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Abstract

When documents are organized in a large
number of topic categories, the categories
are often arranged in a hierarchy. The U.S.
patent database and Yahoo are two examples.

This paper shows that the accuracy of a naive
Bayes text classi�er can be signi�cantly im-
proved by taking advantage of a hierarchy of
classes. We adopt an established statistical
technique called shrinkage that smoothes pa-
rameter estimates of a data-sparse child with
its parent in order to obtain more robust pa-
rameter estimates. The approach is also em-
ployed in deleted interpolation, a technique
for smoothing n-grams in language modeling
for speech recognition.

Our method scales well to large data sets,
with numerous categories in large hierarchies.
Experimental results on three real-world data
sets from UseNet, Yahoo, and corporate web
pages show improved performance, with a re-
duction in error up to 29% over the tradi-
tional at classi�er.

1 Introduction

As the dramatic expansion of the World Wide Web
continues, and the amount of on-line text grows,
the development of methods for automatically cate-
gorizing this text becomes more important. A va-
riety of recent work has demonstrated the success
of statistical approaches for learning to classify text
documents [Joachims 1997; Koller & Sahami 1997;
Yang & Pederson 1997; Nigam et al. 1998]. These
approaches, such as TFIDF [Salton 1991] and naive
Bayes [Lewis & Ringuette 1994; McCallum & Nigam

1998], typically represent documents as vectors of
words, and learn by gathering statistics from the ob-
served frequencies of these words within documents
belonging to the di�erent classes. Because they rely
on these learned word statistics, these approaches are
data-intensive: they often require large numbers of
hand-labeled training documents per class to achieve
high classi�cation accuracy.

This paper considers the question of how to scale up
these statistical learning algorithms to tasks with a
large number of classes and sparse training data per
class. When humans organize extensive data sets into
�ne-grained categories, topic hierarchies are often em-
ployed to make the large collection of categories more
manageable. Yahoo, the U.S. patent database, Med-

Line and the Dewey Decimal System are all examples
of such hierarchies.

We present a technique that leverages these
commonly-available topic hierarchies in order to sig-
ni�cantly improve classi�cation accuracy, especially
when the hierarchy is large and the training data for
each class is sparse. We also present a method for ex-
ponentially reducing the amount of computation nec-
essary for classi�cation, while sacri�cing only a small
amount of accuracy.

Our approach applies a well-understood technique
from Statistics called shrinkage that provides improved
estimates of parameters that would otherwise be un-
certain due to limited amounts of training data [Stein
1955; James & Stein 1961]. The technique exploits a
hierarchy by \shrinking" parameter estimates in data-
sparse children toward the estimates of the data-rich
ancestors in ways that are provably optimal under the
appropriate conditions. We employ a simple form of
shrinkage that creates new parameter estimates in a
child by a linear interpolation of all hierarchy nodes
from the child to the root. The interpolation weights



are learned by a form of Expectation Maximization
[Dempster, Laird, & Rubin 1977]. This form of shrink-
age is also applied in deleted interpolation, a tech-
nique for smoothing n-grams in language modeling for
speech recognition [Jelinek & Mercer 1980].

Note that our approach to text classi�cation in a hi-
erarchy is quite di�erent than work by Koller and Sa-
hami [Koller & Sahami 1997]. Their Pachinko Ma-

chine employs the hierarchy by learning separate clas-
si�ers at each internal node of the tree, and then la-
beling a document by using these classi�ers to greed-
ily select sub-branches until it reaches a leaf. Their
approach is shown to be helpful when documents are
represented using a small subset (< 100 words) of
the available vocabulary, and a di�erent subset of
the vocabulary is selected at each node of the hi-
erarchy. However, their approach did not show im-
provement with larger vocabularies, and in many do-
mains (including the domains studied in this paper)
it has been established that large vocabulary sizes of-
ten perform best [Joachims 1997; Nigam et al. 1998;
McCallum & Nigam 1998].

Somewhat surprisingly, it can be shown that a prob-
abilistic form of Pachinko Machine, when trained us-
ing maximum likelihood estimates and a constant vo-
cabulary, is equivalent to the simple non-hierarchical
classi�er [Mitchell 1998]. At each node in the hier-
archy this non-deterministic version of the Pachinko
Machine assigns each document probabilistically to all
of its descendants, whereas the deterministic Pachinko
Machine proposed by Koller and Sahami assigns each
document to its single most probable descendant.

