
Journal of Machine Learning Research XX (2013) 1-61 Submitted 2/13; Published XX/XX

Reasoning about Independence
in Probabilistic Models of Relational Data

Marc Maier maier@cs.umass.edu

Katerina Marazopoulou kmarazo@cs.umass.edu

David Jensen jensen@cs.umass.edu

School of Computer Science

University of Massachusetts Amherst

Amherst, MA 01003, USA

Editor:

Abstract

We extend the theory of d -separation to cases in which data instances are not indepen-
dent and identically distributed. We show that applying the rules of d -separation directly
to the structure of probabilistic models of relational data inaccurately infers conditional
independence. We introduce relational d-separation, a theory for deriving conditional in-
dependence facts from relational models. We provide a new representation, the abstract
ground graph, that enables a sound, complete, and computationally efficient method for
answering d -separation queries about relational models, and we present empirical results
that demonstrate effectiveness.

Keywords: relational models, d -separation, conditional independence, lifted representa-
tions, directed graphical models

1. Introduction

The rules of d -separation can algorithmically derive all conditional independence facts that
hold in distributions represented by a Bayesian network. In this paper, we show that
d -separation may not correctly infer conditional independence when applied directly to
the graphical structure of a relational model. We introduce the notion of relational d-
separation—a graphical criterion for deriving conditional independence facts from relational
models—and define its semantics to be consistent with traditional d -separation (i.e., it
claims independence only when it is guaranteed to hold for all model instantiations). We
present an alternative, lifted representation—the abstract ground graph—that enables an
algorithm for deriving conditional independence facts from relational models. We show that
this approach is sound, complete, and computationally efficient, and we provide an empirical
demonstration of effectiveness across synthetic causal structures of relational domains.

The main contributions of this work are:

• A precise formalization of fundamental concepts of relational data and relational mod-
els necessary to reason about conditional independence (Section 4)

c©2013 Marc Maier and Katerina Marazopoulou and David Jensen.

ar
X

iv
:1

30
2.

43
81

v3
 [

cs
.A

I]
 6

 J
an

 2
01

4

Maier, Marazopoulou, and Jensen

• A formal definition of d -separation for relational models analogous to d -separation
for Bayesian networks (Section 5)

• The abstract ground graph—a lifted representation that abstracts all possible ground
graphs of a given relational model structure, as well as proofs of the soundness and
completeness of this abstraction (Section 5.1)

• Proofs of soundness and completeness for a method that answers relational d -separation
queries (Section 5.2)

We also provide an empirical comparison of relational d -separation to traditional d -
separation applied directly to relational model structure, showing that, not only would
most queries be undefined, but those that can be represented yield an incorrect judgment
of conditional independence up to 50% of the time (Section 6). Finally, we offer addi-
tional empirical results on synthetic data that demonstrate the effectiveness of relational
d -separation with respect to complexity and consistency (Section 7). The remainder of this
introductory section first gives a brief overview of Bayesian networks and their generaliza-
tion to relational models and then describes why d -separation is a useful theory.

1.1 From Bayesian Networks to Relational Models

Bayesian networks are a widely used class of graphical models that are capable of compactly
representing a joint probability distribution over a set of variables. The joint distribution
can be factored into a product of conditional distributions by assuming that variables are
independent of their non-descendants given their parents (the Markov condition). The
Markov condition ties the structure of the model to the set of conditional independencies
that hold over all probability distributions the model can represent. Accurate reasoning
about such conditional independence facts is the basis for constraint-based algorithms, such
as PC and FCI (Spirtes et al., 2000), and hybrid approaches, such as MMHC (Tsamardinos
et al., 2006), that are commonly used to learn the structure of Bayesian networks. Under a
small number of assumptions and with knowledge of the conditional independencies, these
algorithms can identify causal structure (Pearl, 2000; Spirtes et al., 2000).

Deriving the full set of conditional independencies implied by the Markov condition is
complex, requiring manipulation of the joint distribution and various probability axioms.
Fortunately, the exact same set of conditional independencies entailed by the Markov con-
dition are also entailed by d -separation, a set of graphical rules that algorithmically derive
conditional independence facts directly from the graphical structure of the model. That
is, the Markov condition and d -separation are equivalent approaches for producing con-
ditional independence from Bayesian networks (Verma and Pearl, 1988; Geiger and Pearl,
1988; Neapolitan, 2004). When interpreting a Bayesian network causally, the causal Markov
condition (variables are independent of their non-effects given their direct causes) and d -
separation have been shown to provide the correct connection between causal structure and
conditional independence (Scheines, 1997).

Bayesian networks assume that data instances are independent and identically dis-
tributed, but many real-world systems are characterized by interacting heterogeneous enti-
ties. For example, social network data consist of individuals, groups, and their relationships;
citation data involve researchers collaborating and authoring scholarly papers that cite prior

2

Independence in Models of Relational Data

work; and sports data include players, coaches, teams, referees, and their competitive inter-
actions. Over the past 15 years, researchers in statistics and computer science have devised
more expressive classes of directed graphical models, such as probabilistic relational models
(PRMs), which remove the assumptions of independent and identically distributed instances
to more accurately describe these types of domains (Getoor and Taskar, 2007). Relational
models generalize other classes of models that incorporate interference, spillover effects, or
violations of the stable unit treatment value assumption (SUTVA) (Hudgens and Halloran,
2008; Tchetgen Tchetgen and VanderWeele, 2012) and multilevel or hierarchical models
(Gelman and Hill, 2007).

Many practical applications have also benefited from learning and reasoning with rela-
tional models. Examples include analysis of gene regulatory interactions (Segal et al., 2001),
scholarly citations (Taskar et al., 2001), ecosystems (D’Ambrosio et al., 2003), biological
cellular networks (Friedman, 2004), epidemiology (Getoor et al., 2004), and security in in-
formation systems (Sommestad et al., 2010). The structure and parameters of these models
can be learned from a relational data set. The model is typically used either to predict
values of certain attributes (e.g., topics of papers) or the structure is examined directly
(e.g., to determine predictors of disease spread). A major goal in many of these applica-
tions is to promote understanding of a domain or to determine causes of various outcomes.
However, as with Bayesian networks, to effectively interpret and reason about relational
models causally, it is necessary to understand their conditional independence implications.

1.2 Why d-Separation Is Useful

A Bayesian network, as a model of a joint probability distribution, enables a wide array of
useful tasks by supporting inference over an entire set of variables. Bayesian networks have
been successfully applied to model many domains, ranging from bioinformatics and medicine
to computer vision and information retrieval. Näıvely specifying a joint distribution by hand
requires an exponential number of states; however, Bayesian networks leverage the Markov
condition to factor a joint probability distribution into a compact product of conditional
probability distributions.

The theory of d -separation is an alternative to the Markov condition that provides
equivalent implications. It provides an algorithmic framework for deriving the conditional
independencies encoded by the model. These conditional independence facts are guaranteed
to hold in every joint distribution the model represents and, consequently, in any data
instance sampled from those distributions. The semantics of holding across all distributions
is the main reason why d -separation is useful, enabling two large classes of applications:

(1) Identification of causal effects: The theory of d -separation connects the causal struc-
ture encoded by a Bayesian network to the set of probability distributions it can represent.
On this basis, many researchers have developed accompanying theory that describes the
conditions under which certain causal effects are identifiable (uniquely known) and algo-
rithms for deriving those quantities from the joint distribution. This work enables sound
and complete identification of causal effects, not only with respect to conditioning, but also
under counterfactuals and interventions—via the do-calculus introduced by Pearl (2000)—
and in the presence of latent variables (Tian and Pearl, 2002; Huang and Valtorta, 2006;
Shpitser and Pearl, 2008).

3

Maier, Marazopoulou, and Jensen

(2) Constraint-based causal discovery algorithms: Causal discovery, the task of learn-
ing generative models of observational data, superficially appears to be a futile endeavor.
Yet learning and reasoning about the causal structure that underlies real domains is a
primary goal for many researchers. Fortunately, d -separation offers a connection between
causal structure and conditional independence. The theory of d -separation can be lever-
aged to constrain the hypothesis space by eliminating models that are inconsistent with
observed conditional independence facts. While many distributions do not lead to uniquely
identifiable models, this approach (under simple assumptions) frequently discovers useful
causal knowledge for domains that can be represented as a Bayesian network. This ap-
proach to learning causal structure is referred to as the constraint-based paradigm, and
many algorithms that follow this approach have been developed over the past 20 years,
including Inductive Causation (IC) (Pearl and Verma, 1991), PC (Spirtes et al., 2000) and
its variants, Three Phase Dependency Analysis (TPDA) (Cheng et al., 1997), Grow-Shrink
(Margaritis and Thrun, 1999), Total Conditioning (TC) (Pellet and Elisseeff, 2008), Recur-
sive Autonomy Identification (RAI) (Yehezkel and Lerner, 2009), and hybrid methods that
partially employ this approach, including Max-Min Hill Climbing (MMHC) (Tsamardinos
et al., 2006) and Hybrid HPC (H2PC) (Gasse et al., 2012).

As described above, relational models more closely represent the real-world domains that
many social scientists and other researchers investigate. To successfully learn causal models
from observational data of relational domains, we need a theory for deriving conditional
independence from relational models. In this paper, we formalize the theory of relational
d-separation and provide a method for deriving conditional independence facts from the
structure of a relational model. In another paper, we have used these results to provide
a theoretical framework for a sound and complete constraint-based algorithm—the Rela-
tional Causal Discovery (RCD) algorithm (Maier et al., 2013)—that learns causal models
of relational domains.

2. Example

Consider a corporate analyst who was hired to identify which employees are effective and
productive for some organization. If the company is structured as a pure project-based or-
ganization (for which company personnel are structured around projects, not departments),
the analyst may collect data as described by the relational schema in Figure 2.1(a). The
schema denotes that employees can collaborate and work on multiple products, each of
which is funded by a specific business unit. The analyst has also obtained attributes on
each entity—salary and competence of employees, the success of each product, and the
budget and revenue of business units. In this example, the organization consists of five
employees, five products, and two business units, which are shown in the relational skeleton
in Figure 2.1(b).

Assume that the organization operates under the model depicted in Figure 2.2(a). For
example, the success of a product depends on the competence of employees that develop it,
and the revenue of a business unit is influenced by the success of products that it funds. If
this were known by the analyst (who happens to have experience in graphical models), then
it would be conceivable to spot-check the model and test whether some of the conditional
independencies encoded by the model are reflected in the data. The analyst then näıvely

4

Independence in Models of Relational Data

DEVELOPS

PRODUCT

Success

EMPLOYEE

Salary

Competence

BUSINESS-UNIT

Revenue

Budget

FUNDS

(a) Example relational schema for an organization consisting of employees working on products, which are
funded by specific business units within a corporation.

Paul
Competence

Salary

Quinn

Roger

Sally

Thomas

Case
Success

Adapter
Success Laptop

Success
Tablet

Success

Smartphone
Success

DEVELOPS

DE
VE
LO
PS

Accessories

Revenue

Budget

Devices

Revenue

Budget FUN
DS

DE
VE
LO
PS

D
EVELO

PS

DEVELOPS

D
EV
EL
O
PS

DE
VEL

OP
S

FU
ND
S

FUNDS
FU
ND
SFUNDS D

EV
EL
O
PS

DEVELOPS

Competence

Salary Competence

Salary

Competence

Salary

Competence

Salary

(b) Example fragment of a relational skeleton. Roger and Sally are employees, both of whom develop the
Laptop product, but, of the two, only Sally works on product Tablet. Both products Laptop and Tablet are
funded by business unit Devices. For convenience, we depict attribute placeholders on each entity instance.

Figure 2.1: An example relational schema and skeleton for the organization domain.

applies d -separation to the model structure in an attempt to derive conditional independen-
cies to test. However, applying d -separation directly to the structure of relational models
may not correctly derive conditional independencies, violating the Markov condition. If
the analyst were to discover significant and substantive effects, he may believe the model
structure is incorrect and needlessly search for alternative dependencies.

Näıvely applying d -separation to the model in Figure 2.2(a) suggests that employee
competence is conditionally independent of the revenue of business units given the success
of products:

Employee.Competence ⊥⊥ Business-Unit.Revenue | Product.Success

To see why this approach is flawed, we must consider the ground graph. A necessary
precondition for inference is to apply a model to a data instantiation, which yields a ground
graph to which d -separation can be applied. For a Bayesian network, a ground graph
consists of replicates of the model structure for each data instance. In contrast, a relational
model defines a template for how dependencies apply to a data instantiation, resulting in a
ground graph with varying structure. See Section 4 for more details on ground graphs.

Figure 2.2(b) shows the ground graph for the relational model in Figure 2.2(a) ap-
plied to the relational skeleton in Figure 2.1(b). This ground graph illustrates that, for a
single employee, simply conditioning on the success of developed products can activate a
path through the competence of other employees who develop the same products—we call

5

Maier, Marazopoulou, and Jensen

DEVELOPS

PRODUCT

Success FUNDS

EMPLOYEE

Salary

Competence

BUSINESS-UNIT

Revenue

Budget

[PRODUCT, DEVELOPS, EMPLOYEE].Competence [PRODUCT].Success

[BUSINESS-UNIT].Revenue [BUSINESS-UNIT].Budget

[EMPLOYEE].Competence [EMPLOYEE].Salary
[EMPLOYEE, DEVELOPS, PRODUCT, FUNDS, BUSINESS-UNIT].Budget [EMPLOYEE].Salary

[BUSINESS-UNIT, FUNDS, PRODUCT].Success [BUSINESS-UNIT].Revenue

(a) Example relational model. Competence of employees cause the success of products they develop, which
in turn influences the revenue received by the business unit funding the product. Additional dependencies
involve the budget of business units and employee salaries. The dependencies are specified by relational
paths, listed below the graphical model.

Paul.Competence

Paul.Salary

Quinn.Competence

Quinn.Salary

Roger.Competence

Roger.Salary

Sally.Competence

Sally.Salary

Thomas.Competence

Thomas.Salary

Case.Success
Adapter.Success Laptop.Success

Tablet.Success

Smartphone.Success

Accessories.Revenue

Accessories.Budget

Devices.Revenue

Devices.Budget

(b) Example fragment of a ground graph. The success of product Laptop is influenced by the competence
of both Roger and Sally. The revenue of business unit Devices is caused by the success of all its funded
products—Laptop, Tablet, and Smartphone.

Figure 2.2: An example relational model and ground graph for the organization domain.

this a relationally d-connecting path.1 Checking d -separation on the ground graph indi-
cates that to d -separate an employee’s competence from the revenue of funding business
units, we should not only condition on the success of developed products, but also on the
competence of other employees who work on those products (e.g., Roger.Competence ⊥⊥
Devices.Revenue | {Laptop.Success, Sally.Competence}).

This example also demonstrates that the Markov condition can be violated when directly
applied to the structure of a relational model. In this case, the Markov condition according
to the model structure in Figure 2.2(a) implies that P (Competence,Revenue | Success) =
P (Competence | Success)P (Revenue | Success), that revenue is independent of its non-
descendants (competence) given its parents (success). However, the ground graph shows
the opposite, for example, P (Roger.Competence, Devices.Revenue | Laptop.Success) 6=
P (Roger.Competence |Laptop.Success) P (Devices.Revenue | Laptop.Success). In fact, for
this model, d -separation produces many other incorrect judgments of conditional indepen-
dence. Through simulation, we found that only 25% of the pairs of variables can even be

1. The indirect effect attributed to a relationally d-connecting path is often referred to as interference,
a spillover effect, or a violation of the stable unit treatment value assumption (SUTVA) because the
treatment of one instance (employee competence) affects the outcome of another (the revenue of another
employee’s business unit).

6

Independence in Models of Relational Data

described by direct inspection of this model structure, and of those (such as the above ex-
ample), 75% yield an incorrect conclusion. This is a single data point of a larger empirical
evaluation presented in Section 6. Those results provide quantitative details of how often
to expect traditional d -separation to fail when applied to the structure of relational models.

3. Semantics and Alternatives

The example in Section 2 provides a useful basis to describe the semantics imposed by
relational d -separation and the characteristics of our approach. There are two primary
concepts:

(1) All-ground-graphs semantics: It might appear that, since the standard rules of d -
separation apply to Bayesian networks and the ground graphs of relational models are also
Bayesian networks, that applying d -separation to relational models is a non-issue. However,
applying d -separation to a single ground graph may result in potentially unbounded runtime
if the instantiation is large (i.e., since relational databases can be arbitrarily large). Further,
and more importantly, the semantics of d -separation require that conditional independencies
hold across all possible model instantiations. Although d -separation can apply directly to
a ground graph, these semantics prohibit reasoning about a single ground graph.

The conditional independence facts derived from d -separation hold for all distributions
represented by a Bayesian network. Analogously, the implications of relational d -separation
should hold for all distributions represented by a relational model. It is simple to show
that these implications hold for all ground graphs of a Bayesian network—every ground
graph consists of a set of disconnected subgraphs, each of which has a structure that is
identical to that of the model. However, the set of distributions represented by a relational
model depends on both the relational skeleton (constrained by the schema) and the model
parameters. That is, the ground graphs of relational models vary with the structure of the
underlying relational skeleton (e.g., different products are developed by varying numbers
of employees). As a result, answering relational d -separation queries requires reasoning
without respect to ground graphs.

(2) Perspective-based analysis: Relational models make explicit one implicit choice un-
derlying nearly any form of data analysis. This choice—what we refer to here as a perspec-
tive—concerns the selection of a particular unit or subject of analysis. For example, in the
social sciences, a commonly used acronym is UTOS, for framing an analysis by choosing a
unit, treatment, outcome, and setting. Any method, such as Bayesian network modeling,
that assumes IID data makes the implicit assumption that the attributes on data instances
correspond to attributes of a single unit or perspective. In the example, we targeted a
specific conditional independence regarding employee instances (as opposed to products or
business units).

The concept of perspectives is not new, but it is central to statistical relational learn-
ing because relational data sets may be heterogeneous, involving instances that refer to
multiple, distinct perspectives. The inductive logic programming (ILP) community has dis-
cussed individual-centered representations (Flach, 1999), and many approaches to propo-
sitionalizing relational data have been developed to enforce a single perspective in order
to rely on existing propositional learning algorithms (Kramer et al., 2001). An alternative
strategy is to explicitly acknowledge the presence of multiple perspectives and learn jointly

7

Maier, Marazopoulou, and Jensen

among them. This approach underlies many algorithms that learn the types of probabilistic
models of relational data applicable in this work, e.g., learning the structure of probabilis-
tic relational models, relational dependency networks, or parametrized Bayesian networks
(Friedman et al., 1999; Neville and Jensen, 2007; Schulte et al., 2012).

Often, data sets are derivative, leading to little or no choice about which perspectives
to analyze. However, for relational domains, from which these data sets are derived, it
is assumed that there are multiple perspectives, and we can dynamically analyze different
perspectives. In the example, we chose the employee perspective, and the analysis focused
on the dependence between an employee’s competence and the revenue of business units
that fund developed products. However, if the question were posed from the perspective
of business units, then we could conceivably condition on the success of products for each
business unit. In this scenario, reasoning about d -separation at the model level would lead to
a correct conditional independence statement. Some (though fairly infrequent) d -separation
queries produce accurate conditional independence facts when applied to relational model
structure (see Section 6). However, the model is often unknown, a perspective may be chosen
a priori, and a theory that is occasionally correct is clearly undesirable. Additionally, to
support constraint-based learning algorithms, it is important to reason about conditional
independence implications from different perspectives.

One plausible alternative approach would be to answer d -separation queries by ignoring
perspectives and considering just the attribute classes (i.e., reason about Competence and
Revenue given Success). However, it remains to define explicit semantics for grounding and
evaluating the query based on the relational skeleton. There are at least three options:

• Construct three sets of variables, including all instances of competence, revenue, and
success variables: Although the ground graph has the semantics of a Bayesian network,
there is only a single ground graph—one data sample (Xiang and Neville, 2011).
Consequently, this analysis would be statistically meaningless and is the primary
reason why relational learning algorithms dynamically generate propositional data
for each instance of a given perspective.

• Test the Cartesian product of competence and revenue variables, conditioned on all
success variables: Testing all pairs invariably leads to independence. Moreover, these
semantics are incoherent; only reachable pairs of variables should be compared. For
propositional data, variable pairs are constructed by choosing attribute values, e.g.,
height and weight, within an individual. The same is true for relational data: Only
choose the success of products for employees that actually develop them, following
the underlying relational connections.

• Test relationally connected pairs of competence and revenue variables, conditioned on
all success variables: Again, this appears plausible based on traditional d -separation;
every instance in the table conditions on the same set of success values. Therefore,
this is akin to not conditioning because the conditioning variable is a constant.

We argue that the desired semantics are essentially the explicit semantics of perspective-
based queries. Therefore, we advocate perspective-based analysis as the only statistically
and semantically meaningful approach for relational data and models.

