
University of Illinois at Urbana-Champaign Page 1

CS 326 Lecture 3 – Context Free Grammars

Context-free Grammars

Def: A Context-free Grammar (CFG) is a 4-tuple

G=(N, , P, S)

where:

1. N is a finite, nonempty set of symbols (non-terminals)

2. is a finite set of symbols (terminals)

3. N =

4. V N (vocabulary)

5. S N (Goal symbol or start symbol)

6. P is a finite subset of N V* (Production rules).

Sometimes written as G=(V, , P,S), N = V \ .

University of Illinois at Urbana-Champaign Page 2

CS 326 Lecture 3 – Context Free Grammars

Example Grammar: Arithmetic Expressions

G = (N, , P, E) where:

 N = { E, T, F}

 = { (,), +, *, id}

 P = { E T

 E E + T

 T F

 T T*F

 F id

 F (E) }

Note: P NxV*, where

V = N = { E,T,F,C,(,),+,*,id}

Note: (A,) P is usually written

A

or A :: =

or A :

University of Illinois at Urbana-Champaign Page 3

CS 326 Lecture 3 – Context Free Grammars

Derivations of a Grammar

Directly Derives or :

If and are strings in V* (vocabulary), then directly derives

(written) iff there is a production A s.t.

– A is a symbol in

– Substituting string for A in produces the string

Canonical Derivation Step:

The above derivation step is called rightmost if A is the rightmost non-
terminal in . (Similarly, leftmost.)

A rightmost derivation step is also called canonical.

University of Illinois at Urbana-Champaign Page 4

CS 326 Lecture 3 – Context Free Grammars

Derivations and Sentential Forms

Derivation:

A sequence of steps 0 1 2 … n where 0 = S is

called a derivation. It is written S * n

If every derivation step is rightmost, then this is a canonical derivation.

Sentential Form

Each i in a derivation is called a sentential form of G.

Sentences and the Language L(G)

A sentential form i consisting only of tokens (i.e., terminals) is called

a sentence of G.

The language generated by G is the set of all sentences of G. It is

denoted L(G).

University of Illinois at Urbana-Champaign Page 5

CS 326 Lecture 3 – Context Free Grammars

Parse Trees of a Grammar

A Parse Tree for a grammar G is any tree in which:

• The root is labeled with S

• Each leaf is labeled with a token a (a) or (the empty string)

• Each interior node is labeled by a non-terminal.

• If an interior node is labeled A and has children labeled X1…Xn , then
A X1…Xn is a production of G

• If A is a production in G, then a node labeled A may have a

single child labeled

The string formed by the leaf labels (left to right) is the yield of the parse

tree.

University of Illinois at Urbana-Champaign Page 6

CS 326 Lecture 3 – Context Free Grammars

Parse Trees (continued)

• An intermediate parse tree is the same as a parse tree except the

leaves can be non-terminals.

Notes:

• Every L(G)is the yield of some parse tree. Why?

• Consider a derivation, S 1 2 … n , where n L(G)

For each i, we can construct an intermediate parse tree.

The last one will be the parse tree for the sentence n .

• A parse tree ignores the order in which symbols are replaced to derive

a string.

University of Illinois at Urbana-Champaign Page 7

CS 326 Lecture 3 – Context Free Grammars

Derivations and Parse Trees

id * id

E T T * F T * id F * id id * id

T

T F

id * id

E

F

T

T F

* id

E

F

T

T F

E

*

University of Illinois at Urbana-Champaign Page 8

CS 326 Lecture 3 – Context Free Grammars

Uniqueness of Derivations

Derivations and Parse Trees

• Every parse tree has a unique derivation: Yes? No?

• Every parse tree has a unique rightmost derivation: Yes? No?

• Every parse tree has a unique leftmost derivation: Yes? No?

Derivations and Strings of the Language

• Every u L(G) has a unique derivation: Yes? No?

• Every u L(G) has a unique rightmost derivation: Yes? No?

• Every u L(G) has a unique leftmost derivation: Yes? No?

University of Illinois at Urbana-Champaign Page 9

CS 326 Lecture 3 – Context Free Grammars

Ambiguity

Def. A grammar, G, is said to be unambiguous if u L(G), exactly

one canonical derivation S * u. Otherwise, G is said to be

ambiguous.

E.g., Grammar: E E + E | E * E | (E) | id

 Two parse trees for u = id + id * id
E

E E

E E

id + id * id

E

EE

EE

id + id * id

These are different syntactic interpretations of the input code
University of Illinois at Urbana-Champaign Page 10

CS 326 Lecture 3 – Context Free Grammars

Order of Evaluation of Parse Tree

Note: These are conventions, not theorems

• Code for a non-terminal is evaluated as a single “block”

– I.e., cannot partially execute it, then execute something else, then

evaluate the rest

– A different parse tree would be needed to achieve that

– E.g. 1: Non-terminal T enforces precedence of * over +

– E.g. 2: E E + T enforces left-associativity,

 E T + E enforces right-associativity.

• Parse tree does not specify order of execution of code blocks

– Must be enforced by the code generated for parent block. Obey:

» Operator (e.g, +) cannot be evaluated before operands

» Associativity rules

University of Illinois at Urbana-Champaign Page 11

CS 326 Lecture 3 – Context Free Grammars

Detecting Ambiguity

Caution: There is no mechanical algorithm to decide whether an arbitrary CFG

is ambiguous.

But one common kind of ambiguity can be detected:

If a symbol, A N is both left-recursive (I.e., A + A , | | 0) and right-

recursive (i.e., A + , | | 0), then G is ambiguous, provided that G is

“reduced” (i.e., has no “redundant” symbols).

A

A

A

A

A

A

University of Illinois at Urbana-Champaign Page 12

CS 326 Lecture 3 – Context Free Grammars

Removal of Ambiguity: Example 1

1. Enforce higher precedence for *

E E + E | T

T T * T | id | (E)

2. Eliminate right-recursion for E E + E and T T * T.

E E + T | T

T T * id | T * (E) | id | (E)

University of Illinois at Urbana-Champaign Page 13

CS 326 Lecture 3 – Context Free Grammars

Removal of Ambiguity: Example 2

The Infamous Dangling-Else Grammar:

Stmt if expr then stmt

 | if expr then stmt else stmt

 | other

Solution: Introduce new non-terminals to distinguish matched then/else

Stmt matched_stmt | unmatched_stmt

matched_stmt if expr then matched_stmt else matched_stmt

 | other

unmatched_stmt if expr then stmt

 | if expr then matched_stmt else unmatched_stmt

