
ALE

The Attribute Logic Engine

User’s Guide

Version 3.2.1
December 2001

Bob Carpenter Gerald Penn
SpeechWorks Research Department of Computer Science

55 Broad St. University of Toronto

New York, NY 10004 10 King’s College Rd.

USA Toronto M5S 3G4

Canada

carp@colloquial.com gpenn@cs.toronto.edu

c©1992–1995, Bob Carpenter and Gerald Penn
c©1998, 1999, 2001, Gerald Penn



Contents

1 Introduction 1

2 Prolog Preliminaries 3
2.1 Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Space and Comments . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Running Prolog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.5 Running ALE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.6 Exiting Prolog and Breaking . . . . . . . . . . . . . . . . . . . . . . 5
2.7 Saved States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Feature Structures, Types and Descriptions 6
3.1 Inheritance Hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Feature Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Subsumption and Unification . . . . . . . . . . . . . . . . . . . . . . 10

3.3.1 Subsumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3.2 Unification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 Inequations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5 Type System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.6 Extensionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.7 a /1 Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.8 Attribute-Value Logic . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.8.1 Enforcement of Inequations . . . . . . . . . . . . . . . . . . . 25
3.9 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.10 Functional Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.11 Type Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.12 Example: The Zebra Puzzle . . . . . . . . . . . . . . . . . . . . . . . 32

4 Definite Clauses 37
4.1 Type Constraints Revisited . . . . . . . . . . . . . . . . . . . . . . . 41

5 Phrase Structure Grammars 42
5.1 Lexical Entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Empty Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Lexical Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.4 Grammar Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4.1 Procedural Attachments . . . . . . . . . . . . . . . . . . . . . 52
5.4.2 The cats> Operator . . . . . . . . . . . . . . . . . . . . . . . 54

i



ii CONTENTS

5.4.3 Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4.4 Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Compiling ALE Programs 65
6.1 File Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Compiling Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3 Compile-Time Error Messages . . . . . . . . . . . . . . . . . . . . . . 69

7 Running and Debugging ALE Programs 71
7.1 Testing the Signature . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2 Evaluating Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.3 Hiding Types and Features . . . . . . . . . . . . . . . . . . . . . . . 76
7.4 Evaluating Definite Clause Queries . . . . . . . . . . . . . . . . . . . 76
7.5 Displaying Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.6 Executing Grammars: Parsing . . . . . . . . . . . . . . . . . . . . . 82
7.7 Executing Grammars: Generation . . . . . . . . . . . . . . . . . . . 87
7.8 Mini-interpreter (parsing only) . . . . . . . . . . . . . . . . . . . . . 90
7.9 Subsumption Checking (parsing only) . . . . . . . . . . . . . . . . . 93
7.10 Source-Level Debugger . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.10.1 Running without XEmacs . . . . . . . . . . . . . . . . . . . . 94
7.10.2 Running with XEmacs . . . . . . . . . . . . . . . . . . . . . . 95
7.10.3 Debugger Commands . . . . . . . . . . . . . . . . . . . . . . 95
7.10.4 Debugger Ports and Steps . . . . . . . . . . . . . . . . . . . . 96
7.10.5 Leashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.10.6 Skipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.10.7 Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8 ALE Keyword Summary 102

9 References 108

A Sample Grammars 112
A.1 English Syllabification Grammar . . . . . . . . . . . . . . . . . . . . 112
A.2 Categorial Grammar with Cooper Storage . . . . . . . . . . . . . . . 117
A.3 Simple Generation Grammar . . . . . . . . . . . . . . . . . . . . . . 122

B Error and Warning Messages 126
B.1 Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
B.2 Warning Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

C BNF for ALE 132

D Reference Card 136



Preface – Version 3.0

ale 3.0 is completely compatible with ale 2.0 grammars, and adds the following
new features:

• A semantic-head-driven generator, based on the algorithm presented in Shieber
et al. (1990). The generator was adapted to the logic of typed feature struc-
tures by Octav Popescu in his Carnegie Mellon Master’s Thesis, Popescu
(1996). Octav also wrote most of the generation code for this release. Gram-
mars can be compiled for parsing only, generation only, or both. Some glue-
code is also available from the ale homepage, to parse and generate with
different grammars through a unix pipe.

• A source-level debugger with a graphical XEmacs interface. This debugger
works only with SICStus Prolog 3.0.6 and higher. A debugger with reduced
functionality will be made available to SWI Prolog users in a later release.
This debugger builds on, and incorporates the functionality of the code for the
SICStus source-level debugger, written by Per Mildner at Uppsala University.

• Functional descriptions. Instead of binding variables in a description
and calling a procedural attachment, e.g., a cons f:X,g:Y,h:Z goal
append(X,Y,Z), it is now possible to incorporate certain functional relations
into descriptions themselves, e.g., a cons f:X,g:Y,h:append(X,Y).

• a /1 atoms. There are now an infinite number of atoms (types with no appro-
priate features), implicitly declared in every signature. These atoms can be
arbitrary Prolog terms, including unbound variables, and can be used wher-
ever normal ale types can, e.g., f:(a p(3.7)). a /1 atoms are extensional
as Prolog terms, i.e., are taken to be identical according to the Prolog pred-
icate, ==/2. In particular, this means that ground atoms behave exactly as
ale extensional types.

• Optional edge subsumption checking. For completeness of parsing, one only
needs to ensure that, for every pair of nodes in the chart, the most general
feature structure spanning those nodes is stored in the chart. This can reduce
the number of edges in many domains.

• An autonomous intro/2 operator. Features can now be declared on their own
in a separate part of the grammar.

• Default specifications for types. These are NOT default types. If a type ap-
pears on the right-hand side of a sub/2 or intro/2 specification, but not on

iii



iv CONTENTS

the left-hand side of one, ale will assume this type is maximal, i.e., assume
the specification, Type sub []. Similarly, if it occurs on a left-hand side,
but not on a right-hand side, ale will assume the type is immediately sub-
sumed by bot, the most general type. In both cases, ale will announce these
assumptions during compilation.

• Several bug corrections and more compile-time warning and error messages.

• An SWI Prolog 2.9.7 port. Version 3.0 will be the last version for which we
will port the system to Quintus Prolog. We will now support ale for SICStus
Prolog and SWI Prolog. The SICStus version of the system works for SICStus
Prolog 3.0.5 and higher, except for the source-level debugger, which requires
version 3.0.6.

We would like to thank all of the users who have supplied us with feedback
and suggestions over the past few years for how to improve ale. In particular, we
would like to thank Ion Androutsopoulos, Mike Calcagno, Mats Carlsson, Frederik
Fouvry, Gertjan van Noord, Peter van Roy, Margriet Verlinden, and Jan Wielemaker
for their patient assistance. This release incorporates many, but unfortunately not
all of those changes. Quite a few more will be made in the next several releases,
along with many performance improvements.

Bob Carpenter and Gerald Penn
Murray Hill and Tuebingen, March 1998



Preface – Version 2.0

ale 2.0 is a proper extension of version 1.0. Specifically, version 2.0 will run any
grammar that will run under version 1.0. But version 2.0 includes many extensions
to version 1.0, including the following.

• Inequations

• Extensionality

• General Constraints on Types

• Mini-interpreter

• Error-suppression

Inequations allow inequational constraints to be imposed between two structures.
Extensionality allows structures of specified types to be identified if they are struc-
turally identicial. Together, these provide the ability to simulate Prolog II pro-
grams (Colmerauer 1987). ale 2.0 also allows general constraints to be placed
on types, using arbitrary descriptions from the constraint language, including path
equations, inequations and disjunctions, and procedural attachments. It also has
a mini-interpreter, which allows the user to traverse and edit an ale parse tree.
Error messages for incompatible descriptions are now automatically disabled during
lexicon and empty category compilation.

The second release of ale, Version 2.0, is based on an extension of the first
version of ale, that was completed for Gerald Penn’s (1993) MS Project in the
Computational Linguistics Program at Carnegie Mellon University.

There are many people whom we would like to thank for their comments and
feedback on version 1.0 and β-versions of 2.0. These people have actually used the
system in their research and have thus had the best opportunity to provide us with
practical feedback. First, we would like to thank the first group of users, housed at
Sharp Laboratories of Europe, located in Oxford, England, including Pete White-
lock, Antonio Sanfillipo, and Osamu Nishida. They not only used the system but
provided feedback on the code. Secondly, the group at University of Tübingen,
who are developing a competing system, Troll, have rigorously tested existing sys-
tems, including ale, both for their ability to express grammars naturally and for
efficiency. Specifically, we would like to thank Detmar Meurers, Dale Gerdemann,
Thilo Götz, Paul King, John Griffith, and Erhard Hinrichs. John and Thilo also
provided the changes necessary for the system to run directly in Quintus Prolog.
This group is undoubtedly the best informed when it comes to implemented gram-
mar formalisms. We would also like to thank the grammar development group at

v



vi CONTENTS

Stanford University, including Ivan Sag, Chris Manning, Suzanne Riehemann. We
would further like to thank Bob Kasper, Carl Pollard, and Andreas Kathol of the
Ohio State University, for a great deal of feedback on the design of HPSG gram-
mars in general, and ale implementations of them in particular. Chris Manning,
in addition, found a bug in SICStus Prologs prior to 2.1.8, which prevented cyclic
structures from being used in completed chart edges, a bug found by both Steven
Bird of Edinburgh and C. J. Rupp of IDSIA. Their feedback on Bob Carpenter’s
prototype implementation of HPSG for English led to the design of Gerald Penn’s
much more comprehensive implementation of HPSG and was the primary impetus
for the importation of general type constraints into version 2.0. Next, we would like
to thank Claire Gardent, who has been using ale to develop discourse grammars
in Amsterdam. We should also thank Carsten Guenther and Markus Walther, of
the Universities of Hamburg and Düsseldorf, respectively, who have used the system
to develop phonological grammars. Finally, we should thank Michael Mastroianni,
who implemented a comprehensive approach to constraint-based phonology in ale
(Mastroianni 1993). He suffered through early, buggy versions of the system, thus
sparing the rest of us much of that pain. The feedback we received from these users
was invaluable.

We would like to thank EAGLES, the European Advisory Group on Linguis-
tic Engineering Standards, for allowing us to present our system at a meeting in
Saarbrücken in March 1993 of the European Expert Group on Linguistic Formalisms
devoted to implemented formalisms. We learned a great deal from the other par-
ticipants in the workshop including especially Jochen Dörre, Michael Dorna, and
Martin Emele, of Stuttgart, and Andreas Podelski, then associated with the Digi-
tal Equipment Paris Research Lab. We also benefitted from discussions with Hans
Uszkoreit, Rolf Backofen, and Uli Krieger, of Saarbrücken, Steve Pulman from SRI
in Cambridge, and C. J. Rupp and Graham Russell, of ISSCO in Switzerland.

We had many discussions of the ale formalism at the HPSG workshop running
concurrently with the LSA Linguistic Institute in Columbus. We would especially
like to thank Gregor Erbach for comments on our system, including benchmark test
results. We would also like to thank Hiroshi Tusda, of the Institute for New Ger-
nateion Computer Technology, for discussion of our systems and comparisons to his
system, cu-Prolog. We also discussed ale heavily during the workshop on implemen-
tations of attribute-value logics, during the 1993 Summer School on Logic, Language,
and Information in Lisbon, Portugal. We especially benefitted from discussions with
Suresh Manandhar, of the University of Edinburgh, and Gerrit Rentier of Tilburg
University, and Gert Webelhuth of the University of North Carolina, among those
we have not already thanked. We also benefitted from discussions with Ed Stabler
and Mark Johnson, and from sitting in on their class on the implementation of
constraint-based grammars.

We would also like to thank Ann Copestake and Ted Briscoe, of the Cambridge
Computing Laboratory, for feedback on the design of the system.

We would like to thank Richard O’Keefe, who provided some invaluable feedback
on coding style. Of course, any glitches or failure to follow his excellent example are
our own.

We would also like to thank Elizabeth Hinkelman, who runs the Software Reg-
istry, and Mark Kantrowitz, who administers the Prolog Resource Guide and the
Prime Time Freeware for AI CD-ROM. They have helped in publicizing the system



CONTENTS vii

description as well as providing access.
The extensions we have not made, though would like to, include the addition of:

• Primitive, Atomic Data Types

• Parametric Types

• Partial Type Inference

• Assert Mode in Compiler

• Peephole Code Optimization

• Subsumption Checking of Chart Edges

The incorporation of Prolog data types such as Real, Integer, Character, and String,
is straightforward theoretically, but not so straightforward in terms of ale. The
same goes for parametric polymorphism at the type level. Partial type inference
could provide a great deal of optimization in some circumstances. We could not
figure out how to incoprorate these three changes without drastically modifying
the underlying representations and algorithms. The remaining changes are lying
dormant because we have other obligations.