Our approach to answering relational d -separation queries incorporates the two afore-
mentioned semantics. In Section 5, we describe a new, lifted representation—the abstract

8

Independence in Models of Relational Data

Employee's competence Success of products developed by an employee Revenue of business units that fund products developed by an employee

Success of other products funded by business units that fund products developed by an employee

Success of other products developed by co-workers

Co-workers' competence

Success of other products developed by co-workers

�

Success of other products funded by business units that fund products developed by an employee

Figure 3.1: Example abstract ground graph from the perspective of employees. Nodes are
labeled with their intuitive meaning.

ground graph—that is provably sound and complete in its abstraction of all ground graphs
for a given relational model. As their name suggests, abstract ground graphs abstract all
ground graphs of a relational model, representing any potential relationally d -connecting
path (recall the example d -connecting path that only manifests in the ground graph). A
relational model has a corresponding set of abstract ground graphs, one for each perspective
(i.e., entity or relationship class in its underlying schema), and can be used to reason about
relational d -separation with respect to any given perspective. Figure 3.1 shows a fragment
of an abstract ground graph from the employee perspective for the model in Figure 2.2a.
The nodes are depicted with their intuitive meaning rather than their actual syntax for this
example. Representational details and accompanying theory are presented in Section 5.

4. Concepts of Relational Data and Models

Propositional representations describe domains with a single entity type, but many real-
world systems involve multiple types of interacting entities with probabilistic dependencies
among their variables. For example, in the model in Figure 2.2(a) the competence of
employees affects the success of products they develop. Many researchers have focused on
modeling such domains, which are generally characterized as relational. These relational
representations can be divided into two main categories: probabilistic graphical models—
such as probablistic relational models (PRMs) (Koller and Pfeffer, 1998), directed acyclic
probabilistic entity-relationship (DAPER) models (Heckerman et al., 2004), and relational
Markov networks (RMNs) (Taskar et al., 2002)—and probabilistic logic models—such as
Bayesian logic programs (BLPs) (Kersting and De Raedt, 2002), Markov logic networks
(MLNs) (Richardson and Domingos, 2006), parametrized Bayesian networks (PBNs) (Poole,
2003), Bayesian logic (Blog) (Milch et al., 2005), multi-entity Bayesian networks (MEBNs)
(Laskey, 2008), and relational probability models (RPMs) (Russell and Norvig, 2010).

To facilitate an extension to the graphical criterion of d -separation, we currently focus
on directed, acyclic, graphical models of conditional independence. As most of the above
models have similar expressive power, the results in this paper could generalize across
representations—even for undirected relational models, such as RMNs and MLNs, after
moralization. However, we found it simpler to define and prove relevant theoretical prop-
erties for relational d -separation in a representation most similar to Bayesian networks. In

9

Maier, Marazopoulou, and Jensen

this section, we formally define the concepts of relational data and models using a similar
representation to PRMs and DAPER models.

A relational schema is a top-level description of what data exist in a particular domain.
Specifically (adapted from Heckerman et al., 2007):

Definition 4.1 (Relational schema) A relational schema S = (E ,R,A, card) consists
of a set of entity classes E = {E1, . . . , Em}; a set of relationship classes R = {R1, . . . , Rn},
where each Ri = 〈Ei1, . . . , Eiai〉, with Eij ∈ E and ai is the arity for Ri; a set of attribute
classes A(I) for each item class I ∈ E ∪ R; and a cardinality function card : R × E →
{one, many}.

A relational schema can be represented graphically with an entity-relationship (ER)
diagram. We adopt a slightly modified ER diagram using Barker’s notation (1990), where
entity classes are rectangular boxes, relationship classes are diamonds with dashed lines
connecting their associated entity classes, attribute classes are ovals residing on entity and
relationship classes, and cardinalities are represented with crow’s foot notation.

Example 4.1 The relational schema S for the organization domain example depicted in
Figure 2.1(a) consists of entities E = {Employee, Product, Business-Unit}; relation-
ships R = {Develops, Funds}, where Develops = 〈Employee, Product〉, Funds
= 〈Business-Unit, Product〉 and having cardinalities card(Develops, Employee) =
many, card(Develops, Product) = many, card(Funds, Business-Unit) = many, and
card(Funds, Product) = one; and attributes A(Employee) = {Competence, Salary},
A(Product) = {Success}, and A(Business-Unit) = {Budget, Revenue}. �

A relational schema is a template for a relational skeleton (also referred to as a data
graph by Neville and Jensen, 2007), an instantiation of entity and relationship classes.
Specifically (adapted from Heckerman et al., 2007):

Definition 4.2 (Relational skeleton) A relational skeleton σ for relational schema S =
(E ,R,A, card) specifies a set of entity instances σ(E) for each E ∈ E and relationship
instances σ(R) for each R ∈ R. Relationship instances adhere to the cardinality constraints
of S: If card(R,E) = one, then for each e ∈ σ(E) there is at most one r ∈ σ(R) such that
e participates in r.

For convenience, we use the notation E ∈ R if entity class E is a component of rela-
tionship class R, and, similarly, e ∈ r if entity instance e is a component of the relationship
instance r. We also denote the set of all skeletons for schema S as ΣS .

Example 4.2 The relational skeleton σ for the organization example is depicted in Fig-
ure 2.1(b). The sets of entity instances are σ(Employee) = {Paul, Quinn, Roger, Sally,
Thomas}, σ(Product) = {Case, Adapter, Laptop, Tablet, Smartphone}, and σ(Business-
Unit) = {Accessories, Devices}. The sets of relationship instances are σ(Develops) =
{〈Paul, Case〉, 〈Quinn, Case〉, . . . , 〈Thomas, Smartphone〉} and σ(Funds) = {〈Accessories,
Case〉, 〈Accessories, Adapter〉, . . . , 〈Devices, Smartphone〉}. The relationship instances ad-
here to their cardinality constraints (e.g., Funds is a one-to-many relationship—within
σ(Funds), every product has a single business unit, and every business unit may have
multiple products). �

10

Independence in Models of Relational Data

In order to specify a model over a relational domain, we must define a space of possible
variables and dependencies. Consider the example dependency [Product, Develops, Em-
ployee].Competence → [Product].Success from the model in Figure 2.2(a), expressing
that the competence of employees developing a product affects the success of that product.
For relational data, the variable space includes not only intrinsic entity and relationship
attributes (e.g., success of a product), but also the attributes on other entity and relation-
ship classes that are reachable by paths along the relational schema (e.g., the competence
of employees that develop a product). We define relational paths to formalize the notion of
which item classes are reachable on the schema from a given item class.2

Definition 4.3 (Relational path) A relational path [Ij , . . . , Ik] for relational schema S
is an alternating sequence of entity and relationship classes Ij , . . . , Ik ∈ E ∪ R such that:

(1) For every pair of consecutive item classes [E,R] or [R,E] in the path, E ∈ R.
(2) For every triple of consecutive item classes [E,R,E′], E 6= E′.3

(3) For every triple of consecutive item classes [R,E,R′], if R = R′, then card(R,E) =
many.

Ij is called the base item, or perspective, of the relational path.

Condition (1) enforces that entity classes participate in adjacent relationship classes in
the path. Conditions (2) and (3) remove any paths that would invariably reach an empty
terminal set (see Definition 4.4 and Appendix C). This definition of relational paths is
similar to “meta-paths” and “relevance paths” in similarity search and information retrieval
in heterogeneous networks (Sun et al., 2011; Shi et al., 2012). Relational paths also extend
the notion of “slot chains” from the PRM framework (Getoor et al., 2007) by including
cardinality constraints and formally describing the semantics under which repeated item
classes may appear on a path. Relational paths are also a specialization of the first-order
constraints on arc classes imposed on DAPER models (Heckerman et al., 2007).

Example 4.3 Consider the example relational schema in Figure 2.1(a). Some example
relational paths from the Employee perspective (with an intuitive meaning of what the
paths describe) include the following: [Employee] (an employee), [Employee, Devel-
ops, Product] (products developed by an employee), [Employee, Develops, Product,
Funds, Business-Unit] (business units of the products developed by an employee), and
[Employee, Develops, Product, Develops, Employee] (co-workers developing the
same products). Invalid relational paths include [Employee, Develops, Employee] (be-
cause Employee=Employee and Develops ∈ R) and [Business-Unit, Funds, Prod-
uct, Funds, Business-Unit] (because Product ∈ E and card(Funds, Product) =
one). �

Relational paths are defined at the level of relational schemas, and as such are templates
for paths in a relational skeleton. An instantiated relational path produces a set of traversals

2. Because the term “path” is also commonly used to describe chains of dependencies in graphical models,
we will explicitly qualify each reference to avoid ambiguity.

3. This condition suggests at first glance that self-relationships (e.g., employees manage other employees,
individuals in social networks maintain friendships, scholarly articles cite other articles) are prohibited.
We discuss this and other model assumptions in Section 8.

11

Maier, Marazopoulou, and Jensen

on a relational skeleton. However, the quantity of interest is not the traversals, but the set
of reachable item instances (i.e., entity or relationship instances). These reachable instances
are the fundamental elements that support model instantiations (i.e., ground graphs).

Definition 4.4 (Terminal set) For skeleton σ ∈ ΣS and ij ∈ σ(Ij), the terminal set P |ij
for relational path P = [Ij , . . . , Ik] of length n is defined inductively as

P 1|ij = [Ij]|ij = {ij}
...

Pn|ij = [Ij , . . . , Ik]|ij =
⋃

im∈Pn−1|ij

{
ik |

(
(im ∈ ik if Ik ∈ R) ∨ (ik ∈ im if Ik ∈ E)

)

∧ ik /∈
n−1⋃

l=1

P l|ij
}

A terminal set of a relational path P = [Ij , . . . , Ik] consists of instances of class Ik,
the terminal item on the path. Conceptually, a terminal set is produced by traversing a
skeleton beginning at a single instance of the base item class, ij ∈ σ(Ij), following instances
of the item classes in the relational path, and reaching a set of instances of class Ik. The
term ik /∈ ⋃n−1

l=1 P
l|ij in the definition implies a “bridge burning” semantics under which

no item instances are revisited (ik does not appear in the terminal set of any prefix of
P).4 The notion of terminal sets is a necessary concept for grounding any relational model
and has been described in previous work—e.g., for PRMs (Getoor et al., 2007) and MLNs
(Richardson and Domingos, 2006)—but has not been explicitly named. We emphasize their
importance because terminal sets are also critical for defining relational d -separation, and
we formalize the semantics for bridge burning.

Example 4.4 We can generate terminal sets by pairing the set of relational paths for
the schema in Figure 2.1(a) with the relational skeleton in Figure 2.1(b). Let Quinn be
our base item instance. Then [Employee]|Quinn = {Quinn}, [Employee, Develops,
Product]|Quinn = {Case, Adapter, Laptop}, [Employee, Develops, Product, Funds,
Business-Unit]|Quinn = {Accessories, Devices}, and [Employee, Develops, Product,
Develops, Employee]|Quinn = {Paul, Roger, Sally}. The bridge burning semantics en-
force that Quinn is not also included in this last terminal set. �

For a given base item class, it is common (depending on the schema) for distinct rela-
tional paths to reach the same terminal item class. The following lemma states that if two
relational paths with the same base item and the same terminal item differ at some point in
the path, then for some relational skeleton and some base item instance, their terminal sets
will have a non-empty intersection. This property is important to consider for relational
d -separation.

Lemma 4.1 For two relational paths of arbitrary length from Ij to Ik that differ in at least
one item class, P1 = [Ij , . . . , Im, . . . , Ik] and P2 = [Ij , . . . , In, . . . , Ik] with Im 6= In, there
exists a skeleton σ ∈ ΣS such that P1|ij ∩ P2|ij 6= ∅ for some ij ∈ σ(Ij).

4. The bridge burning semantics yield terminal sets that are necessarily subsets of terminal sets that would
otherwise be produced without bridge burning. Although this appears to be limiting, it actually enables
a strictly more expressive class of relational models. See Appendix B for more details and an example.

12

Independence in Models of Relational Data

Proof. See Appendix A.

Example 4.5 Let P1 = [Employee, Develops, Product, Develops, Employee, De-
velops, Product], the terminal sets for which yield other products developed by collabo-
rating employees. Let P2 = [Employee, Develops, Product, Funds, Business-Unit,
Funds, Product], the terminal sets for which consist of other products funded by the
business units funding products developed by a given employee. Intersection among termi-
nal sets for these paths occurs even in the small example skeleton. In fact, the intersection
of the terminal sets for P1 and P2 is non-empty for all employees. For example, Paul:
P1|Paul = {Adapter, Laptop} and P2|Paul = {Adapter}; Quinn: P1|Quinn = {Tablet} and
P2|Quinn = {Tablet, Smartphone}. �

Given the definition for relational paths, it is simple to define relational variables and
their instances.

Definition 4.5 (Relational variable) A relational variable [Ij , . . . , Ik].X consists of a
relational path [Ij , . . . , Ik] and an attribute class X ∈ A(Ik).

As with relational paths, we refer to Ij as the perspective of the relational variable.
Relational variables are templates for sets of random variables (see Definition 4.6). Sets of
relational variables are the basis of relational d -separation queries, and consequently they
are also the nodes of the abstract representation that answers those queries. There is an
equivalent formulation in the PRM framework, although not explicitly named (they are
simply denoted as attribute classes of K-related item classes via slot chain K). As they are
critical to relational d -separation, we provide this concept with an explicit designation.

Example 4.6 Relational variables for the relational paths in Example 4.3 include intrinsic
attributes such as [Employee].Competence and [Employee].Salary, and also attributes
on related entity classes such as [Employee, Develops, Product].Success, [Employee,
Develops, Product, Funds, Business-Unit].Revenue, and [Employee, Develops,
Product, Develops, Employee].Salary. �

Definition 4.6 (Relational variable instance) For skeleton σ ∈ ΣS and ij ∈ σ(Ij), a
relational variable instance [Ij , . . . , Ik].X|ij for relational variable [Ij , . . . , Ik].X is the set of
random variables {ik.X | X∈A(Ik) ∧ ik∈ [Ij , . . . , Ik]|ij ∧ ik∈σ(Ik)}.

To instantiate a relational variable [Ij , . . . , Ik].X for a specific base item instance ij ,
we first find the terminal set of the underlying relational path [Ij , . . . , Ik]|ij and then take
the X attributes of the Ik item instances in that terminal set. This produces a set of
random variables ik.X, which also correspond to nodes in the ground graph. As a notational
convenience, if X is a set of relational variables, all from a common perspective Ij , then we
say that X|ij for some item ij ∈ σ(Ij) is the union of all instantiations, {x | x∈X|ij ∧ X∈
X}.

Example 4.7 Instantiating the relational variables from Example 4.6 with base item
instance Sally yields [Employee].Competence|Sally = {Sally.Competence}, [Employee,

13

Maier, Marazopoulou, and Jensen

Develops, Product].Success|Sally = {Laptop.Success, Tablet.Success}, [Employee,
Develops, Product, Funds, Business-Unit].Revenue|Sally = {Devices.Revenue}, and
[Employee, Develops, Product, Develops, Employee].Salary |Sally = {Quinn.Salary,
Thomas.Salary}. �

Given the definitions for relational variables, we can now define relational dependencies.

Definition 4.7 (Relational dependency) A relational dependency [Ij , . . . , Ik].Y →
[Ij].X is a directed probabilistic dependence from attribute class Y to X through the rela-
tional path [Ij , . . . , Ik].

Depending on the context, [Ij , . . . , Ik].Y and [Ij].X can be referred to as treatment
and outcome, cause and effect, or parent and child. A relational dependency consists of
two relational variables having a common perspective. The relational path of the child is
restricted to a single item class, ensuring that the terminal sets consist of a single value.
This is consistent with PRMs, except that we explicitly delineate dependencies rather than
define parent sets of relational variables. Note that relational variables are not nodes in a
relational model, but they form the space of parent variables for relational dependencies.
The relational path specification (before the attribute class of the parent) is equivalent to
a slot chain, as in PRMs, or the logical constraint on a dependency, as in DAPER models.

Example 4.8 The dependencies in the relational model displayed in Figure 2.2(a) can
be specified as: [Product, Develops, Employee].Competence → [Product].Success
(product success is influenced by the competence of the employees developing the product),
[Employee].Competence→ [Employee].Salary (an employee’s competence affects his or
her salary), [Business-Unit, Funds, Product].Success → [Business-Unit].Revenue
(the success of the products funded by a business unit influences that unit’s revenue),
[Employee, Develops, Product, Funds, Business-Unit].Budget→[Employee].Salary
(employee salary is governed by the budget of the business units for which they develop
products), and [Business-Unit].Revenue → [Business-Unit].Budget (the revenue of a
business unit influences its budget). �

We now have sufficient information to define relational models.

Definition 4.8 (Relational model) A relational model MΘ consists of two parts:

1. The structure M = (S,D): a schema S paired with a set of relational dependencies
D defined over S.

2. The parameters Θ: a conditional probability distribution P
(
[Ij].X | parents([Ij].X)

)

for each relational variable of the form [Ij].X, where Ij ∈ E ∪ R, X ∈ A(Ij) and
parents

(
[Ij].X

)
=
{

[Ij , . . . , Ik].Y | [Ij , . . . , Ik].Y → [Ij].X ∈ D
}

is the set of parent
relational variables.

The structure of a relational model can be represented graphically by superimposing
dependencies on the ER diagram of a relational schema (see Figure 2.2(a) for an example).
A relational dependency of the form [Ij , . . . , Ik].Y → [Ij].X is depicted as a directed arrow
from attribute class Y to X with the specification listed separately. Note that the subset

14

Independence in Models of Relational Data

of relational variables with singleton paths [I].X in the definition correspond to the set of
attribute classes in the schema.

A common technique in relational learning is to use aggregation functions to transform
parent multi-sets to single values within the conditional probability distributions. Typically,
aggregation functions are simple, such as mean or mode, but they can be complex, such as
those based on vector distance or object identifiers, as in the ACORA system (Perlich and
Provost, 2006). However, aggregates are a convenience for increasing power and accuracy
during learning, but they are not necessary for model specification.

This definition of relational models is consistent with and yields structures expressible
as DAPER models (Heckerman et al., 2007). These relational models are also equivalent to
PRMs, but we extend slot chains as relational paths and provide a formal semantics for their
instantiation. These models are also more general than plate models because dependencies
can be specified with arbitrary relational paths as opposed to simple intersections among
plates (Buntine, 1994; Gilks et al., 1994).

Just as the relational schema is a template for skeletons, the structure of a relational
model can be viewed as a template for ground graphs: dependencies applied to skeletons.

Definition 4.9 (Ground graph) The ground graph GGMσ = (V,E) for relational model
structure M = (S,D) and skeleton σ ∈ ΣS is a directed graph with nodes V =

{
i.X | I ∈

E ∪ R ∧ X ∈A(I) ∧ i∈ σ(I)
}

and edges E =
{
ik.Y → ij .X | ik.Y, ij .X ∈ V ∧ ik.Y ∈

[Ij , . . . , Ik].Y |ij ∧ [Ij , . . . , Ik].Y → [Ij].X∈D
}

.

A ground graph is a directed graph with (1) a node (random variable) for each attribute
of every entity and relationship instance in a skeleton and (2) an edge from ik.Y to ij .X
if they belong to the parent and child relational variable instances, respectively, of some
dependency in the model. The concept of a ground graph appears for any type of relational
model, graphical or logic-based. For example, PRMs produce “ground Bayesian networks”
that are structurally equivalent to ground graphs, and Markov logic networks yield ground
Markov networks by applying all formulas to a set of constants (Richardson and Domingos,
2006). The example ground graph shown in Figure 2.2(b) is the result of applying the
dependencies in the relational model shown in Figure 2.2(a) to the skeleton in Figure 2.1(b).

Similar to Bayesian networks, given the parameters of a relational model, a parameterized
ground graph can express a joint distribution that factors as a product of the conditional
distributions:

P (GGMΘσ) =
∏

I∈E∪R

∏

X∈A(I)

∏

i∈σ(I)

P
(
i.X | parents(i.X)

)

where each i.X is assigned the conditional distribution defined for [I].X (a process referred
to as parameter-tying).

Relational models only define coherent joint probability distributions if they produce
acyclic ground graphs. A useful construct for checking model acyclicity is the class depen-
dency graph (Getoor et al., 2007), defined as:

Definition 4.10 (Class dependency graph) The class dependency graph GM = (V,E)
for relational model structureM = (S,D) is a directed graph with a node for each attribute

15

Maier, Marazopoulou, and Jensen

of every item class V =
{
I.X | I∈E ∪ R ∧ X∈A(I)

}
and edges between pairs of attributes

supported by relational dependencies in the model E =
{
Ik.Y → Ij .X | [Ij , . . . , Ik].Y →

[Ij].X∈D
}

.

If the relational dependencies form an acyclic class dependency graph, then every pos-
sible ground graph of that model is acyclic as well (Getoor et al., 2007). Given an acyclic
relational model, the ground graph has the same semantics as a Bayesian network (Getoor,
2001; Heckerman et al., 2007). All future references to acyclic relational models refer to
relational models whose structure forms acyclic class dependency graphs.

By Lemma 4.1 and Definition 4.9, one relational dependency may imply dependence
between the instances of many relational variables. If there is an edge from ik.Y to ij .X in
the ground graph, then there is an implied dependency between all relational variables for
which ik.Y and ij .X are elements of their instances.

