naive Bayes.

6. Experimental Results

In this section, we provide empirical evidence that combining labeled and unlabeled
training documents using EM outperforms traditional naive Bayes, which trains on
labeled documents alone. We present experimental results with three different text
corpora: UseNet news articles (20 Newsgroups), web pages (WebKB), and newswire
articles (Reuters).5

Results show that improvements in accuracy due to unlabeled data are often
dramatic, especially when the number of labeled training documents is low. For
example, on the 20 Newsgroups data set, classification error is reduced by 30% when
trained with 300 labeled and 10000 unlabeled documents.

On certain data sets, however, (and especially when the number of labeled doc-
uments is high), the incorporation of unlabeled data with the basic EM scheme
may reduce rather than increase accuracy. We show that the application of the EM
extensions described in the previous section increases performance beyond that of
naive Bayes.

6.1. Datasets and Protocol

The 20 Newsgroups data set (Joachims, 1997; McCallum et al., 1998; Mitchell,
1997), collected by Ken Lang, consists of 20017 articles divided almost evenly among
20 different UseNet discussion groups. The task is to classify an article into the
one newsgroup (of twenty) to which it was posted. Many of the categories fall
into confusable clusters; for example, five of them are comp.* discussion groups,
and three of them discuss religion. When words from a stoplist of common short
words are removed, there are 62258 unique words that occur more than once; other
feature selection is not used. When tokenizing this data, we skip the UseNet headers
(thereby discarding the subject line); tokens are formed from contiguous alphabetic
characters, which are left unstemmed. The word counts of each document are
scaled such that each document has constant length, with potentially fractional
word counts. Our preliminary experiments with 20 Newsgroups indicated that naive
Bayes classification was better with this word count normalization.

The 20 Newsgroups data set was collected from UseNet postings over a period
of several months in 1993. Naturally, the data have time dependencies—articles
nearby in time are more likely to be from the same thread, and because of occasional
quotations, may contain many of the same words. In practical use, a classifier for
this data set would be asked to classify future articles after being trained on articles
from the past. To preserve this scenario, we create a test set of 4000 documents
by selecting by posting date the last 20% of the articles from each newsgroup.
An unlabeled set is formed by randomly selecting 10000 documents from those
remaining. Labeled training sets are formed by partitioning the remaining 6000
documents into non-overlapping sets. The sets are created with equal numbers of
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documents per class. For experiments with different labeled set sizes, we create up
to ten sets per size; obviously, fewer sets are possible for experiments with labeled
sets containing more than 600 documents. The use of each non-overlapping training
set comprises a new trial of the given experiment. Results are reported as averages
over all trials of the experiment.

The WebKB data set (Craven et al., 1998) contains 8145 web pages gathered from
university computer science departments. The collection includes the entirety of
four departments, and additionally, an assortment of pages from other universities.
The pages are divided into seven categories: student, faculty, staff, course, project,
department and other. In this paper, we use the four most populous non-other
categories: student, faculty, course and project—all together containing 4199 pages.
The task is to classify a web page into the appropriate one of the four categories.
For consistency with previous studies with this data set (Craven et al., 1998), when
tokenizing the WebKB data, numbers were converted into a time or a phone number
token, if appropriate, or otherwise a sequence-of-length-n token.

We did not use stemming or a stoplist; we found that using a stoplist actually hurt
performance. For example, “my” is an excellent indicator of a student homepage
and is the fourth-ranked word by information gain. We limit the vocabulary to
the 300 most informative words, as measured by average mutual information with
the class variable. This feature selection method is commonly used for text (Yang
& Pederson, 1997; Koller & Sahami, 1997; Joachims, 1997). We selected this
vocabulary size by running leave-one-out cross-validation on the training data to
optimize classification accuracy.

The WebKB data set was collected as part of an effort to create a crawler that
explores previously unseen computer science departments and classifies web pages
into a knowledge-base ontology. To mimic the crawler’s intended use, and to avoid
reporting performance based on idiosyncrasies particular to a single department,
we test using a leave-one-university-out approach. That is, we create four test sets,
each containing all the pages from one of the four complete computer science de-
partments. For each test set, an unlabeled set of 2500 pages is formed by randomly
selecting from the remaining web pages. Non-overlapping training sets are formed
by the same method as in 20 Newsgroups. Also as before, results are reported as
averages over all trials that share the same number of labeled training documents.

The Reuters 21578 Distribution 1.0 data set consists of 12902 articles and 90 topic
categories from the Reuters newswire. Following several other studies (Joachims,
1998; Liere & Tadepalli, 1997) we build binary classifiers for each of the ten most
populous classes to identify the news topic. We use all the words inside the <TEXT>
tags, including the title and the dateline, except that we remove the REUTER and
&# tags that occur at the top and bottom of every document. We use a stoplist,
but do not stem.