The next wave of development of attribute-logic grammars should not be in
Prolog, but rather through the use of a direct abstract machine. Bob Carpenter has
worked on an abstract machine with Yan Qu, in the context of her MS project in
the Carnegie Mellon Computational Linguistics Program, and with Shuly Wintner,
of the Technion, in Haifa, Israel, who is writing a PhD dissertation on the topic.
Such an undertaking is also underway among the LIFE community, led by Hassan
Aı̈t-Kaci, Andreas Podelski, and Peter van Roy.

We would like to thank a number of people for discovering bugs and providing
comments on Version 2.0: Ingo Schroeder, Frank Morawietz, Detmar Meurers, Rob
Malouf, Frederik Fouvry, Jo Calder, and Suresh Manandhar.

Finally, we would like to thank Jo Calder,Chris Brew, Kevin Humphreys, and
Mike Reape, who developed the Pleuk grammar development environment as well
as interfacing it to ale. Details of that system can be found in the appropriate
Appendix.

This material is based upon work supported under a National Science Foun-
dation Graduate Research Fellowship (for Gerald Penn). Any opinions, findings,
conclusions or recommendations expressed in this publication are those of the au-
thor(s) and do not necessarily reflect the views of the National Science Foundation.

Bob Carpenter and Gerald Penn
Pittsburgh, August 1994



Preface – Version Beta

A number of people have asked me to make this system, along with its documen-
tation, available to the public. Now that it’s available, I hope that it’s useful. But
a word of caution is in order. The system is still only a prototype, hence the label
“version β.”

Any bug reports would be greatly appreciated. But what I’d really like is com-
ments on the functionality of the system, as well as on the utility of its documenta-
tion. I am also interested in hearing of any applications that are made of the system.
I would also be glad to answer questions about the system. I have tried to document
the strategies used by ale in this guide. I have also tried to comment the code to
the point where it might be adaptable by others. I would, of course, be interested in
any kind of improvements or extensions that are discovered or developed, and would
like to have the chance to incorporate any such improvements in future versions of
this package.

In the implementation, I have endeavored to follow the logic programming
methodology laid out by O’Keefe (1990), but there are many spots where I have
fallen short. Thus the code is not as fast as it could be, even in Prolog. But I view
this system more as a prototype, indicating the utility of a typed logic programming
and grammar development system. Borrowing techniques from the wam directly,
implementing an abstract machine C, would lead to roughly a 100-fold speedup, as
there is no reason that ale should be slower than Prolog itself.

I would like to acknowledge the help of Gerald Penn in working through many
implementation details of a general constraint resolver, which was the inspiration
for this implementation. This version of the system is a great improvement on the
last version due to Gerald’s work on the system. Secondly, I would like to thank
Michael Mastroianni, who has actually used the system to develop grammars for
phonology. Finally, I would like to thank Carl Pollard and Bob Kasper for looking
over a grammar of hpsg coded in ale and providing the impetus for the inclusion
of empty categories and lexical rules.

The system is available without charge from the author. It is designed to run in
either SICStus or Quintus Prologs.

Bob Carpenter
Pittsburgh, 1992

viii



Chapter 1

Introduction

This report serves as an introduction to both the ale formalism and its Prolog
implementation. ale is an integrated phrase structure parsing and definite clause
logic programming system in which the terms are typed feature structures. Typed
feature structures combine type inheritance and appropriateness specifications for
features and their values. The feature structures used in ale generalize the common
feature structure systems found in the linguistic programming systems patr-ii and
fug, the grammar formalisms hpsg and lfg, as well as the logic programming
systems Prolog-II and login. Programs in any of these languages can be encoded
directly in ale.

Terms in grammars and logic programs are specified in ale using a typed version
of Rounds and Kasper’s attribute-value logic with variables. At the term level, we
have variables, types, feature value restrictions, path equations, inequations, general
constraints, and disjunction. The definite clause programs allow disjunction, nega-
tion and cut, specified with Prolog syntax. Phrase structure grammars are specified
in a manner similar to dcgs, allowing definite clause procedural attachment. The
grammar formalism also fully supports empty categories. Lexical development is
supported by a very general form of lexical rule which operates on both categories
and surface strings. Macros are available to help organize large descriptions, either
in programs or in grammars. Both definite clause programs and grammars are com-
piled into abstract machine instructions. These instructions are then interpreted
by an emulator compiled from the type specifications. Like Prolog compilers, a
structure copying strategy is used for matching both definite clauses and grammar
rules.

For parsing, ale compiles from the grammar specification a Prolog-optimized
bottom-up, dynamic chart parser. Definite clauses are also compiled into Prolog.
As it stands, the current version of ale, running the feature-structure-based naive
reverse of a 30-element list on top of the SICStus 3.7 native code compiler, runs
at roughly 152,300 logical inferences per second (LIPS) on a Sun Ultra Enterprise
450. This is slightly faster than the speed of the SICStus 3.7 interpreter on the
Prolog naive reverse, 60% as fast as SWI Prolog 3.2.7, and about 9% as fast as the
SICStus 3.7 compact-code compiler. The definite clause compiler performs last call
optimization, but does not index first arguments or use specialised list cells at the
WAM level. Thus it will perform relatively well versus non-optimized interpreters,
but lag further behind compiled grammars when programs are written in a more

1



2 CHAPTER 1. INTRODUCTION

sophisticated manner than naive reverse.
Full details of the theory behind ale can be found in Carpenter (1992).
The user who is only interested in definite clause programming can skip the

material on phrase structure grammars, while those interested in only grammars
without procedural attachments may skip the material in the section on definite
clauses.



Chapter 2

Prolog Preliminaries

While it is not absolutely necessary, some familiarity with logic programming in
general, and Prolog in particular, is helpful in understanding the definite clause
portion of ale. Similarly, experience with unification grammar systems such as
patr-ii, dcgs, or fug is helpful in understanding the phrase structure component of
the system. In particular, writing efficient programs and grammars in ale involves
the same kinds of strategies necessary for writing efficient programs in Prolog or
patr-ii. For those not familiar with Prolog, the sequence of two books by Sterling
and Shapiro (1986) and by O’Keefe (1990) are excellent general introductions to the
theory and practice of logic programming. For those not familiar with unification-
based grammar formalisms, Shieber (1986), Gazdar and Mellish (1987) and Pereira
and Shieber (1987) are useful resources.

For those not familiar with Prolog, we need to point out the salient features of
the language which will be assumed throughout this report. This section contains
all of the information necessary about Prolog required to run ale.

2.1 Terms

A Prolog constant is composed of either a sequence of characters and/or under-
scores, beginning with a lower case letter, a number, or any sequence of symbols
surrounded by apostrophes. So, abc, johnDoe, b 17, 123, ’JohnDoe’, ’65$’,
and ’ 65a.’ are constants, but A19, JohnDoe, B 112, au8, and [dd,e] are not
(although see the warning at the end of this section). A variable, on the other hand,
is any string of letters, underscores or numbers beginning with a capital letter. Thus
C, C foo, and TR5ab are variables, but 1Xa, aXX, and Xy1 are not.

In general, it is a bad idea to have constants or variables which are only dis-
tinguished by the capitalization of some of their letters. For instance, while aBa
and aba are different constants, they should not both be used in one program. One
reason for this in the context of ale is that the output routines adopt standard
capitalization conventions which hide the differences between such constants.

Warning: As pointed out to us by Ingo Schroeder, constants or atoms beginning
with a capital letter are not treated properly by the compiler. Thus constants such

1Technically, a variable may begin with an underscore, but such variables, said to be anonymous,
have a very different status than those which begin with a capital letter. The use of anonymous
variables is discussed later.

3



4 CHAPTER 2. PROLOG PRELIMINARIES

as ’Foo’ should not be used.

2.2 Space and Comments

In your own program and grammar files, extra whitespace between symbols beyond
that needed to separate constants or variables is ignored. Whitespace consists of
either spaces, blank lines or line breaks are ignored. This allows you to format
your programs in a manner that is readable. Furthermore, any symbols on a line
appearing after a % symbol are treated as comments and ignored.

2.3 Running Prolog

To fire up Prolog locally, you should contact your systems administrator. You should
have either SICStus or SWI Prolog, or a Prolog compiler compatible with one of
these. Once Prolog is fired up, you will see a prompt. The Prolog prompt should
look like:

| ?-

It is important that Prolog be invoked from a directory for which the user has
write permission. ale, in the process of compiling user programs, writes a number
of local files.

2.4 Queries

What you type after the prompt is called a query. Queries should always end with
a period and be followed by a carriage return. In fact, all of the grammar rules,
definite clauses, macros and lexical entries in your programs should also end with
periods. Most of the interface in ale is handled directly by top-level Prolog queries.
Many of these will return yes or no after they are called, the significance of which
within ale is explained on a query by query basis.

2.5 Running ALE

To run ale, it is only necessary to type the following query:

| ?- compile(File).

where File is the file in which the file ale.pl resides. SWI Prolog users must type:

| ?- consult(File).

Note that File does not have to be local to the directory from which Prolog was
invoked.

In SICStus Prolog, when ale is loaded, it turns on Prolog character escapes.
ale will not be able to generate code properly during compilation without this.



2.6. EXITING PROLOG AND BREAKING 5

2.6 Exiting Prolog and Breaking

To exit from Prolog, you can type halt at any prompt (followed by a period, of
course).

If you find Prolog hanging at some point, and you are working on a standard
Unix implementation, typing control-c should produce something like the following
message:

Prolog interruption (h for help)?

You should reply with the character a, with or without a following period, followed
by a carriage return. If this doesn’t work, typing control-z should take you out of
Prolog altogether.

2.7 Saved States

All information concerning an ale state is encoded in the current Prolog state.
Thus, any options presented by the local system to save Prolog states should be
able to save ale states.



Chapter 3

Feature Structures, Types and
Descriptions

This section reviews the basic material from Carpenter (1992), Chapters 1–10, which
is necessary to use ale.

3.1 Inheritance Hierarchies

ale is a language with strong typing. What this means is that every structure it uses
comes with a type. These types are arranged in an inheritance hierarchy, whereby
type constraints on more general types are inherited by their more specific subtypes,
leading to what is known as inheritance-based polymorphism. Inheritance-based
polymorphism is a cornerstone of object-oriented programming. In this section, we
discuss the organization of types into an inheritance hierarchy. Thus many types will
have subtypes, which are more specific instances of the type. For instance, person
might have subtypes male and female.

ale does much of its processing of types at compile time, as it is reading and
processing the grammar file. Thus the user is required to declare all of the types
that will be used along with the subtyping relationship between them. An example
of a simple ale type declaration is as follows:

bot sub [b,c]. % two basic types -- b and c
b sub [d,e].

d sub [g,h].
e sub [].

c sub [d,f]. % b and c unify to d
f sub [].

There are quite a few things to note about this declaration. The types declared here
are bot, b, c, d, e, f and g. Note that each type that is mentioned gets its
own specification. Of course, the whitespace is not important, but it is convenient
to have each type start its own line. A simple type specification consists of the
name of the type, followed by the keyword sub, followed by a list of its subtypes
(separated by whitespace). In this case, bot has two subtypes, b and c, while f, d
and e have no subtypes. The subtypes are specified by a Prolog list. In this case, a
Prolog list consists of a sequence of elements separated by commas and enclosed in

6



3.1. INHERITANCE HIERARCHIES 7

square brackets. Note that no whitespace is needed between the list brackets and
types, between the types and commas, or between the final bracket and the period.
Whitespace is only needed between constants. The extra whitespace on successive
lines is conventional, indicating the level in the ordering for the user, but is ignored
by the program. Also notice that there are comments on two of the lines; recall
that comments begin with a % sign and continue the length of the line. Every type
(except a /1 atoms, discussed below) must have at most one sub declaration, i.e.,
all of the immediate subtypes must be declared in one declaration.

The subtyping relation is only specified by immediate subtyping declarations;
but subtyping itself is transitive. Thus, in the example, d is a subtype of c, and c
is a subtype of bot, so d is also a subtype of bot. The user only needs to specify
the direct subtyping relationship. The transitive closure of this relation is computed
by the compiler. While redundant specifications, such as putting d directly on the
subtype list of bot, will not alter the behavior of the compiler, they are confusing to
the reader of the program and should be avoided. In addition, the derived transitive
subtyping relationship must be anti-symmetric. In particular, this means that there
should not be two distinct types each of which is a subtype of the other.

There are two additional restrictions on the inheritance hierarchy beyond the
requirement that it form a partial order. First, there is a special type bot, which
must be declared as the unique most general type. In other words, every type must
be a subtype of bot. If a type is used on the left-hand side of a sub declaration,
but never declared as a sub-type of anything else, it is assumed that this type is
an immediate subtype of bot. Similarly, ale assumes that all types for which no
subtypes are declared are maximal, i.e., have no subtypes.

The second and more subtle restriction on type hierarchies is that they be
bounded complete. Since type declarations must be finite, this amounts to the re-
striction that every pair of types which have a common subtype have a unique most
general common subtype. In the case at hand, b and c have three common subtypes,
d, g, and h. But these subtypes of b and c are ordered in such a way that d is the
most general type in the set, as both g and h are subtypes of d. An example of a
type declaration violating this condition is:

bot sub [a,b].
a sub [c,d].

c sub [].
d sub [].

b sub [c,d].