Example 4.9 The relational dependency [Employee].Competence→[Employee].Salary
yields the edge Roger.Competence → Roger.Salary in the ground graph of Figure 2.2(b)
because Roger.Competence ∈ [Employee].Competence|Roger. However, Roger.Competence
∈ [Employee, Develops, Product, Develops, Employee].Competence|Sally (as is
Roger.Salary, replacing Competence with Salary). Consequently, the relational dependency
implies dependence among the random variables in the instances of [Employee, Develops,
Product, Develops, Employee].Competence and [Employee, Develops, Product,
Develops, Employee].Salary. �

These implied dependencies form the crux of the challenge of identifying independence in
relational models. Additionally, the intersection between the terminal sets of two relational
paths is crucial for reasoning about independence because a random variable can belong
to the instances of more than one relational variable. Since d -separation only guarantees
independence when there are no d -connecting paths, we must consider all possible paths
between pairs of random variables, either of which may be a member of multiple relational
variable instances. In Section 5, we define relational d -separation and provide an appro-
priate representation, the abstract ground graph, that enables straightforward reasoning
about d -separation.

5. Relational d-Separation

Conditional independence facts are correctly entailed by the rules of d -separation, but
only when applied to the graphical structure of Bayesian networks. Every ground graph
of a Bayesian network consists of a set of identical copies of the model structure (see Ap-
pendix D). Thus, the implications of d -separation on Bayesian networks hold for all instances
in every ground graph. In contrast, the structure of a relational model is a template for
ground graphs, and the structure of a ground graph varies with the underlying skeleton
(which is typically more complex than a set of disconnected instances). Conditional inde-
pendence facts are only useful when they hold across all ground graphs that are consistent
with the model, which leads to the following definition:

16

Independence in Models of Relational Data

Definition 5.1 (Relational d-separation) Let X, Y, and Z be three distinct sets of
relational variables with the same perspective B ∈ E ∪R defined over relational schema S.
Then, for relational model structure M, X and Y are d -separated by Z if and only if, for
all skeletons σ ∈ ΣS , X|b and Y|b are d -separated by Z|b in ground graph GGMσ for all
b ∈ σ(B).

For any relational d -separation query, it is necessary that all relational variables in X,
Y, and Z have the same perspective (otherwise, the query would be incoherent).5 For X and
Y to be d -separated by Z in relational model structure M, d -separation must hold for all
instantiations of those relational variables for all possible skeletons. This is a conservative
definition, but it is consistent with the semantics of d -separation on Bayesian networks—it
guarantees independence, but it does not guarantee dependence. If there exists even one
skeleton and faithful distribution represented by the relational model for which X ⊥⊥/ Y | Z,
then X and Y are not d -separated by Z.

Given the semantics specified in Definition 5.1, answering relational d -separation queries
is challenging for several reasons:

D-separation must hold over all ground graphs: The implications of d -separation on
Bayesian networks hold for all possible ground graphs. However, the ground graphs of
a Bayesian network consist of identical copies of the structure of the model, and it is
sufficient to reason about d -separation on a single subgraph. Although it is possible to
verify d -separation on a single ground graph of a relational model, the conclusion may not
generalize, and ground graphs can be arbitrarily large.

Relational models are templates: The structure of a relational model is a directed acyclic
graph, but the dependencies are actually templates for constructing ground graphs. The
rules of d -separation do not directly apply to relational models, only to their ground graphs.
Applying the rules of d -separation to a relational model frequently leads to incorrect con-
clusions because of unrepresented d -connecting paths that are only manifest in ground
graphs.

Instances of relational variables may intersect : The instances of two different relational
variables may have non-empty intersections, as described by Lemma 4.1. These intersections
may be involved in relationally d -connecting paths, such as the example in Section 2. As
a result, a sound and complete approach to answering relational d -separation queries must
account for these paths.

Relational models may be specified from multiple perspectives: Relational models are de-
fined by relational dependencies, each specified from a single perspective. However, variables
in a ground graph may contribute to multiple relational variable instances, each defined from
a different perspective. Thus, reasoning about implied dependencies between arbitrary re-
lational variables, such as the one described in Example 4.9, requires a method to translate
dependencies across perspectives.

5.1 Abstracting over All Ground Graphs

The definition of relational d -separation and its challenges suggest a solution that abstracts
over all possible ground graphs and explicitly represents the potential intersection between

5. This trivially holds for d-separation in Bayesian networks as all “propositional” variables have the same
implicit perspective.

17

Maier, Marazopoulou, and Jensen

pairs of relational variable instances. We introduce a new lifted representation, called the
abstract ground graph, that captures all dependencies among arbitrary relational variables
for all ground graphs, using knowledge of only the schema and the model. To represent all
dependencies, the construction of an abstract ground graph uses the extend method, which
maps a relational dependency to a set of implied dependencies for different perspectives.
Each abstract ground graph of a relational model is defined with respect to a given perspec-
tive and can be used to reason about relational d -separation queries for that perspective.

Definition 5.2 (Abstract ground graph) An abstract ground graph AGGMB = (V,E)
for relational model structure M = (S,D) and perspective B ∈ E ∪ R is a directed graph
that abstracts the dependencies D for all ground graphs GGMσ, where σ ∈ ΣS .

The set of nodes in AGGMB is V = RV ∪ IV , where

• RV is the set of all relational variables of the form [B, . . . , Ij].X

• IV is the set of all pairs of relational variables that could have non-empty intersections
(referred to as intersection variables):

{
RV1 ∩ RV2 | RV1,RV2∈RV ∧ RV1 = [B, . . . , Ik, . . . , Ij].X

∧ RV2 = [B, . . . , Il, . . . , Ij].X ∧ Ik 6= Il
}

The set of edges in AGGMB is E = RVE ∪ IVE , where

• RVE ⊂ RV × RV is the set of edges between pairs of relational variables:

RVE =
{

[B, . . . , Ik].Y → [B, . . . , Ij].X | [Ij , . . . , Ik].Y → [Ij].X ∈ D ∧
[B, . . . , Ik] ∈ extend([B, . . . , Ij], [Ij , . . . , Ik])

}

• IVE ⊂ IV ×RV ∪ RV ×IV is the set of edges inherited from both relational variables
involved in every intersection variable in IV :

IVE =
{
Ŷ → [B, . . . , Ij].X | Ŷ = P1.Y ∩ P2.Y ∈ IV ∧

(P1.Y → [B, . . . , Ij].X ∈ RVE ∨
P2.Y → [B, . . . , Ij].X ∈ RVE)

}

⋃

{
[B, . . . , Ik].Y → X̂ | X̂ = P1.X ∩ P2.X ∈ IV ∧

([B, . . . , Ik].Y → P1.X ∈ RVE ∨
[B, . . . , Ik].Y → P2.X ∈ RVE)

}

The extend method is described in Definition 5.3 below. Essentially, the construction of
an abstract ground graph for relational model structureM and perspectiveB ∈ E∪R follows
three simple steps: (1) Add a node for all relational variables from perspective B.6 (2) Insert
edges for the direct causes of every relational variable by translating the dependencies in D
using extend. (3) For each pair of potentially intersecting relational variables, create a new
node that inherits the direct causes and effects from both participating relational variables
in the intersection. Then, to answer queries of the form “Are X and Y d -separated by

18

Independence in Models of Relational Data

Z?” simply (1) augment X, Y, and Z with their corresponding intersection variables that
they subsume and (2) apply the rules of d -separation on the abstract ground graph for
the common perspective of X, Y, and Z. Since abstract ground graphs are defined from
a specific perspective, every relational model produces a set of abstract ground graphs, one
for each perspective in its underlying schema.

Example 5.1 Figure 5.1 shows the abstract ground graph AGGM,Employee for the or-
ganization example from the Employee perspective with hop threshold h = 6.7 As in
Section 2, we derive an appropriate conditioning set Z in order to d -separate individual em-
ployee competence (X = {[Employee].Competence}) from the revenue of the employee’s
funding business units (Y = {[Employee, Develops, Product, Funds, Business-
Unit].Revenue}). Applying the rules of d -separation to the abstract ground graph, we
see that it is necessary to condition on both product success ([Employee, Develops,
Product].Success) and the competence of other employees developing the same products
([Employee, Develops, Product, Develops, Employee].Competence). For h = 6,
augmenting X, Y, and Z with their corresponding intersection variables does not result
in any changes. For h = 8, the abstract ground graph includes a node for relational vari-
able [Employee, Develops, Product, Develops, Employee, Develops, Product,
Funds, Business-Unit].Revenue (the revenue of the business units funding the other prod-
ucts of collaborating employees) which, by Lemma 4.1, could have a non-empty intersection
with [Employee, Develops, Product, Funds, Business-Unit].Revenue. Therefore, Y
would also include the intersection with this other relational variable. However, for this
query, the conditioning set Z for h = 6 happens to also d -separate at h = 8 (and any
h ∈ N0). �

Using the algorithm devised by Geiger et al. (1990), relational d -separation queries can
be answered in O(|E|) time with respect to the number of edges in the abstract ground
graph. In practice, the size of an abstract ground graph depends on the relational schema
and model (e.g., the number of entity classes, the types of cardinalities, the number of
dependencies—see the experiment in Section 7.1), as well as the hop threshold limiting the
length of relational paths. For the example in Figure 5.1, the abstract ground graph has 7
nodes and 7 edges (including 1 intersection node with 2 edges); for h = 8, it would have 13
nodes and 21 edges (including 4 intersection nodes with 13 edges). Abstract ground graphs
are invariant to the size of ground graphs, even though ground graphs can be arbitrarily
large—that is, relational databases have no maximum size.

Next, we formally define the extend method, which is used internally for the construction
of abstract ground graphs. This method translates dependencies specified in the model into
dependencies in the abstract ground graph.

6. In theory, abstract ground graphs can have an infinite number of nodes as relational paths may have
no bound. In practice, a hop threshold h ∈ N0 is enforced to limit the length of these paths. Hops are
defined as the number of times the path “hops” between item classes in the schema, or one less than the
length of the path.

7. The variables Salary and Budget are removed for simplicity. They are irrelevant for this d-separation
example as they are solely effects of other variables.

19

Maier, Marazopoulou, and Jensen

[EMPLOYEE].Competence [EMPLOYEE, DEVELOPS, PRODUCT].Success [EMPLOYEE, DEVELOPS, PRODUCT, FUNDS, BUSINESS-UNIT].Revenue

[EMPLOYEE, DEVELOPS, PRODUCT, FUNDS, BUSINESS-UNIT, FUNDS, PRODUCT].Success

[EMPLOYEE, DEVELOPS, PRODUCT, DEVELOPS, EMPLOYEE, DEVELOPS, PRODUCT].Success

[EMPLOYEE, DEVELOPS, PRODUCT, DEVELOPS, EMPLOYEE].Competence

[EMPLOYEE, DEVELOPS, PRODUCT, DEVELOPS, EMPLOYEE, DEVELOPS, PRODUCT].Success

�

[EMPLOYEE, DEVELOPS, PRODUCT, FUNDS, BUSINESS-UNIT, FUNDS, PRODUCT].Success

Figure 5.1: The abstract ground graph for the organization domain model in Figure 2.2(a)
from the Employee perspective with hop threshold h = 6 (with the variables for Salary
and Budget omitted for simplicity). This abstract ground graph includes one intersection
node.

Definition 5.3 (Extending relational paths) Let Porig and Pext be two relational paths
for schema S. The following three functions extend Porig with Pext :

extend(Porig , Pext) =
{
P =P 1,no−i+1

orig +P i+1,ne
ext | i∈pivots(reverse(Porig), Pext) ∧ isValid(P)

}

pivots(P1, P2) = {i | P 1,i
1 = P 1,i

2 }

isValid(P) =

{
True if P does not violate Definition 4.3
False otherwise

where no is the length of Porig , ne is the length of Pext , P
i,j corresponds to 1-based i-

inclusive, j-inclusive subpath indexing, + is concatenation of paths, and reverse is a method
that reverses the order of the path.

The extend method constructs a set of valid relational paths from two input relational
paths. It first finds the indices (called pivots) of the item classes for which the input paths
(reverse(Porig) and Pext) have a common starting subpath. Then, it concatenates the two
input paths at each pivot, removing one of the duplicated subpaths (see Example 5.2). Since
d -separation requires blocking all paths of dependence between two sets of variables, the
extend method is critical to ensure the soundness and completeness of our approach. The
abstract ground graph must capture all paths of dependence among the random variables
in the relational variable instances for all represented ground graphs. However, relational
model structures are specified by relational dependencies, each from a given perspective and
with outcomes that have singleton relational paths. The extend method is called repeatedly
during the creation of an abstract ground graph, with Porig set to some relational path and
Pext drawn from the relational path of the treatment in some relational dependency.

Example 5.2 During the construction of the abstract ground graph AGGM,Employee de-
picted in Figure 5.1, the extend method is called several times. First, all relational variables

20

Independence in Models of Relational Data

from the Employee perspective are added as nodes in the graph. Next, extend is used to
insert edges corresponding to direct causes. Consider the node for [Employee, Devel-
ops, Product].Success. The construction of AGGM,Employee calls extend(Porig , Pext)
with Porig = [Employee, Develops, Product] and Pext = [Product, Develops, Em-
ployee] because [Product, Develops, Employee].Competence→ [Product].Success∈
D. Here, extend(Porig , Pext) = {[Employee], [Employee, Develops, Product, Devel-
ops, Employee]}, which leads to the insertion of two edges in the abstract ground graph.
Note that pivots(reverse(Porig), Pext) = {1, 2, 3}, and the pivot at i = 2 yields the invalid
relational path [Employee, Develops, Employee]. �

We also describe two important properties of the extend method with the following two
lemmas. The first lemma states that every relational path produced by extend yields a
terminal set for some skeleton such that there is an item instance also reachable by the two
original paths. This lemma is useful for proving the soundness of our abstraction: All edges
inserted in an abstract ground graph correspond to edges in some ground graph.

Lemma 5.1 Let Porig = [I1, . . . , Ij] and Pext = [Ij , . . . , Ik] be two relational paths with
P = extend(Porig , Pext). Then, ∀P ∈ P there exists a relational skeleton σ ∈ ΣS such that
∃i1 ∈ σ(I1) such that ∃ik ∈ P |i1 and ∃ij ∈ Porig |i1 such that ik ∈ Pext |ij .

Proof. See Appendix A.

Example 5.3 Let σ be the skeleton shown in Figure 2.1(b), let Porig = [Employee,
Develops, Product], let Pext = [Product, Develops, Employee], and let i1 =
Sally ∈ σ(Employee). From Example 5.2, we know that P = extend(Porig , Pext) =
{[Employee], [Employee, Develops, Product, Develops, Employee]}. We also
have [Employee]|Sally = {Sally} and [Employee, Develops, Product, Develops, Em-
ployee]|Sally = {Quinn, Roger, Thomas}. By Lemma 5.1, there should exist an ij ∈ Porig |i1
such that Sally and at least one of Quinn, Roger, and Thomas are in the terminal set
Pext |ij . We have Porig |Sally = {Laptop, Tablet}, and Pext |Laptop = {Quinn, Roger, Sally}
and Pext |Tablet = {Sally, Thomas}. So, the lemma clearly holds for this example. �

Lemma 5.1 guarantees that, for some relational skeleton, there exists an item instance
in the terminal sets produced by extend that also appears in the terminal set of Pext via
some instance in the terminal set of Porig . It is also possible (although infrequent) that
there exist items reachable by Porig and Pext that are not in the terminal set of any path
produced with extend(Porig , Pext). The following lemma describes this unreachable set of
items, stating that there must exist an alternative relational path P ′orig that intersects with
Porig and, when using extend, catches those remaining items. This lemma is important for
proving the completeness of our abstraction: All edges in all ground graphs are represented
in the abstract ground graph.

Lemma 5.2 Let σ ∈ ΣS be a relational skeleton, and let Porig = [I1, . . . , Ij] and Pext =
[Ij , . . . , Ik] be two relational paths with P = extend(Porig , Pext). Then, ∀i1 ∈ σ(I1) ∀ij ∈
Porig |i1 ∀ik ∈Pext |ij if ∀P ∈ P ik /∈ P |i1, then ∃P ′orig such that Porig |i1 ∩ P ′orig |i1 6= ∅ and
ik ∈ P ′|i1 for some P ′ ∈ extend(P ′orig , Pext).

21

Maier, Marazopoulou, and Jensen

Proof. See Appendix A.

Example 5.4 Although Lemma 5.2 does not apply to the organization domain as cur-
rently represented, it could apply if either (1) there were cycles in the relational schema
or (2) the path specifications on the relational dependencies included a cycle. Consider
additional relationships between employees and products. If employees could be involved
with products at various stages (e.g., research, development, testing, marketing), then there
would be alternative relational paths for which the lemma might apply. The proof of the
lemma in Appendix A provides abstract conditions describing when the lemma applies. �

5.2 Proof of Correctness

The correctness of our approach to relational d -separation relies on several facts: (1) d -
separation is valid for directed acyclic graphs; (2) ground graphs are directed acyclic graphs;
and (3) abstract ground graphs are directed acyclic graphs that represent exactly the edges
that could appear in all possible ground graphs. It follows that d -separation on abstract
ground graphs, augmented by intersection variables, is sound and complete for all ground
graphs.8 Additionally, we show that since relational d -separation is sound and complete,
it is also equivalent to the Markov condition for relational models. Using the previous
definitions and lemmas, the following sequence of results proves the correctness of our
approach to identifying independence in relational models.

Theorem 5.1 The rules of d-separation are sound and complete for directed acyclic graphs.

Proof. Due to Verma and Pearl (1988) for soundness and Geiger and Pearl (1988) for
completeness. �

Theorem 5.1 implies that (1) all conditional independence facts derived by d -separation
on a Bayesian network structure hold in any distribution represented by that model (sound-
ness) and (2) all conditional independence facts that hold in a faithful distribution can be
inferred from d -separation applied to the Bayesian network that encodes the distribution
(completeness).

Lemma 5.3 For every acyclic relational model structure M and skeleton σ ∈ ΣS , the
ground graph GGMσ is a directed acyclic graph.

Proof. Due to both Heckerman et al. (2007) for DAPER models and Getoor (2001) for
PRMs. �

By Theorem 5.1 and Lemma 5.3, d -separation is sound and complete when applied to a
ground graph. However, Definition 5.1 states that relational d -separation must hold across
all possible ground graphs, which is the reason for constructing the abstract ground graph
representation.

8. In Appendix E, we provide proofs of soundness and completeness for abstract ground graphs and rela-
tional d-separation that are limited by practical hop threshold bounds.

22

Independence in Models of Relational Data

Theorem 5.2 For every acyclic relational model structure M and perspective B ∈ E ∪ R,
the abstract ground graph AGGMB is sound and complete for all ground graphs GGMσ with
skeleton σ ∈ ΣS .

Proof. See Appendix A.

Theorem 5.2 guarantees that, for a given perspective, an abstract ground graph captures
all possible paths of dependence between any pair of variables in any ground graph. The
details of the proof provide the reasons why explicitly representing intersection variables is
necessary for ensuring a sound and complete abstraction.

Theorem 5.3 For every acyclic relational model structure M and perspective B ∈ E ∪ R,
the abstract ground graph AGGMB is directed and acyclic.

Proof. See Appendix A.

Theorem 5.3 ensures that the standard rules of d -separation can apply directly to ab-
stract ground graphs because they are acyclic given an acyclic model. We now have suf-
ficient supporting theory to prove that d -separation on abstract ground graphs is sound
and complete. In the following theorem, we define W̄ as the set of nodes augmented
with their corresponding intersection nodes for the set of relational variables W: W̄ =
W ∪ ⋃W∈W{W ∩W ′ | W ∩W ′ is an intersection node in AGGMB}.

Theorem 5.4 Relational d-separation is sound and complete for abstract ground graphs.
Let M be an acyclic relational model structure, and let X, Y, and Z be three distinct sets
of relational variables for perspective B ∈ E ∪ R defined over relational schema S. Then,
X̄ and Ȳ are d-separated by Z̄ on the abstract ground graph AGGMB if and only if for all
skeletons σ ∈ ΣS and for all b ∈ σ(B), X|b and Y|b are d-separated by Z|b in ground graph
GGMσ.

Proof. We must show that d -separation on an abstract ground graph implies d -separation
on all ground graphs it represents (soundness) and that d -separation facts that hold across
all ground graphs are also entailed by d -separation on the abstract ground graph (com-
pleteness).

Soundness: Assume that X̄ and Ȳ are d -separated by Z̄ on AGGMB. Assume for
contradiction that there exists an item instance b ∈ σ(B) such that X|b and Y|b are not
d -separated by Z|b in the ground graph GGMσ for some arbitrary skeleton σ. Then, there
must exist a d -connecting path p from some x ∈ X|b to some y ∈ Y|b given all z ∈ Z|b.
By Theorem 5.2, AGGMB is complete, so all edges in GGMσ are captured by edges in
AGGMB. So, path p must be represented from some node in {Nx | x ∈ Nx|b} to some node
in {Ny | y ∈ Ny|b}, where Nx, Ny are nodes in AGGMB. If p is d -connecting in GGMσ,
then it is d -connecting in AGGMB, implying that X̄ and Ȳ are not d -separated by Z̄. So,
X|b and Y|b must be d -separated by Z|b.