In Reuters, classifiers for different categories perform best with widely varying
vocabulary sizes (which are chosen by average mutual information with the class
variable). This variance in optimal vocabulary size is unsurprising. As previously
noted (Joachims, 1997), categories like “wheat” and “corn” are known for a strong
correspondence between a small set of words (like their title words) and the cate-
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gories, while categories like “acq” are known for more complex characteristics. The
categories with narrow definitions attain best classification with small vocabularies,
while those with a broader definition require a large vocabulary. The vocabulary
size for each Reuters trial is selected by optimizing accuracy as measured by leave-
one-out cross-validation on the labeled training set.

As with the 20 Newsgroups data set, there are time dependencies in Reuters. The
standard ‘ModApte’ train/test split divides the articles by time, such that the later
3299 documents form the test set, and the earlier 9603 are available for training.
In our experiments, 7000 documents from this training set are randomly selected
to form the unlabeled set. From the remaining training documents, we randomly
select up to ten non-overlapping training sets of ten positively labeled documents
and 40 negatively labeled documents, as previously described for the other two
data sets. We use non-uniform number of labelings across the classes because the
negative class is much more frequent than the positive class in all of the binary
Reuters classification tasks.

Results on Reuters are reported as precision-recall breakeven points, a standard
information retrieval measure for binary classification. Accuracy is not a good
performance metric here because very high accuracy can be achieved by always
predicting the negative class. The task on this data set is less like classification
than it is like filtering—find the few positive examples from a large sea of negative
examples. Recall and precision capture the inherent duality of this task, and are
defined as:

Recall =
# of correct positive predictions

# of positive examples
(16)

Precision =
# of correct positive predictions

# of positive predictions
. (17)

The classifier can achieve a trade-off between precision and recall by adjusting the
decision boundary between the positive and negative class away from its previous
default of P(cj |di; θ̂) = 0.5. The precision-recall breakeven point is defined as the
precision and recall value at which the two are equal (e.g. Joachims, 1998).

The algorithm used for experiments with EM is described in Table 2.
In this section, when leave-one-out cross-validation is performed in conjunction

with EM, we make one simplification for computational efficiency. We first run EM
to convergence with all the training data, and then subtract the word counts of each
labeled document in turn before testing that document. Thus, when performing
cross-validation for a specific combination of parameter settings, only one run of
EM is required instead of one run of EM per labeled example. Note, however, that
there are still some residual effects of the held-out document.

The computational complexity of EM, however, is not prohibitive. Each iteration
requires classifying the training documents (E-step), and building a new classifier
(M-step). In our experiments, EM usually converges after about 10 iterations. The
wall-clock time to read the document-word matrix from disk, build an EM model
by iterating to convergence, and classify the test documents is less than one minute
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Figure 2. Classification accuracy on the 20 Newsgroups data set, both with and without 10,000
unlabeled documents. With small amounts of training data, using EM yields more accurate
classifiers. With large amounts of labeled training data, accurate parameter estimates can be
obtained without the use of unlabeled data, and the two methods begin to converge.

for the WebKB data set, and less than 15 minutes for 20 Newsgroups. The 20
Newsgroups data set takes longer because it has more documents and more words
in the vocabulary.

6.2. EM with Unlabeled Data Increases Accuracy

We first consider the use of basic EM to incorporate information from unlabeled
documents. Figure 2 shows the effect of using basic EM with unlabeled data on
the 20 Newsgroups data set. The vertical axis indicates average classifier accuracy
on test sets, and the horizontal axis indicates the amount of labeled training data
on a log scale. We vary the amount of labeled training data, and compare the
classification accuracy of traditional naive Bayes (no unlabeled data) with an EM
learner that has access to 10000 unlabeled documents.