The remainder of this paper is structured as follows:
we explain our probabilistic approach to text classi�-
cation, and present the use of shrinkage in this context.
Then we show experimental results on three real-world
data sets, present related work, and close with a dis-
cussion of future work.

2 Probabilistic Framework

We approach the task of text classi�cation in a
Bayesian learning framework. We assume that the
text data was generated by a parametric model, and
use training data to calculate estimates of the model
parameters. Then, equipped with these estimates, we
classify new test documents by using Bayes rule to
turn the generative model around and calculate the
posterior probability that a class would have generated
the test document in question. Classi�cation then be-
comes a simple matter of selecting the most probable

class given the document's words.

We assume that the data is generated by a mixture
model, (parameterized by �), with a one-to-one cor-
respondence between mixture model components and
(the observed) classes, cj 2 fCg. This speci�es that
a document, di, is created by (1) selecting a class, cj ,
according to the class priors, P(cj j�), then (2) hav-
ing the corresponding mixture component generate a
document according to its own parameters, with dis-
tribution P(dijcj ; �). The marginal probability of gen-
erating document di is thus a sum of total probability
over all mixture components:

P(dij�) =

jCjX

j=1

P(cj j�)P(dijcj ; �): (1)

A document is comprised of an ordered sequence of
word events, drawn from a vocabulary V . We make the
naive Bayes assumption: that the probability of each
word event in a document is independent of the word's
context given the class, and furthermore independent
of its position in the document. Thus, each document
di is drawn from a multinomial distribution with as
many independent trials as the number of words in
di. We also assume that document lengths, jdij, are
independent of class. We write wdik for the word in
position k of document di, where the subscript of w (in
this case dik) indicates an index into the vocabulary.
Then the probability of a document given its class is:

P(dijcj ; �) = P(jdij)

jdijY

k=1

P(wdik jcj ; �): (2)

Given the assumption about one-to-one correspon-
dence between mixture model components and classes,
the naive Bayes assumption, and the position indepen-
dence assumption, the mixture model is composed of
disjoint sets of parameters, �j , for each class cj . This
parameter set for each class, �j , is composed of prob-
abilities for each word, wt, such that �jt � P(wtjcj ; �)

and
PjV j

t=1 �jt = 1. The only other parameters in
the model are the class prior probabilities, written
�0j � P(cj j�).

Given a set of labeled training documents, D, we can
calculate estimates for the parameters of the model
that generated the documents. These estimates con-
sist of straightforward counting of events, supple-
mented by standard Laplace `smoothing' that primes
each estimate with a count of one to avoid probabili-
ties of zero. We de�ne N(wt; di) to be the count of the
number of times word wt occurs in document di, and



de�ne P(cj jdi) 2 f0; 1g, as given by the document's
class label. Then, the estimate of the probability of
word wt in class cj is

�̂jt � P(wtjcj ; �̂) =
1 +
PjDj

i=1N(wt; di)P(cj jdi)

jV j+
PjV j

s=1

PjDj
i=1N(ws; di)P(cj jdi)

:

(3)

The class prior parameters are set by the maximum
likelihood estimate:

�̂0j � P(cj j�̂) =

jDjX

i=1

P(cj jdi)=jDj: (4)

Given estimates of these parameters calculated from
the training documents, classi�cation can be per-
formed on test documents by calculating the posterior
probability of each class given the words observed in
the test document, and selecting the class with the
highest probability. We formulate this by �rst apply-
ing Bayes rule, and then substituting for P(dijcj ; �)
and P(dij�) using Equations 1 and 2.

P(cj jdi; �̂) =
P(cj j�̂)P(dijcj ; �̂)

P(dij�̂)
(5)

=
P(cj j�̂)

Qjdij
k=1 P(wdik jcj ; �̂)PjCj

r=1 P(crj�̂)
Qjdij

k=1 P(wdik jcr; �̂)

Despite the fact that the mixture model and word
independence assumptions are strongly violated with
real-world data, naive Bayes performs text classi�ca-
tion very well. Friedman and Domingos and Pazzani
discuss why the violation of the word independence
assumption sometimes does little damage to classi�-
cation accuracy [Friedman 1997; Domingos & Pazzani
1997].

3 Hierarchical Classi�cation

This section presents a method of improving our es-
timates of the model parameters by taking advantage
of the hierarchy. We �rst briey describe shrinkage

in a general sense, then discuss its application to text
classi�cation in a hierarchy, and the mechanics of our
algorithm.