Completeness: Assume that X|b and Y|b are d -separated by Z|b in the ground graph
GGMσ for all skeletons σ for all b ∈ σ(B). Assume for contradiction that X̄ and Ȳ are
not d -separated by Z̄ on AGGMB. Then, there must exist a d -connecting path p for some

23

Maier, Marazopoulou, and Jensen

relational variable X ∈ X̄ to some Y ∈ Ȳ given all Z ∈ Z̄. By Theorem 5.2, AGGMB is
sound, so every edge in AGGMB must correspond to some pair of variables in some ground
graph. So, if p is d -connecting in AGGMB, then there must exist some skeleton σ such that
p is d -connecting in GGMσ for some b ∈ σ(B), implying that d -separation does not hold
for that ground graph. So, X̄ and Ȳ must be d -separated by Z̄ on AGGMB. �

Theorem 5.4 proves that d -separation on abstract ground graphs is a sound and complete
solution to identifying independence in relational models. Theorem 5.1 also implies that
the set of conditional independence facts derived from abstract ground graphs is exactly
the same as the set of conditional independencies that all distributions represented by all
possible ground graphs have in common.

Corollary 5.1 X̄ and Ȳ are d-connected given Z̄ on the abstract ground graph AGGMB

if and only if there exists a skeleton σ ∈ ΣS and an item instance b ∈ σ(B) such that X|b
and Y|b are d-connected given Z|b in ground graph GGMσ.

Corollary 5.1 is logically equivalent to Theorem 5.4. While a simple restatement of
the previous theorem, it is important to emphasize that relational d -separation claims d -
connection if and only if there exists a ground graph for which X|b and Y |b are d -connected
given Z|b. This implies that there may be some ground graphs for which X|b and Y |b are
d -separated by Z|b, but the abstract ground graph still claims d -connection. This may
happen if the relational skeleton does not enable certain underlying relational connections.
For example, if the relational skeleton in Figure 2.1(b) included only products that were
developed by a single employee, then there would be no relationally d -connecting path in
the example in Section 2. If this is a fundamental property of the domain (e.g., there are
products developed by a single employee and products developed by multiple employees),
then revising the underlying schema to include two different classes of products would yield
a more accurate model implying a larger set of conditional independencies.

Additionally, we can show that relational d -separation is equivalent to the Markov
condition on relational models.

Definition 5.4 (Relational Markov condition) Let X be a relational variable for per-
spective B ∈ E ∪ R defined over relational schema S. Let nd(X) be the non-descendant
variables of X, and let pa(X) be the set of parent variables of X. Then, for relational model
MΘ, P

(
X | nd(X), pa(X)

)
= P

(
X | pa(X)

)
if and only if ∀x∈X|b P

(
x | nd(x), pa(x)

)
=

P
(
x | pa(x)

)
in parameterized ground graph GGMΘσ for all skeletons σ ∈ ΣS and for all

b ∈ σ(B).

In other words, a relational variable X is independent of its non-descendants given its
parents if and only if, for all possible parameterized ground graphs, the Markov condition
holds for all instances of X. For Bayesian networks, the Markov condition is equivalent
to d -separation (Neapolitan, 2004). Because parameterized ground graphs are Bayesian
networks (implied by Lemma 5.3) and relational d -separation on abstract ground graphs
is sound and complete (by Theorem 5.4), we can conclude that relational d -separation is
equivalent to the relational Markov condition.

24

Independence in Models of Relational Data

6. Näıve Relational d-Separation Is Frequently Incorrect

If the rules of d -separation for Bayesian networks were applied directly to the structure
of relational models, how frequently would the conditional independence conclusions be
correct? In this section, we evaluate the necessity of our approach—relational d -separation
executed on abstract ground graphs. We empirically compare the consistency of a näıve
approach against our sound and complete solution over a large space of synthetic causal
models. To promote a fair comparison, we restrict the space of relational models to those
with underlying dependencies that could feasibly be represented and recovered by a näıve
approach. We describe this space of models, present a reasonable approach for applying
traditional d -separation to the structure of relational models, and quantify its decrease in
expressive power and accuracy.

Consider the following limited definition of relational paths, which itself limits the space
of models and conditional independence queries. A simple relational path P = [Ij , . . . , Ik]
for relational schema S is a relational path such that Ij 6= · · · 6= Ik. The sole difference
between relational paths (Definition 4.3) and simple relational paths is that no item class
may appear more than once along the latter. This yields paths drawn directly from a
schema diagram. For the example in Figure 2.1(a), [Employee, Develops, Product] is
simple whereas [Employee, Develops, Product, Develops, Employee] is not.

Additionally, we define simple relational schemas such that, for any two item classes
Ij , Ik ∈ E ∪ R, there exists at most one simple relational path between them (i.e., no
cycles occur in the schema diagram). The example in Figure 2.1(a) is a simple relational
schema. The restriction to simple relational paths and schemas yields similar definitions
for simple relational variables, simple relational dependencies, and simple relational models.
The relational model in Figure 2.2(a) is simple because it includes only simple relational
dependencies.

A first approximation to relational d -separation would be to apply the rules of tra-
ditional d -separation directly to the graphical representation of relational models. This is
equivalent to applying d -separation to the class dependency graph GM (see Definition 4.10)
of relational modelM. The class dependency graph for the model in Figure 2.2(a) is shown
in Figure 6.1(a). Note that the class dependency graph ignores path designators on de-
pendencies, does not include all implications of dependencies among arbitrary relational
variables, and does not represent intersection variables.

Although the class dependency graph is independent of perspectives, testing any condi-
tional independence fact requires choosing a perspective. All relational variables must have
a common base item class; otherwise, no method can produce a single consistent, proposi-
tional table from a relational database. For example, consider the construction of a table
describing employees with columns for their salary, the success of products they develop, and
the revenue of the business units they operate under. This procedure requires joining the
instances of three relational variables ([Employee].Salary, [Employee, Develops, Prod-
uct].Success, and [Employee, Develops, Product, Funds, Business-Unit].Revenue)
for every common base item instance, from Paul to Thomas. See, for example, the resulting
propositional table for these relational variables and an example query in Table D.1 and
Figure D.2, respectively. An individual relational variable requires joining the item classes
within its relational path, but combining a collection of relational variables requires joining

25

Maier, Marazopoulou, and Jensen

EMPLOYEE .Competence PRODUCT.Success BUSINESS-UNIT.Revenue

EMPLOYEE. Salary BUSINESS-UNIT.Budget

(a)

[EMPLOYEE].Competence [EMPLOYEE, DEVELOPS, PRODUCT].Success [EMPLOYEE, DEVELOPS, PRODUCT, FUNDS, BUSINESS-UNIT].Revenue

[EMPLOYEE, DEVELOPS, PRODUCT, FUNDS, BUSINESS-UNIT].Budget[EMPLOYEE].Salary

[PRODUCT, DEVELOPS, EMPLOYEE].Competence [PRODUCT].Success [PRODUCT, FUNDS, BUSINESS-UNIT].Revenue

[PRODUCT, FUNDS, BUSINESS-UNIT].Budget[PRODUCT, DEVELOPS, EMPLOYEE].Salary

[BUSINESS-UNIT, FUNDS, PRODUCT, DEVELOPS, EMPLOYEE].Competence [BUSINESS-UNIT, FUNDS, PRODUCT].Success [BUSINESS-UNIT].Revenue

[BUSINESS-UNIT].Budget[BUSINESS-UNIT, FUNDS, PRODUCT, DEVELOPS, EMPLOYEE].Salary

(b)

Figure 6.1: For the model in Figure 2.2(a), (a) the class dependency graph and (b) three
simple abstract ground graphs for the Employee, Product, and Business-Unit perspec-
tives.

on their common base item class. Fortunately, given a perspective and the space of simple
relational schemas and models, a class dependency graph is equivalent to a simple abstract
ground graph.

Definition 6.1 (Simple abstract ground graph) For simple relational model M =
(S,D) and perspective B ∈ E∪R, the simple abstract ground graph AGGsMB is the directed
acyclic graph (V,E) that abstracts the dependencies D among simple relational variables.
The nodes consist of simple relational variables

{
[B, . . . , Ij].X | B 6= · · · 6= Ij

}
, and the

edges connect those nodes
{

[B, . . . , Ik].Y → [B, . . . , Ij].X | [Ij , . . . , Ik].Y → [Ij].X ∈ D ∧
[B, . . . , Ik] ∈ extend([B, . . . , Ij], [Ij , . . . , Ik]) ∧ [B, . . . , Ik].Y, [B, . . . , Ij].X ∈ V

}
.

Simple abstract ground graphs only include nodes for simple relational variables and
necessarily exclude intersection variables. Lemma 4.1—which characterizes the intersection
between a pair of relational paths—only applies to pairs of simple relational paths if the
schema contains cycles, which is not the case for simple relational schemas by definition.
As a result, the simple abstract ground graph for a given schema and model contains the
same number of nodes and edges, regardless of perspective; the nodes simply have path
designators redefined from the given perspective. Figure 6.1(b) shows three simple abstract
ground graphs from distinct perspectives for the model in Figure 2.2(a). As noted above,
simple abstract ground graphs are qualitatively the same as the class dependency graph, but
they enable answering relational d -separation queries, which requires a common perspective
in order to be semantically meaningful.

The näıve approach to relational d -separation derives conditional independence facts
from simple abstract ground graphs (Definition 6.1). The sound and complete approach

26

Independence in Models of Relational Data

described in this paper applies d -separation—with input variable sets augmented by their
intersection variables—to “regular” abstract ground graphs, as described by Definition 5.2.
Clearly, if d -separation on a simple abstract ground graph claims that X is d -separated
from Y given Z, then d -separation on the regular abstract ground graph yields the same
conclusion if and only if there are no d -connecting paths in the regular abstract ground
graph. Either X and Y can be d -separated by a set of simple relational variables Z, or
they require non-simple relational variables—those involving relational paths with repeated
item classes.9

To evaluate the necessity of regular abstract ground graphs (i.e., the additional paths
involving non-simple relational variables and intersection variables), we compared the fre-
quency of equivalence between the conclusions of d -separation on simple and regular ab-
stract ground graphs. The two approaches are only equivalent if a minimal separating set
consists entirely of simple relational variables.10

Thus, for an arbitrary pair of relational variables X and Y with a common perspective,
we test the following on regular abstract ground graphs:

1. Is either X or Y a non-simple relational variable?

2. Are X and Y marginally independent?

3. Does a minimal separating set Z d -separate X and Y, where Z consists solely of simple
relational variables?

4. Is there any separating set Z that d -separates X and Y ?

If the answer to (1) is yes, then the näıve approach cannot apply since either X or Y
is undefined for the simple abstract ground graph. If the answer to (2) is yes, then there
is equivalence; this is a trivial case because there are no d -connecting paths for Z = ∅. If
the answer to (3) is yes, then there is a minimal separating set Z consisting of only simple
relational variables. In this case, the simple abstract ground graph is sufficient, and we also
have equivalence. If the answer to (4) is no, then no separating set Z, simple or otherwise,
renders X and Y conditionally independent.

We randomly generated simple relational schemas and models for 100 trials for each
setting using the following parameters:

• Number of entity classes, ranging from 1 to 4.

• Number of relationship classes, fixed at one less than the number of entities, ensuring
simple, connected relational schemas. Relationship cardinalities are chosen uniformly
at random.

• Number of attributes for each entity and relationship class, randomly drawn from a
shifted Poisson distribution with λ = 1.0 (∼ Pois(1.0) + 1).

• Number of dependencies in the model, ranging from 1 to 10.

9. The theoretical conditions under which equivalence occurs are sufficiently complex that they provide
little utility as they essentially require reconstructing the regular abstract ground graph and checking a
potentially exponential number of dependency paths.

10. If X and Y are d-separated given Z, then Z is a separating set for X and Y. A separating set Z is
minimal if there is no proper subset of Z that is also a separating set.

27

Maier, Marazopoulou, and Jensen

5 10 1 5 10 1 5 10 1 5 10
1 2 3 4

Dependencies:
Entities:

0
0.
5

1

Fr
eq

ue
nc

y
of

eq
ui
va
le
nc
e

UNREPRESENTABLE (56%) REPRESENTABLE (44%)

MARGINALLY INDEPENDENT (82%)
COND.

IND.
(9%)

DEP.
(9%)

Figure 6.2: The majority (56%) of generated relational d -separation queries are not repre-
sentable with the näıve approach. Of the 44% that are representable (involving only simple
relational variables), 82% are marginally independent and 9% are dependent. Pairs of re-
lational variables in the remaining 9% are conditionally independent given a non-empty
separating set (X ⊥⊥ Y | Z, where Z 6= ∅). We test whether the conditioning set consists
solely of simple relational variables. If so, then the näıve approach to relational d -separation
is equivalent to d -separation on fully specified abstract ground graphs. This graph plots the
frequency of equivalence across schemas with increasing numbers of entity classes (1–4) for
varying numbers of dependencies (1–10). For schemas with more than one entity class, the
frequency of equivalence decreases as the number of dependencies increases. Shown with
95% confidence intervals.

Then, for all pairs of relational variables with a common perspective limited by a hop
threshold of h = 4, we ran the aforementioned tests against the regular abstract ground
graph, limiting its relational variables by a hop threshold of h = 8 (a sufficient hop threshold
for soundness and completeness—see Appendix E).

This procedure generated a total of almost 3.6 million pairs of relational variables to test.
Approximately 56% included a non-simple relational variable; the näıve approach cannot
be used to derive a conditional independence statement in these cases, requiring the full
abstract ground graph in order to represent these variables. Of the remaining 44% (roughly
1.6 million), 82% were marginally independent, and 9% were not conditionally independent
given any conditioning set Z. Then, of the remaining 9% (roughly 145,000), we can test
the frequency of equivalence for conditional independence facts with non-empty separating

28

Independence in Models of Relational Data

sets—the proportion of cases for which only simple relational variables are required in a
minimal separating set Z.

Figure 6.2 shows this frequency for schemas of increasing numbers of entity classes
(1–4) for varying numbers of dependencies in the causal model (1–10). Since relational
schemas with a single entity class and no relationships describe propositional data, the
simple abstract ground graph is equivalent to the full abstract ground graph, which is also
equivalent to the model itself. In this case, the näıve approach is always equivalent because it
is exactly d -separation on Bayesian networks. For truly relational schemas (with more than
one entity class and at least one relationship class), the frequency of equivalence decreases
as the number of dependencies in the model increases. Additionally, the frequency of
equivalence decreases more as the number of entities in the schema increases. For example,
the frequency of equivalence for nine dependencies is 60.3% for two entities, 51.2% for three
entities, and 43.2% for four entities.

We also learned statistical models that predict the number of equivalent and non-
equivalent statements in order to identify key factors that affect the frequency of equivalence.
We found that the number of dependencies and size of the relational model (regulated by
the number of entities and many cardinalities) dictate the equivalence. As a relational
model deviates from a Bayesian network, we should expect more d -connecting paths in the
regular but not simple abstract ground graph. This property also depends on the specific
combination of dependencies in the model. Appendix F presents details of this analysis.

This experiment suggests that applying traditional d -separation directly to a relational
model structure will frequently derive incorrect conditional independence facts. Addition-
ally, there is a large class of conditional independence queries involving non-simple variables
for which such an approach is undefined. These results indicate that fully specifying ab-
stract ground graphs and applying d -separation augmented with intersection variables (as
described in Section 5) is critical for accurately deriving most conditional independence
facts from relational models.

7. Experiments

To complement the theoretical results, we present three experiments on synthetic data. The
primary goal of these empirical results is to demonstrate the feasibility of applying relational
d -separation in practice. The experiment in Section 7.1 describes the factors that influence
the size of abstract ground graphs and thus the computational complexity of relational
d -separation. The experiment in Section 7.2 evaluates the growth rate of separating sets
produced by relational d -separation as abstract ground graphs become large. The results
indicate that minimal separating sets grow much more slowly than abstract ground graphs.
The experiment in Section 7.3 tests how the expectations of the relational d -separation
theory match statistical conclusions on simulated data. As expected from the proofs of
correctness in Section 5.2, the results indicate a close match, aside from Type I errors and
certain biases of conventional statistical tests on relational data.

7.1 Abstract Ground Graph Size

Relational d -separation is executed on abstract ground graphs. Consequently, it is impor-
tant to quantify the size of abstract ground graphs and identify which factors influence their

29

Maier, Marazopoulou, and Jensen

0 2 4 6 8

0
10
00

20
00

30
00

40
00

Number of cardinalities

A
bs

tra
ct

 g
ro

un
d

gr
ap

h
si

ze
Nodes (ent. persp.)
Edges (ent. persp.)
Nodes (rel. persp.)
Edges (rel. persp.)

MANY

(a)

2 4 6 8 10 12 14

0
20
0

40
0

60
0

80
0

10
00

Number of dependencies

A
bs

tra
ct

 g
ro

un
d

gr
ap

h
si

ze
(b)

Figure 7.1: Variation of abstract ground graph size as (a) the number of many cardinalities
in the schema increases (dependencies fixed at 10) and (b) the number of dependencies
increases. Shown with 95% confidence intervals.

size. We randomly generated relational schemas and models for 1,000 trials of each setting
using the following parameters:

• Number of entity classes, ranging from 1 to 4.

• Number of relationship classes, ranging from 0 to 4. The schema is guaranteed to be
fully connected and includes at most a single relationship between a pair of entities.
Relationship cardinalities are selected uniformly at random.

• Number of attributes for each entity and relationship class, randomly drawn from a
shifted Poisson distribution with λ = 1.0 (∼ Pois(1.0) + 1).

• Number of dependencies in the model, ranging from 1 to 15.

This procedure generated a total of 450,000 abstract ground graphs, which included
every perspective (all entity and relationship classes) for each experimental combination.
We measure size as the number of nodes and edges in a given abstract ground graph.
Figure 7.1(a) depicts how the size of abstract ground graphs varies with respect to the
number of many cardinalities in the schema (fixed for models with 10 dependencies), and
Figure 7.1(b) shows how it varies with respect to the number of dependencies in the model.
Recall that for a single entity, abstract ground graphs are equivalent to Bayesian networks.

To determine the most influential factors of abstract ground graph size, we ran log-linear
regression using independent variables that describe only the schema and model. Detailed
results are provided in Appendix G. This analysis indicates that (1) as the number of entities,
relationships, attributes, and many cardinalities increases, the number of nodes and edges
grows at an exponential rate. (2) As the number of dependencies in the model increases,

30

Independence in Models of Relational Data

5 10 1 5 10 1 5 10 1 5 10
1 2 3 4

Dependencies:
Entities:

0
5

10

S
iz

e
of

 m
in

im
al

se
pa

ra
tin

g
se

t 1.0

0.0

0.5

0.6 0.8 1.0 1.2 1.4

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

rep(1, 101)

f

Figure 7.2: Minimal separating sets have reasonable sizes, growing only with the size of the
schema and the model density. In this experiment, 99.9% of variable pairs have a minimal
separating set with five or fewer variables.

the number of edges increases linearly, but the number of nodes remains invariant. And
(3) abstract ground graphs for relationship perspectives are larger than entity perspectives
because more relational variables can be defined.

7.2 Minimal Separating Set Size

Because abstract ground graphs can become large, one might expect that separating sets
could also grow to impractical sizes. Fortunately, relational d -separation produces minimal
separating sets that are empirically observed to be small. We ran 1,000 trials of each setting
using the following parameters:

• Number of entity classes, ranging from 1 to 4.

• Number of relationship classes, fixed at one less than the number of entities. Rela-
tionship cardinalities are selected uniformly at random.

• Total number of attributes across entity and relationship classes, fixed at 10.

• Number of dependencies in the model, ranging from 1 to 10.

For each relational model, we identified a single minimal separating set for up to 100 ran-
domly chosen pairs of conditionally independent relational variables. This procedure gen-
erated almost 2.5 million pairs of variables.

To identify a minimal separating set between relational variables X and Y, we modified
Algorithm 4 devised by Tian et al. (1998) by starting with all parents of X̄ and Ȳ, the vari-
ables augmented with the intersection variables they subsume in the abstract ground graph.
While the discovered separating sets are minimal, they are not necessarily of minimum size
because of the greedy process for removing conditioning variables from the separating set.
Figure 7.2 shows the frequency of separating set size as both the number of entities and
dependencies vary. In summation, roughly 83% of the pairs are marginally independent
(having empty separating sets), 13% have separating sets of size one, and less than 0.1%
have separating sets with more than five variables. The experimental results indicate that
separating set size is strongly influenced by model density, primarily because the number
of potential d -connecting paths increases as the number of dependencies increases.

31

Maier, Marazopoulou, and Jensen

7.3 Empirical Validity

As a practical demonstration, we examined how the expectations of the relational d -
separation theory match the results of statistical tests on actual data. We use a standard
procedure for empirically measuring internal validity of algorithms. In this case, we (1) ran-
domly generate a relational schema, (2) randomly generate a relational model structure for
that schema, (3) parameterize the model structure, (4) generate synthetic data according
to the model structure and parameters, (5) randomly choose relational d -separation queries
according to the known ground-truth model, and (6) compare the model theory (i.e., the d -
separation conclusions) against corresponding statistical tests of conditional independence.

For steps (1) and (2), we randomly generated a relational schema S and relational model
structure M for S for 100 trials using the following settings:

• Number of entity classes, ranging from 1 to 4.