EM performs significantly better. For example, with 300 labeled documents (15
documents per class), naive Bayes reaches 52% accuracy while EM achieves 66%.
This represents a 30% reduction in classification error. Note that EM also performs
well even with a very small number of labeled documents; with only 20 documents (a
single labeled document per class), naive Bayes obtains 20%, EM 35%. As expected,
when there is a lot of labeled data, and the naive Bayes learning curve is close to
a plateau, having unlabeled data does not help nearly as much, because there is
already enough labeled data to accurately estimate the classifier parameters. With
5500 labeled documents (275 per class), classification accuracy increases from 76%
to 78%. Each of these results is statistically significant (p < 0.05).6

These results demonstrate that EM finds parameter estimates that improve clas-
sification accuracy and reduce the need for labeled training examples. For example,
to reach 70% classification accuracy, naive Bayes requires 2000 labeled examples,
while EM requires only 600 labeled examples to achieve the same accuracy.
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Figure 3. Classification accuracy while varying the number of unlabeled documents. The effect
is shown on the 20 Newsgroups data set, with 5 different amounts of labeled documents, by
varying the amount of unlabeled data on the horizontal axis. Having more unlabeled data helps.
Note the dip in accuracy when a small amount of unlabeled data is added to a small amount
of labeled data. We hypothesize that this is caused by extreme, almost 0 or 1, estimates of
component membership, P(cj |di, θ̂), for the unlabeled documents (as caused by naive Bayes’ word
independence assumption).

In Figure 3 we consider the effect of varying the amount of unlabeled data. For
five different quantities of labeled documents, we hold the number of labeled doc-
uments constant, and vary the number of unlabeled documents in the horizontal
axis. Naturally, having more unlabeled data helps, and it helps more when there is
less labeled data.

Notice that adding a small amount of unlabeled data to a small amount of labeled
data actually hurts performance. We hypothesize that this occurs because the
word independence assumption of naive Bayes leads to overly-confident P(cj |di, θ̂)
estimates in the E-step, and the small amount of unlabeled data is distributed too
sharply. (Without this bias in naive Bayes, the E-step would spread the unlabeled
data more evenly across the classes.) When the number of unlabeled documents is
large, however, this problem disappears because the unlabeled set provides a large
enough sample to smooth out the sharp discreteness of naive Bayes’ overly-confident
classification.

We now move on to a different data set. To provide some intuition about why EM
works, we present a detailed trace of one example from the WebKB data set. Ta-
ble 3 shows the evolution of the classifier over the course of two EM iterations. Each
column shows the ordered list of words that the model indicates are most “predic-
tive” of the course class. Words are judged to be “predictive” using a weighted log
likelihood ratio.7 The symbol D indicates an arbitrary digit. At Iteration 0, the pa-
rameters are estimated from a randomly-chosen single labeled document per class.
Notice that the course document seems to be about a specific Artificial Intelligence
course at Dartmouth. After two EM iterations with 2500 unlabeled documents,
we see that EM has used the unlabeled data to find words that are more generally
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Table 3. Lists of the words most predictive of the course class in the WebKB data set, as they
change over iterations of EM for a specific trial. By the second iteration of EM, many common
course-related words appear. The symbol D indicates an arbitrary digit.

Iteration 0 Iteration 1 Iteration 2

intelligence DD D
DD D DD

artificial lecture lecture
understanding cc cc

DDw D? DD:DD
dist DD:DD due

identical handout D?

rus due homework
arrange problem assignment
games set handout

dartmouth tay set
natural DDam hw

cognitive yurttas exam
logic homework problem

proving kfoury DDam
prolog sec postscript

knowledge postscript solution
human exam quiz

representation solution chapter
field assaf ascii

indicative of courses. The classifier corresponding to the first column achieves 50%
accuracy; when EM converges, the classifier achieves 71% accuracy.

6.3. Varying the Weight of the Unlabeled Data

When graphing performance on this data set, we see that the incorporation of un-
labeled data can also decrease, rather than increase, classification accuracy. The
graph in Figure 4 shows the performance of basic EM (with 2500 unlabeled doc-
uments) on WebKB. Again, EM improves accuracy significantly when the amount
of labeled data is small. When there are four labeled documents (one per class),
traditional naive Bayes attains 40% accuracy, while EM reaches 55%. When there
is a lot of labeled data, however, EM hurts performance slightly. With 240 labeled
documents, naive Bayes obtains 81% accuracy, while EM does worse at 79%. Both
of these differences in performance are statistically significant (p < 0.05), for three
and two of the university test sets, respectively.

As discussed in Section 5.3.1, we hypothesize that EM hurts performance here
because the data do not fit the assumptions of the generative model—that is, the
mixture components that best explain the unlabeled data are not in precise corre-
spondence with the class labels. It is not surprising that the unlabeled data can
throw off parameter estimation when one considers that the number of unlabeled
documents is much greater than the number of labeled documents (e.g. 2500 versus
240), and thus, even at the points in Figure 4 with the largest amounts of labeled
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Figure 4. Classification accuracy on the WebKB data set, both with and without 2500 unlabeled
documents. When there are small numbers of labeled documents, EM improves accuracy. When
there are many labeled documents, however, EM degrades performance slightly—indicating a
misfit between the data and the assumed generative model.

data, the great majority of the probability mass used in the M-step to estimate the
classifier parameters actually comes from the unlabeled data.