The problem here is that while a and b have two common subtypes, namely c and d,
they do not have a most general common subtype, since c is not a subtype of d, and
d is not a subtype of c. In general, a violation of the bounded completeness condition
such as is found in this example can be patched without destroying the ordering by
simply adding additional types. In this case, the following type hierarchy preserves
all of the subtyping relations of the one above, but satisfies bounded completeness:

bot sub [a,b].
a sub [e].

e sub [c,d].
c sub [].



8 CHAPTER 3. FEATURE STRUCTURES, TYPES AND DESCRIPTIONS

d sub [].
b sub [e].

In this case, the new type e is the most general subtype of a and b.
This last example brings up another point about inheritance hierarchies. When

a type only has one subtype, the system provides a warning message (as opposed
to an error message). This condition will not cause any compile-time or run-time
errors, and is perfectly compatible with the logic of the system. It is simply not
a very good idea from either a conceptual or implementational point of view. For
more on this topic, see Carpenter (1992:Chapter 9).

3.2 Feature Structures

The primary representational device in ale is the typed feature structure. In phrase
structure grammars, feature structures model categories, while in the definite clause
programs, they serve the same role as first-order terms in Prolog, that of a universal
data structure. Feature structures are much like the frames of AI systems, the
records of imperative programming languages like C or Pascal, and the feature
descriptions used in standard linguistic theories of phonology, and more recently, of
syntax.

Rather than presenting a formal definition of feature structures, which can be
found in Carpenter (1992:Chapter 2), we present an informal description here. In
fact, we begin by discussing feature structures which are not necessarily well-typed.
In the next section, the type system is presented.

A feature structure consists of two pieces of information. The first is a type.
Every feature structure must have a type drawn from the inheritance hierarchy.
The other kind of information specified by a feature structure is a finite, possibly
empty, collection of feature/value pairs. A feature value pair consists of a feature and
a value, where the value is itself a feature structure. The difference between feature
structures and the representations used in phonology and in gpsg, for instance, is
that it is possible for two different substructures (values of features at some level of
nesting) to be token identical in a feature structure. Consider the following feature
structure drawn from the lexical entry for John in the categorial grammar in the
appendix, displayed in the output notation of ale:

cat
QSTORE e_list
SYNSEM basic

SEM j
SYN np

The type of this feature structure is cat, which is interpreted to mean it is a category.
It is defined for two features, QSTORE and SYNSEM. As can be seen from this example,
we follow the hpsg notational convention of displaying features in all caps, while
types are displayed in lower case. Also note that features and their values are printed
in alphabetic order of the feature names. In this case, the value of the QSTORE feature
is the simple feature structure of type e list,1 which has no feature values. On the

1Set values, like those employed in hpsg, are not supported by ale. In the categorial grammar



3.2. FEATURE STRUCTURES 9

other hand, the feature SYNSEM has a complex feature as its value, which is of type
basic, and has two feature values SEM and SYN, both of which have simple values.

This last feature structure doesn’t involve any structure sharing. But consider
the lexical entry for runs:

cat
QSTORE e_list
SYNSEM backward

ARG basic
SEM [0] individual
SYN np

RES basic
SEM run

RUNNER [0]
SYN s

Here there is structure sharing between the path SYNSEM ARG SEM and the path
SYNSEM RES SEM RUNNER, where a path is simply a sequence of features. This struc-
ture sharing is indicated by the tag [0]. In this case, the sharing indicates that
the semantics of the argument of runs fills the runner role in the semantics of the
result. Also note that a shared structure is only displayed once; later occurrences
simply list the tag. Of course, this example only involves structure sharing of a very
simple feature structure, in this case one consisting of only a type with no features.
In general, structures of arbitrary complexity may be shared, as we will see in the
next example.

ale, like Prolog II and hpsg, but unlike most other systems, allows cyclic struc-
tures to be processed and even printed. For instance, consider the following repre-
sentation we might use for the liar sentence This sentence is false:

[0] false
ARG1 [0]

In this case, the empty path and the feature ARG1 share a value. Similarly, the
path ARG1 ARG1 ARG1 and the path ARG1 ARG1, both of which are defined, are also
identical. But consider a representation for the negation of the liar sentence, It is
false that this sentence is false:

false
ARG1 [0] false

ARG1 [0]

Unlike Prolog II, ale does not necessarily treat these two feature structures as being
identical, as it does not conflate a cyclic structure with its infinite unfolding. We take
up the notion of token identical structures in the section below on extensionality.

It is interesting to note that with typed feature structures, there is a choice be-
tween representing information using a type and representing the same information
using feature values. This is a familiar situation found in most inheritance-based
representation schemes. Thus the relation specified in the value of the path SYNSEM
RES SEM is represented using a type, in:

in the appendix, they are represented by lists and treated by attached procedures for union and
selection.



10 CHAPTER 3. FEATURE STRUCTURES, TYPES AND DESCRIPTIONS

SEM run
RUNNER [0]

An alternative encoding, which is not without merit, is:

SEM unary_rel
REL run
ARG1 [0]

In general, type information is processed much more efficiently than feature value
information, so as much information as possible should be placed in the types. The
drawback is that type information must be computed at compile-time and remain
accessible at run-time. More types simply require more memory.2

3.3 Subsumption and Unification

Feature structures are inherently partial in the information they provide. Based
on the type inheritance ordering, we can order feature structures based on how
much information they provide. This ordering is referred to as the subsumption
ordering. The notion of subsumption, or information containment, can be used to
define the notion of unification, or information combination. Unification conjoins
the information in two feature structures into a single result if they are consistent
and detects an inconsistency otherwise.

3.3.1 Subsumption

We define subsumption, saying that F subsumes G, if and only if:

• the type of F is more general than the type of G

• if a feature f is defined in F then f is also defined in G such that the value in
F subsumes the value in G

• if two paths are shared in F then they are also shared in G

Consider the following examples of subsumption, where we let < stand for subsump-
tion:

agr < agr
PERS first PERS first

NUM plu

sign phrase
SUBJ agr < SUBJ agr

PERS pers PERS first
NUM plu

2In general, the amount of memory required to represent n types is proportional to the number
of pairs of consistent types. In the worst case, this is O(n2) in the number of types.



3.3. SUBSUMPTION AND UNIFICATION 11

sign sign
SUBJ agr SUBJ [0] agr

PERS first PERS first
NUM plu < NUM plu

OBJ agr OBJ [0]
PERS first
NUM plu

false false [1] false
ARG1 false < ARG1 [0] false < ARG1 [1]

ARG1 false ARG1 [0]

Note that the second of these subsumptions holds only if pers is a more general
type than first, and sign is a more general type than phrase. It is also important
to note that the feature structure consisting simply of the type bot will subsume
every other structure, as the type bot is assumed to be more general than every
other type.

3.3.2 Unification

Unification is an operation defined over pairs of feature structures that combines
the information contained in both of them if they are consistent and fails otherwise.
In ale, unification is very efficient.3 Declaratively, unifying two feature structures
computes a result which is the most general feature structure subsumed by both
input structures. But the operational definition is more enlightening, and can be
given by simple conditions which tell us how to unify two structures. We begin by
unifying the types of the structures in the type hierarchy. This is why we required the
bounded completeness condition on our inheritance hierarchies; we want unification
to produce a unique result. If the types are inconsistent, unification fails. If the
types are consistent, the resulting type is the unification of the input types. Next,
we recursively unify all of the feature values of the structures being unified which
occur in both structures. If a feature only occurs in one structure, we copy it over
into the result. This algorithm terminates because we only need to unify structures
which are non-distinct and there are a finite number of nodes in any input structure.

Some examples of unification follow, where we use + to represent the operation:

agr + agr = agr
PERS first NUM plu PERS first

NUM sing

sign sign sign
SUBJ agr + SUBJ [0] bot = SUBJ [0] agr

PERS 1st OBJ [0] PERS first
3Using a typed version of the Martelli and Montanari (1982) algorithm, which was adapted to

cyclic structures by Jaffar (1984), unification can be performed in what is known as quasi-linear
time in the size of the input structures, where in this case, quasi-linear in n is defined to be
O(n · ack−1(n)), where ack−1 is the inverse of Ackermann’s function, which will never exceed 4
or 5 for structures that can be represented on existing computers. There is also a factor in the
complexity of unification stemming from the type hierarchy and appropriateness conditions, which
we discuss below.



12 CHAPTER 3. FEATURE STRUCTURES, TYPES AND DESCRIPTIONS

OBJ agr NUM plu
NUM plu OBJ [0]

t t t
F [0] t + F t = F [1] t
G [0] F [1] F [1]

G [1] G [1]

agr + agr = *failure*
PERS first PERS second

e_list + ne_list = *failure*
HD a
TL e_list

Note that the second example respects our assumption that the type bot is the
most general type, and thus more general than agr. The second example illustrates
what happens in a simple case of structure sharing: information is retrieved from
both the SUBJ and OBJ and shared in the result. The third example shows how two
structures without cycles can be unified to produce a structure with a cycle. Just as
the feature structure bot subsumes every other structure, it is also the identity with
respect to unification; unifying the feature structure consisting just of the type bot
with any feature structure F results simply in F . The last two unification attempts
fail, assuming that the types first and second and the types e list and ne list
are incompatible.

3.4 Inequations

Feature structures may also incorporate inequational constraints following (Carpen-
ter 1992), which is in turn based on the notion of inequation in Prolog II (Colmerauer
1987). For instance, we might have the following representation of the semantics of
a sentence:

SEM binary_rel
REL know
ARG1 [0] referent

GENDER masc
PERS third
NUM sing

ARG2 [1] referent
GENDER masc
PERS third
NUM sing

[0] =\= [1]

Below the feature information, we have included the constraint that the value of the
structure [0] is not identical to that of structure [1]. As a result, we cannot unify
this structure with the following one:



3.5. TYPE SYSTEM 13

REL know
ARG1 [2]
ARG2 [2]

Any attempt to unify the structures [0] and [1] causes failure.

3.5 Type System

As we mentioned in the introduction, what distinguishes ale from other approaches
to feature structures and most other approaches to terms, is that there is a strong
type discipline enforced on feature structures. We have already demonstrated how
to define a type hierarchy, but that is only half the story with respect to typing. The
other component of our type system is a notion of feature appropriateness, whereby
each type must specify which features it can be defined for, and furthermore, which
types of values such features can take. The notion of appropriateness used here is
similar to that found in object-oriented approaches to typing. For instance, if a
feature is appropriate for a type, it will also be appropriate for all of the subtypes
of that type. In other words, appropriateness specifications are inherited by a type
from its supertypes. Furthermore, value restrictions on feature values are also inher-
ited. Another important consideration for ale’s type system is the notion of type
inference, whereby types for structures which are underspecified can be automati-
cally inferred. This is a property our system shares with the functional language ml,
though our notion of typing is only first-order. To further put ale’s type system
in perspective, we note that type inheritance must be declared by the user at com-
pile time, rather than being inferred. Furthermore, types in ale are semantic, in
Smolka’s (1988b) terms, meaning that types are used at run-time. Even though ale
employs semantic typing, the type system is employed statically (at compile-time)
to detect type errors in grammars and programs.

As an example of an appropriateness declaration, consider the simple type spec-
ification for lists with a head/tail encoding:

bot sub [list,atom].
list sub [e_list,ne_list].

e_list sub [].
ne_list sub []

intro [hd:bot,
tl:list].

atom sub [a,b].
a sub [].
b sub [].

This specification tells us that a list can be either empty (e list) or non-empty
(ne list). It implicitly tells us that an empty list cannot have any features defined
for it, since none are declared directly or inherited from more general types. The
declaration also tells us that a non-empty list has two features, representing the
head and the tail of a list, and, furthermore, that the head of a list can be anything
(since every structure is of type bot), but the tail of the list must itself be a list.
Note that features must also be Prolog constants, even though the output routines
convert them to all caps. The appropriateness declaration, intro, can be specified



14 CHAPTER 3. FEATURE STRUCTURES, TYPES AND DESCRIPTIONS

along with subsumption, as shown above, or separately; but for any given type, all
features must be declared at once. If no intro declaration is given for a type, it is
assumed that that type introduces no appropriate features. If an intro declaration
is made for a type that does not occur on either side of a sub declaration, that type
is assumed to be an immediate subtype of bot with no subtypes of its own. If a
value restrictor (such as list above for feature tl) does not occur on either side of
a sub declaration, it too is assumed to be maximal and an immediate subtype of
bot.