• Number of relationship classes, fixed at one less than the number of entities. Rela-
tionship cardinalities are selected uniformly at random.

• Number of attributes for each entity and relationship class, randomly drawn from a
shifted Poisson distribution with λ = 1.0 (∼ Pois(1.0) + 1).

• Number of dependencies in the model, fixed at 10.

Dependencies were selected greedily, choosing each one uniformly at random, subject to a
maximum of 3 parent relational variables for each attribute [Ij].X and enforcing acyclicity
of the model structure.

For step (3), we parameterized relational models using simple additive linear equations
with independent, normally distributed error and the average aggregate for relational vari-
able instances. For each attribute [Ij].X, we assign a conditional probability distribution

∑

[Ij ,...,Ik].Y ∈parents([Ij].X)

(
β · avg([Ij , . . . , Ik].Y)

)
+ 0.1ε

if [Ij].X has parents, where

β =
0.9

|parents([Ij].X)|

to provide equal contribution for each direct cause and ε ∼ N(0, 1) (error drawn from a
standard normal distribution). If [Ij].X has no parents, its value is just drawn from ε.

For step (4), we first generated a relational skeleton σ (because the current model space
assumes that attributes do not cause entity or relationship existence) and then populated
each attribute value by drawing from its corresponding conditional distribution. Each entity
class is initialized to 1,000 instances. Relationship instances were constructed via a latent
homophily process, similar to the method used by Shalizi and Thomas (2011). Each entity
instance received a single latent variable, marginally independent from all other variables.
The probability of any relationship instance was drawn from

e−αd

1 + e−αd
,

the inverse logistic function, where d = |LE1 − LE2 |, the difference between the latent
variables on the two entities, and α = 10, set as the decay parameter. We also scaled

32

Independence in Models of Relational Data

1 entity 2 entities 3 entities 4 entities

D-SEPARATED QUERIES

0
0.
00
5

0.
05

0.
5

A
vg

. s
tre

ng
th

 o
f e

ffe
ct

1 entity 2 entities 3 entities 4 entities

D-CONNECTED QUERIES

0
0.
00
5

0.
05

0.
5

A
vg

. s
tre

ng
th

 o
f e

ffe
ct

1 entity 2 entities 3 entities 4 entities

D-SEPARATED QUERIES

0
0.
01

0.
05

0.
5

1

P
ro

po
rti

on
 s

ig
ni

fic
an

t

1 entity 2 entities 3 entities 4 entities

D-CONNECTED QUERIES

0
0.
01

0.
05

0.
5

1

P
ro

po
rti

on
 s

ig
ni

fic
an

t

Figure 7.3: The proportion of significant trials for statistical tests of conditional indepen-
dence on actual data. (Left) Evaluating queries that the model claims to be d -separated
produces low rates of significant effects. (Right) Queries that the model claims are d -
connected produce high rates of significant effects. Note that the generative process yields
denser models for 2 entity classes since the number of dependencies is fixed at 10.

the probabilities in order to produce an expected degree of five for each entity instance
when the cardinality of the relationship is many. Since the latent variables are marginally
independent of all others, they are safely omitted from abstract ground graphs; their sole
purpose is to generate relational skeletons that provide a greater probability of non-empty
intersection variables as opposed to a random underlying link structure. We generated
100 independent relational skeletons and attribute values (i.e., 100 instantiated relational
databases) for each schema and model.

Step (5) randomly chooses up to 100 true and false relational d -separation queries for a
given model.11 Since we have the ground-truth model, we can evaluate with our approach
(abstract ground graphs and relational d -separation) whether these queries are true (d -
separated) or false (d -connected). Each query is of the form X ⊥⊥ Y | Z such that X
and Y are single relational variables, Z is a set of relational variables, Y has a singleton
relational path (e.g., [Ik].Y), and all variables are from a common perspective. These queries
correspond to testing potential direct causal dependencies in the relational model, similar
to the tests used by constraint-based methods for learning relational models, such as RPC
(Maier et al., 2010) and RCD (Maier et al., 2013).

Finally, step (6) tests for conditional independence for all such 〈X,Y,Z〉 d -separation
queries using linear regression (because the models were parameterized linearly) for each
of the 100 data instantiations. Specifically, we tested the t-statistic for the coefficient of
avg(X) in the equation Y = β0 + β1 · avg(X) +

∑
Zi∈Z βi · avg(Zi). For each query, we

recorded two measurements:

• The average strength of effect, measured as squared partial correlation—the propor-
tion of remaining variance of Y explained by X after conditioning on Z

11. Depending on the properties of the schema and model, it may not always be feasible to identify 100 true
or false d-separation statements.

33

Maier, Marazopoulou, and Jensen

1 entity 2 entities 3 entities 4 entities

D-SEPARATED QUERIES

0
0.
00
5

0.
05

0.
5

A
vg

. s
tre

ng
th

 o
f e

ffe
ct

1 entity 2 entities 3 entities 4 entities

D-CONNECTED QUERIES

0
0.
00
5

0.
05

0.
5

A
vg

. s
tre

ng
th

 o
f e

ffe
ct

1 entity 2 entities 3 entities 4 entities

D-SEPARATED QUERIES

0
0.
01

0.
05

0.
5

1

P
ro

po
rti

on
 s

ig
ni

fic
an

t

1 entity 2 entities 3 entities 4 entities

D-CONNECTED QUERIES

0
0.
01

0.
05

0.
5

1

P
ro

po
rti

on
 s

ig
ni

fic
an

t

Figure 7.4: The average strength of effect of each query (measured as squared partial
correlation) on actual data. (Left) Evaluating queries that the model claims to be d -
separated or conditionally independent produces low average effect sizes. (Right) Queries
that the model claims are d -connected or dependent produce high average effect sizes.

• The proportion of trials for which each query was deemed significant at α = 0.01
adjusted using Bonferroni correction with the number of queries per trial

Figure 7.3 shows the distribution of the proportion of significant trials for both true (left)
and false queries (right) for varying numbers of entities. Figure 7.4 shows the corresponding
average strength of effects for true (left) and false (right) queries. The graph uses a standard
box-and-whisker plot with values greater or less than 1.5 times the inner quartile range—the
difference between the upper and lower quartiles—marked as outliers.

In the vast majority of cases, relational d -separation is consistent with tests on actual
data (i.e., most d -separated queries have low effect sizes and are rarely deemed significant,
whereas most d -connected queries have high effect sizes and are mostly deemed significant).
For approximately 23,000 true queries, 14.9% are significant in more than one trial, but most
are insubstantive, with only 2.2% having an average effect size greater than 0.01. There
are three potential reasons why a d -separation in theory may appear to be d -connected
in practice: (1) Type I error; (2) high power given a large sample size; or (3) bias. We
have discovered that a small number of cases exhibit an interaction between aggregation
and relational structure (i.e., degree or the cardinality of relational variable instances).
This interaction violates the identically distributed assumption of data instances, which
produces a biased estimate of effect size for simple linear regression. Linear regression does
not account for these interaction effects, suggesting the need for more accurate statistical
tests of conditional independence for relational data.

8. Model Assumptions and Related Work

The class of relational models considered in Section 4, while strictly more expressive than
Bayesian networks, has limitations in its current formalization. In this section, we highlight
these assumptions and discuss how related and future work could address them.

34

Independence in Models of Relational Data

Self-relationships: Self-relationships are relationship classes that involve the same entity
class more than once. Relational schemas, as defined in Definition 4.1, can express these
types of relationships. Only the definition of relational paths—which govern the space of
variables and dependencies—requires unique entity class names within [E,R,E] triples (see
condition (2) of Definition 4.3). However, a common procedure in entity-relationship model-
ing is to map entity names to unique role indicators within the context of a self-relationship,
such as manager/subordinate, friend1/friend2, or citing-paper/cited-paper (Ramakrishnan
and Gehrke, 2002). This approach does not duplicate entity instances in the skeleton or
ground graph; it only modifies their reference names within the relational path, requiring
extended semantics for terminal sets. Incorporating self-relationships is a straightforward
extension, but for simplicity, we omit this additional layer of complexity.

Relational autocorrelation: In contrast to self-relationships, relational autocorrelation
is a statistical dependency among the values of the same attribute class frequently found
in relational data sets (Jensen and Neville, 2002). Various models and learning algorithms
have been developed to capture these types of dependencies, such as RDNs (Neville and
Jensen, 2007), PBNs with an extended normal form (Schulte et al., 2012), and PRMs with
dependencies that follow guaranteed acyclic relationships (Getoor et al., 2007). Our for-
malism, and equivalently PRMs (without guaranteed acyclic relationships), can represent a
class of models for apparent autocorrelation. Any relational dependency that yields a com-
mon cause for grounded variables of the same attribute class—essentially any dependency
that crosses a many cardinality—produces relational autocorrelation. The only autocor-
relations not accounted for involve latent causes or those produced by temporal processes
(e.g., feedback).

Context-specific independence: Context-specific independence (CSI) introduces indepen-
dence of some variable and its parents, depending on the values of other variables. This can
be achieved within the specification of conditional probability distributions as if-then-else
statements of logical conditions, such as in DAPER models (Heckerman et al., 2007) or
RPMs (Russell and Norvig, 2010), encoded as regularities in conditional probability tables
(Boutilier et al., 1996), or with the recent graphical convention of gates (Minka and Winn,
2009). However, this introduces a notion of independence that cannot be inferred from
model structure via traditional d -separation. In fact, Boutilier et al. (1996) define an anal-
ogous approach based on d -separation of a manipulated Bayesian network through deletion
of vacuous dependencies given some context. Winn (2012) extends the rules of d -separation
to reason over the additional paths and their collective state introduced by gates. An al-
ternative and more general approach to encoding CSIs is to develop an ontology for which
(in)dependencies hold depending on the type of entity or relationship. PRMs with class
hierarchies allow a hierarchy of entity types where the dependency structure can vary de-
pending on the type (Getoor et al., 2000). Rules of inheritance derived from object-oriented
programming are used to define a coherent joint probability distribution. This aligns with
our formalism, as relational schemas can be viewed as an ontology defined at a particular
level. However, the semantics of d -separation under inheritance has not been developed
and is a profitable direction of future research.

Causes of entity and relationship existence: Without a generative model of relational
skeletons, the relational models are not truly generative as the skeleton must be generated
prior to the attributes. However, the same issue occurs for Bayesian networks: Relational

35

Maier, Marazopoulou, and Jensen

skeletons consist of disconnected entity instances, but the model does not specify how many
instances to create. There are relational models that attempt to learn and represent models
with unknown numbers of entity instances, such as Blog (Milch et al., 2005), or uncer-
tain relationship instances, such as PRMs with existence uncertainty (Getoor et al., 2002).
However, reasoning about the connection between conditional independence and existence
is an open problem. For relationship existence, selection bias (conditioning) occurs when
testing marginal dependence between variables across a particular relationship (Maier et al.,
2010). For entity existence, some researchers argue that existence cannot be represented
as a variable or predicate (Poole, 2007), while others represent them as predicates (Laskey,
2008). Therefore, we currently choose simple processes for generating skeletons, allowing
us to focus on relational models of attributes and leaving structural causes and effects as
future work.

Causal sufficiency : The relational models we consider assume that all common causes of
observed variables are also observed and included in the model—an assumption commonly
referred to as causal sufficiency. Many researchers have developed methods for learning
and inference by explicitly modeling unobserved variables—typically termed latent variable
models (Bishop, 1999)—or inferring the presence of latent entity classes—for example, la-
tent group models (Neville and Jensen, 2005). However, only ancestral graphs and acyclic
directed mixed graphs (ADMGs) do so in order to preserve an underlying conditional in-
dependence structure (Richardson and Spirtes, 2002; Richardson, 2009). These models
are paired with the theory of m-separation, which is a generalization of d -separation for
Bayesian networks. The generalization of ancestral graphs or ADMGs to relational mod-
els requires extensive theoretical exploration; therefore, we leave this as an important di-
rection for future work. Given that a primary motivation for d -separation is to support
constraint-based causal discovery, any relational extension to algorithms that learn causal
models without assuming causal sufficiency, such as FCI (Spirtes et al., 1995; Zhang, 2008),
its variants (Claassen and Heskes, 2011; Colombo et al., 2012), and BCCD (Claassen and
Heskes, 2012), would require such an extension to m-separation.

Temporal and cyclic models: Currently, the relational model is assumed to be acyclic
(with respect to the class dependency graph), and consequently, atemporal. Model-level
cycles typically result from temporal processes for which grounding across time would yield
an acyclic ground graph, such as in dynamic Bayesian networks (Dean and Kanazawa, 1989;
Murphy, 2002). However, cycles can also be due to temporal processes where the interac-
tion occurs at a faster rate than measurement. As a result, there has been considerable
attention devoted to models that explicitly encode cyclic dependencies, such as the work
by Spirtes (1995), Pearl and Dechter (1996), Richardson (1996), Dash (2005), Schmidt and
Murphy (2009), and Hyttinen et al. (2012). Our formalism currently prohibits any rela-
tional dependency that has a common attribute class for the cause and effect, regardless
of the relational path constraint. Relaxing this assumption would require either explicitly
modeling temporal dynamics or enabling feedback loops. We reserve temporal dynamics
and feedback as another important avenue for future research.

Despite these assumptions, our current work extends the notion of d -separation to a
much more expressive class of models than Bayesian networks. This work is a first step
toward deriving conditional independencies from expressive classes of models. Incorporating
existence, ontologies, temporal dynamics and feedback, and latent variables into our model

36

Independence in Models of Relational Data

is important future work, especially in the context of representing and learning causal
models of realistic domains.

9. Discussion

In this paper, we extend the theory of d -separation to graphical models of relational data.
We present the abstract ground graph, a new representation that is sound and complete in
its abstraction of dependencies across all possible ground graphs of a given relational model.
We formally define relational d -separation and offer a sound, complete, and computation-
ally efficient approach to deriving conditional independence facts from relational models by
exploiting their abstract ground graphs. We also show that relational d -separation is equiv-
alent to the Markov condition for relational models. We provide an empirical analysis of
relational d -separation on synthetic data, demonstrating a close correspondence between the
theory and statistical results in practice. Finally, we evaluate how frequently the additional
complexity of abstract ground graphs proves necessary for accurately deriving conditional
independence facts.

The results of this paper imply potential flaws in the design and analysis of some real-
world studies. If researchers of social or economic systems choose inappropriate data and
model representations, then their analyses may omit important classes of dependencies.
Specifically, our theory implies that choosing a propositional representation from an in-
herently relational domain may lead to serious errors. An abstract ground graph from a
given perspective defines the exact set of variables that must be included in any propo-
sitionalization. The absence of any relational variable (including intersection variables)
may unnecessarily violate causal sufficiency, which could result in the inference of a causal
dependency where conditional independence was not detected. Our work indicates that
researchers should carefully consider how to represent their domains in order to accurately
reason about conditional independence.

The abstract ground graph representation also presents an opportunity to derive new
edge orientation rules for algorithms that learn the structure of relational models, such as
RPC (Maier et al., 2010) and RCD (Maier et al., 2013). There are unique orientations of
edges that are consistent with a given pattern of association that can only be recognized in
an abstract ground graph. For example, in contrast to bivariate IID data, it is simple to
establish the direction of causality for bivariate relational data. Consider the two bivariate,
two-entity relational models depicted in Figure 9.1(a). The first model implies that values
of X on A entities are caused by the values of Y on related B entities. The second model
implies the opposite, that values of Y on B entities are caused by the values of X on related
A entities. For simplicity, we show the relationship class only as a dashed line between
entity classes and omit it from relational paths.

Figure 9.1(b) illustrates a fragment of the abstract ground graph (for hop threshold h=4)
that each of the two relational models implies. As expected, the directions of the edges in
the two abstract ground graphs are counterposed. Both models produce observable statisti-
cal dependencies for relational variable pairs 〈[B].Y, [B,A].X〉 and 〈[B,A].X, [B,A,B].Y 〉.
However, the relational variables [B].Y and [B,A,B].Y have different observable statisti-
cal dependencies: In the first model, they are marginally independent and conditionally
dependent given [B,A].X, and in the second model, they are marginally dependent and

37

Maier, Marazopoulou, and Jensen

[A B].Y —> [A].X

A B

X Y

[B A].X —> [B].Y

A B

X Y

a1 b1

a2 b2

y1

y2

x1

x2

a1 b1

a2 b2

y1

y2

x1

x2

 [B].Y

 [B A B].Y

 [B A].X

 [B].Y

 [B A B].Y

 [B A].X

a1 b1

a2 b2

y1

y2

x1

x2

(a) (b) (c) (d)

Figure 9.1: (a) Two models of a bivariate relational domain with opposite directions of
causality for a single dependency (relationship class omitted for simplicity); (b) a single
dependency implies additional dependencies among arbitrary relational variables, shown
here in a fragment of the abstract ground graph forB’s perspective; (c) an example relational
skeleton; and (d) the ground graphs resulting from applying the relational model to the
skeleton.

conditionally independent given [B,A].X. As a result, we can uniquely determine the di-
rection of causality of the single dependence by exploiting relational structure. (There is
symmetric reasoning for relational variables from A’s perspective, and this result is also
applicable to one-to-many data.)

To illustrate this fact more concretely, consider the small relational skeleton shown in
Figure 9.1(c) and the ground graphs applied to this skeleton in Figure 9.1(d). In the first
ground graph, we have y1 ⊥⊥ y2 and y1 ⊥⊥/ y2 |x1, but in the second ground graph, we have
y1 ⊥⊥/ y2 and y1 ⊥⊥ y2 |x1. These opposing conditional independence relations uniquely
determine the correct causal model. In prior work, we formalized this idea as a new rule,
called relational bivariate orientation (RBO) (Maier et al., 2013), to orient dependencies in
a constraint-based causal discovery algorithm.

Deriving and formalizing the implications of relational d -separation is a main direction
of future research. Additionally, our experiments suggest that more accurate tests of con-
ditional independence for relational data need to be developed, specifically tests that can
address the interaction between relational structure and aggregation across terminal sets of
relational variables. This work has also focused solely on relational models of attributes;
future work should consider models of relationship and entity existence to fully characterize
generative models of relational structure. The theory could also be extended to incorporate
functional or deterministic dependencies, as D-separation extends d -separation for Bayesian
networks. Finally, the work on identifying causal effects in Bayesian networks could be ex-
tended to relational models. This may similarly require an extension of do-calculus to
consider the space of relational interventions, which may include adding or removing entity
or relationship instances, as well as fixing attribute values.

38

Independence in Models of Relational Data

Ij Ik

Im

In

P1

P2

ij ik

im

in

ij+1 ik-1

in+1

im+1im-1

in-1

σ

Figure A.1: Schematic of two relational paths P1 and P2 for which Lemma 4.1 guarantees
that some skeleton σ yields a non-empty intersection of their terminal sets. The exam-
ple depicts a possible constructed skeleton based on the procedure used in the proof of
Lemma 4.1.

Acknowledgments

The authors wish to thank Cindy Loiselle for her editing expertise. The authors also thank
the anonymous reviewers for their helpful comments, prompting us to create a much more
readable, precise, correct, and useful paper. This effort is supported by the Intelligence
Advanced Research Project Agency (IARPA) via Department of Interior National Business
Center Contract number D11PC20152, Air Force Research Lab under agreement number
FA8750-09-2-0187, the National Science Foundation under grant number 0964094, and Sci-
ence Applications International Corporation (SAIC) and DARPA under contract number
P010089628. The U.S. Government is authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copyright notation hereon. The views and
conclusions contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or implied,
of IARPA, DoI/NBC, AFRL, NSF, SAIC, DARPA, or the U.S. Government. Katerina
Marazopoulou received scholarship support from the Greek State Scholarships Foundation.

Appendix A. Proofs

In this appendix, we provide detailed proofs for all previous lemmas, theorems, and corol-
laries.

Lemma 4.1 For two relational paths of arbitrary length from Ij to Ik that differ in at least
one item class, P1 = [Ij , . . . , Im, . . . , Ik] and P2 = [Ij , . . . , In, . . . , Ik] with Im 6= In, there
exists a skeleton σ ∈ ΣS such that P1|ij ∩ P2|ij 6= ∅ for some ij ∈ σ(Ij).

Proof. Proof by construction. Let S be an arbitrary schema with two arbitrary relational
paths P1 = [Ij , . . . , Im, . . . , Ik] and P2 = [Ij , . . . , In, . . . , Ik] where Im 6= In. We will con-
struct a skeleton σ ∈ ΣS such that the terminal sets for item ij ∈ σ(Ij) along P1 and P2

have a non-empty intersection, that is, an item ik ∈ P1|ij ∩ P2|ij 6= ∅ (roughly depicted in
Figure A.1). We use the following procedure to build σ:

39

Maier, Marazopoulou, and Jensen

Porig Pext
i1 ikim

im'

ij

I1 IkIm

Im

Ij

Figure A.2: Example construction of a relational skeleton for two relational paths Porig =
[I1, . . . , Im . . . , Ij] and Pext = [Ij , . . . , Im . . . , Ik], where item class Im is repeated between
Im and Ij . This construction is used within the proof of Lemma 5.1.

1. Simultaneously traverse P1 and P2 from Ij until the paths diverge. For each entity
class E ∈ E reached, add a unique entity instance e to σ(E).