To remedy this dip in performance, we use EM-λ to reduce the weight of the
unlabeled data by varying λ in Equations 13 and 14. Figure 5 plots classification
accuracy while varying λ to achieve the relative weighting indicated in the hori-
zontal axis, and does so for three different amounts of labeled training data. The
bottom curve is obtained using 40 labeled documents—a vertical slice in Figure 4
at a point where EM with unlabeled data gives higher accuracy than naive Bayes.
Here, the best weighting of the unlabeled data is high, indicating that classification
can be improved by augmenting the sparse labeled data with heavy reliance on
the unlabeled data. The middle curve is obtained using 80 labeled documents—a
slice near the point where EM and naive Bayes performance cross. Here, the best
weighting is in the middle, indicating that EM-λ performs better than either naive
Bayes or basic EM. The top curve is obtained using 200 labeled documents—a slice
where unweighted EM performance is lower than traditional naive Bayes. Less
weight should be given to the unlabeled data at this point.

Note the inverse relationship between the labeled data set size and the best
weighting factor—the smaller labeled data set, the larger the best weighting of
the unlabeled data. This trend holds across all amounts of labeled data. Intu-
itively, when EM has very little labeled training data, parameter estimation is so
desperate for guidance that EM with all the unlabeled data helps in spite of the
somewhat violated assumptions. However, when there is enough labeled training
data to sufficiently estimate the parameters, less weight should be given to the
unlabeled data. Finally, note that the best-performing values of λ are somewhere
between the extremes, remembering that the right-most point corresponds to EM
with the weighting used to generate Figure 4, and the left-most to regular naive
Bayes. Paired t-tests across the trials of all the test universities show that the best-
performing points on these curves are statistically significantly higher than either
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Figure 5. The effects of varying λ, the weighting factor on the unlabeled data in EM-λ. These
three curves from the WebKB data set correspond to three different amounts of labeled data. When
there is less labeled data, accuracy is highest when more weight is given to the unlabeled data.
When the amount of labeled data is large, accurate parameter estimates are attainable from the
labeled data alone, and the unlabeled data should receive less weight. With moderate amounts of
labeled data, accuracy is better in the middle than at either extreme. Note the magnified vertical
scale.

end point, except for the difference between the maxima and basic EM with 40
labeled documents (p < 0.05).

In practice the value of the tuning parameter λ can be selected by cross-validation.
In our experiments we select λ by leave-one-out cross-validation on the labeled
training set for each trial, as discussed in Section 6.1. Figure 6 shows the accuracy
for the best possible λ, and the accuracy when selecting λ via cross-validation. Basic
EM and naive Bayes accuracies are also shown for comparison. When λ is perfectly
selected, its accuracy dominates the basic EM and naive Bayes curves. Cross-
validation selects λ’s that, for small amounts of labeled documents, perform about
as well as EM. For large amounts of labeled documents, cross-validation selects
λ’s that do not suffer from the degraded performance seen in basic EM, and also
performs at least as well as naive Bayes. For example, at the 240 document level seen
before, the λ picked by cross-validation gives only 5% of the weight to the unlabeled
data, instead of the 91% given by basic EM. Doing so provides an accuracy of 82%,
compared to 81% for naive Bayes and 79% for basic EM. This is not statistically
significantly different from naive Bayes, and is statistically significantly higher than
basic EM for two of the four test sets (both p < 0.05). These results indicate that
we can automatically avoid EM’s degradation in accuracy at large training set sizes
and still preserve the benefits of EM seen with small labeled training sets.

These results also indicate that when the training set size is very small improved
methods of selecting λ could significantly increase the practical performance of EM-
λ even further. Note that in these cases, cross-validation has only a few documents
with which to choose λ. The end of Section 6.4 suggests some methods that may
perform better than cross-validation.
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Figure 6. Classification accuracy on the WebKB data set, with modulation of the unlabeled data
by the weighting factor λ. The top curve shows accuracy when using the best value of λ. In the
second curve, λ is chosen by cross-validation. With small amounts of labeled data, the results
are similar to basic EM; with large amounts of labeled data, the results are more accurate than
basic EM. Thanks to the weighting factor, large amounts of unlabeled data no longer degrades
accuracy, as it did in Figure 4, and yet the algorithm retains the large improvements with small
amounts of labeled data. Note the magnified vertical axis to facilitate the comparisons.