In ale, every feature structure must respect the appropriateness restrictions in
the type declarations. This amounts to two restrictions. First, if a feature is defined
for a feature structure of a given type, then that type must be appropriate for the
feature. Furthermore, the value of the feature must be of the appropriate type, as
declared in the appropriateness conditions. The second condition goes the other
way around: if a feature is appropriate for a type, then every feature structure of
that type must have a value for the feature. A feature structure respecting these
two conditions is said to be totally well-typed in the terminology of Carpenter (1992,
Chapter 6).4 For instance, consider the following feature structures:

list
HD a
TL bot

ne_list
HD bot
TL ne_list

HD atom
TL list

ne_list
HD [0] ne_list

HD [0]
TL [0]

TL e_list

The first structure violates the typing condition because the type list is not appro-
priate for any features, only ne list is. But even if we were to change its type to
ne list, it would still violate the type conditions, because bot is not an appropri-
ate type for the value of TL in a ne list. On the other hand, the second and third
structures above are totally well-typed. Note that the second such structure does
not specify what kind of list occurs at the path TL TL, nor does it specify what the
HD value is, but it does specify that the second element of the list, the TL HD value
is an atom, but it doesn’t specify which one.

To demonstrate how inheritance works in a simple case, consider the specification
fragment from the categorial grammar in the appendix:

4The choice of totally well-typed structures was motivated by the desire to represent feature
structures as records at run-time, without listing their features. Internally, a feature structure is
represented as a term of the form Tag-Sort(V1,...,VN) where Tag represents the token identity of
the structure using a Prolog variable, Sort is the type of structure, and V1 through VN are the values
of the appropriate features, in alphabetical order of the features’ names, which are themselves left
implicit. Furthermore, the Tag is used for forwarding and dereferencing during unification.



3.5. TYPE SYSTEM 15

functional sub [forward,backward]
intro [arg:synsem,

res:synsem].
forward sub [].
backward sub [].

This tells us that functional objects have ARG and RES features. Because forward
and backward are subtypes of functional, they will also have ARG and RES features,
with the same restrictions.

There are a couple of important restrictions placed on appropriateness conditions
in ale. The most significant of these is the acyclicity requirement. This condition
disallows type specifications which require a type to have a value which is of the
same or more specific type. For example, the following specification is not allowed:

person sub [male,female]
intro [father:male,

mother:female].
male sub [].
female sub [].

The problem here is the obvious one that there are no most general feature structures
that are both of type person and totally well-typed.5 This is because any person
must have a father and mother feature, which are male and female respectively,
but since male and female are subtypes of person, they must also have mother and
father values. It is significant to note that the acyclicity condition does not rule
out recursive structures, as can be seen with the example of lists. The list type
specification is acceptable because not every list is required to have a head and tail,
only non-empty lists are. The acyclicity restriction can be stated graph theoretically
by constructing a directed graph from the type specification. The nodes of the graph
are simply the types. There is an edge from every type to all of its supertypes, and
an edge from every type to the types in the type restrictions in its features. Type
specifications are only acceptable if they produce a graph with no cycles. One cycle
in the person graph is from male to person (by the supertype relation) and from
person to male (by the FATHER feature). On the other hand, there are no cycles in
the specification of list.

The second restriction placed on appropriateness declarations is designed to limit
non-determinism in much the same way as the bounded completeness condition
on the inheritance hierarchy. This second condition requires every feature to be
introduced at a unique most general type. In other words, the set of types appropriate
for a feature must have a most general element. Thus the following type declaration
fragment is invalid:

a sub [b,c,d].
b sub []

intro [f:w,
g:x].

5The only finite feature structures that could meet this type system would have to be cyclic, as
noted in Carpenter (1992). The problem is that there is no most general such cyclic structure, so
type inference cannot be unique.



16 CHAPTER 3. FEATURE STRUCTURES, TYPES AND DESCRIPTIONS

c sub []
intro [f:y,

h:z].
d sub [].

The problem is that the feature F is appropriate for types b and c, but there is not a
unique most general type for which it’s appropriate. In general, just like the bounded
completeness condition, type specifications which violate the feature introduction
condition can be patched, without violating any of their existing structure, by adding
additional types. In this case, we add a new type between a and the types b and c,
producing the equivalent well-formed specification:

a sub [e,d].
e sub [b,c]

intro [f:bot].
b sub []

intro [f:w,
g:x].

c sub []
intro [f:y,

h:z].
d sub [].

This example also illustrates how subtypes of a type can place additional restrictions
on values on features as well as introducing additional features.

As a further illustration of how feature introduction can be obeyed in general,
consider the following specification of a type system for representing first-order
terms:

sem_obj sub [individual,proposition].
individual sub [a,b].

a sub [].
b sub [].

proposition sub [atomic_prop,relational].
atomic_prop sub [].
relational_prop sub [unary_prop,transitive_prop]

intro [arg1:individual].
unary_prop sub [].
transitive_prop sub [binary_prop,ternary_prop]

intro [arg2:individual].
binary_prop sub [].
ternary_prop sub []

intro [arg3:individual].

In this case, unary propositions have one argument feature, binary propositions have
two argument features, and ternary propositions have three argument features, all
of which must be filled by individuals.



3.6. EXTENSIONALITY 17

3.6 Extensionality

ale also respects the distinction between intensional and extensional types (see
Carpenter (1992:Chapter 8). The concept of extensional typing has its origins in
the assumption in standard treatments of feature structures, that there can only
be one copy of any atom (a feature structure with no appropriate features) in a
feature structure. Thus, if path π1 leads to atom a, and path π2 leads to atom a,
then the values for those two paths are token-identical. Token-identity refers to an
identity between two feature structures as objects, as opposed to structure-identity,
which refers to an identity between two feature structures that contain the same
information.

Smolka (1988a) partitioned his atoms according to whether more than one copy
could exist or not. In ale, following Carpenter (1992), this notion of copyability has
been extended to arbitrary types – loosely speaking, those types which are copyable
we call intensional, and those which are not we call extensional. Thus, it is possible
to have two feature structures of the same intensional type which, although they
may be structure-identical, are not token-identical. Formally:

Given the set of types, Type, defined by an ale signature, we designate a
subset, ExtType ⊆ Type, as the set of extensional types. With the excep-
tion of a /1 atoms, discussed below, this set consists only of maximally
specific types, i.e., for each σ ∈ ExtType, there is no type τ such that σ
subsumes τ .

The restriction of ExtType to maximally specific types is peculiar to ale, and is
levied in order to reduce the computational complexity of enforcing extensionality.6

We need one more definition to formally state the effect which an extensional
type has on feature structures in ale.

Given a set of extensional types, ExtType, we define an equivalence re-
lation, �, the collasping relation, on well-typed feature structures, such
that F1 � F2 for F1 6= F2 only if:

• F1 has the same type, σ, as F2, and σ ∈ ExtType, and

• for every feature, f , appropriate to σ, F f
1 , the value of f in F1, and

F f
2 , the value of f in F2, are defined, and F f

1 � F f
2 .

In ale, all feature structures behave as if they are what Carpenter (1992) referred
to as collapsed. That is, the only collapsing relation that exists between any two
feature structures is the trivial collapsing relation, namely:

F1 � F2 if and only if F1 is token-identical to F2.

In the case of acyclic feature structures, this definition is equivalent to saying that
two feature structures of the same extensional type are token-identical if and only
if, for every feature appropriate to that type, their respective values on that feature
are token-identical. For example, supposing that we have a signature representing

6In theory (Carpenter 1992), this set is only required to be upward closed, which means that
if σ ∈ ExtType, and σ subsumes τ , then τ ∈ ExtType. This relaxation of our requirement that
extensional types be maximal would actually not be too difficult to implement.



18 CHAPTER 3. FEATURE STRUCTURES, TYPES AND DESCRIPTIONS

dates, then the two substructures representing dates in the following structure must
be token identical.

married_person
BIRTHDAY [1] date

DAY 12
MONTH nov
YEAR 1971

SPOUSE BIRTHDAY [1] date
DAY 12
MONTH nov
YEAR 1971

In other words, this represents a person born on 12 November 1971, who is married
to a person with the same birthdate.

Now consider a slightly more complex example, which employs the following
signature.

bot sub [a,b,c,g].
a sub []

intro [f:b,g:c].
b sub [].
c sub [].
g sub []

intro [h:a,j:a].

If a, b, and c are extensional, then the values of H and J in g are always token-
identical, i.e., every feature structure of type g satisfies:

g
H [0] a

F b
G c

J [0]

But if only a, and b are extensional, and c is intensional, then the values of H and
J are not necessarily token-identical, although they are always structure-identical:

g
H a

F [1] b
G c

J a
F [1]
G c

To cite an earlier example, suppose we were to specify that the type false,
used in the liar sentence and its negation, were extensional. Now the liar sentence’s
representation is:

[0] false
ARG1 [0]



3.6. EXTENSIONALITY 19

as before, but the negation of the liar sentence would also be represented by:

[0] false
ARG1 [0]

since if were still represented by:

[1] false
ARG1 [0] false

ARG1 [0]

then we could cite a non-trivial collasping relation, �, in which [1] � [0].
As a related example, consider:

s
A [0] t

C [0]
B [1] t

C [1]

Assuming that t is extensional and only appropriate for the feature C, then the
structures [0] and [1] in the above structure would be identified.

Extensionality allows the proper representation of feature structures and terms
in both PATR-II, the Rounds-Kasper system, and in Prolog and Prolog II. For
PATR-II and the Rounds-Kasper system, all atoms (those types with no appropriate
features) are assumed to be extensional. Furthermore, in the Rounds-Kasper and
PATR-II systems, which are monotyped, there is only one type that is appropriate
for any features, and it must be appropriate for all features in the grammar. In
Prolog and Prolog II, the type hierarchy is assumed to be flat, and every type is
extensional.

Just as with implementations of Prolog, collapsing is only performed as it is
needed. As shown by Carpenter (1992), collapsing can be restricted to cases where
inequations are tested between two structures, with exactly the same failure be-
havior. It turns out to be less efficient to collapse structures before asserting them
into ale’s parsing chart, primarily because the time to test arbitrary structures for
collapsibility is at least quadratic in the size of the structures being collapsed. See
the section below on inequations for further discussion. Currently, extensionality is
only enforced before the answer to a user query is given.

Extensional types in ale are specified all at once in a list:

ext([ext1, . . . , extn]).

in the same file in which the subsumption relation is defined. All types that are not
mentioned in the ext specification are assumed to be intensional, except ale’s a /1
atoms, discussed below, which have the same extensionality as Prolog terms, i.e., if
they are ground or have the same variables in the same positions.7 These do not
need to be declared as such. If more than one ext specification is given, the first
one is used. If no ext specification is given, then the specification:

ext([]).
7This is given by the == operator in Prolog.



20 CHAPTER 3. FEATURE STRUCTURES, TYPES AND DESCRIPTIONS

is assumed. If a type occurs in ext/1, but does not appear on the left or right-hand
side of a sub declaration, it assumed to be maximal, and immediately subsumed by
bot.

Of course, collapsing is only enforced between feature structures whose life-spans
in ale8 overlap. So, for example, if one request is made for the representation of
the liar sentence:

[0] false
ARG1 [0]

and then another is made for that of its negation, the output is not:

[0]

(referring to the same token above) but rather:

[0] false
ARG1 [0]

Every time a new context arises, numbering of structures begins again from [0].

3.7 a /1 Atoms

ale also provides an infinite collection of atoms. These are of the form:

a Term

where Term is a prolog term. Two a /1 atoms subsume each other if and only if their
terms subsume each other as prolog terms. As a result, no two different, ground
atoms subsume each other; and the most general atom of this collection is a . They
implicitly exist in every type hierarchy, with a being immediately subsumed by
bot, and with every ground atom being maximal. a /1 atoms are extensional; and
non-ground a /1 atoms are extensionally identical as Prolog terms, i.e., if they have
the same variables in the same positions. For example, a f(X) and a g(X) are not
taken to be the same atom, nor are a f(X) and a f(f(X), nor are a f(X) and a
f(Y). But a f(X) and a f(X) are. Their status in the type hierarchy should not
be explicitly declared, nor should the fact that they bear no features, nor should
their extensionality.

Some care must be exercised when using non-ground atoms in chart edges. ale’s
chart parser copies edges, including the Prolog variables inside a /1 atoms. When
these variables are copied, identity among variables within a single edge is preserved,
but identity among variables between different edges may be lost. Because ale
delays the enforcement of extensional type checking, this could result in ale losing
a path equation between two atoms. The best way to avoid this is always to use
ground atoms in chart edges. Otherwise, the user should at least avoid relying on
extensional identity when writing grammars by not using the ale built-in @= or
inequations between non-ground atoms from different edges.

8The life-span of a feature structure in ale is the period from its creation to the point when the
user command currently being executed finishes, unless that feature structure is asserted as an edge
in ale’s chart parser. In this case, the life of the feature structure ends when the edge is removed.
Every new request for a parse to ale removes all of the current edges.



3.8. ATTRIBUTE-VALUE LOGIC 21

If the user requires intensional atoms, they must be explicitly declared. There
must also be no user-defined type, a , in the type hierarchy. Certain arguments
to a /1 cannot be used, such as a itself, and other prolog reserved words, such as
mod, unless they are used with the proper operator precedence and proper number
of arguments to be parsed by Prolog.

