CS 326 Lecture 3 — Context Free Grammars CS 326 Lecture 3 — Context Free Grammars

Context-free Grammars Example Grammar: Arithmetic Expressions

Def: A Context-free Grammar (CFG) is a 4-tuple G =(N, X, P, E) where:
G=(N, %, P, S) N={E.TF
where:
—_ * 1
1. Nis a finite, nonempty set of symbols (non-terminals) Z={()+"id
2. Zis afinite set of symbols (terminals) P={E—T Note: P  NxV*, where
3. NN Z=d E — E + T V = N U 2 = { E1T1F1C1(1)1+1*1id
4. V=NU X (vocabulary) T—F . .
5. S & N (Goal symbol or start symbol) T T*F Note: (A, o) € P is usually written
6. Pisafinite subset of N x V* (Production rules). F—id A—a
F—(E)} oo A:=a

Sometimes written as G=(V, =, P,S), N = V\X. o A:a
Derivations of a Grammar Derivations and Sentential Forms
Directly Derives or =>: Derivation:

If o and B are strings in V* (vocabulary), then o directly derives p A sequence of steps oy => o, = o, = ... => o, Where oy = S is

(written o.=> B) iff there is a production A—0 s.t. called a derivation. It is written S =* a,

- Alisasymbolin a If every derivation step is rightmost, then this is a canonical derivation.

— Substituting string & for A in o produces the string 3 Sentential E
entential Form

Canonical Derivation Step: Each o, in a derivation is called a sentential form of G.
The above derivation step is called rightmost if A is the rightmost non-
terminal in o.. (Similarly, leftmost.) Sentences and the Language L(G)

A sentential form o consisting only of tokens (i.e., terminals) is called
a sentence of G.

The language generated by G is the set of all sentences of G. Itis
denoted L(G).

A rightmost derivation step is also called canonical.

University of lllinois at Urbana-Champaign Page 3 University of lllinois at Urbana-Champaign Page 4



CS 326 Lecture 3 — Context Free Grammars CS 326 Lecture 3 — Context Free Grammars

Parse Trees of a Grammar Parse Trees (continued)
A Parse Tree for a grammar G is any tree in which: + Anintermediate parse tree is the same as a parse tree except the
o The rootis labeled with S leaves can be non-terminals.
 Each leaf is labeled with a token a (a € X) or ¢ (the empty string)
« Each interior node is labeled by a non-terminal. Notes:
« If an interior node is labeled A and has children labeled X; ...X,, then * Every a EL(G)is the yield of some parse tree. Why?
A — X,...X, is a production of G « Consider a derivation, S => o, = o, = ... => a,,, Where a,, € L(G)
« If A— gisaproduction in G, then a node labeled A may have a For each o, we can construct an intermediate parse tree.
single child labeled ¢ The last one will be the parse tree for the sentence o,
A parse tree ignores the order in which symbols are replaced to derive
The string formed by the leaf labels (left to right) is the yield of the parse a string.
tree.
Derivations and Parse Trees Uniqueness of Derivations
id*id Derivations and Parse Trees
« Every parse tree has a unique derivation: Yes? No?
E =T = T*F =T*d = F*id = id*id » Every parse tree has a unique rightmost derivation: Yes? No?
 Every parse tree has a unique leftmost derivation: Yes? No?
E E E
‘T ‘T ‘T Derivations and Strings of the Language
N N . » Everyu €L(G) has a unique derivation: Yes? No?
T | F T | F T | F » Everyu €L(G) has a unique rightmost derivation: Yes? No?
F‘ F‘ * Everyu €L(G) has aunique leftmost derivation: Yes? No?

University of lllinois at Urbana-Champaign Page 7 University of lllinois at Urbana-Champaign Page 8



CS 326 Lecture 3 — Context Free Grammars

Ambiguity

Def. A grammar, G, is said to be unambiguous if V u € L(G), 3 exactly
one canonical derivation S =" u. Otherwise, G is said to be

ambiguous.

E.g., Grammar; E—~E+E|E*E|(E)|id
Two parse trees for u=id +id *id

% dl
v

id + id * id id + id * id

These are different syntactic interpretations of the input code

University of lllinois at Urbana-Champaign Page 9

CS 326 Lecture 3 — Context Free Grammars

Detecting Ambiguity

Caution: There is no mechanical algorithm to decide whether an arbitrary CFG
is ambiguous.

But one common kind of ambiguity can be detected:

If a symbol, A € N is both left-recursive (.e., A =* Aa,, || = 0) and right-
recursive (i.e., A=>*BA, |B| = 0), then G is ambiguous, provided that G is
“reduced” (i.e., has no “redundant” symbols).

A A

N\ N

B A A o

/N N

A o 5 A

University of lllinois at Urbana-Champaign Page 11

CS 326 Lecture 3 — Context Free Grammars

Order of Evaluation of Parse Tree

Note: These are conventions, not theorems

« Code for a non-terminal is evaluated as a single “block”

- l.e., cannot partially execute it, then execute something else, then
evaluate the rest

- A different parse tree would be needed to achieve that
- E.g. 1: Non-terminal T enforces precedence of * over +
- E.g. 2. E — E + T enforces left-associativity,

E — T + E enforces right-associativity.

 Parse tree does not specify order of execution of code blocks
- Must be enforced by the code generated for parent block. Obey:
» Operator (e.g, +) cannot be evaluated before operands
» Associativity rules

University of lllinois at Urbana-Champaign Page 10

CS 326 Lecture 3 — Context Free Grammars

Removal of Ambiguity: Example 1

1. Enforce higher precedence for *
E—-E+E|T
T—=T*T[id]|(E)

2. Eliminate right-recursionforE = E+E and T—=T*T.

E-E+T|T
T—=T*d|[T*(E)|d]|(E)

University of lllinois at Urbana-Champaign Page 12



CS 326 Lecture 3 — Context Free Grammars

Removal of Ambiguity: Example 2

The Infamous Dangling-Else Grammar:
Stmt — if expr then stmt
| if expr then stmt else stmt
| other

Solution: Introduce new non-terminals to distinguish matched then/else
Stmt — matched_stmt | unmatched_stmt
matched_stmt — if expr then matched_stmt else matched_stmt
| other
unmatched_stmt — if expr then stmt
| if expr then matched_stmt else unmatched_stmt

University of lllinois at Urbana-Champaign Page 13