2. Simultaneously traverse P1 and P2 backwards from Ik until the paths diverge. For
each entity class E ∈ E reached, add a unique entity instance e to σ(E).

3. For the divergent subpaths of both P1 and P2, add unique entity instances for each
entity class E ∈ E .

4. Repeat 1–3 for relationship classes. For each R ∈ R reached, add a unique relationship
instance r connecting the entity instances from classes on P1 and P2, and add unique
entity instances for classes E ∈ R not appearing on P1 and P2.

This process constructs an admissible skeleton—all instances are unique and this process
assumes no cardinality constraints aside from those required by Definition 4.3. By construc-
tion, there exists an item ij ∈ σ(Ij) such that P1|ij ∩ P2|ij = {ik} 6= ∅. �

Lemma 5.1 Let Porig = [I1, . . . , Ij] and Pext = [Ij , . . . , Ik] be two relational paths with
P = extend(Porig , Pext). Then, ∀P ∈ P there exists a relational skeleton σ ∈ ΣS such that
∃i1 ∈ σ(I1) such that ∃ik ∈ P |i1 and ∃ij ∈ Porig |i1 such that ik ∈ Pext |ij .

Proof. Let P ∈ P be an arbitrary valid relational path, where P = P 1,no−c+1
orig + P c+1,ne

ext

for pivot c. There are two subcases:
(a) c = 1 and P = [I1, . . . , Ij , . . . , Ik]. This subcase holds generally for any skeleton.

Proof by contradiction. Let σ be an arbitrary skeleton, choose i1 ∈ σ(I1) arbitrarily, and
choose ik ∈ P |i1 arbitrarily. Assume for contradiction that there is no ij in the terminal set
Porig |i1 such that ik would be in the terminal set Pext |ij , that is, ∀ij ∈ Porig |i1 ik /∈ Pext |ij .
Since P = [I1, . . . , Ij , . . . , Ik], we know that ik is reached by traversing σ from i1 via some
ij to ik. But the traversal from i1 to ij implies that ij ∈ [I1, . . . , Ij]|i1 = Porig |i1 , and the
traversal from ij to ik implies that ik ∈ [Ij , . . . , Ik]|ij = Pext |ij . Therefore, there must exist
an ij ∈ Porig |i1 such that ik ∈ Pext |ij .

(b) c > 1 and P = [I1, . . . , Im, . . . , Ik]. Proof by construction. We build a rela-
tional skeleton σ following the same procedure as outlined in the proof of Lemma 4.1.
Add instances to σ for every item class that appears on Porig and Pext . Since P =
[I1, . . . , Im, . . . , Ik], we know that ik is reached by traversing σ from i1 via some im to
ik. By case (a), ∃im ∈ [I1, . . . , Im]|i1 such that ik ∈ [Im, . . . , Ik]|im . We then must show that

40

Independence in Models of Relational Data

I1

Im

Ik

Ij

Il

In

Porig
P'orig

Pext

I1

Im

Ik

Ij

In
Pext

Figure A.3: Schematic of the relational paths expected in Lemma 5.2. If item
ik is unreachable via extend(Porig , Pext), then there must exist a P ′orig of the form
[I1, . . . , Im, . . . , In, . . . , Ij].

there exists an ij ∈ [Im, . . . , Ij]|im with im ∈ [Ij , . . . , Im]|ij . But constructing the skeleton
with unique item instances for every appearance of an item class on the relational paths
provides this and does not violate any cardinality constraints. If any item class appears
more than once, then the bridge burning semantics are induced. However, adding an addi-
tional item instance for every reappearance of an item class enables the traversal from ij to
im and vice versa. An example of this construction is displayed in Figure A.2. This is also a
valid relational skeleton because Porig and Pext are valid relational paths, and by definition,
the cardinality constraints of the schema permit multiple instances in the skeleton of any
repeated item class. By this procedure, we show that there exists a skeleton σ such that
there exists an ij ∈ Porig|i1 such that ik ∈ Pext|ij . �

Lemma 5.2 Let σ ∈ ΣS be a relational skeleton, and let Porig = [I1, . . . , Ij] and Pext =
[Ij , . . . , Ik] be two relational paths with P = extend(Porig , Pext). Then, ∀i1 ∈ σ(I1) ∀ij ∈
Porig |i1 ∀ik ∈Pext |ij if ∀P ∈ P ik /∈ P |i1, then ∃P ′orig such that Porig |i1 ∩ P ′orig |i1 6= ∅ and
ik ∈ P ′|i1 for some P ′ ∈ extend(P ′orig , Pext).

Proof. Proof by construction. Let i1 ∈ σ(I1), ij ∈ Porig |i1 , and ik ∈ Pext |ij be arbitrary
instances such that ik /∈ P |i1 for all P ∈ P.

Since ij ∈ Porig |i1 and ik ∈ Pext |ij , but ik /∈ P |i1 , there exists no pivot that yields a
common subsequence in Porig and Pext that produces a path in extend that can reach ik.
Let the first divergent item class along the reverse of Porig be Il and along Pext be In. The
two paths must not only diverge, but they also necessarily reconverge at least once. If
Porig and Pext do not reconverge, then there are no reoccurrences of an item class along any
P ∈ P that would restrict the inclusion of ik in some terminal set P |i1 . The sole reason that
ik /∈ P |i1 for all P ∈ P is due to the bridge burning semantics specified in Definition 4.4.

Without loss of generality, assume Porig and Pext reconverge once, at item class Im.
So, Porig = [I1, . . . , Im, . . . , Il, . . . , Ij] and Pext = [Ij , . . . , In, . . . , Im, . . . , Ik] with Il 6= In, as
depicted in Figure A.3. Let P ′orig = [I1, . . . , Im, . . . , In, . . . , Ij], which is a valid relational
path because [I1, . . . , Im] is a subpath of Porig and [Im, . . . , In, . . . , Ij] is a subpath of Pext .

By construction, ij ∈ Porig |i1 ∩ P ′orig |i1 . If P ′ = [I1, . . . , Im, . . . , Ik] ∈ extend(P ′orig , Pext)
with pivot at Im, then ik ∈ P ′|i1 . �

41

Maier, Marazopoulou, and Jensen

Theorem 5.2 For every acyclic relational model structure M and perspective B ∈ E ∪ R,
the abstract ground graph AGGMB is sound and complete for all ground graphs GGMσ with
skeleton σ ∈ ΣS .

Proof. LetM = (S,D) be an arbitrary acyclic relational model structure and let B ∈ E∪R
be an arbitrary perspective.

Soundness: To prove that AGGMB is sound, we must show that for every edge Pk.X →
Pj .Y in AGGMB, there exists a corresponding edge ik.X → ij .Y in the ground graph GGMσ

for some skeleton σ ∈ ΣS , where ik ∈ Pk|b and ij ∈ Pj |b for some b ∈ σ(B). There are three
subcases, one for each type of edge in an abstract ground graph:

(a) Let [B, . . . , Ik].X → [B, . . . , Ij].Y ∈ RVE be an arbitrary edge in AGGMB between a
pair of relational variables. Assume for contradiction that there exists no edge ik.X → ij .Y
in any ground graph:

∀σ∈ΣS ∀b∈σ(B) ∀ik∈ [B, . . . , Ik]|b ∀ij∈ [B, . . . , Ij]|b
(
ik.X → ij .Y /∈GGMσ

)

By Definition 5.2 for abstract ground graphs, if [B, . . . , Ik].X → [B, . . . , Ij].Y ∈ RVE ,
then the model must have dependency [Ij , . . . , Ik].X → [Ij].Y ∈ D such that [B, . . . , Ik] ∈
extend([B, . . . , Ij], [Ij , . . . , Ik]). So, by Definition 4.9 for ground graphs, there is an edge
from every ik.X to every ij .Y , where ik is in the terminal set for ij along [Ij , . . . , Ik]:

∀σ ∈ ΣS ∀ij ∈ σ(Ij) ∀ik ∈ [Ij , . . . , Ik]|ij
(
ik.X → ij .Y ∈ GGMσ

)

Since [B, . . . , Ik] ∈ extend([B, . . . , Ij], [Ij , . . . , Ik]), by Lemma 5.1 we know that

∃σ ∈ ΣS ∃b ∈ σ(B) ∃ik ∈ [B, . . . , Ik]|b ∃ij ∈ [B, . . . , Ij]|b
(
ik ∈ [Ij , . . . , Ik]|ij

)

Therefore, there exists a ground graph GGMσ such that ik.X → ij .Y ∈ GGMσ, which
contradicts the assumption.

(b) Let P1.X ∩ P2.X → [B, . . . , Ij].Y ∈ IVE be an arbitrary edge in AGGMB between
an intersection variable and a relational variable, where P1= [B, . . . , Im, . . . , Ik] and P2 =
[B, . . . , In, . . . , Ik] with Im 6= In. By Lemma 4.1, there exists a skeleton σ ∈ ΣS and
b ∈ σ(B) such that P1|b ∩ P2|b 6= ∅. Let ik ∈ P1|b ∩ P2|b and assume for contradiction that
for all ij ∈ [B, . . . , Ij]|b there is no edge ik.X → ij .Y in the ground graph GGMσ. By
Definition 5.2, if the abstract ground graph has edge P1.X ∩ P2.X → [B, . . . , Ij].Y ∈ IVE ,
then either P1.X → [B, . . . , Ij].Y ∈ RVE or P2.X → [B, . . . , Ij].Y ∈ RVE . Then, as
shown in case (a), there exists an ij ∈ [B, . . . , Ij]|b such that ik.X → ij .Y ∈ GGMσ, which
contradicts the assumption.

(c) Let [B, . . . , Ik].X → P1.Y ∩ P2.Y ∈ IVE be an arbitrary edge in AGGMB be-
tween a relational variable and an intersection variable, where P1 = [B, . . . , Im, . . . , Ij] and
P2 = [B, . . . , In, . . . , Ij] with Im 6= In. The proof follows case (b) to show that there exists a
skeleton σ ∈ ΣS and b ∈ σ(B) such that for all ik ∈ [B, . . . , Ik]|b there exists an ij ∈ P1∩P2|b
such that ik.X → ij .Y ∈ GGMσ.

Completeness: To prove that the abstract ground graph AGGMB is complete, we
show that for every edge ik.X → ij .Y in every ground graph GGMσ where σ ∈ ΣS , there
is a set of corresponding edges in AGGMB. Specifically, the edge ik.X → ij .Y yields two
sets of relational variables for some b ∈ σ(B), namely Pk.X = {Pk.X | ik ∈ Pk|b} and

42

Independence in Models of Relational Data

Pj.Y = {Pj .Y | ij ∈ Pj |b}. Note that all relational variables in both Pk.X and Pj.Y are
nodes in AGGMB, as are all pairwise intersection variables: ∀Pk.X, P ′k.X ∈Pk.X

(
Pk.X ∩

P ′k.X ∈ AGGMB

)
and ∀Pj .Y, P ′j .Y ∈ Pj.Y

(
Pj .Y ∩ P ′j .Y ∈ AGGMB

)
. We show that

for all Pk.X ∈ Pk.X and for all Pj .Y ∈ Pj.Y either (a) Pk.X → Pj .Y ∈ AGGMB, (b)
Pk.X ∩ P ′k.X → Pj .Y ∈ AGGMB, where P ′k.X ∈ Pk.X, or (c) Pk.X → Pj .Y ∩ P ′j .Y ∈
AGGMB, where P ′j .Y ∈ Pj.Y.

Let σ ∈ ΣS be an arbitrary skeleton, let ik.X → ij .Y ∈ GGMσ be an arbitrary edge
drawn from [Ij , . . . , Ik].X → [Ij].Y ∈ D, and let Pk.X ∈ Pk.X, Pj .Y ∈ Pj.Y be an arbitrary
pair of relational variables.

(a) If Pk ∈ extend(Pj , [Ij , . . . , Ik]), then Pk.X → Pj .Y ∈ AGGMB by Definition 5.2.
(b) If Pk /∈ extend(Pj , [Ij , . . . , Ik]), but ∃P ′k ∈ extend(Pj , [Ij , . . . , Ik]) such that P ′k.X ∈

Pk.X, then P ′k.X → Pj .Y ∈ AGGMB, and Pk.X ∩ P ′k.X → Pj .Y ∈ AGGMB by Defini-
tion 5.2.

(c) If ∀P ∈ extend(Pj , [Ij , . . . , Ik])
(
P.X /∈ Pk.X

)
, then by Lemma 5.2, ∃P ′j such that

ij ∈ P ′j |b and Pk ∈ extend(P ′j , [Ij , . . . , Ik]). Therefore, P ′j .Y ∈ Pj.Y, Pk.X → P ′j .Y ∈
AGGMB, and Pk.X → P ′j .Y ∩ Pj .Y ∈ AGGMB by Definition 5.2. �

Theorem 5.3 For every acyclic relational model structure M and perspective B ∈ E ∪ R,
the abstract ground graph AGGMB is directed and acyclic.

Proof. LetM be an arbitrary acyclic relational model structure, and let B ∈ E ∪R be an
arbitrary perspective. It is clear by Definition 5.2 that every edge in the abstract ground
graph AGGMB is directed by construction. All edges inserted in any abstract ground graph
are drawn from the directed dependencies in a relational model. Since M is acyclic, the
class dependency graph GM is also acyclic by Definition 4.10. Assume for contradiction
that there exists a cycle of length n in AGGMB that contains both relational variables
and intersection variables. By Definition 5.2, all edges inserted in AGGMB are drawn from
some dependency in M, even for nodes corresponding to intersection variables. Retaining
only the final item class in each relational path for every node in the cycle will yield a cycle
in GM by Definition 4.10. Therefore,M could not have been acyclic, which contradicts the
assumption. �

Appendix B. The Semantics of Bridge Burning

In this appendix, we provide an example to show that the bridge burning semantics for
terminal sets of relational paths yields a strictly more expressive class of relational models
than semantics without bridge burning. The bridge burning semantics produces terminal
sets that are necessarily subsets of terminal sets which would otherwise be produced without
bridge burning. Paradoxically, this enables a superset of relational models.

Recall the definition of a terminal set for a relational path:

Definition 4.4 (Terminal set) For skeleton σ ∈ ΣS and ij ∈ σ(Ij), the terminal set P |ij
for relational path P = [Ij , . . . , Ik] of length n is defined inductively as

P 1|ij = [Ij]|ij = {ij}
...

43

Maier, Marazopoulou, and Jensen

(1)

A B

X Y

(2) [B,A, B, A].X → [B].Y

[B,A].X → [B].Y

(a) Relational model

A1

A3

A2

B1

B3

B2

(b) Relational skeleton

X1 Y1

X2 Y2

X3 Y3

X1 Y1

X2 Y2

X3 Y3

(1)

Bridge burning

No bridge burning

X1 Y1

X2 Y2

X3 Y3

(2) (1) & (2)

X1 Y1

X2 Y2

X3 Y3

X1 Y1

X2 Y2

X3 Y3

Identical to

(c) Ground graphs

Figure B.1: Example demonstrating that bridge burning semantics yields a more expres-
sive class of models than semantics without bridge burning. (a) Relational model over a
schema with two entity classes and two attributes with two possible relational dependencies
(relationship class omitted for simplicity). (b) Simple relational skeleton with three A and
three B instances. (c) Bridge burning semantics yields three possible ground graphs with
combinations of dependencies (1) and (2), whereas no bridge burning yields two possible
ground graphs. The bridge burning ground graphs subsume the ground graphs without
bridge burning.

Pn|ij = [Ij , . . . , Ik]|ij =
⋃

im∈Pn−1|ij

{
ik |

(
(im ∈ ik if Ik ∈ R) ∨ (ik ∈ im if Ik ∈ E)

)

∧ ik /∈
n−1⋃

l=1

P l|ij
}

The final condition in the inductive definition (ik /∈ [I1, . . . , Ij]|i1 for j = 1 to k − 1)
encodes bridge burning. The item ik is only added to the terminal set if it is not a member
of the terminal set of any previous subpath. For example, let P be the relational path
[Employee, Develops, Product, Develops, Employee]. This relational path produces
terminal sets that include the employees that work on the same products (that is, co-
workers). Instantiating this path with the employee Quinn, P |Quinn, produces the terminal

44

Independence in Models of Relational Data

set {Paul, Roger, Sally}. Since Quinn ∈ [Employee]|Quinn, the bridge burning semantics
excludes Quinn from this set. This makes intuitive sense as well—Quinn should not be
considered her own colleague.

A relational model is simply a collection of relational dependencies. Each relational
dependency is primarily described by the relational path of the parent relational variable
(because, for canonically specified dependencies, the relational path of the child consists of
a single item class). The relational path specification is used in the construction of ground
graphs, connecting variable instances that appear in the terminal sets of the parent and
child relational variables.

To characterize the expressiveness of relational models, we can inspect the space of rep-
resentable ground graphs by choosing an arbitrary relational skeleton and a small set of
relational dependencies. We show with a simple example that the bridge burning semantics
for a model over a two-entity, bivariate schema yields more possible ground graphs than
without bridge burning. (We omit the relationship class for simplicity.) In Figure B.1(a),
we present such a model with two possible relational dependencies labeled (1) and (2).
Figure B.1(b) provides a simple relational skeleton involving three A and three B instances
(relationship instances are represented as dashed lines for simplicity). As shown in Fig-
ure B.1(c), the bridge burning semantics leads to three possible ground graphs, one for each
combination of the dependencies (1), (2), and both (1) and (2) together. Without bridge
burning, only two ground graphs are possible because dependency (2) completely subsumes
dependency (1) with those semantics.

This example generalizes to arbitrary dependencies. The terminal sets of relational paths
that repeat item classes subsume subpaths under the semantics without bridge burning.
This leads to fewer possible relational models, which justifies our choice of semantics for
terminal sets of relational paths.

Appendix C. Soundness and Completeness of Relational Paths

In this appendix, we prove that the definition of relational paths (repeated below) is sound
and complete with respect to producing non-empty terminal sets for at least one relational
skeleton.

Definition 4.3 (Relational path) A relational path [Ij , . . . , Ik] for relational schema S
is an alternating sequence of entity and relationship classes Ij , . . . , Ik ∈ E ∪ R such that:

(1) For every pair of consecutive item classes [E,R] or [R,E] in the path, E ∈ R.
(2) For every triple of consecutive item classes [E,R,E′], E 6= E′.
(3) For every triple of consecutive item classes [R,E,R′], if R = R′, then card(R,E) =

many.

Lemma C.1 Let S be a relational schema and [Ij , . . . , Ik] be a sequence of alternating
entity and relationship classes of S that satisfy participation constraints (condition (1) of
Definition 4.3). The relational path [Ij , . . . , Ik] satisfies conditions (2) and (3) of Definition
4.3 if and only if there exists a relational skeleton σ ∈ ΣS and an item instance ij ∈ σ(Ij)
such that [Ij , . . . , Ik]|ij 6= ∅. More formally,

45

Maier, Marazopoulou, and Jensen

∃σ ∈ ΣS ∃ij∈σ(Ij)
(
[Ij , . . . , Ik]|ij 6= ∅

)
⇔
(
[ERE] 6∈ [Ij , . . . , Ik]

)

∧(
[RER] ∈ [Ij , . . . , Ik]→ card(R,E) = many

)

Proof. Left-to-right ⇒: Assume that there exists a skeleton σ ∈ ΣS and item instance
ij ∈ σ(Ij) such that [Ij , . . . , Ik]|ij 6= ∅. We must show that [Ij , . . . , Ik] obeys conditions (2)
and (3), i.e., [Ij , . . . , Ik] does not contain any [ERE] patterns, and if it contains an [RER]
pattern, then card(R,E) = many.

• Assume for contradiction that [Ij , . . . , Ik] contains a pattern of the form [ERE]. From
Definition 4.4 for terminal sets, it follows that if the terminal set of a path is not empty,
then the terminal set of every prefix of that path is not empty:

[Ij , . . . , Ik]|ij 6= ∅ ⇒ [Ij , . . . , Im]|ij 6= ∅ for all [Ij , . . . , Im] ≤ [Ij , . . . , Ik]

By assumption, [Ij , . . . , Ik]|ij 6= ∅; therefore, the prefix [Ij , . . . , Im] that ends in the
ERE pattern also has a non-empty terminal set:

[Ij , . . . , Ik]|ij 6= ∅ ⇒ [Ij , . . . , E,R,E]|ij 6= ∅
[Ij , . . . , Ik]|ij 6= ∅ ⇒ [Ij , . . . , E,R]|ij 6= ∅
[Ij , . . . , Ik]|ij 6= ∅ ⇒ [Ij , . . . , E]|ij 6= ∅

Let e ∈ σ(E) be an entity instance in the terminal set [Ij , . . . , E]|ij . Since the terminal
set [Ij , . . . , E,R]|ij is not empty, it follows that there exists a relationship instance
r = 〈. . . , e, . . .〉 such that r ∈ [Ij , . . . , E,R]|ij . However, [Ij , . . . , E,R,E]|ij is also
not empty; thus, there exists some e′ ∈ σ(E) such that e′ ∈ [Ij , . . . , E,R,E]|ij , where
e′ 6= e, and e′ ∈ r. It follows that both e and e′ participate in the relationship instance
r, which is a contradiction.

• Assume for contradiction that [Ij , . . . , Ik] contains a pattern of the form [R,E,R] and
card(R,E) = one.