6.4. Multiple Mixture Components per Class

Faced with data that do not fit the assumptions of our model, the λ-tuning approach
described above addresses this problem by allowing the model to incrementally ig-
nore the unlabeled data. Another, more direct approach, described in Section 5.3.2,
is to change the model so that it more naturally fits the data. Flexibility can be
added to the mapping between mixture components and class labels by allowing
multiple mixture components per class. We expect this to improve performance
when data for each class is, in fact, multi-modal.

With an eye towards testing this hypothesis, we apply EM to the Reuters corpus.
Since the documents in this data set can have multiple class labels, each category
is traditionally evaluated with a binary classifier. Thus, the negative class covers 89
distinct categories, and we expect this task to strongly violate the assumption that
all the data for the negative class are generated by a single mixture component.
For this reason, we model the positive class with a single mixture component and
the negative class with between one and forty mixture components, both with and
without unlabeled data.

Table 4 contains a summary of results on the test set for modeling the negative
class with multiple mixture components. The NB1 column shows precision-recall
breakeven points from standard naive Bayes (with just the labeled data), that
models the negative class with a single mixture component. The NB* column shows
the results of modeling the negative class with multiple mixture components (again
using just the labeled data). In the NB* column, the number of components has
been selected to optimize the best precision-recall breakeven point. The median
number of components selected across trials is indicated in parenthesis beside the
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Table 4. Precision-recall breakeven points showing performance of binary classifiers on Reuters
with traditional naive Bayes (NB1), multiple mixture components using just labeled data (NB*),
basic EM (EM1) with labeled and unlabeled data, and multiple mixture components EM with
labeled and unlabeled data (EM*). For NB* and EM*, the number of components is selected
optimally for each trial, and the median number of components across the trials used for the
negative class is shown in parentheses. Note that the multi-component model is more natural for
Reuters, where the negative class consists of many topics. Using both unlabeled data and multiple
mixture components per class increases performance over either alone, and over naive Bayes.

Category NB1 NB* EM1 EM* EM* vs NB1 EM* vs NB*

acq 69.4 74.3 (4) 70.7 83.9 (10) +14.5 +9.6
corn 44.3 47.8 (3) 44.6 52.8 (5) +8.5 +5.0
crude 65.2 68.3 (2) 68.2 75.4 (8) +10.2 +7.1
earn 91.1 91.6 (1) 89.2 89.2 (1) -1.9 -2.4
grain 65.7 66.6 (2) 67.0 72.3 (8) +6.3 +5.7
interest 44.4 54.9 (5) 36.8 52.3 (5) +7.9 -2.6
money-fx 49.4 55.3 (15) 40.3 56.9 (10) +7.5 +1.6
ship 44.3 51.2 (4) 34.1 52.5 (7) +8.2 +1.3
trade 57.7 61.3 (3) 56.1 61.8 (3) +4.1 +0.5
wheat 56.0 67.4 (10) 52.9 67.8 (10) +11.8 +0.4

breakeven point. Note that even before we consider the effect of unlabeled data,
using this more complex representation on this data improves performance over
traditional naive Bayes.

The column labeled EM1 shows results with basic EM (i.e. with a single negative
component). Notice that here performance is often worse than naive Bayes (NB1).
We hypothesize that, because the negative class is truly multi-modal, fitting a single
naive Bayes class with EM to the data does not accurately capture the negative class
word distribution.

The column labeled EM* shows results of EM with multiple mixture components,
again selecting the best number of components. Here performance is better than
both NB1 (traditional naive Bayes) and NB* (naive Bayes with multiple mixture
components per class). This increase, measured over all trials of Reuters, is statis-
tically significant (p < 0.05). This indicates that while the use of multiple mixture
components increases performance over traditional naive Bayes, the combination of
unlabeled data and multiple mixture components increases performance even more.

Furthermore, it is interesting to note that, on average, EM* uses more mixture
components than NB*—suggesting that the addition of unlabeled data reduces
variance and supports the use of a more expressive model.

Tables 5 and 6 show the complete results for experiments using multiple mixture
components with and without unlabeled data, respectively. Note that in general,
using too many or too few mixture components hurts performance. With too few
components, our assumptions are overly restrictive. With too many components,
there are more parameters to estimate from the same amount of data. Table 7
shows the same results as Table 4, but for classification accuracy, and not precision-
recall breakeven. The general trends for accuracy are the same as for precision-
recall. However, for accuracy, the optimal number of mixture components for the
negative class is greater than for precision-recall, because by its nature precision-
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Table 5. Performance of EM using different numbers of mixture components for the negative
class and 7000 unlabeled documents. Precision-recall breakeven points are shown for experiments
using between one and forty mixture components. Note that using too few or too many mixture
components results in poor performance.