Background on Shrinkage

We wish to estimate parameters �1; : : : ; �jCj, (i.e. each
class's probability distribution over words). The es-

timates �̂j of �j can often be improved by shrinking
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Figure 1: The new, shrinkage-based estimate of the proba-
bility of a word (e.g. \believe") given a UseNet class (e.g.
alt.atheism) is a weighted sum of the maximum-likelihood
estimates from the leaf to the root, and beyond the root to
the uniform distribution over words.

each of them towards some common value. See Carlin
and Louis [1996] for a recent summary of shrinkage.
There are two justi�cations for shrinkage. First, if the
quantities �1; : : : ; �jCj are thought to be similar, then
they can regarded as draws from a common distribu-
tion. In this case, the shrinkage estimator is just the
Bayes estimate. More surprisingly, even if the quan-
tities are completely unrelated, and even if the data
upon which each estimator is based are independent
of each other, shrinkage estimators still reduce the risk
of the estimators. This is a deep and counterintuitive
fact discovered by Stein [1955] and James and Stein
[1961].

Shrinkage for Text Classi�cation

We use shrinkage to better estimate the probability �jt
of word wt given class cj . For each node in our tree we
construct a maximum likelihood (ML) estimate based
on the data associated with that node (Equation 3
without the Laplace smoothing). An improved esti-
mate for each leaf node is then derived by \shrinking"
its ML estimate towards the ML estimates of all its an-



cestors, namely those estimates found along the path
from that leaf to the root. Figure 1 illustrates this pro-
cess. In statistical language modeling terms, we build
a unigram model for each node in the tree, and smooth
each leaf model by linearly interpolating it with all the
models found along the path to the root.

The estimates along a path from the leaf to the root
represent a tradeo� between speci�city and reliability.
The estimate at the leaf is the most speci�c (most
pertinent, least biased), since it is based on data from
that topic alone. However it is also the least reliable,
since it is based on the smallest sample of data. The
estimator at the root is the most reliable, but the least
speci�c.

Since even the root contains a �nite amount of data,
it may estimate some rare words unreliably. We there-
fore extend the tree by adding, beyond the root, the
uniform estimate. Thanks to the latter, we no longer
need to smooth the individual ML estimates with the
Laplacean prior.

To ensure that the ML estimates along a given path
are independent, we subtract each child's data from
its parent's before calculating the parent's ML esti-
mate. Thus the latter estimate is based on data that
belongs to all the siblings of said child, but not to the
child itself. Note that in this way, for any path from
leaf to root, every datum in the tree is used in exactly

one of the ML estimates, providing both independence
among the estimates and e�cient use of the training
data.

Determining Mixture Weights

Given a set of ML estimates along the path from a
leaf to the root (and beyond it, to the uniform esti-
mate), how do we decide on the weights for interpo-

lating (mixing) them? Let f�̂1j ; �̂
2

j ; : : : ; �̂
k
j g be k such

estimates, where �̂1j = �̂j is the estimate at the leaf,

and �̂kj is the uniform estimate (�̂kjt = 1=jV j for all
words wt), and k�2 is the depth of class cj in the tree.
The interpolation weights among the ancestors of class
cj are written f�

1

j ; �
2

j ; : : : ; �
k
j g, where

Pk

i=1 �
i
j = 1.

We write ��j for the new estimate of the class-
conditioned word probabilities based on shrinkage.
The new estimate for the probability of word wt given
class cj is

��jt = P(wtjcj ; ��j) = �1j �̂
1

jt + �2j �̂
2

jt + : : :+ �kj �̂
k
jt: (6)

We derive empirically optimal weights, �ij , between
the ancestors of cj , by �nding the weights that maxi-

mize the likelihood of some hitherto unseen \held-out"
data. We use the fact that the likelihood of data ac-
cording to the mixture model is a convex function of
the weights (this falls out of Jensen's inequality), and
thus attains a single, global maximum. We �nd that
maximum for each leaf class, cj , using the following
iterative procedure:

Initialize: Set the �j 's to some initial values, say �
i
j =

1

k
(any normalized non-zero initial values will do).