[Ij , . . . , R]|ij 6= ∅ ⇒ ∃r = 〈e, . . .〉 ∈ [Ij , . . . , R]|ij (1)

[Ij , . . . , R,E]|ij 6= ∅ ⇒ ∃e ∈ [Ij , . . . , R,E]|ij and e ∈ r
[Ij , . . . , R,E,R]|ij 6= ∅ ⇒ ∃r′ = 〈e, . . .〉 such that r′ ∈ [Ij , . . . , R,E,R]|ij (2)

and r′ 6= r (bridge burning semantics)

From (1) and (2) it follows that e participates in two instances of R; therefore,
card(R,E) must be many, which is a contradiction.

Right-to-left⇐: Assume that [Ij , . . . , Ik] adheres to Definition 4.3 for relational paths.
We must show that ∃σ ∈ ΣS ∃ij ∈ σ(Ij)

(
[Ij , . . . , Ik]|ij 6= ∅

)
. We can construct such a

skeleton σ according to the following procedure: For each entity class E on the path, add
a unique entity instance e to σ(E). Then, for each relationship class R on the path, add
a unique relationship instance r connecting the previously created unique entity instances
that participate in R, and add unique entity instances for classes E ∈ R not appearing on
the path. This process constructs an admissible skeleton—all instances are unique and this
process assumes no cardinality constraints aside from those required by Definition 4.3. By
construction, there exists an item instance ij ∈ σ(Ij) such that [Ij , . . . , Ik]|ij 6= ∅. �

46

Independence in Models of Relational Data

Appendix D. Background on Propositional Data and Models

In this appendix, we provide a brief review of Bayesian networks, traditional d -separation,
and their connection to causality. We also describe why the class of Bayesian networks is a
special case of relational models. Finally, we give an example of how to propositionalize a
data set drawn from a relational domain.

A common assumption in classical statistics, machine learning, and causal discovery is
that data instances are independent and identically distributed (IID). The first condition
assumes that the variables on any given data instance are marginally independent of the
variables of any other data instance. The second condition assumes that every data instance
is drawn from the same underlying joint probability distribution. IID data (also referred to
as propositional data12) are effectively represented as a single table, where rows correspond
to the independent instances and columns are attributes of those instances.

A Bayesian network is a widely used probabilistic graphical model of propositional data
(Pearl, 1988). A Bayesian network is represented as a directed acyclic graph G = (V,E),
where V is a set of vertices corresponding to random variables in the data and E ⊂ V×V
is a set of edges encoding the probabilistic dependencies among the variables. Each random
variable V ∈ V is associated with a conditional probability distribution P

(
V | parents(V)

)
,

where parents(V) ⊆ V \ {V } is the set of parent variables for V.

If the joint probability distribution P (V) satisfies the Markov condition for G, then
P (V) can be factored as

∏
V ∈V P

(
V | parents(V)

)
using the conditional distributions. The

Markov condition states that every variable V ∈ V is conditionally independent of its
non-descendants given its parents, where the descendants of V are all variables reachable
by a directed path from V. Deriving the set of conditional independencies from G based
on the Markov condition is cumbersome, requiring complex combinations of probability
axioms. Fortunately, d -separation, a set of graphical criteria, provides the foundation for
algorithmic derivation of all conditional independencies in G and entails the exact same set
of conditional independencies as the Markov condition (Verma and Pearl, 1988; Geiger and
Pearl, 1988; Neapolitan, 2004).

In the following definition, a path is a sequence of vertices following edges in either
direction. We say that a variable V is a collider on a path p if the two arrowheads point at
each other (collide) at V; otherwise, V is a non-collider on p.

Definition D.1 (d-separation) Let X, Y, and Z be disjoint sets of variables in directed
acyclic graph G. A path from some X ∈ X to some Y ∈ Y is d-connected given Z if and
only if every collider W on the path, or a descendant of W, is a member of Z, and there are
no non-colliders in Z. Then, say that X and Y are d-separated by Z if and only if there are
no d -connecting paths between X and Y given Z.

Figure D.1(a) depicts the graphical patterns found along paths that lead to d -separation
or d -connection based on Definition D.1, and Figure D.1(b) provides example d -separated
and d -connected paths. At first glance, identifying conditional independence facts using the
rules of d -separation appears computationally intensive, testing a potentially exponential

12. IID data are typically referred to as propositional because the data can be equivalently expressed under
propositional logic.

47

Maier, Marazopoulou, and Jensen

d-separating path elements
(exists one on path)

d-connecting path elements
(exists all on path)

X Z Y

X

Z
Y

X Y

X Z Y

X Y

X Y

X
Z

Y

X Y

Z

X Y

(a) Graphical patterns of d-separating and d-connecting path elements among disjoint
sets of variables X and Y given Z. Paths for which there exists a non-collider in Z or
a collider not in Z are d-separating. Paths for which all non-colliders are not in Z and
all colliders (or a descendant of colliders) are in Z are d-connecting.

X Z Y

d-separated paths

X Y

d-connected paths

X Y

X Z Z Y1 2

(b) Several example d-separated and d-connected paths that illustrate the composition
of path elements.

Figure D.1: Patterns of d -separating and d -connecting path elements and example d -
separating and d -connecting paths.

number of paths. However, Geiger et al. (1990) provide a linear-time algorithm based on
breadth-first search and reachability on G.

Under a few assumptions, Bayesian networks can be interpreted causally, with edges
corresponding to direct causal dependencies. If X → Y is an edge in the causal model G,
then manipulating or changing the value of X will alter the conditional distribution of Y—
denoted as P

(
Y | do(X)

)
using Pearl’s do-calculus notation for interventions (Pearl, 2000).

The causal interpretation of G assumes the causal Markov condition, which is identical
to the Markov condition, replacing parents with direct causes and non-descendants with
non-effects. In order for the causal Markov condition to hold, the variables V must also
be causally sufficient : There are no latent common causes for any pair of variables in V.
The causal Markov condition is also equivalent to d -separation; therefore, both provide the
connection between causal structures and probability distributions.

The conditional independencies entailed by both the causal Markov condition and d -
separation hold in all distributions that G represents. A distribution P is faithful to G if
all conditional independencies in P are entailed by the causal Markov condition on G. If
P is assumed to be faithful to G, then there are algorithms that can learn the Markov,

48

Independence in Models of Relational Data

SELECT t1.id, t1.salary, t2.success, t3.revenue

FROM (SELECT E.id, E.salary

FROM Employee E) t1,

(SELECT E.id, P.success

FROM Employee E, Develops D, Product P

WHERE E.id = D.e id AND D.p id = P.id) t2,

(SELECT E.id, B.revenue

FROM Employee E, Develops D, Product P

Funds F, Business-Unit B

WHERE E.id = D.e id AND D.p id = P.id AND

P.id = F.p id AND F.b id = B.id) t3

WHERE t1.id = t2.id AND t2.id = t3.id

Figure D.2: Sketch of a relational database query that joins the instances of three rela-
tional variables having the common perspective Employee used to produce the data in-
stances shown in Table D.1. The three relational variables are (1) [Employee].Salary, (2)
[Employee, Develops, Product].Success, and (3) [Employee, Develops, Product,
Funds, Business-Unit].Revenue.

or likelihood, equivalent set of causal models. These algorithms assume causal sufficiency,
faithfulness, and model acyclicity to identify the edges inG that are consistent with observed
conditional independencies and to determine the direction of causality (Spirtes et al., 2000).

The relational representation presented in Section 4 is strictly more expressive than
the propositional representation used in Bayesian network modeling. Propositional repre-
sentations describe domains with a single entity class; thus, they produce schemas with
|E| = 1 (one entity class) and |R| = 0 (no relationship classes). For the organization do-
main example, consider data about only employees (E = {Employee}). Variables would
include intrinsic attributes, such as salary, but could also include variables describing other
related entities, all from the employee perspective. This technique of translating a relational
database down to a single, propositional representation is often referred to as proposition-
alization (Kramer et al., 2001). That is, we could construct a single table for employees
that includes columns for the success of developed products, the revenue of all business
units they work under, etc. In Figure D.2, we show an example SQL-like query that would
produce such data, and the resulting data set applied to the example in Figure 2.1(b) is
shown in Table D.1.13

The relational skeleton of a Bayesian network consists of a set of disconnected entity
instances, all drawn from the same entity class. Consequently, the skeleton has a simple
one-to-one mapping with the representation as a table: Each entity instance corresponds

13. Note that modeling propositionalized data with Bayesian networks still requires the IID assumption,
which is often violated since variables of one instance can influence variables of another. For example,
according to the model in Figure 2.2(a) the competence of collaborating employees influences the success
of products, which affects the revenue of business units, which affects its budget, thereby influencing an
employee’s salary. As a result, modeling relational data with a propositional representation may unnec-
essarily lose valuable information, especially in the context of causal reasoning and accurate estimation
of causal effects.

49

Maier, Marazopoulou, and Jensen

Employee [Employee].Salary [Employee, Develops,
Product].Success

[Employee, Develops,
Product, Funds,
Business-Unit].Revenue

Paul {Paul.Salary} {Case.Success} {Accessories.Revenue}
Quinn {Quinn.Salary} {Case.Success,

Adapter.Success,
Laptop.Success}

{Accessories.Revenue,
Devices.Revenue}

Roger {Roger.Salary} {Laptop.Success} {Devices.Revenue}
Sally {Sally.Salary} {Laptop.Success,

Tablet.Success}
{Devices.Revenue}

Thomas {Thomas.Salary} {Tablet.Success,
Smartphone.Success}

{Devices.Revenue}

Table D.1: Propositional table consisting of employees, their salary, the success of products
they develop, and the revenue of the business units they operate under. Producing this table
requires joining the instances of three relational variables, all from a common perspective—
Employee.

to a single row, and each variable is a column. In this example, each employee would be an
entity instance, and no instances of other entity types or relationships would appear in the
skeleton. Because all variables in a Bayesian network are defined for a single entity class and
no relationships, the relational path specification becomes trivial and, hence, implicit. All
relational paths, relational variables, and relational dependencies are defined from a single
perspective with singleton paths (e.g., [Employee]). The ground graph of a Bayesian
network, similar to the skeleton, has a very regular structure. The ground graph consists
of a set of identical copies of the model structure, one for each instance in the skeleton. For
a Bayesian network, d -separation can be applied directly to the model structure because
there is no variability in its ground graphs.

Appendix E. Hop Thresholds

For practical implementations, the size of the abstract ground graphs should be limited by
a domain-specific threshold. In this work, we choose to apply a singular hop threshold to
the relational paths that are represented in an abstract ground graph. In this appendix, we
examine the effect of choosing a particular hop threshold.

First, we introduce the notion of (B, h)-reachability, which describes the conditions
under which an edge in a ground graph is represented in an abstract ground graph.

Definition E.1 ((B, h)-reachability) Let GGMσ be the ground graph for some relational
model structure M and skeleton σ ∈ ΣS . Then, ik.X → ij .Y ∈ GGMσ is (B, h)-reachable
for perspective B and hop threshold h if there exist relational variables Pk.X = [B, . . . , Ik].X
and Pj .Y = [B, . . . , Ij].Y such that length(Pk) ≤ h+ 1, length(Pj) ≤ h+ 1, and there exists
an instance b ∈ σ(B) with ik ∈ Pk|b and ij ∈ Pj |b.

In other words, the edge ik.X → ij .Y in the ground graph is (B, h)-reachable if an
instance of the base item b ∈ σ(B) can reach ik and ij in at most h hops.

50

Independence in Models of Relational Data

Since Definition E.1 pertains to edges reachable via a particular perspective B and hop
threshold h, it relates to the reachability of edges in abstract ground graphs. We denote
abstract ground graphs for perspective B, limited by a hop threshold h as AGGMBh.
Definition E.1 implies that (1) for every edge in ground graph GGMσ, we can derive a set
of abstract ground graphs for which that edge is (B, h)-reachable, and (2) for every abstract
ground graph AGGMBh, we can derive the set of (B, h)-reachable edges for a given ground
graph. Given (B, h)-reachability, we can now express the soundness and completeness of
abstract ground graphs.

Theorem E.1 For every acyclic relational model structure M, perspective B ∈ E ∪R, and
hop threshold ha ∈ N0, the abstract ground graph AGGMBha is sound up to hop threshold
ha for all ground graphs GGMσ with skeleton σ ∈ ΣS .

Proof. Soundness means that for every edge [B, . . . , Ij].X → [B, . . . , Ik].Y in the abstract
ground graph AGGMBha , there exists a skeleton σ ∈ ΣS , a base item instance b ∈ σ(B),
an instance ij ∈ [B, . . . , Ij]|b, and an instance ik ∈ [B, . . . , Ik]|b such that ij .X → ik.Y is
a (B, ha)-reachable edge in GGMσ. The proof is identical to the proof of soundness for
Theorem 5.2 (see Appendix A). �

Theorem E.2 For every acyclic relational model structure M, perspective B ∈ E ∪R, and
hop threshold hr ∈ N0, the abstract ground graph AGGMBha is complete up to hop threshold
hr for all ground graphs GGMσ with skeleton σ ∈ ΣS , where ha = max(hr+hm, hr+2hm−2)
and hm is the maximum number of hops for a dependency in M.

Proof. Let M = (S,D) be an arbitrary acyclic relational model structure, let B ∈ E ∪ R
be an arbitrary perspective, and let hr ∈ N0 be an arbitrary hop threshold.

To prove that the abstract ground graph AGGMBha is complete up to hop threshold hr,
we show that for every (B, hr)-reachable edge ik.X → ij .Y in every ground graph GGMσ

with σ ∈ ΣS , there is a set of corresponding edges in AGGMBha . Specifically, the (B, hr)-
reachable edge ik.X → ij .Y yields two sets of relational variables for some b ∈ σ(B),
namely Pk.X = {Pk.X | ik ∈ Pk|b ∧ length(Pk) ≤ hr + 1} and Pj.Y = {Pj .Y | ij ∈
Pj |b ∧ length(Pj) ≤ hr + 1} by Definition E.1. Note that all relational variables in both
Pk.X and Pj.Y are nodes in AGGMBha . We show that for all Pk.X ∈Pk.X and for all
Pj .Y ∈Pj.Y either (a) Pk.X → Pj .Y ∈ AGGMBha , (b) Pk.X ∩P ′k.X → Pj .Y ∈ AGGMBha

or Pk.X ∩ P ′k.X → P ′j .Y ∈ AGGMBha , where ik ∈ P ′k|b and ij ∈ P ′j |b, or (c) Pk.X →
Pj .Y ∩ P ′j .Y ∈ AGGMBha or P ′k.X → Pj .Y ∩ P ′j .Y ∈ AGGMBha , where ik ∈ P ′k|b and
ij ∈ P ′j |b.

Let σ ∈ ΣS be an arbitrary skeleton, let ik.X → ij .Y ∈ GGMσ be an arbitrary (B, hr)-
reachable edge drawn from [Ij , . . . , Ik].X → [Ij].Y ∈ D where length([Ij , . . . , Ik]) ≤ hm + 1,
and let Pk.X ∈ Pk.X, Pj .Y ∈ Pj.Y be an arbitrary pair of relational variables. There are
three cases:

(a) Pk ∈ extend(Pj , [Ij , . . . , Ik]). Then, length(Pk) ≤ (hr+1)+(hm+1)−1 = hr+hm+
1 ≤ ha + 1. Therefore, Pk.X is a node in the abstract ground graph, and Pk.X → Pj .Y ∈
AGGMBha by Definition 5.2.

(b) Pk /∈ extend(Pj , [Ij , . . . , Ik]), but ∃P ′k ∈ extend(Pj , [Ij , . . . , Ik]) such that ik ∈ P ′k|b.
Then, length(P ′k) ≤ (hr+1)+(hm+1)−1 = hr+hm+1 ≤ ha+1. Therefore, P ′k is a node in the

51

Maier, Marazopoulou, and Jensen

abstract ground graph, P ′k.X → Pj .Y ∈ AGGMBha , and Pk.X∩P ′k.X → Pj .Y ∈ AGGMBha

by Definition 5.2.
(c) For all Pk ∈ extend(Pj , [Ij , . . . , Ik]), it is the case that ik /∈ Pk.X|b. Then by

Lemma 5.2, there exists a P ′j such that ij ∈ P ′j |b and there exists a P ′′k ∈ extend(P ′j , [Ij , . . . , Ik]).
Given the way P ′j is constructed, its length is bounded by:

length(P ′j) ≤ length(Pj) + length([Ij , . . . , Ik])− 3 ≤ (hr + 1) + (hm + 1)− 3 = hr + hm − 1

P ′′k intersects with Pk since they both reach ik, and the length of P ′′k is bounded by:

length(P ′′k) ≤ length(P ′j)+length([Ij , . . . , Ik])−1 ≤ (hr+hm−1)+(hm+1)−1 = hr+2hm−1

Also by Lemma 5.2, we know that Pj and P ′j intersect. Since length(P ′′k) ≤ hr + 2hm − 1 ≤
ha + 1, P ′′k is a node in the abstract ground graph, P ′′k .X → P ′j .Y ∈ AGGMBha P

′′
k .X →

P ′j .Y ∩ Pj .Y ∈ AGGMBha , and Pk.X ∩ P ′′k .X → P ′j .Y ∈ AGGMBha by Definition 5.2.
From the above three cases, it follows that to guarantee completeness up to hr, the

abstract ground graph must contain nodes up to the hop threshold ha = max(hr +hm, hr +
2hm − 2). �

Theorems E.1 and E.2 guarantee that if an abstract ground graph is constructed with
a hop threshold of ha from perspective B, it captures all paths of dependence in all ground
graphs, where (1) the variables along those paths are reachable in hr hops from instances
of B and (2) the underlying dependencies are bounded by a threshold of hm.

In the following, we say that d -separation holds up to a specified hop threshold h if
there are no d -connecting paths involving relational variables of length greater than h+ 1.

Theorem E.3 Relational d-separation is sound and complete for abstract ground graphs
up to a specified hop threshold. Let M be an acyclic relational model structure, and let
hm be the maximum number of hops for a dependency in M. Let X, Y, and Z be three
distinct sets of relational variables for perspective B ∈ E ∪R defined over relational schema
S, and let hr be the maximum number of hops of relational variables in X,Y, and Z. Then,
X̄ and Ȳ are d-separated by Z̄ on the abstract ground graph AGGMBha if and only if for
all skeletons σ ∈ ΣS and for all b ∈ σ(B), X|b and Y|b are d-separated by Z|b up to hop
threshold hr in ground graph GGMσ, where ha = max(hr + hm, hr + 2hm − 2).

Proof. We must show that d -separation on an abstract ground graph implies d -separation
on all ground graphs it represents (soundness) and that d -separation facts that hold across
all ground graphs are also entailed by d -separation on the abstract ground graph (com-
pleteness).

Soundness: Assume that X̄ and Ȳ are d -separated by Z̄ on AGGMBha . Assume for
contradiction that there exists a skeleton σ ∈ ΣS and an item instance b ∈ σ(B) such that
X|b and Y|b are not d -separated by Z|b in the ground graph GGMσ. Then, there must
exist a d -connecting path p from some x ∈ X|b to some y ∈ Y|b given all z ∈ Z|b such
that every edge of p is (B, hr)-reachable. By Theorem E.2, AGGMBha is (B, hr)-reachably
complete, so all (B, hr)-reachable edges in GGMσ are captured by edges in AGGMBha .
Thus, path p must be represented from some node in {Nx | x ∈ Nx|b} to some node in
{Ny | y ∈ Ny|b}, where Nx, Ny are nodes in AGGMBha . If p is d -connecting in GGMσ,

52

Independence in Models of Relational Data

Predictor Coefficient Partial Semipartial

log(# dependencies) × # entities 1.38 0.232 0.085
log(# dependencies) 1.14 0.135 0.044

log(# dependencies) × # many cardinalities -0.71 0.092 0.028
entities × # relational variables -0.32 0.044 0.013

Table F.1: Number of equivalent conditional independence judgments: estimated standard-
ized coefficient, squared partial correlation coefficient, and squared semipartial correlation
coefficient for each predictor.

then it is d -connecting in AGGMBha , which implies that X̄ and Ȳ are not d -separated by
Z̄. Therefore, X|b and Y|b must be d -separated by Z|b.

Completeness: Assume that X|b and Y|b are d -separated by Z|b in the ground graph
GGMσ for all skeletons σ ∈ ΣS and for all b ∈ σ(B). Assume for contradiction that X̄ and
Ȳ are not d -separated by Z̄ on AGGMBha . Then, there must exist a d -connecting path
p for some relational variable X ∈ X̄ to some Y ∈ Ȳ given all Z ∈ Z̄. By Theorem E.1,
AGGMBha is (B, ha)-reachably sound, so every edge in AGGMBh must correspond to some
pair of variables in some ground graph. Thus, if p is d -connecting in AGGMBha , then there
must exist some skeleton σ such that p is d -connecting in GGMσ for some b ∈ σ(B), which
implies that d -separation does not hold for that ground graph. Therefore, X̄ and Ȳ must
be d -separated by Z̄ on AGGMBha . �

Appendix F. Experimental Details—Equivalence of a Näıve Approach

In this appendix, we provide additional details for the experiment in Section 6. The main
goal of this experiment is to quantify how often traditional d -separation applied directly to
relational model structures produces incorrect conditional independence facts. This provides
a rough measurement for the additional representational power of relational d -separation
on abstract ground graphs. Here, we present an analysis of which factors influence the
number of equivalent and non-equivalent conditional independence judgments between both
approaches (näıvely applying traditional d -separation versus relational d -separation).