Category EM1 EM3 EM5 EM10 EM20 EM40

acq 70.7 75.0 72.5 77.1 68.7 57.5
corn 44.6 45.3 45.3 46.7 41.8 19.1
crude 68.2 72.1 70.9 71.6 64.2 44.0
earn 89.2 88.3 88.5 86.5 87.4 87.2
grain 67.0 68.8 70.3 68.0 58.5 41.3
interest 36.8 43.5 47.1 49.9 34.8 25.8
money-fx 40.3 48.4 53.4 54.3 51.4 40.1
ship 34.1 41.5 42.3 36.1 21.0 5.4
trade 56.1 54.4 55.8 53.4 35.8 27.5
wheat 52.9 56.0 55.5 60.8 60.8 43.4

Table 6. Performance of EM using different numbers of mixture components for the negative class,
but with no unlabeled data. Precision-recall breakeven points are shown for experiments using
between one and forty mixture components.

Category NB1 NB3 NB5 NB10 NB20 NB40

acq 69.4 69.4 65.8 68.0 64.6 68.8
corn 44.3 44.3 46.0 41.8 41.1 38.9
crude 65.2 60.2 63.1 64.4 65.8 61.8
earn 91.1 90.9 90.5 90.5 90.5 90.4
grain 65.7 63.9 56.7 60.3 56.2 57.5
interest 44.4 48.8 52.6 48.9 47.2 47.6
money-fx 49.4 48.1 47.5 47.1 48.8 50.4
ship 44.3 42.7 47.1 46.0 43.6 45.6
trade 57.7 57.5 51.9 53.2 52.3 58.1
wheat 56.0 59.7 55.7 65.0 63.2 56.0

Table 7. Classification accuracy on Reuters with traditional naive Bayes (NB1), multiple mixture
components using just labeled data (NB*), basic EM (EM1) with labeled and unlabeled data, and
multiple mixture components EM with labeled and unlabeled data (EM*), as in Table 4.

Category NB1 NB* EM1 EM* EM* vs NB1 EM* vs NB*

acq 86.9 88.0 (4) 81.3 93.1 (10) +6.2 +5.1
corn 94.6 96.0 (10) 93.2 97.2 (40) +2.6 +1.2
crude 94.3 95.7 (13) 94.9 96.3 (10) +2.0 +0.6
earn 94.9 95.9 (5) 95.2 95.7 (10) +0.8 -0.2
grain 94.1 96.2 (3) 93.6 96.9 (20) +2.8 +0.7
interest 91.8 95.3 (5) 87.6 95.8 (10) +4.0 +0.5
money-fx 93.0 94.1 (5) 90.4 95.0 (15) +2.0 +0.9
ship 94.9 96.3 (3) 94.1 95.9 (3) +1.0 -0.4
trade 91.8 94.3 (5) 90.2 95.0 (20) +3.2 +0.7
wheat 94.0 96.2 (4) 94.5 97.8 (40) +3.8 +1.6
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Table 8. Performance of using multiple mixture components when the number of components is
selected via cross-validation (EM*CV) compared to optimal selection (EM*) and straight naive
Bayes (NB1). Note that cross-validation usually selects too few components.

Category NB1 EM* EM*CV EM*CV vs NB1

acq 69.4 83.9 (10) 75.6 (1) +6.2
corn 44.3 52.8 (5) 47.1 (3) +2.8
crude 65.2 75.4 (8) 68.3 (1) +3.1
earn 91.1 89.2 (1) 87.1 (1) -4.0
grain 65.7 72.3 (8) 67.2 (1) +1.5
interest 44.4 52.3 (5) 42.6 (3) -1.8
money-fx 49.4 56.9 (10) 47.4 (2) -2.0
ship 44.3 52.5 (7) 41.3 (2) -3.0
trade 57.7 61.8 (3) 57.3 (1) -0.4
wheat 56.0 67.8 (10) 56.9 (1) +0.9

recall focuses more on modeling the positive class, where accuracy focuses more on
modeling the negative class, because it is much more frequent. By allowing more
mixture components for the negative class, a more accurate model is achieved.

One obvious question is how to select the best number of mixture components
without having access to the test set labels. As with selection of the weighting
factor, λ, we use leave-one-out cross-validation, with the computational short-cut
that entails running EM only once (as described at the end of Section 6.1).

Results from this technique (EM*CV), compared to naive Bayes (NB1) and the
best EM (EM*), are shown in Table 8. Note that cross-validation does not perfectly
select the number of components that perform best on the test set. The results
consistently show that selection by cross-validation chooses a smaller number of
components than is best. By using the cross-validation with the computational
short-cut, we bias the model towards the held-out document, which, we hypothesize,
favors the use of fewer components. The computationally expensive, but complete,
cross-validation should perform better.