Otherwise, a /1 atoms can be used wherever a normal type can. They are
particularly useful as members of large domains that are too tedious to define,
such as phonology attributes in natural language grammars, or to pass extra-logical
information around a parse tree, such as numbers representing probabilities. To
declare a feature’s value as any a /1 atom, use a :

sign intro [phon:(a_ _)].

The parentheses are recommended for readability, but not necessary. Because sub-
sumption among a /1 atoms mirrors subsumption as prolog terms, one can also
declare features appropriate for only certain kinds of atoms. For example:

sign intro [phon:(a_ phon(_))].

declares phon appropriate to any atom whose term’s functor is phon/1.
Structure-sharing between a /1 prolog terms in feature appropriateness decla-

rations is ignored by ale. For example, the declaration:

foo intro [f:(a_ X),g:(a_ X)].

is treated as:

foo intro [f:(a_ _),g:(a_ _)].

ale does respect structure-sharing between a /1 prolog terms in descriptions.

3.8 Attribute-Value Logic

Now that we have seen how the type system must be specified, we turn our attention
to the specification of feature structures themselves. The most convenient and ex-
pressive method of describing feature structures is the logical language developed by
Kasper and Rounds (1986), which we modify here in three ways. First, we replace
the notion of path sharing with the more compact and expressive notion of variable
due to Smolka (1988a). Second, we extend the language to types, following Pollard
(in press). Finally, we add inequations.

The collection of descriptions used in ale can be described by the following bnf
grammar:

<desc> ::= <type>
| <variable>
| (<feature>:<desc>)
| (<desc>,<desc>)
| (<desc>;<desc>)
| (=\= <desc>)



22 CHAPTER 3. FEATURE STRUCTURES, TYPES AND DESCRIPTIONS

As we have said before, both types and features are represented by Prolog constants.
Variables, on the other hand, are represented by Prolog variables. As indicated by
the bnf, no whitespace is needed around the feature selecting colon, conjunction
comma and disjunction semi-colon, but any whitespace occurring will be ignored.

These descriptions are used for picking out feature structures that satisfy them.
We consider the clauses of the definition in turn. A description consisting of a type
picks out all feature structures of that type. A variable can be used to refer to any
feature structure, but multiple occurrences of the same variable must refer to the
same structure. A description of the form (<feature>:<desc>) picks out a feature
structure whose value for the feature satisfies the nested description. An inequation
=\= <desc> is satisfied by those feature structures that are not token-identical to
the feature structure described by <desc>. Inequations are discussed in more detail
below.

There are two ways of logically combining descriptions: following Prolog, the
comma represents conjunction and the semi-colon represents disjunction. A feature
structure satisfies a conjunction of descriptions just in case it satisfies both conjuncts,
while it satisfies a disjunction of descriptions if it satisfies either of the disjuncts.

We should also add to the above bnf grammar the following line:

<desc> ::= (<path> == <path>)

This is an equational description, of which inequations are the negation. Equational
or inequational descriptions are satisfied by the presence or absence, respectively,
of token-identity. In particular, an inequation between two structurally-identical
feature structures can be satisfied, while a path equation can only be satisfied by
two structurally-identical feature structures, but is not necessarily satisfied.

All instances of equational descriptions can be captured by using multiple oc-
currences of variables. For example, the description:

([arg1]==[arg2])

is equivalent to the description:

(arg1:X,arg2:X).

assuming there are no other occurrences of X.
Standard assumptions about operator precedence and association are followed by

ale, allowing us to omit most of the parentheses in descriptions. In particular, equa-
tional descriptions bind the most tightly, followed by feature selecting colon, then
by inequations, then conjunction and finally disjunction. Furthermore, conjunction
and disjunction are left-associative, while the feature selector is right-associative.
For instance, this gives us the following equivalences between descriptions:

a, b ; c, d ; e = (a,b);(c,d);e

a,b,c = a,(b,c)

f:g:bot,h:j = (f:(g:bot)),(h:j)

f:g: =\=k,h:j = (f:(g: =\=(k))),(h:j)

f:[g]==[h],h:j = (f:([g]==[h])),(h:j)



3.8. ATTRIBUTE-VALUE LOGIC 23

Note that a space must occur between =\= and other operators such as :.
A description may be satisfied by no structure, a finite number of structures or

an infinite collection of feature structures. A description is said to be satisfiable if it
is satisfied by at least one structure. A description φ entails a description ψ if every
structure satisfying φ also satisfies ψ. Two descriptions are logically equivalent if
they entail each other, or equivalently, if they are satisfied by exactly the same set
of structures.

ale is only sensitive to the differences between logically equivalent formulas
in terms of speed. For instance, the two descriptions (tl:list,ne list,hd:bot)
and hd:bot are satisfied by exactly the same set of totally well-typed structures
assuming the type declaration for lists given above, but the smaller description
will be processed much more efficiently. There are also efficiency effects stemming
from the order in which conjuncts (and disjuncts) are presented. The general rule for
speedy processing is to eliminate descriptions from a conjunction if they are entailed
by other conjuncts, and to put conjuncts with more type and feature entailments
first. Thus with our specification for relations above, the description (arg1:a,
binary proposition) would be slower than (binary proposition,arg1:a), since
binary proposition entails the existence of the feature arg1, but not conversely.9

At run-time, ale computes a representation of the most general feature structure
that satisfies a description. Thus a description such as hd:a with respect to the list
grammar is satisfied by the structure:

ne_list
HD a
TL list

Every other structure satisfying the description hd:a is subsumed by the structure
given above. In fact, the above structure is said to be a vague representation of all of
the structures that satisfy the description. The type conditions in ale were devised
to obey the very important property, first noted by Kasper and Rounds (1986),
that every non-disjunctive description is satisfied by a unique most general feature
structure. Thus in the case of hd:a, there is no more general feature structure than
the one above which also satisfies hd:a.

The previous example also illustrates the kind of type inference used by ale.
Even though the description hd:a does not explicitly mention either the feature
TL or the type ne list, to find a feature structure satisfying the description, ale
must infer this information. In particular, because ne list is the most general
type for which HD is appropriate, we know that the result must be of type ne list.
Furthermore, because ne list is appropriate for both the features HD and TL, ale
must add an appropriate TL value. The value type list is also inferred, due to the
fact that a ne list must have a TL value which is a list. As far as type inference
goes, the user does not need to provide anything other than the type specification;
the system computes type inference based on the appropriateness specification. In
general, type inference is very efficient in terms of time. The biggest concern should

9This is because the depth of dereferencing depends on the history of types a given structure
is instantiated to. There is no path compression on-line, but it is carried out before an edge is
asserted into the chart.



24 CHAPTER 3. FEATURE STRUCTURES, TYPES AND DESCRIPTIONS

be how large the structures become.10 In contrast to a vague description, a disjunc-
tive description is usually ambiguous. Disjunction is where the complexity arises in
satisfying descriptions, as it corresponds operationally to non-determinism.11 For
instance, the description hd:(a;b) is satisfied by two distinct minimal structures,
neither of which subsumes the other:

ne_list ne_list
HD a HD b
TL list TL list

On the other hand, the description hd:atom is satisfied by the structure:

ne_list
HD atom
TL list

Even though the descriptions hd:atom and hd:(a;b) are not logically equivalent
(though the former entails the latter), they have the interesting property of being
unifiable with exactly the same set of structures. In other words, if a feature struc-
ture can be unified with the most general satisfier of hd:atom, then it can be unified
with one of the minimal satisfiers of hd:(a;b).

In terms of efficiency, it is very important to use vagueness wherever possible
rather than ambiguity. In fact, it is almost always a good idea to arrange the
type specification with just this goal in mind. For instance, consider the difference
between the following pair of type specifications, which might be used for English
gender:

gender sub [masc,fem,neut]. gender sub [animate,neut].
masc sub []. animate sub [masc,fem].
fem sub []. masc sub [].
neut sub []. fem sub [].

neut sub [].

Now consider the fact that the relative pronouns who and which are distinguished
on the basis of whether they select animate or inanimate genders. In the flatter
hierarchy, the only way to select the animate genders is by the ambiguous descrip-
tion masc;fem. The hierarchy with an explicit animate type can capture the same
possibilities with the vague description animate. An effective rule of thumb is that
ale does an amount of work at best proportional to the number of most general
satisfiers of a description and at worst proportional to 2n, where n is the number
of disjuncts in the description. Thus the ambiguous description requires roughly
twice the time and memory to process than the vague description. Whether the
amount of work is closer to the number of satisfiers or exponential in the number of
disjuncts depends on how many unsatisfiable disjunctive possibilities drop out early
in the computation.

10Finding most general satisfiers for non-disjunctive descriptions, even those involving type in-
ference, is quasi-linear in the size of the description. But it should be kept in mind that there is
also a factor of complexity determined by the size of the type specification. In practice, this factor
is proportional to how large the inferred structure is. In general, the size of the inferred structure
is linear in the size of the description, with a constant for the type specification.

11It corresponds so closely with non-determinism that satisfiability of descriptions with disjunc-
tions is NP-complete. Furthermore, the algorithm employed by ale may produce up to 2n satisfiers
for a description with n disjunctions.



3.8. ATTRIBUTE-VALUE LOGIC 25

3.8.1 Enforcement of Inequations

Inequations are persistent in that once that are created, they remain as long as one
of the structures being inequated remains. Thus the following two descriptions are
logically equivalent:

f:(=\=c), f:c

f:c, f:(=\=c)

Both will cause failure; but they are not operationally equivalent. An inequation is
evaluated when it arises, and again after high-level unifications in the system; but
inequations are not evaluated every time an inequated structure is modified. In an
ideal system, inequations would be attached directly to structures so that they could
be evaluated on-line during unification. As things stand, ale represents a feature
structure as a regular feature structure with a separate set of inequations. Also, the
complexity is sensitive to the conjunctive normal form of inequations at the time at
which it is evaluated, though this form may later be reduced.

These sets of inequations are evaluated at run-time at the point they are en-
countered, before answers are given to top-level queries, before any edge is added
to ale’s parsing chart, after every daughter is matched to a description in an ale
grammar rule12, and after the head of an ale definite clause has been matched to a
goal. At compile-time, inequations are checked for every empty category, for every
lexical entry, and after every lexical rule application.

Inequations are also symmetric. Thus the following two descriptions are logically
equivalent:

f:(=\= X),g:X

f:X,g:(=\= X)

Both inequate the values of f and g. Again, these are not operationally equivalent.
Because inequations are evaluated at the time they are encountered, the second
ordering will normally detect an immediate failure sooner than the first.

An inequation between two feature structures is a requirement for them not
to be token-identical. Thus, if a type is intensional, it is possible for two feature
structures to be of that same type, and still satisfy an inequation between them.
Thus, any attempt to inequate two structures that should be identical as a result of
extensional typing will also cause failure. For instance, consider the following:

s s
F [1] t F [3]

H [1] + G [4] = failure
G [2] t [3] =\= [4]

H [1]

The values of the features F and G cannot be inequated because they are extensionally
identical (assuming the type t is declared to be extensional and is only appropriate
for the feature H.

12In the case of cats>, they are enforced after the list description itself is matched, and also after
every element of the list is matched.



26 CHAPTER 3. FEATURE STRUCTURES, TYPES AND DESCRIPTIONS

When inequations are evaluated, they are reduced. This reduction consists, in
part, of partial evaluation of extensionality checking, which is otherwise delayed in
ale. For instance, consider the following:

F [1] s
H bot
J bot

G [2] s
H bot
J bot

[1] =\= [2]

If the type s is extensional and appropriate for the features H and J, then the
inequation above is reduced to the following:

F [1] s
H [3] bot
J [4] bot

G [2] s
H [5]
J [6]

[3] =\= [5] ; [4] =\= [6]

The set of inequations is stored in conjunctive normal form. The cost is some space
over the re-evaluation of inequations. Of course, if the types on [3] and [4] were
more refined than bot, then the inequations [3] =\= [5] and [4] =\= [6] would
further reduce. In addition, when reducing inequations in this way, we eliminate
those that are trivially satisfied. The ones that are printed are only the residue after
reduction. For instance, consider the following structure:

F [1] s
H [3] a
J bot

G [2] s
H [3]
J bot

[1] =\= [2]

Since the H values are token-identical, this structure reduces to the following.

F s
H [3] a
J [4] bot

G s
H [3]
J [5] bot

[4] =\= [5]

If structures [4] and [5] had been of non-unifiable types, then there would be no
residual inequation at all — the original inequation would trivially be satisfied.



3.9. MACROS 27

An important subcase is that of an inequation between extensional atoms. If an
atom is extensional, then there is only one instance of it. Thus an inequation be-
tween two identical, extensional atoms always fails. For example, if a type signature
includes:

bot sub [..., a, b, ...].
a sub [].

intro [f:bot].
b sub [].
...
ext([..., b, ...]).

then the description:

(a,f:=\= b)

is satisfied just in those cases where the value of f is not of type b. If b were
intensional, then the inequation in this description would essentially have no effect.
In fact, the only productive instances of inequations between two intensionally typed
feature structures are those used with multiply occurring variables. In all other
instances, there is no way for the inequation to be violated, since there is no way to
render a structurally-identical copy of an intensionally typed feature structure token-
identical to any other structure. ale detects these trivially satisfied inequations and
disposes of them.