Specifically, we show here the results of running log-linear regression to predict the num-
ber of equivalent and non-equivalent judgments for varying schemas and models. We first
applied lasso for feature selection (Tibshirani, 1996) to minimize the number of predictors
while maximizing model fit. We also standardized the input variables by dividing by two
standard deviations, as recommended by Gelman (2008). Since the predictor for the num-
ber of dependencies is log-transformed, the standardization for that variable occurs after
taking the logarithm.

In predicting the (log of the) number of equivalent conditional independencies, the
following variables were significantly and substantively predictive (in order of decreasing
predictive power):

• Interaction between the log of the number of dependencies and the number of entities
(positive)

• Log of the number of dependencies (positive)

53

Maier, Marazopoulou, and Jensen

Predictor Coefficient Partial Semipartial

many cardinalities × # entities -2.22 0.207 0.064
log(# dependencies) × # entities 0.90 0.165 0.048

many cardinalities 3.24 0.128 0.036
log(# dependencies) × # many cardinalities 1.47 0.127 0.036

Table F.2: Number of non-equivalent conditional independence judgments: estimated stan-
dardized coefficient, squared partial correlation coefficient, and squared semipartial corre-
lation coefficient for each predictor.

• Interaction between the log of the number of dependencies and the number of many
cardinalities (negative)

• Number of entities (negative)

• Interaction between the number of entities and the number of relational variables in
the AGG (negative)

The fit for the equivalent model has an R2 = 0.721 for n = 4, 000, and Table F.1 con-
tains the standardized coefficients as well as the squared partial and semipartial correlation
coefficients for each predictor. For lasso, λ = 0.0076 offered the fewest predictors while
increasing the model fit by at least 0.01.

In predicting the (log of the) number of non-equivalent conditional independencies, the
following variables were significantly and substantively predictive (in order of decreasing
predictive power):

• Interaction between the number of many cardinalities and the number of entities
(negative)

• Interaction between the log of the number of dependencies and the number of entities
(positive)

• Number of many cardinalities (positive)

• Interaction between the log of the number of dependencies and the number of many
cardinalities (positive)

The fit for the non-equivalent model has an R2 = 0.755 for n = 4, 000, and Table F.2
contains the standardized coefficients and the squared partial and semipartial correlation
coefficients for each predictor. For lasso, λ = 0.0155 offered the fewest predictors while
increasing the model fit by at least 0.01.

Appendix G. Experimental Details—Abstract Ground Graph Size

In this appendix, we provide additional details for the experiment in Section 7.1. The
goal of this experiment is to determine which factors influence the size of abstract ground
graphs because the computational complexity of relational d -separation depends on their
size. Specifically, we show here the results of running log-linear regression to predict the
size of abstract ground graphs for varying schemas and models. We first applied lasso for
feature selection (Tibshirani, 1996) to minimize the number of predictors while maximizing

54

Independence in Models of Relational Data

Predictor Coefficient Partial Semipartial

relationships 3.24 0.452 0.150
many cardinalities × isEntity=F 3.09 0.349 0.109

entities -2.11 0.359 0.102
many cardinalities × isEntity=T 2.51 0.216 0.053

many cardinalities × # relationships -0.88 0.100 0.020
attributes 0.23 0.024 0.004

Table G.1: Number of nodes in an abstract ground graph: estimated standardized coeffi-
cient, squared partial correlation coefficient, and squared semipartial correlation coefficient
for each predictor.

Predictor Coefficient Partial Semipartial

log(# dependencies) 1.44 0.440 0.165
relationships 3.86 0.395 0.138

many cardinalities × isEntity=F 4.27 0.356 0.123
entities -2.78 0.353 0.115

many cardinalities × isEntity=T 3.52 0.231 0.067
many cardinalities × # relationships -1.35 0.127 0.031

Table G.2: Number of edges in an abstract ground graph: estimated standardized coeffi-
cient, squared partial correlation coefficient, and squared semipartial correlation coefficient
for each predictor.

model fit. We also standardized the input variables by dividing by two standard deviations,
as recommended by Gelman (2008). Since the predictor for the number of dependencies is
log-transformed, the standardization for that variable occurs after taking the logarithm.

In predicting the (log of the) number of nodes, the following variables were significantly
and substantively predictive (in order of decreasing predictive power):

• Number of relationships (positive)

• Interaction between many cardinalities and an indicator variable for whether the
abstract ground graph is from an entity or relationship perspective (positive)

• Number of entities (negative)

• Interaction between the number of many cardinalities and relationships (negative)

• Total number of attributes (positive)

The fit for the nodes model has an R2 = 0.818 for n = 450, 000, and Table G.1 con-
tains the standardized coefficients as well as the squared partial and semipartial correlation
coefficients for each predictor. For lasso, λ = 0.0095 offered the fewest predictors while
increasing the model fit by at least 0.01.

In predicting the (log of the) number of edges, the following variables were significantly
and substantively predictive (in order of decreasing predictive power):

• Log of the number of dependencies (positive)

55

Maier, Marazopoulou, and Jensen

• Number of relationships (positive)

• Interaction between many cardinalities and an indicator variable for whether the
abstract ground graph is from an entity or relationship perspective (positive)

• Number of entities (negative)

• Interaction between the number of many cardinalities and relationships (negative)

The fit for the edges model has an R2 = 0.789 for n = 450, 000, and Table G.2 contains
the standardized coefficients and the squared partial and semipartial correlation coefficients
for each predictor. For lasso, λ = 0.0164 offered the fewest predictors while increasing the
model fit by at least 0.01.

References

Richard Barker. CASE Method: Entity Relationship Modeling. Addison-Wesley, Boston,
MA, 1990.

Christopher M. Bishop. Latent variable models. In Michael I. Jordan, editor, Learning in
Graphical Models, pages 371–403. MIT Press, Cambridge, MA, 1999.

Craig Boutilier, Nir Friedman, Moises Goldszmidt, and Daphne Koller. Context-specific
independence in Bayesian networks. In Proceedings of the Twelfth Conference on Uncer-
tainty in Artificial Intelligence, pages 115–123, 1996.

Wray L. Buntine. Operations for learning with graphical models. Journal of Artificial
Intelligence Research, 2:159–225, 1994.

Jie Cheng, David A. Bell, and Weiru Liu. Learning belief networks from data: An infor-
mation theory based approach. In Proceedings of the Sixth International Conference on
Information and Knowledge Management, pages 325–331, 1997.

Tom Claassen and Tom Heskes. A logical characterization of constraint-based causal dis-
covery. In Proceedings of Twenty-Seventh Conference on Uncertainty in Artificial Intel-
ligence, pages 135–144, 2011.

Tom Claassen and Tom Heskes. A Bayesian approach to constraint based causal inference.
In Proceedings of Twenty-Eighth Conference on Uncertainty in Artificial Intelligence,
pages 207–216, 2012.

Diego Colombo, Marloes H. Maathuis, Markus Kalisch, and Thomas S. Richardson. Learn-
ing high-dimensional directed acyclic graphs with latent and selection variables. In The
Annals of Statistics, volume 40, pages 294–321, 2012.

Bruce D’Ambrosio, Eric Altendorf, and Jane Jorgensen. Ecosystem analysis using prob-
abilistic relational modeling. In Proceedings of the International Joint Conference on
Artificial Intelligence Workshop on Learning Statistical Models from Relational Data,
2003.

Denver Dash. Restructuring dynamic causal systems in equilibrium. In Proceedings of the
Tenth International Workshop on Artificial Intelligence and Statistics, pages 81–88, 2005.

56

Independence in Models of Relational Data

Thomas Dean and Keiji Kanazawa. A model for reasoning about persistence and causation.
Computational Intelligence, 5(3):142–150, 1989.

Peter A. Flach. Knowledge representation for inductive learning. In Proceedings of the
Fifth European Conference on Symbolic and Quantitative Approaches to Reasoning with
Uncertainty, pages 160–167, 1999.

Nir Friedman. Inferring cellular networks using probabilistic graphical models. Science, 303
(5659):799–805, 2004.

Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pfeffer. Learning probabilistic rela-
tional models. In Proceedings of the Sixteenth International Joint Conference on Artificial
Intelligence, volume 16, pages 1300–1309, 1999.

Maxime Gasse, Alex Aussem, and Haytham Elghazel. An experimental comparison of
hybrid algorithms for Bayesian network structure learning. In Proceedings of the European
Conference on Machine Learning and Knowledge Discovery in Databases, pages 58–73,
2012.

Dan Geiger and Judea Pearl. On the logic of causal models. In Proceedings of the Fourth
Annual Conference on Uncertainty in Artificial Intelligence, pages 136–147, 1988.

Dan Geiger, Thomas Verma, and Judea Pearl. Identifying independence in Bayesian net-
works. Networks, 20(5):507–534, 1990.

Andrew Gelman. Scaling regression inputs by dividing by two standard deviations. Statistics
in Medicine, 27(15):2865–2873, 2008.

Andrew Gelman and Jennifer Hill. Data Analysis Using Regression and Multi-
level/Hierarchical Models. Cambridge University Press New York, 2007.

Lise Getoor. Learning Statistical Models from Relational Data. Ph.D. thesis, Stanford
University, 2001.

Lise Getoor and Ben Taskar, editors. Introduction to Statistical Relational Learning. MIT
Press, Cambridge, MA, 2007.

Lise Getoor, Daphne Koller, and Nir Friedman. From instances to classes in probabilistic
relational models. In Proceedings of the International Conference on Machine Learning
Workshop on Attribute-Value and Relational Learning, 2000.

Lise Getoor, Nir Friedman, Daphne Koller, and Ben Taskar. Learning probabilistic models
of link structure. 3:679–707, 2002.

Lise Getoor, Jeanne T. Rhee, Daphne Koller, and Peter Small. Understanding tuberculosis
epidemiology using structured statistical models. Artificial Intelligence in Medicine, 30
(3):233–256, 2004.

Lise Getoor, Nir Friedman, Daphne Koller, Avi Pfeffer, and Ben Taskar. Probabilistic
relational models. In Lise Getoor and Ben Taskar, editors, Introduction to Statistical
Relational Learning, chapter 5, pages 129–174. MIT Press, Cambridge, MA, 2007.

57

Maier, Marazopoulou, and Jensen

Walter R. Gilks, Andrew Thomas, and David J. Spiegelhalter. A language and program for
complex Bayesian modeling. The Statistician, 43:169–177, 1994.

David Heckerman, Christopher Meek, and Daphne Koller. Probabilistic Models for Rela-
tional Data. Technical Report MSR-TR-2004-30, Microsoft Research, Redmond, WA,
March 2004.

David Heckerman, Chris Meek, and Daphne Koller. Probabilistic entity-relationship mod-
els, PRMs, and plate models. In Lise Getoor and Ben Taskar, editors, Introduction to
Statistical Relational Learning, chapter 7, pages 201–238. MIT Press, Cambridge, MA,
2007.

Yimin Huang and Marco Valtorta. Identifiability in causal Bayesian networks: A sound and
complete algorithm. In Proceedings of the Twenty-First National Conference on Artificial
Intelligence, pages 1149–1154, 2006.

Michael G. Hudgens and M. Elizabeth Halloran. Toward causal inference with interference.
Journal of the American Statistical Association, 103(482):832–842, 2008.

Antti Hyttinen, Frederick Eberhardt, and Patrik O. Hoyer. Learning linear cyclic causal
models with latent variables. Journal of Machine Learning Research, 13:3387–3439, 2012.

David Jensen and Jennifer Neville. Linkage and autocorrelation cause feature selection
bias in relational learning. In Proceedings of the Nineteenth International Conference on
Machine Learning, pages 259–266, 2002.

Kristian Kersting and Luc De Raedt. Basic Principles of Learning Bayesian Logic Programs.
Technical Report 174, Institute for Computer Science, University of Freiberg, 2002.

Daphne Koller and Avi Pfeffer. Probabilistic frame-based systems. In Proceedings of the
Fifteenth National Conference on Artificial Intelligence, pages 580–587, 1998.

Stefan Kramer, Nada Lavrač, and Peter Flach. Propositionalization approaches to relational
data mining. In Sašo Džeroski and Nada Lavrač, editors, Relational Data Mining, pages
262–286. Springer-Verlag, New York, NY, 2001.

Kathryn B. Laskey. MEBN: A language for first-order Bayesian knowledge bases. Artificial
Intelligence, 172(2):140–178, 2008.

Marc Maier, Brian Taylor, Hüseyin Oktay, and David Jensen. Learning causal models of
relational domains. In Proceedings of the Twenty-Fourth National Conference on Artificial
Intelligence, pages 531–538, 2010.

Marc Maier, Katerina Marazopoulou, David Arbour, and David Jensen. A sound and
complete algorithm for learning causal models from relational data. In Proceedings of the
Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, pages 371–380, 2013.

Dimitris Margaritis and Sebastian Thrun. Bayesian network induction via local neighbor-
hoods. In Advances in Neural Information Processing Systems 12, pages 505–511, 1999.

58

Independence in Models of Relational Data

Brian Milch, Bhaskara Marthi, Stuart J. Russell, David Sontag, Daniel L. Ong, and Andrey
Kolobov. BLOG: Probabilistic models with unknown objects. In Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence, pages 1352–1359,
2005.

Tom Minka and John Winn. Gates. In Advances in Neural Information Processing Sys-
tems 21, Proceedings of the Twenty-Second Annual Conference on Neural Information
Processing Systems, pages 1073–1080, 2009.

Kevin P. Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning.
Ph.D. thesis, University of California, Berkeley, 2002.

Richard E. Neapolitan. Learning Bayesian Networks. Pearson Prentice Hall, Upper Saddle
River, NJ, 2004.

Jennifer Neville and David D. Jensen. Leveraging relational autocorrelation with latent
group models. In Proceedings of the Fifth IEEE International Conference on Data Mining,
pages 322–329, 2005.

Jennifer Neville and David D. Jensen. Relational dependency networks. Journal of Machine
Learning Research, 8:653–692, May 2007.

Judea Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press,
New York, NY, 2000.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, San Fransico, CA, 1988.

Judea Pearl and Rina Dechter. Identifying independencies in causal graphs with feedback.
In Proceedings of the Twelfth International Conference on Uncertainty in Artificial Intel-
ligence, pages 420–426, 1996.

Judea Pearl and Thomas S. Verma. A theory of inferred causation. In Principles of Knowl-
edge Representation and Reasoning: Proceedings of the Second International Conference,
pages 441–452, 1991.

Jean-Philippe Pellet and André Elisseeff. Using Markov blankets for causal structure learn-
ing. Journal of Machine Learning Research, 9:1295–1342, 2008.

Claudia Perlich and Foster Provost. Distribution-based aggregation for relational learning
with identifier attributes. Machine Learning, 62(1-2):65–105, 2006.

David Poole. First-order probabilistic inference. In Proceedings of the Eighteenth Interna-
tional Joint Conference on Artificial Intelligence, volume 3, pages 985–991, 2003.

David Poole. Logical generative models for probabilistic reasoning about existence, roles
and identity. In Proceedings of the Twenty-Second National Conference on Artificial
Intelligence, pages 1271–1277, 2007.

Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems. McGraw-Hill,
Inc., New York, NY, 2nd edition, 2002.

59

Maier, Marazopoulou, and Jensen

Matthew Richardson and Pedro Domingos. Markov logic networks. Machine Learning, 62
(1–2):107–136, 2006.

Thomas Richardson and Peter Spirtes. Ancestral graph Markov models. The Annals of
Statistics, 30(4):962–1030, 2002.

Thomas S. Richardson. Feedback Models: Interpretation and Discovery. Ph.D. thesis,
Carnegie Mellon University, 1996.

Thomas S. Richardson. A factorization criterion for acyclic directed mixed graphs. Pro-
ceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pages
462–470, 2009.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall,
3rd edition, 2010.

Richard Scheines. An introduction to causal inference. In Vaughan R. McKim and Steven P.
Turner, editors, Causality in Crisis? Statistical Methods and the Search for Causal
Knowledge in the Social Sciences, pages 185–199. University of Notre Dame Press, 1997.

Mark Schmidt and Kevin Murphy. Modeling discrete interventional data using directed
cyclic graphical models. In Proceedings of the Twenty-Fifth Conference on Uncertainty
in Artificial Intelligence, pages 487–495, 2009.

Oliver Schulte, Hassan Khosravi, and Tong Man. Learning directed relational models with
recursive dependencies. Machine Learning, 89(3):299–316, 2012.

Eran Segal, Ben Taskar, Audrey Gasch, Nir Friedman, and Daphne Koller. Rich probabilis-
tic models for gene expression. Bioinformatics, 17(suppl 1):S243–S252, 2001.

Cosma R. Shalizi and Andrew C. Thomas. Homophily and contagion are generically con-
founded in observational social network studies. Sociological Methods & Research, 40(2):
211–239, 2011.

Chuan Shi, Xiangnan Kong, Philip S. Yu, Sihong Xie, and Bin Wu. Relevance search
in heterogeneous networks. In Proceedings of the Fifteenth International Conference on
Extending Database Technology, pages 180–191, 2012.

Ilya Shpitser and Judea Pearl. Complete identification methods for the causal hierarchy.
Journal of Machine Learning Research, 9:1941–1979, 2008.

Teodor Sommestad, Mathias Ekstedt, and Pontus Johnson. A probabilistic relational model
for security risk analysis. Computers & Security, 29(6):659–679, 2010.

Peter Spirtes. Directed cyclic graphical representations of feedback models. In Proceedings
of the Eleventh Conference on Uncertainty in Artificial Intelligence, pages 491–498, 1995.

Peter Spirtes, Christopher Meek, and Thomas Richardson. Causal inference in the presence
of latent variables and selection bias. In Proceedings of the Eleventh Conference on
Uncertainty in Artificial Intelligence, pages 499–506, 1995.

60

Independence in Models of Relational Data

Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Prediction and Search.
MIT Press, Cambridge, MA, 2nd edition, 2000.

Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S. Yu, and Tianyi Wu. PathSim: Meta path-
based top-k similarity search in heterogeneous information networks. In Proceedings of
the VLDB Endowment, pages 992–1003, 2011.

Ben Taskar, Eran Segal, and Daphne Koller. Probabilistic classification and clustering
in relational data. In Proceedings of the Seventeenth International Joint Conference on
Artificial Intelligence, pages 870–878, 2001.

Ben Taskar, Pieter Abbeel, and Daphne Koller. Discriminative probabilistic models for
relational data. In Proceedings of the Eighteenth Conference on Uncertainty in Artificial
Intelligence, pages 485–492, 2002.

Eric J. Tchetgen Tchetgen and Tyler J. VanderWeele. On causal inference in the presence
of interference. Statistical Methods in Medical Research, 21(1):55–75, 2012.

Jin Tian and Judea Pearl. A general identification condition for causal effects. In Proceedings
of the Eighteenth National Conference on Artificial Intelligence, pages 567–573, 2002.

Jin Tian, Azaria Paz, and Judea Pearl. Finding Minimal D-separators. Technical Report
R-254, UCLA Computer Science Department, February 1998.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), pages 267–288, 1996.

Ioannis Tsamardinos, Laura E. Brown, and Constantin F. Aliferis. The max-min hill-
climbing Bayesian network structure learning algorithm. Machine Learning, 65(1):31–78,
October 2006.

Thomas Verma and Judea Pearl. Causal networks: Semantics and expressiveness. In
Proceedings of the Fourth Annual Conference on Uncertainty in Artificial Intelligence,
pages 352–359, 1988.

John Winn. Causality with gates. In Proceedings of the Fifteenth International Conference
on Artificial Intelligence and Statistics, pages 1314–1322, 2012.

Rongjing Xiang and Jennifer Neville. Relational learning with one network: An asymp-
totic analysis. In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, pages 779–788, 2011.

Raanan Yehezkel and Boaz Lerner. Bayesian network structure learning by recursive au-
tonomy identification. Journal of Machine Learning Research, 10:1527–1570, 2009.

Jiji Zhang. On the completeness of orientation rules for causal discovery in the presence of
latent confounders and selection bias. Artificial Intelligence, 172(16):1873–1896, 2008.

61

	1 Introduction
	1.1 From Bayesian Networks to Relational Models
	1.2 Why d-Separation Is Useful

	2 Example
	3 Semantics and Alternatives
	4 Concepts of Relational Data and Models
	5 Relational d-Separation
	5.1 Abstracting over All Ground Graphs
	5.2 Proof of Correctness

	6 Naïve Relational d-Separation Is Frequently Incorrect
	7 Experiments
	7.1 Abstract Ground Graph Size
	7.2 Minimal Separating Set Size
	7.3 Empirical Validity

	8 Model Assumptions and Related Work
	9 Discussion
	A Proofs
	B The Semantics of Bridge Burning
	C Soundness and Completeness of Relational Paths
	D Background on Propositional Data and Models
	E Hop Thresholds
	F Experimental Details—Equivalence of a Naïve Approach
	G Experimental Details—Abstract Ground Graph Size