Other model selection methods may perform better, while also remaining compu-
tationally efficient. These include: more robust methods of cross-validation, such
as that of Ng (1997); Minimum Description Length (Rissanen, 1983); and Schuur-
man’s metric-based approach, which also uses unlabeled data (1997). Research on
improved methods of model selection for our algorithm is an area of future work.

7. Related Work

Expectation-Maximization is a well-known family of algorithms with a long history
and many applications. Its application to classification is not new in the statistics
literature. The idea of using an EM-like procedure to improve a classifier by “treat-
ing the unclassified data as incomplete” is mentioned by R. J. A. Little among the
published responses to the original EM paper (Dempster et al., 1977). A discussion
of this “partial classification” paradigm and descriptions of further references can
be found in McLachlan and Basford’s book on mixture models (1988, page 29).
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Two recent studies in the machine learning literature have used EM to combine
labeled and unlabeled data for classification (Miller & Uyar, 1997; Shahshahani
& Landgrebe, 1994). Instead of naive Bayes, Shahshahani and Landgrebe use a
mixture of Gaussians; Miller and Uyar use Mixtures of Experts. They demonstrate
experimental results on non-text data sets with up to 40 features. In contrast, our
textual data sets have three orders of magnitude more features, which, we hypoth-
esize, exacerbate violations of the independence and mixture model assumptions.

Shahshahani and Landgrebe (1994) also theoretically investigate the utility of
unlabeled data in supervised learning, with quite different results. They analyze
the convergence rate under the assumption that unbiased estimators are available
for θ, for both the labeled and the unlabeled data. Their bounds, which are based
on Fisher information gain, show a linear (instead of exponential) value of labeled
versus unlabeled data. Unfortunately, their analysis assumes that unlabeled data
alone is sufficient to estimate both parameter vectors; thus, they assume that the
target concept can be recovered without any target labels. This assumption is un-
realistic. As shown by Castelli and Cover (1995), unlabeled data does not improve
the classification results in the absence of labeled data.

Our work is an example of applying EM to fill in missing values—the missing
values are the class labels of the unlabeled training examples. Work by Ghahramani
and Jordan (1994) is another example in the machine learning literature of using
EM with mixture models to fill in missing values. Whereas we focus on data where
the class labels are missing, they focus on data where features other than the class
labels are missing. The AutoClass project (Cheeseman & Stutz, 1996) investigates
the combination of Expectation-Maximization with a naive Bayes generative model.
The emphasis of their research is the discovery of novel clustering for unsupervised
learning over unlabeled data.

Our use of multiple mixture components per class is an example of using mixtures
to improve modeling of probability density functions. Jaakkola and Jordan (1998)
provide a general discussion of using mixtures to improve mean field approximations
(of which naive Bayes is an example).

Another paradigm that reduces the need for labeled training examples is active
learning. In this scenario, the algorithm repeatedly selects an unlabeled example,
asks a human labeler for its true class label, and rebuilds its classifier. Active learn-
ing algorithms differ in their methods of selecting the unlabeled example. Three
such examples applied to text are “Query By Committee” (Dagan & Engelson, 1995;
Liere & Tadepalli, 1997), relevance sampling and uncertainty sampling (Lewis &
Gale, 1994; Lewis, 1995).

Recent work by some of the authors combines active learning with Expectation-
Maximization (McCallum & Nigam, 1998). EM is applied to the unlabeled docu-
ments both to help inform the algorithm’s choice of documents for labeling requests,
and also to boost accuracy using the documents that remain unlabeled (as in this
paper). Experimental results show that the combination of active learning and EM
requires only slightly more than half as many labeled training examples to achieve
the same accuracy as either active learning or EM alone.
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Another effort to use unlabeled data in support of supervised learning is the work
on co-training by Blum and Mitchell (1998). They consider a particular subclass of
learning problems distinct from the problems addressed in this paper. In particular,
they consider problems where a target function f(x) is to be learned, and where the
attributes describing each instance x can be partitioned into two sets such that each
is sufficient to calculate f . This redundancy in the attributes describing x allows
learning two distinct classifiers, then using them to train one another over unlabeled
data. They present experimental results showing the success of this approach on
a web page classification task, as well as a proof that under certain conditions the
target function can be PAC learned given an initial weak classifier and unlabeled
data only.