3.9 Macros

ale allows the user to employ a general form of parametric macros in descriptions.
Macros allow the user to define a description once and then use a shorthand for
it in other descriptions. We first consider a simple example of a macro definition,
drawn from the categorial grammar in the appendix. Suppose the user wants to
employ a description qstore:e list frequently within a program. The following
macro definition can be used in the program file:

quantifier_free macro
qstore:e_list.

Then, rather than including the description qstore:e list in another description,
@ quantifier free can be used instead. Whenever @ quantifier free is used,
qstore:e list is substituted.

In the above case, the <macro spec> was a simple atom, but in general, it can
be supplied with arguments. The full bnf for macro definitions is as follows:

<macro_def> ::= <macro_head> macro <desc>.

<macro_head> ::= <macro_name>
| <macro_name>(<seq(<var>)>)

<macro_spec> ::= <macro_name>
| <macro_name>(<seq(<desc>)>)



28 CHAPTER 3. FEATURE STRUCTURES, TYPES AND DESCRIPTIONS

<seq(X)> ::= X
| X, <seq(X)>

Note that <seq(X)> is a parametric category in the bnf which abbreviates non-
empty sequences of objects of category X. The following clause should be added to
recursive definition of descriptions:

<desc> ::= @ <macro\_spec>

A feature structure satisfies a description of the form @ <macrospec> just in case
the structure satisfies the body of the definition of the macro.

Again considering the categorial grammar in the appendix, we have the following
macros with one and two arguments respectively:

np(Ind) macro
syn:np,
sem:Ind.

n(Restr,Ind) macro
syn:n,
sem:(body:Restr,

ind:Ind).

In general, the arguments in the definition of a macro must be Prolog variables,
which can then be used as variables in the body of the macro. With the first macro,
the description @ np(j) would then be equivalent to the description syn:np,sem:j.
When evaluating a macro, the argument supplied, in this case j, is substituted for
the variable when expanding the macro. In general, the argument to a macro can
itself be an arbitrary description (possibly containing macros). For instance, the
description:

n((and,conj1:R1,conj2:R2),Ind3)

would be equivalent to the description:

syn:n,
sem:(body:(and,conj1:R1,conj2:R2),

ind:Ind3)

This example illustrates how other variables and even complex descriptions can be
substituted for the arguments of macros. Also note the parentheses around the
arguments to the first argument of the macro. Without the parentheses, as in
n(and,conj1:R1,conj2:R2,Ind3), the macro expansion routine would take this to
be a four argument macro, rather than a two argument macro with a complex first
argument. This brings up a related point, which is that different macros can have
the same name as long as they have the different numbers of arguments.

Macros can also contain other macros, as illustrated by the macro for proper
names in the categorial grammar:

pn(Name) macro
synsem: @ np(Name),
@ quantifier_free.



3.9. MACROS 29

In this case, the macros are expanded recursively, so that the description pn(j)
would be equivalent to the description

synsem:(syn:np,sem:j),qstore:e_list

It is usually a good idea to use macros whenever the same description is going to
be re-used frequently. Not only does this make the grammars and programs more
readable, it reduces the number of simple typing errors that lead to inconsistencies.

As is to be expected, macros can’t be recursive. That is, a macro, when ex-
panded, is not allowed to invoke itself, as in the ill-formed example:

infinite_list(Elt) macro
hd:Elt,
tl:infinite_list(Elt)

The reason is simple; it is not possible to expand this macro to a finite description.
Thus all recursion must occur in grammars or programs; it can’t occur in either the
appropriateness conditions or in macros.

The user should note that variables in the scope of a macro are not the same as
ale feature structure variables — they denote where macro-substitutions of param-
eters are made, not instances of re-entrancy in a feature structure. If we employ the
following macro:

blah(X) macro
b,
f: X,
g: X.

with the argument (c,h:a) for example we obtain the following feature structure:

b
F c

H a
G c

H a

where the values of F and G are not shared (unless c and a are extensional). We
can, of course, create a shared structure using blah, by including an ale variable
in the actual argument to the macro. Thus blah((Y,c,h:a)) yields:

b
F [0] c

H a
G [0]

Because programming with lists is so common, ale has a special macro for it,
based on the Prolog list notation. A description may also take any of the forms on
the left, which will be treated equivalently to the descriptions on the right in the
following diagram:



30 CHAPTER 3. FEATURE STRUCTURES, TYPES AND DESCRIPTIONS

[] e_list

[H|T] (hd:H,
tl:T)

[A1,A2,...,AN] (hd:A1,
tl:(hd:A2,

tl: ...
tl:(hd:AN,

tl:e_list)...))

[A1,...,AN|T] (hd:A1,
tl:(hd:A2,

tl: ...
tl:(hd:AN,

tl:T)...))

Note that this built-in macro does not require the macro operator @. Thus, for
example, the description [a|T3] is equivalent to hd:a,tl:T3, and the description
[a,b,c] is equivalent to hd:a,tl:(hd:b,tl:(hd:c,tl:e list)). There are many
example of this use of Prolog’s list notation in the grammars in the appendix.

3.10 Functional Descriptions

ale also provides the means to define functions mapping descriptions to descriptions.
The syntax is:

<func_def> ::= <func_spec> +++> <desc>.

<func_spec> ::= <func_name>
| <func_name>(<seq(desc)>)

Functional descriptions are compiled into code that is evaluated at run-time, first
adding to each argument (if any) the description given for that argument, and then
evaluating to the resulting description, which can itself include other functional de-
scriptions, including recursive calls. As an example, one may consider the append/2
function:

append([],L) +++> L.
append([X|L1],L2) +++> [X|append(L1,L2)].

The lists shown here are instances of ale’s list macro notation. Notice that the only
type checking in this definition is performed by appropriateness and the list macro,
so the first clause could succeed with any L. To add more, one could redefine the
first clause as:

append([],(list,L)) +++> L.

Functional descriptions can be used wherever other descriptions can. The user
should be particularly careful with ensuring that the arguments to a functional



3.11. TYPE CONSTRAINTS 31

description call will be sufficiently instantiated for the call to terminate; and the
clauses, correctly ordered for the description to terminate correctly. Type checking
cannot ensure this, in general. For example, in the definition for append/2, with or
without explicit type-checking on the second argument, both clauses will match a
functional description whose first argument or any tl value in the first argument is
strictly of type list, i.e., a list that is not known to be elist or nelist. Such a
functional description will, thus, evaluate to an infinite number of results. Clauses
in functional descriptions are considered in the order they are given; and the search
for solutions always backtracks into subsequent clauses.

Any functional description that can be defined so that its argument descriptions
are only variables, and its result has no (mutual) recursion should be defined as a
macro instead, which is completely expanded at compile-time. Remember, however,
that it is not always sufficient to replace the +++> with macro: variable replacement
in macros works by true textual replacement, whereas the variables in functional
descriptions are ale descriptions. For example, the functional description:

foo(X) +++> (bar,f:X,g:X).

evaluates to a feature structure with a re-entrancy. The macro:

foo(X) macro (bar,f:X,g:X).

does not necessarily evaluate to a feature structure with a re-entrancy. The func-
tional description, foo/1 is correctly converted to the macro:

foo(X) macro (bar,f:(Y,X),g:(Y,X)).

The ale variable, Y, establishes the re-entrancy that the macro variable, X, does
not.

3.11 Type Constraints

Our logical language of descriptions can be used with the type system in order
to enforce constraints on feature structures of a particular type. Constraints are
attached to types, and may consist of arbitrary descriptions. Their effect is to require
every structure of the constrained type to always satisfy the constraint description.

Constraints are enforced using the cons operator, e.g.:

bot sub [a,b].
a sub []

intro [f:b,g:b].
b sub [].

a cons (f:X,g:=\= X).

The constraint on the type a (which must occur within parentheses) requires all
feature structures of type a to have non-token-identical values for features f and g.
Notice that the type b has no constraints expressed. This is equivalent to specifying
the constraint:

b cons bot.



32 CHAPTER 3. FEATURE STRUCTURES, TYPES AND DESCRIPTIONS

which is satisfied by any feature structure (of type b). A type constraint may use
any of the operators in the description language, including further type descriptions,
which may themselves be constrained. The type, bot, may not have type constraints,
nor may a /1 atoms.

It is crucial that the type descriptions be finitely resolvable. Because simple
depth-first search is used to evaluate constraints, infinite resolution paths will cause
the system to hang. For example, the following signature should not contain the
following constraints:

bot sub [a,b].
a sub [c]

intro [f:bot].
c sub [].

b sub []
intro [g:bot].

a cons f:b.
b cons g:c.

This is because a subsumes c. Notice, however, that type constraints can be used to
provide additional information regarding value restrictions on appropriate features.
In general, ale performs more efficiently when restrictions are provided in the ap-
propriateness conditions, rather than in general constraints; but type constraints
can encode a greater variety of restrictions. Specifically, they allow constraints to
express path equations and inequations, as well as deeper path restrictions. Con-
straints may include relational constraints, which are defined using definite clauses,
which are discussed below. Type constraints are efficiently compiled in the same way
as other descriptions. Also, like appropriateness conditions, they are only enforced
once for any given structure.

It is also important to note that because of the delay in ale’s inequational en-
forcement, type constraints that involve recursion that terminates by an inequation
failure may go into infinite loops due to this delay in enforcement. Because exten-
sionality is only enforced before the answer to a top-level query is given, recursive
type constraints that rely on the extensional identity of two feature structures to
terminate on the basis of their type will not terminate.

3.12 Example: The Zebra Puzzle

We now provide a simplified form of the Zebra Puzzle (Figure 3.1), a common puzzle
for constraint resolution. This puzzle was solved by Aı̈t-Kaci (1984) using roughly
the same methods as we use here. The puzzle illustrates the expressive power of the
combination of extensional types, inequations and type constraints. Such puzzles,
sometimes known as logic puzles or constraint puzzles, require one to find a state of
affairs within some situation that simultaneously satisfies a set of constraints. The
situation itself very often implicitly levies certain constraints.

We can represent the simplified Zebra Puzzle in ale as:

% Subsumption
%=======================



3.12. EXAMPLE: THE ZEBRA PUZZLE 33

Puzzle: Three different houses each contain a different pet, a different drink, and
an inhabitant of a different nationality. The following six facts are true about these
houses:

1. The man in the third (middle) house drinks milk.

2. The Spaniard owns the dog.

3. The Ukranian drinks the tea.

4. The Norwegian lives in the first house.

5. The Norwegian lives next to the tea-drinker.

6. The juice-drinker owns the fox.

Questions: Who owns the zebra? Who drinks juice?

Figure 3.1: The Zebra Puzzle.

bot sub [house,descriptor,background].

descriptor sub [nat_type,ani_type,bev_type].
nat_type sub [norwegian,ukranian,spaniard].

norwegian sub [].
ukranian sub [].
spaniard sub [].

ani_type sub [fox,dog,zebra].
fox sub [].
dog sub [].
zebra sub [].

bev_type sub [juice,tea,milk].
juice sub [].
tea sub [].
milk sub [].

house sub []
intro [nationality:nat_type,animal:ani_type,beverage:bev_type].

background sub [clue]
intro [house1:house,house2:house,house3:house].

clue sub [maximality].
maximality sub [].

ext([norwegian,ukranian,spaniard,fox,dog,zebra,juice,tea,milk]).

% Constraints
%=============================
background cons

(house1:nationality:N1, % inequational constraints



34 CHAPTER 3. FEATURE STRUCTURES, TYPES AND DESCRIPTIONS

house2:nationality:(N2,(=\= N1)),
house3:nationality:((=\= N1),(=\= N2)),

house1:animal:A1,
house2:animal:(A2,(=\= A1)),
house3:animal:((=\= A1),(=\= A2)),

house1:beverage:B1,
house2:beverage:(B2,(=\= B1)),
house3:beverage:((=\= B1),(=\= B2))).

clue cons
(house3:beverage:milk, % clue 1

(house1:nationality:spaniard,house1:animal:dog % clue 2
;house2:nationality:spaniard,house2:animal:dog
;house3:nationality:spaniard,house3:animal:dog),

(house1:nationality:ukranian,house1:beverage:tea % clue 3
;house2:nationality:ukranian,house2:beverage:tea
;house3:nationality:ukranian,house3:beverage:tea),

house1:nationality:norwegian, % clue 4

(house1:nationality:norwegian,house2:beverage:tea % clue 5
;house2:nationality:norwegian,house3:beverage:tea
;house2:nationality:norwegian,house1:beverage:tea
;house3:nationality:norwegian,house2:beverage:tea),

(house1:beverage:juice,house1:animal:fox % clue 6
;house2:beverage:juice,house2:animal:fox
;house3:beverage:juice,house3:animal:fox)).

maximality cons
(house1:nationality:(norwegian;ukranian;spaniard), % maximality constraints
house2:nationality:(norwegian;ukranian;spaniard),
house3:nationality:(norwegian;ukranian;spaniard),

house1:animal:(fox;dog;zebra),
house2:animal:(fox;dog;zebra),
house3:animal:(fox;dog;zebra),

house1:beverage:(juice;tea;milk),
house2:beverage:(juice;tea;milk),
house3:beverage:(juice;tea;milk)).