Iterate:

(1) Calculate the degree to which each estimate pre-
dicts the words wt in the held-out set, Hj , from class
cj :

�ij =
X

wt2Hj

P(�̂ij was used to generate wt)

=
X

wt2Hj

�ij �̂
i
jtP

m �mj �̂
m
jt

(7)

(2) Derive new (and guaranteed improved) weights by
normalizing the �'s:

�ij =
�ijP
m �mj

(8)

Terminate: Upon convergence of the likelihood func-
tion (usually achieved within a dozen or so iterations).

This algorithm can be viewed as a particularly simple
form of EM [Dempster, Laird, & Rubin 1977], where
each datum is assumed to have been generated by �rst
choosing one of the tree nodes in the path to the root,
say �̂ij (with probability �ij), then using that estimate
to generate that datum. EM then maximizes the total
likelihood when the choices of estimates made for the
various data are unknown. The �rst step in the iter-
ative part is thus the \E" step, and the second one is
the \M" step.

While conceptually simple, this method makes ine�-
cient use of the available training data by carving o�
some of it to be used as a held-out set. To overcome
this problem, we modify the algorithm as follows: all
the available data is used both to construct the ML es-
timates and to optimize the weights. However, as each
document is used in the above algorithm, the ML esti-
mates are modi�ed to exclude its data, so as to make



# training Mixture Weights
documents Class child parent g'parent uniform

root/politics/talk.politics.guns 0.368 0.092 0.017 0.522
root/politics/talk.politics.mideast 0.256 0.132 0.001 0.611

235 root/politics/talk.politics.misc 0.197 0.213 0.026 0.564
root/religion/alt.atheism 0.235 0.158 0.022 0.585
root/religion/soc.religion.christian 0.181 0.189 0.052 0.578
root/religion/talk.religion.misc 0.104 0.255 0.028 0.613

root/politics/talk.politics.guns 0.801 0.089 0.048 0.061
root/politics/talk.politics.mideast 0.859 0.061 0.010 0.071

7497 root/politics/talk.politics.misc 0.762 0.126 0.043 0.068
root/religion/alt.atheism 0.766 0.174 0.043 0.018
root/religion/soc.religion.christian 0.837 0.098 0.041 0.024
root/religion/talk.religion.misc 0.663 0.226 0.049 0.062

Table 1: Mixture weights learned by EM for some nodes in the UseNet class hierarchy described in section 4. Notice that
when training data is sparse (top half of table), classes mix more strongly with their parents than when data is plentiful.
Notice also that more `generic' classes mix more strongly with their parents, e.g. talk.politics.misc's weight on its parent
is higher than is talk.politics.guns's).

them independent of it. This method is very similar to
the \leave-one-out" cross-validation commonly used in
statistical estimation.

This technique of �nding the optimal weights is rou-
tinely used in statistical language modeling to inter-
polate together di�erent models (such as trigram, bi-
gram, unigram and uniform), where it is known as
\deleted interpolation" [Jelinek & Mercer 1980]. It
was similarly used to interpolate estimates from nodes
along a tree path in [Bahl et al. 1989]. This cross-
validation approach to setting the mixture weights is
not exactly the same style of shrinkage as Stein [1955]
and James and Stein [1961], but is similar in spirit.
In future work we will compare the di�erent styles of
shrinkage.

Table 1 shows a subset of the mixture weights learned
by EM for a hierarchy based on UseNet articles.

4 Experimental Results

This section provides empirical evidence that shrink-
age reduces text classi�cation error by up to 29%. We
also show that shrinkage helps most when training
data is sparse and the number of classes is large. Fi-
nally, we demonstrate that dynamically pruning the
tree can exponentially reduce computation time, at
minimal loss of accuracy. Experiments are based on
three di�erent real-world data sets, one consisting of
UseNet articles, and two of web pages.1 All the results
are averages of ten cross-validation trials.

1All three data sets are available on-line. See
http://www.cs.cmu.edu/�textlearning.

The Industry Sector hierarchy, made available by Mar-

ket Guide Inc. (www.marketguide.com), consists of
company web pages classi�ed in a hierarchy of indus-
try sectors. Using all classes at depth two results in
6440 web pages partitioned into 71 classes. In tokeniz-
ing the data we skip all MIME headers and HTML
tags, use a stoplist, but do not stem. After removing
tokens that occur only once, the corpus contains 1.2
million words, with a vocabulary of size 29964.