A variety of statistical techniques other than naive Bayes have been applied to
text classification, including Support Vector Machines (Joachims, 1998), k nearest
neighbor (Yang, 1994, 1999), TFIDF/Rocchio (Salton, 1991; Rocchio, 1971), ex-
ponential gradient and covering algorithms (Cohen & Singer, 1996). We use naive
Bayes in this paper because is has a strong probabilistic foundation for Expectation-
Maximization, and is more efficient for large data sets. Furthermore, the thrust of
this paper is to straightforwardly demonstrate the value of unlabeled data; a similar
approach could apply unlabeled data to more complex classifiers.

8. Summary and Conclusions

This paper has presented a family of algorithms that address the question of when
and how unlabeled data may be used to supplement scarce labeled data, espe-
cially when learning to classify text documents. This is an important question in
text learning, because of the high cost of hand-labeling data and because of the
availability of large volumes of unlabeled data. We have presented an algorithm
that takes advantage of it and experimental results that show significant improve-
ments by using unlabeled documents for training classifiers in three real-world text
classification tasks.

When our assumptions of data generation are correct, basic EM can effectively
incorporate information from unlabeled data. However, the full complexity of real-
world text data cannot be completely captured by known statistical models. It
is interesting then, to consider the performance of a classifier based on generative
models that make incorrect assumptions about the data. In such cases, when the
data is inconsistent with the assumptions of the model, our method for adjusting
the relative contribution of the unlabeled data (EM-λ) prevents the unlabeled data
from degrading classification accuracy.

In another augmentation to the basic EM scheme, we study the effect of multiple
mixture components per class. This is an effort to relax the assumptions of the
model, and make the generative model better match the data. Experimental re-
sults show improvements in classification, and suggest the exploration of even more
complex mixture models that would correspond even better to textual data dis-
tributions. These results also recommend a study of improvements to the current
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cross-validation methods for selecting both the unlabeled data weight λ and the
number of mixture components per class.

We believe that our algorithm and others using unlabeled data require a closer
match between the data and the generative model than those using labeled data
alone. If the intended target concept and model differ from the actual distribution
of the data too strongly, then the use of unlabeled data will hurt instead of help
performance. In future work we intend to make a closer theoretical and empiri-
cal study of the tradeoffs between the use of unlabeled data and inherent model
inadequacies.

We also see several other interesting directions for future work with unlabeled
data. Two other task formulations could also benefit from using EM: (1) active
learning could use an explicit model of unlabeled data and incorporate EM, both
to improve selection of examples for which to request a label and to improve classifi-
cation accuracy using the examples that remain unlabeled at the end; initial study
in this area has already begun (McCallum & Nigam, 1998); (2) an incremental
learning algorithm that re-trains throughout the testing phase could use the unla-
beled test data received early in the testing phase in order to improve performance
on the later test data.

Furthermore, other problem domains share some similarities with text domains,
and also have limited, expensive labeled data, but abundant and inexpensive un-
labeled data. Robotics, vision, and information extraction are three such domains.
Applying the techniques in this paper could improve performance in these areas as
well.
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Notes

1. This assumption will be relaxed in Section 5.3.2 by making this a many-to-one correspondence.
Other work (Li & Yamanishi, 1997) relaxes this assumption in a one-to-many fashion.

2. Throughout the paper we use standard notational shorthand for random variables, whereby
P(X = xi|Y = yj ) is written P(xi|yj ) for random variables X and Y taking on values xi and
yj .

3. Previous naive Bayes formalizations do not include this document length effect. In the most
general case, document length should be modeled and parameterized on a class-by-class basis.

4. The Dirichlet is a commonly-used conjugate prior distribution over multinomials. Dirichlet
distributions are discussed in more detail by, for example, Stolcke and Omohundro (1994).

5. All three of these data sets are available on the Internet. See
http://www.cs.cmu.edu/∼textlearning and http://www.research.att.com/∼lewis.
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6. For all statistical results in this paper, when the number of labeled examples is small, we have
multiple trials, and use paired t-tests. When the number of labeled examples is large, we have
a single trial, and report results instead with a McNemar test. These tests are discussed further
by Dietterich (1998).

7. The weighted log likelihood ratio used to rank the words in Figure 3 is:

P(wt|cj ; θ̂) log

(
P(wt|cj ; θ̂)

P(wt|¬cj ; θ̂)

)
, (18)

which can be understood in information-theoretic terms as word wt ’s contribution to the aver-
age inefficiency of encoding words from class cj using a code that is optimal for the distribution
of words in ¬cj . The sum of this quantity over all words is the Kullback-Leibler divergence
between the distribution of words in cj and the distribution of words in ¬cj (Cover & Thomas,
1991).
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