The subsumption hierarchy is shown pictorially in Figure 3.2. The type,



3.12. EXAMPLE: THE ZEBRA PUZZLE 35

background, with the assistance of the types subsumed by house and descriptor,
represents the situation of three houses (the features of background), each of which
has three attributes (the features of house). The implicit constraints levied by the
situation appear as constraints on the type, background, namely that no two houses
can have the same value for any attribute. These are represented by inequations.
But notice that, since we are interested in treating the values of attributes as tokens,
we must represent those values by extensional types. If we had not done this, then
we could still, for example, have two different houses with the beverage, juice,
since there could be two different feature structures of type juice that were not
token-identical. Notice also that all of these types are maximal, and hence satisfy
the restriction that ale places on extensional types.

The explicit constraints provided by the clues to the puzzle are represented as
constraints on the type clue, a subtype of background. We also need a subtype of
clue, maximality, to enforce another constraint implicit to all constraint puzzles,
namely the one which requires that we provide only maximally specific answers,
rather than vague solutions which say, for example, that the beverage for the third
house is a type of beverage (bev type), which may actually still satisfy a puzzle’s
constraints.

To solve the puzzle, we simply type:

| ?- mgsat maximality.

MOST GENERAL SATISFIER OF: maximality

maximality
HOUSE1 house

ANIMAL fox
BEVERAGE juice
NATIONALITY norwegian

HOUSE2 house
ANIMAL zebra
BEVERAGE tea
NATIONALITY ukranian

HOUSE3 house
ANIMAL dog
BEVERAGE milk
NATIONALITY spaniard

ANOTHER? y.

no
| ?-

So the Ukranian owns the zebra, and the Norwegian drinks juice. A most general
satisfier of maximality will also satisfy the constraints of its supertypes, background
and clue.

Although ale is capable of representing such puzzles and solving them, it is not
actually very good at solving them efficiently. To solve such puzzles efficiently, a



36 CHAPTER 3. FEATURE STRUCTURES, TYPES AND DESCRIPTIONS

⊥

descriptorhouse
nationality

animal

beverage

background
house1

house2

house3

nat-type ani-type bev-type clue

spaniard
ukranian
norwegian

dog
fox

zebra maximality

tea
milk

orange-juice

XXXXXXXXXXXXXXXXXX

@
@

@
@@

�������������

PPPPPPPPP

@
@

@

�
�

�

Figure 3.2: Inheritance Network for the Zebra Puzzle.

system must determine an optimal order in which to satisfy all of the various con-
straints. ale does not do this since it can express definite clauses in its constraints,
and the reordering would also be very difficult for the user to keep track of while
designing a grammar. A system that does do this is the general constraint resolver
proposed by Penn and Carpenter (1993)13.

13This system was actually the precursor to ale. It implemented a completely reversible
constraint-based parser/generator with a weighting on the constraints based on their maximal
non-determinism. Re-ordering constraints, however, proved to be insufficient for efficient parsing
or generation, compared to a uni-directional system such as ale.



Chapter 4

Definite Clauses

The next two sections, covering the constraint logic programming and phrase struc-
ture components of ale, simply describe how to write ale programs and how they
will be executed. Discussion of interacting with the system itself follows the descrip-
tion of the programming language ale provides.

The definite logic programming language built into ale is a constraint logic
programming (clp) language, where the constraint system is the attribute-value
logic described above. Thus, it is very closely related to both Prolog and login.
Like Prolog, definite clauses may be defined with disjunction, negation and cut. The
definite clauses of ale are executed in a depth-first, left to right search, according
to the order of clauses in the database. ale performs last call optimization, but
does not perform any clause indexing.1 Those familiar with Prolog should have no
trouble adapting that knowledge to programming with definite clauses in ale. The
only significant difference is that first-order terms are replaced with descriptions of
feature structures.

While it is not within the scope of this user’s guide to detail the logic program-
ming paradigm, much less clp, this section will explain all that the user familiar
with logic programming needs to know to exploit the special features of ale. For
background, the user is encouraged to consult Sterling and Shapiro (1986) with re-
gard to general logic programming techniques, most of which are applicable in the
context of ale, and Aı̈t-Kaci and Nasr (1986) for more details on programming with
sorted feature structures. For more advanced material on programming in Prolog
with a compiler, see O’Keefe (1990). The general theory of clp is developed in
a way compatible with ale in Höhfeld and Smolka (1988). Of course, since ale
is literally an implementation of the theory found in Carpenter (1992), the user is
strongly encouraged to consult Chapter 14 of that book for full theoretical details.

The syntax of ale’s logic programming component is broadly similar to that
of Prolog, with the only difference being that first-order terms are replaced with
attribute-value logic descriptions. The language in which clauses are expressed in
ale is given in bnf as:

<clause> ::= <literal> if <goal>.

<literal> ::= <pred_sym>
1Thus, additional cuts might be necessary to ensure determinism, so that last call optimization

is effective.

37



38 CHAPTER 4. DEFINITE CLAUSES

| <pred_sym>(<seq(desc)>)

<goal> ::= true
| <literal>
| (<goal>,<goal>)
| (<goal>;<goal>)
| (<desc> =@ <desc>)
| (<cut_free_goal> -> <goal>)
| (<cut_free_goal> -> <goal> ; <goal>)
| !
| (\+ <goal>)
| prolog(<prolog_goal>)

Just as in Prolog, predicate symbols must be Prolog atoms. This is a more restricted
situation than the definite clause language discussed in Carpenter (1992), where
literals were also represented as feature structures and described using attribute-
value logic. Also note that ale requires every clause to have a body, which might
simply be the goal true. There must be whitespace around the if operator, but
none is required around the conjunction comma, the disjunction semicolon, the
cut or shallow cut symbols !,->, or the unprovability symbol \+. Parentheses, in
general, may be dropped and reconstructed based on operator precedences. The
precedence is such that the comma binds more tightly than the semicolon, while the
unprovability symbol binds the most tightly. Both the semicolon and comma are
right associative.

The operational behavior of ale is nearly identical to Prolog with respect to
goal resolution. That is, it evaluates a sequence of goals depth-first, from the left
to right, using the order of clauses established in the program. The only difference
arises from the fact that, in Prolog, terms cannot introduce non-determinism. In
ale, due to the fact that disjunctions can be nested inside of descriptions, additional
choice points might be created both in matching literals against the heads of clauses
and in expanding the literals within the body of a clause. In evaluating these choices,
ale maintains a depth-first left to right strategy.

We begin with a simple example, the member/2 predicate:2

member(X,hd:X) if
true.

member(X,tl:Xs) if
member(X,Xs).

As in Prolog, ale clauses may be read logically, as implications, from right to left.
Thus the first clause above states that X is a member of a list if it is the head of a
list. The second clause states that X is a member of a list if X is a member of the
tail of the list, Xs. Note that variables in ale clauses are used the same way as in
Prolog, due to the notational convention of our description language. Further note
that, unlike Prolog, ale requires a body for every clause. In particular, note that
the first clause above has the trivial body true. The compiler is clever enough to
remove such goals at compile time, so they do not incur any run-time overhead.

2As in Prolog, we refer to predicates by their name and arity.



39

Given the notational convention for lists built into ale, the above program could
equivalently be written as:

member(X,[X|_]) if
true.

member(X,[_|Xs]) if
member(X,Xs).

But recall that ale would expand [X| ] as (hd:X,tl: ). Not only does ale not
support anonymous variable optimizations, it also creates a conjunction of two de-
scriptions, where hd:X would have sufficed. Thus the first method is not only more
elegant, but also more efficient.

Due to the fact that lists have little hierarchical structure, list manipulation
predicates in ale look very much like their correlates in Prolog. They will also
execute with similar performance. But when the terms in the arguments of liter-
als have more interesting taxonomic structure, ale actually provides a gain over
Prolog’s evaluation method, as pointed out by Aı̈t-Kaci and Nasr (1986). Consider
the following fragment drawn from the syllabification grammar in the appendix, in
which there is a significant interaction between the inheritance hierarchy and the
definite clause less sonorous/2:

segment sub [consonant,vowel].
consonant sub [nasal,liquid,glide].

nasal sub [n,m].
n sub [].
m sub [].

liquid sub [l,r].
l sub [].
r sub [].

glide sub [y,w].
y sub [].
w sub [].

vowel sub [a,e,i]
a sub [].
e sub [].
i sub [].

less_sonorous_basic(nasal,liquid) if true.
less_sonorous_basic(liquid,glide) if true.
less_sonorous_basic(glide,vowel) if true.

less_sonorous(L1,L2) if
less_sonorous_basic(L1,L2).

less_sonorous(L1,L2) if
less_sonorous_basic(L1,L3),
less_sonorous(L3,L2).

For instance, the third clause of less sonorous basic/2, being expressed as
a relation between the types glide and vowel, allows solutions such as



40 CHAPTER 4. DEFINITE CLAUSES

less sonorous basic(w,e), where glide and vowel have been instantiated as the
particular subtypes w and e. This fact would not be either as straightforward or
as efficient to code in Prolog, where relations between the individual letters would
need to be defined. The loss in efficiency stems from the fact that Prolog must
either code all 14 pairs represented by the above three clauses and type hierarchy,
or perform additional logical inferences to infer that w is a glide, and hence less
sonorous than the vowel e. ale, on the other hand, performs these operations by
unification, which, for types, is a simple table look-up.3 All in all, the three clauses
for less sonorous basic/2 given above represent relations between 14 pairs of let-
ters. Of course, the savings is even greater when considering the transitive closure
of less sonorous basic/2, given above as less sonorous/2, and would be greater
still for a type hierarchy involving a greater degree of either depth or branching.

While we do not provide examples here, suffice it to say that cuts, shallow cuts,
negation, conjunction and disjunction work exactly the same as they do in Prolog. In
particular, cuts conserve stack space representing backtracking points, disjunctions
create choice points and negation is evaluated by failure, with the same results on
binding as in Prolog.

The definite clause language also allows arbitrary prolog goals, using the pred-
icate, prolog(<prolog goal>). This is perhaps most useful when used with the
Prolog predicates, assert and retract, which provide ale users with access to the
Prolog database, and with I/O statements, which can be quite useful for debugging
definite clauses.

Should prolog goal contain a variable that has been instantiated to an ale
feature structure, this will appear to Prolog as ale’s internal representation of that
feature structure. Feature structures can be asserted and retracted, however, with-
out regard to their internal structure. The details of ale’s internal representation of
feature structures can be found in Carpenter and Penn (1996), and briefly on p. 85.

Another side effect of not directly attaching inequations to feature structures
is that if a feature structure with inequations is asserted and a copy of it is later
instantiated from the Prolog database or retracted, the copy will have lost the
inequations. In general, passing feature structures with inequations to Prolog hooks
should be avoided.

Because the enforcement of extensionality is delayed in ale, a variable which
is instantiated to an extensionally typed feature structure and then passed to a
prolog hook may also not reflect token identities as a result of extensionality. Pro-
vided that there are no inequations (to which the user does not have direct ac-
cess), this can be enforced within the hook by calling the ale internal predicate
extensionalise(FS,[]).

There is a special literal predicate, =@, used with infix notation, which is true
when its arguments are token-identical. As with inequations, which forbid token-
identity, the =@ operator is of little use unless multiply occurring variables are used
in its arguments’ descriptions. Note, however, that while inequations (=\=) and
path equations (==) are part of the description language, =@ is a definite clause
predicate, and cannot be used as a description. It is more important to note that
while the negation of the structure-identity operator (==), namely the inequation

3Table look-ups involved in unification in ale rely on double hashing, once for the type of each
structure being unified.



4.1. TYPE CONSTRAINTS REVISITED 41

(=\=), is monotonic when interpreted persistently, the negation of the token-identity
operator (=@), achieved by using it inside the argument of the \+ operator, is non-
monotonic, and thus its use should be avoided.

It is significant to note that clauses in ale are truly definite in the sense that
only a single literal is allowed as the head of a clause, while the body can be a general
goal. In particular, disjunctions in descriptions of the arguments to the head literal
of a clause are interpreted as taking wide scope over the entire clause, thus providing
the effect of multiple solutions rather than single disjunctive solutions. The most
simple example of this behavior can be found in the following program:

foo((b;c)) if true.

bar(b) if true.

baz(X) if foo(X), bar(X).

Here the query foo(X) will provide two distinct solutions, one where X is of type b,
and another where it is of type c. Also note that the queries foo(b) and foo(c)
will succeed. Thus the disjunction is equivalent to the two single clauses:

foo(b) if true.
foo(c) if true.