The Newsgroups data set, collected by Ken Lang, con-
tains about 20,000 articles evenly divided among 20
UseNet discussion groups [Joachims 1997]. Several of
the topic classes are quite confusable: �ve of them
are about computers; three discuss religion. From this
data set, we build a two-level hierarchy from the 15
classes that �t into the following top level categories:
vehicles, computers, politics, religion and sports. We
tokenize the data in the same way as above. The re-
sulting data set, after removing words that occur only
once, contains 1.7 million words, and a vocabulary size
of 52309.

We gathered the entirety of the Yahoo `Science' hierar-
chy in July 1997. The web pages pointed to by Yahoo
are divided into 264 disjoint classes containing 14831
pages as result of descending to deeper nodes of Ya-
hoo's hierarchy until each class contains less than 200
documents, and then removing classes with fewer than
20 documents. After tokenizing as above and removing
stopwords and words that occur only once, the corpus
contains 3.0 million words, with a vocabulary size of
76624.

Feature selection, when used, is performed by select-
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Figure 2: Classi�cation accuracy on the Industry Sector
data set with varying vocabulary size in the horizontal axis.
The tiny vertical bars at each data point indicate standard
error. Performance is best with the full vocabulary, where
shrinkage reduces error by almost one-third.

ing the words that have highest mutual information
with the class variable. A previous study found this
method to be the best for text among several com-
mon methods [Yang & Pederson 1997]. In addition to
selecting features by the traditional, at use of mu-
tual information, we also use the hierarchy for feature
selection. Hierarchical feature selection selects equal
numbers of top words by mutual information at each

internal node of the tree, using the node's immedi-
ate children as the classes. This corresponds to Koller
and Sahami's hierarchical feature selection with zero
dependencies [Koller & Sahami 1997], except that we
de�ne the total vocabulary to be the union of all the
vocabularies chosen by the internal nodes. The union
is necessary so that the models we will mix share the
same event space.

Hierarchical classi�cation improves accuracy

Figure 2 shows classi�cation accuracy on the Indus-

try Sector data set with 50-50 train-test splits while
varying vocabulary size. No partial credit is given for
classi�cation into neighbors of the true class.

First, note that larger vocabulary sizes generally per-
form better; this is consistent with previous results of
naive Bayes on several other data sets [Joachims 1997;
Nigam et al. 1998; McCallum & Nigam 1998]. Sec-
ond, note that Hierarchical Feature Selection some-
what improves the performance of at naive Bayes
in the mid-range of feature selection|at about 5000
words, traditional, at feature selection obtains 59%
accuracy, while hierarchical feature selection reaches
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Figure 3: Classi�cation accuracy on the Newsgroups data
set with varying amounts of training data. The vertical
axis is zoomed for magni�cation of the error bars. Over-
all, hierarchical modeling provides less improvement than
it does in the Industry Sector data set because the hierar-
chy is much smaller. Notice, however, that, as expected,
shrinkage helps more when there is less training data.

64%. Third, and most importantly, observe that
shrinkage improves classi�cation accuracy across the
board, making the largest improvement at the full,
unpruned vocabulary size, where it achieves 76% accu-
racy. In comparison, the at classi�er reaches its best
performance of 66% at about 10000 words. This di�er-
ence represents a 29% reduction in classi�cation error.
We maintain that low-frequency words contribute sig-
ni�cantly to correct classi�cations, and that shrinkage
helps reduce variance of the estimates in the larger pa-
rameter space that results from the larger vocabulary.2

Shrinkage helps more when training data is
sparse.

Figure 3 shows accuracy on the Newsgroups data set
with the full vocabulary, while varying amount of
training data. Our experiments indicate that accuracy
in this domain is highest with no feature selection, (i.e.
using the full vocabulary), for both at and hierar-
chical classi�ers, even with small amounts of training
data.

It is interesting to see that hierarchical modeling pro-
vides less improvement on this data set than it does
in the Industry Sector corpus. We expect that this is

2Large vocabularies need not be a computational con-
cern. In our experiments, with the largest vocabulary,
it takes only 216 seconds to classify 3220 Industry Sector
documents and write the results to disk. In comparison,
the smallest vocabulary takes 208 seconds|a di�erence of
0.002 seconds per document on average.



due to the signi�cantly reduced branch-out factor in
this smaller hierarchy. Unlike the Industry Sector hi-
erarchy, in which the mean number of siblings is six,
here the mean number of siblings is three. Thus each
child has fewer siblings and less data from which to
\borrow strength."

The second expected result, exhibited in Figure 3, is
that shrinkage provides more improvement when the
amount of training data is small, and that shrinkage
reduces variance in the classi�cations; (notice larger
error bars on the `at classi�cation' curve). If each
class had an in�nite amount of training data, accurate
parameter estimates could be obtained for each class
independently; however, when training data is sparse,
estimates are improved by using shrinkage to smooth
a class's parameters with its ancestors.

The two �ndings that (1) shrinkage allows the use of
helpful large vocabulary sizes, and (2) shrinkage im-
proves performance more when training data is sparse,
are both con�rmed by our experiments with the Ya-

hoo data set. Figure 4 shows classi�cation accuracy
on the Science hierarchy as a function of vocabulary
size, again, with no partial credit for near misses. Flat
naive Bayes reaches its highest accuracy of 36.4% at
a relatively small vocabulary size of 1449. Hierarchi-
cal classi�cation always performs better than at, but
attains its best accuracy of 39.5% at a larger vocab-
ulary size of 13311. The improvement in accuracy is
not as dramatic here as with the Industry Sector data
set, perhaps because the Yahoo set is more noisy (be-
ing gathered automatically rather than by hand, and
containing many documents that are simply timeout
messages or pointers to moved pages), and because
Yahoo has many classes with overlapping or closely
neighboring de�nitions.3 However, it is interesting to
note that among those classes with small quantities of
training data, shrinkage improves performance more
strongly. Among those 151 classes with 50 documents
or less, shrinkage improves accuracy by 8%, from 29%
to 37%. Among those 50 classes containing more than
100 documents, shrinkage does not improve accuracy,
both obtaining about 45%.

This result indicates that shrinkage would be all the
more important if we attempted to classify documents
into Yahoo's deepest leaf categories instead of into the
somewhat coalesced and pruned version that is used

3Using more complex Bayesian classi�ers that capture
more dependancies than naive Bayes may help this last
problem. The larger number of paramters in these models
will make training data even more sparse, and this suggests
that the use of shrinkage would be all the more important.
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Figure 4: Classi�cation accuracy on the Yahoo Science data
set with varying vocabulary sizes. Tiny vertical bars at
each data point indicate standard error. The large number
of classes and noisy data make this task di�cult.

here and is de�ned at the beginning of this section.
However, this would result in thousands of classes|
quite a computational burden. Next we describe how
the hierarchy itself can be used to ease this burden.

Pruning the tree for increased computational
e�ciency

In addition to improving accuracy, the class hierarchy
can also be leveraged to improve computational e�-
ciency. The classi�er can avoid calculating P(cj jdi)
for a majority of the classes (leaves of the tree) by
pruning the tree dynamically during the classi�cation
of each document. Like the Pachinko Machine [Koller
& Sahami 1997] we can classify the document at in-
ternal nodes of the tree, and choose only to calculate
probabilities for classes underneath the branches se-
lected by these higher-level, coarse-grained classi�ers.
Note, however, that when we do this, each \pruning
classi�cation" at the interior of the tree is an opportu-
nity for error, and the deeper the hierarchy the more
the opportunities for error will compound.

As expected, our experimental results show that per-
forming this pruning does indeed reduce classi�cation
accuracy. However, one may be willing to accept this
reduction in exchange for the exponential reduction in
the amount of computation necessary for classi�cation.
On the Industry Sector data set, averaged over ten runs,
pruning that removes from consideration all but a sin-
gle branch at each interior node reaches 70.0% accu-
racy, more than 5% points lower than without pruning.
However, unlike the Pachinko Machine, our paradigm
allows for the comparison of classi�cation scores from



leaves that do not share the same parent. Thus we
can also prune less aggressively. Pruning that keeps
two branches attains 74.3%. And pruning to three
branches achieves 75.2%. This last result is only half a
percent less than the 75.8% obtained by the full evalu-
ation of the tree without pruning. The same approach
could also be used for Yahoo.

5 Related Work

Shrinkage estimation is now considered standard
methodology in Statistics. It is used routinely in a vast
array of problems and its theoretical properties have
been studied from both the Bayesian and frequentist
points of view. A good discussion with ample refer-
ences and examples is contained in [Carlin & Louis
1996]. Although MacKay and Peto [1994] do not use
the term \shrinkage" in their paper, they apply this
Bayesian style of shrinkage in their hierarchical Dirich-
let model for n-grams.

Shrinkage in the cross-validation style was �rst used
to derive a language model in [Jelinek & Mercer 1980],
where it is known as deleted interpolation. Interpola-
tion of language models along the path of a tree is de-
scribed in [Bahl et al. 1989]. More recently, Seymore
and Rosenfeld [1997] classi�ed a speech recognizer's
output into multiple topics, then used an automati-
cally derived \topic tree" to interpolate the models
associated with appropriate nodes up that tree.

A variety of work in the Information Retrieval and
Machine Learning communities has demonstrated the
success of statistical approaches for learning to classify
text documents. Naive Bayes has been used for text
classi�cation, and due to its probabilistic foundations,
been applied in several extensions [Lewis & Ringuette
1994; Joachims 1997; Nigam et al. 1998].

An earlier approach to hierarchical document classi-
�cation, the Pachinko Machine, has been proposed
by Koller and Sahami [1997]. Their method di�ers
signi�cantly from shrinkage. The Pachinko Machine
classi�es documents at internal nodes of the tree, and
greedily selects sub-branches until it reaches a leaf.
Since classi�cation errors at internal nodes compound,
the accuracy at all the internal nodes must be very
high in order for overall accuracy to be higher than
a at classi�er (especially for deeper hierarchies). We
experimented with schemes that allow a lower node
to \reject" a document and send it back up the tree
for re-classi�cation, but did not �nd these to work
well. Koller and Sahami present results with small
vocabularies (less than 100 words); however, other

results in the literature indicate that large vocabu-
lary sizes often have higher accuracy [Joachims 1997;
Nigam et al. 1998]. A possible explanation for the
discrepancy is that Koller and Sahami use a multi-
variate Bernoulli model while we use a multinomial
model [Sahami, Personal Communication]. In our ex-
periments we have found multinomials to outperform
Bernoullis [McCallum & Nigam 1998]. Our use of
shrinkage has allowed us to more robustly keep large
vocabulary sizes, which we believe are necessary for
classifying large data sets with large numbers of di-
verse classes.

Another learning method that uses EM to set mixture
weights among ancestors in a hierarchy is Adaptive

Mixtures of Probabilistic Transducers [Singer 1997].
Each node in a hierarchy that represents a history-
window is linearly mixed with its parent, which in
turn, is mixed with its parent. The model is applied
with success to noun phrase recognition.

Hofmann and Puzicha's [1998] Hierarchical Asymet-
ric Clustering Model (HACM) performs unsupervised
clustering with a mixture model in which EM is also
used to set weights among the ancestors in a hierarchy.

6 Conclusions

This paper has examined the use of class hierarchies for
improving text classi�cation. As the amount of on-line
text increases and the number of topic categories into
which it is organized grows, hierarchies are becoming
an increasingly prevalent way to make a collection of
categories manageable. Thus, the need for good text
classi�cation algorithms that take advantage of these
hierarchies becomes more important.

In this paper we demonstrate that shrinkage with a
class hierarchy improves parameter estimation, and
can reduce text classi�cation error by up to 29%. Be-
cause shrinkage helps especially when there is sparse
training data, shrinkage should be all the more bene�-
cial as we scale up to larger, higher-resolution, deeper
hierarchies with more classes that require larger vo-
cabularies.

We also show that a class hierarchy can be used to
exponentially reduce the amount of computation re-
quired to classify documents, and that we can do so
without sacri�cing signi�cant classi�cation accuracy.

In future work, we will investigate the use of shrinkage
to learn more complex Bayesian models with less re-
strictive assumptions than naive Bayes. The improve-
ments due to shrinkage should be increasingly strong



as we move to models that have more parameters, and
thus sparser training data. We will also explore alter-
native methods of shrinkage, including the Bayesian
methods in the style of James and Stein. We plan to
work with a related approach that uses EM to clus-
ter the data in a parent, and then allows the child to
mix with the di�erent clusters independently. In other
ongoing work we are studying the advantages of using
EM not only to set the mixture weights, but also re-
distribute individual words of training data among the
nodes on the path from the leaf to the root.

Lastly, we plan to explore ways to learn the class
hierarchy|investigating methods that speci�cally aim
to increase classi�cation accuracy. In early experi-
ments, it appears that when the learner is not explic-
itly given a hierarchy, then even using the \trivial"
hierarchy (each class being a leaf o� the root) does
better than the at classi�er, though not as well as
when we are given a \non-trivial" hierarchy. Further-
more, using a \bad" or scrambled hierarchy also does
better than the at classi�er|the mixture weights are
set by EM to mimic the trivial hierarchy.
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