In particular, note that the query baz(X) can be solved, with X instantiated to
an object of type b. In general, using embedded disjunctions will usually be more
efficient than using multiple clauses in ale, especially if the disjunctions are deeply
nested late in the description. On the other hand, cuts can be inserted for control
with multiple clauses, making them more efficient in some cases.

4.1 Type Constraints Revisited

The type constraints mentioned in the last chapter can also incorporate relational
constraints defined by definite clauses, with the optional operator goal. Consider
the following example from hpsg:

word cons W
goal (single_rel_constraint(W),

clausal_rel_prohibition(W)).

In this example, the constraint from the description language is simply the vari-
able W, which is used to match any feature structure of type word. That fea-
ture structure is then passed as an argument to the two procedural attachments
single rel constraint/1 and clausal rel prohibition/1, which each represent
a principle from hpsg which governs words (among other objects). Notice that the
goal, when non-literal, must occur within parentheses.

While every type constraint must have a description, procedural attachments
are optional. If they do occur, they occur after the description. The syntax is given
in bnf as:

<cons_spec> ::= <type> cons <desc>
| <type> cons <desc>

goal <goal>



Chapter 5

Phrase Structure Grammars

The ale phrase structure processing component is loosely based on a combination
of the functionality of the patr-ii system and the dcg system built into Prolog.
Roughly speaking, ale provides a system like that of dcgs, with two primary dif-
ferences. The first difference stems from the fact that ale uses attribute-value
logic descriptions of typed feature structures for representing categories and their
parts, while dcgs use first-order terms (or possibly cyclic variants thereof). The
second primary difference is that ale’s parser uses a bottom-up active chart parsing
algorithm and a semantic-head-driven generator rather than encoding grammars di-
rectly as Prolog clauses and evaluating them top-down and depth-first. In the spirit
of dcgs, ale allows definite clause procedures to be attached and evaluated at ar-
bitrary points in a phrase structure rule, the difference being that these rules are
given by definite clauses in ale’s logic programming system, rather than directly in
Prolog.

Phrase structure grammars come with two basic components, one for describing
lexical entries and empty categories, and one for describing grammar rules. We
consider these components in turn.

5.1 Lexical Entries

Lexical entries in ale are specified as rewriting rules, as given by the following bnf
syntax:

<lex_entry> ::= <word> ---> <desc>.

For instance, in the categorial grammar lexicon in the appendix, the following lexical
entry is provided, along with the relevant macros:

john --->
@ pn(j).

pn(Name) macro
synsem: @ np(Name),
@ quantifier_free.

np(Ind) macro

42



5.1. LEXICAL ENTRIES 43

syn:np,
sem:Ind.

quantifier_free macro
qstore:[].

Read declaratively, this rule says that the word john has as its lexical category the
most general satisfier of the description @ pn(j), which is:

cat
SYNSEM basic

SYN np
SEM j

QSTORE e_list

Note that this lexical entry is equivalent to that given without macros by:

john --->
synsem:(syn:np,

sem:j),
qstore:e_list.

Macros are useful as a method of organizing lexical information to keep it consistent
across lexical entries. The lexical entry for the word runs is:

runs ---> @ iv((run,runner:Ind),Ind).

iv(Sem,Arg) macro
synsem:(backward,

arg: @ np(Arg),
res:(syn:s,

sem:Sem)),
@ quantifier_free.

This entry uses nested macros along with structure sharing, and expands to the
category:

cat
SYNSEM backward

ARG synsem
SYN np
SEM [0] sem_obj

RES SYN s
SEM run

RUNNER [0]
QSTORE e_list

It also illustrates how macro parameters are in fact treated as variables.
Multiple lexical entries may be provided for each word. Disjunctions may also be

used in lexical entries, but are expanded out at compile-time. Thus the first three
lexical entries, taken together, compile to the same result as the fourth:



44 CHAPTER 5. PHRASE STRUCTURE GRAMMARS

bank --->
syn:noun,
sem:river_bank.

bank --->
syn:noun,
sem:money_bank.

bank --->
syn:verb,
sem:roll_plane.

bank --->
( syn:noun,

sem:( river_bank
; money_bank
)

; syn:verb,
sem:roll_plane

).

Note that this last entry uses the standard Prolog layout conventions of placing
each conjunct and disjunct on its own line, with commas at the end of lines, and
disjunctions set off with vertically aligned parentheses at the beginning of lines.

The compiler finds all the most general satisfiers for lexical entries at compile
time, reporting on those lexical entries that have unsatisfiable descriptions. In the
above case of bank, the second combined method is marginally faster at compile-
time, but their run-time performance is identical. The reason for this is that both
entries have the same set of most general satisfiers.

ale supports the construction of large lexica, as it relies on Prolog’s hashing
mechanism to actually look up a lexical entry for a word during bottom-up parsing.
For generation, ale indexes lexical entries for faster unification, as described in Penn
and Popescu (1997). Constraints on types can also be used to enforce conditions on
lexical representations, allowing for further factorization of information.

5.2 Empty Categories

ale allows the user to specify certain categories as occurring without any corre-
sponding surface string. These are usually referred to somewhat misleadingly as
empty categories, or sometimes as null productions. In ale, they are supported by
a special declaration of the form:

empty <desc>.

Where <desc> is a description of the empty category.
For example, a common treatment of bare plurals is to hypothesize an empty

determiner. For instance, consider the contrast between the sentences kids over-
turned my trash cans and a kid overturned my trash cans. In the former sentence,
which has a plural subject, there is no corresponding determiner. In our categorial
grammar, we might assume an empty determiner with the following lexical entry
(presented here with the macros expanded):



5.2. EMPTY CATEGORIES 45

empty @ gdet(some).

gdet(Quant) macro
synsem:(forward,

arg:(syn:(n,
num:plu),

sem:(body:Restr,
ind:Ind)),

res:(syn:(np,
num:plu),

sem:Ind),
qstore:[ (Quant,

var:Ind,
restr:Restr) ].

Of course, it should be noted that this entry does not match the type system of the
categorial grammar in the appendix, as it assumes a number feature on nouns and
noun phrases.

Empty categories are expensive to compute under a bottom-up parsing scheme
such as the one used in ale. The reason for this is that these categories can be used
at every position in the chart during parsing (with the same begin and end points).
If the empty categories cause local structural ambiguities, parsing will be slowed
down accordingly as these structures are calculated and then propagated. Consider
the empty determiner given above. It can be used as an inactive edge at every node
in the chart, then match the forward application rule scheme and search through
every edge to its right looking for a nominal complement. If there are relatively few
nouns in a sentence, not many noun phrases will be created by this rule and thus not
many structural ambiguities will propagate. But in a sentence such as the kids like
the toys, there will be an edge spanning kids like the toys corresponding to an empty
determiner analysis of kids. The corresponding noun phrase created spanning toys
will not propagate any further, as there is no way to combine a noun phrase with the
determiner the. But now consider the empty slash categories of form X/X in gpsg.
These categories, when coupled with the slash passing rules, would roughly double
parsing time, even for sentences that can be analyzed without any such categories.
The reason is that these empty categories are highly underspecified and thus have
many options for combinations. Thus empty categories should be used sparingly,
and prefarably in environments where their effects will not propagate.

Another word of caution is in order concerning empty categories: they can occur
in constructions with other empty categories. For instance, if we specify categories
C1 and C2 as empty categories, and have a rule that allows a C to be constructed
from a C1 and a C2, then C will act as an empty category, as well. These combi-
nations of empty categories are computed at compile-time; but the sheer number of
empty categories produced under this closure may be a processing burden if they
apply at run-time too productively. Keep in mind that ale computes all of the
inactive edges that can be produced from a given input string, so there is no way
of eliminating the extra work produced by empty categories interacting with other
categories, including empty ones.



46 CHAPTER 5. PHRASE STRUCTURE GRAMMARS

5.3 Lexical Rules

Lexical rules provide a mechanism for expressing redundancies in the lexicon, such as
the kinds of inflectional morphology used for word classes, derivational morphology
as found with suffixes and prefixes, as well as zero-derivations as found with detran-
sitivization, nominalization of some varieties and so on. The format ale provides
for stating lexical rules is similar to that found in both patr-ii and hpsg.

In order to implement them efficiently, lexical rules, as well as their effects on
lexical entries, are compiled in much the same way as grammars. To enhance their
power, lexical rules, like grammar rules, allow arbitrary procedural attachment with
ale definite constraints.

The lexical rule system of ale is productive in that it allows lexical rules to
apply sequentially to their own output or the output of other lexical rules. Thus,
it is possible to derive the nominal runner from the verb run, and then derive the
plural nominal runners from runner, and so on. At the same time, the lexical system
is leashed to a fixed depth-bound, which may be specified by the user. This bound
limits the number of rules that can be applied to any given category. The bound on
application of rules is specified by a command such as the following, which should
appear somewhere at the beginning of the input file:

:-lex_rule_depth(2).

Of course, bounds other than 2 can be used. The bound indicates how many ap-
plications of lexical rules can be made, and may be 0. If there is more than one
such specification in an input file, the last one will be the one that is used. If no
specification is given, the default is 2.

The format for lexical rules is as follows:

<lex_rule> ::= <lex_rule_name> lex_rule <lex_rewrite>
morphs <morphs>.

<lex_rewrite> ::= <desc> **> <desc>
| <desc> **> <desc> if <goal>

<morphs> ::= <morph>
| <morph>, <morphs>

<morph> ::= (<string_pattern>) becomes (<string_pattern>)
| (<string_pattern>) becomes (<string_pattern>)

when <prolog_goal>

<string_pattern> ::= <atomic_string_pattern>
| <atomic_string_pattern>, <string_pattern>

<atomic_string_pattern> ::= <atom>
| <var>
| <list(<var_char>)>

<var_char> ::= <char>
| <var>



5.3. LEXICAL RULES 47

An example of a lexical rule with almost all of the bells and whistles (we put off
procedural attachment for now) is:

plural_n lex_rule
(n,
num:sing)
**> (n,

num:plu)
morphs

goose becomes geese,
[k,e,y] becomes [k,e,y,s],
(X,man) becomes (X,men),
(X,F) becomes (X,F,es) when fricative(F),
(X,ey) becomes (X,[i,e,s]),
X becomes (X,s).

fricative([s]).
fricative([c,h]).
fricative([s,h]).
fricative([x]).

We will use this lexical rule to explain the behavior of the lexical rule system. First
note that the name of a lexical rule, in this case plural n, must in general be a
Prolog atom. Further note that the top-level parentheses around both the descrip-
tions and the patterns are necessary. If the Prolog goal, in this case fricative(F),
had been a complex goal, then it would need to be parenthesized as well. The next
thing to note about the lexical rule is that there are two descriptions — the first
describes the input category to the rule, while the second describes the output cat-
egory. These are arbitrary descriptions, and may contain disjunctions, macros, etc.
We will come back to the clauses for fricative/1 shortly. Note that the patterns in
the morphological component are built out of variables, sequences and lists. Thus a
simple rewriting can be specified either using atoms as with goose above, with a list,
as in [k,e,y], or with a sequence as in (X,man), or with both, as in (X,[i,e,s]).
The syntax of the morphological operations is such that in sequences, atoms may
be used as a shorthand for lists of characters. But lists must consist of variables or
single characters only. Thus we could not have used (X,[F]) in the fricative case,
as F might is itself a complex list such as [s,h] or [x]. But in general, variables
ranging over single characters can show up in lists.

The basic operation of a lexical rule is quite simple. First, every lexical entry,
including a word and a category, that is produced during compilation is checked to
see if its category satisfies the input description of a lexical rule. If it does, then a new
category is generated to satisfy the output description of the lexical rule, if possible.
Note that there might be multiple solutions, and all solutions are considered and
generated. Thus multiple solutions to the input or output descriptions lead to
multiple lexical entries.

After the input and output categories have been computed, the word of the input
lexical entry is fed through the morphological analyzer to produce the corresponding
output word. Unlike the categorial component of lexical rules, only one output word



48 CHAPTER 5. PHRASE STRUCTURE GRAMMARS

will be constructed, based on the first input/output pattern that is matched.1 The
input word is matched against the patterns on the left hand side of the morphological
productions. When one is found that the input word matches, any condition imposed
by a when clause on the production is evaluated. This ordering is imposed so that
the Prolog goal will have all of the variables for the input string instantiated. At this
point, Prolog is invoked to evaluate the when clause. In the most restricted case, as
illustrated in the above lexical rule, Prolog is only used to provide abbreviations for
classes. Thus the definition for fricative/1 consists only of unit clauses. For those
unfamiliar with Prolog, this strategy can be used in general for simple morphological
abbreviations. Evaluating these goals requires the F in the input pattern to match
one of the strings given. The shorthand of using atoms for the lists of their characters
only operates within the morphological sequences. In particular, the Prolog goals
do not automatically inherit the ability of the lexical system to use atoms as an
abbreviation for lists, so they have to be given in lists. Substituting fricative(sh)
for fricative([s,h]) would not yield the intended interpretation. Variables in
sequences in morphological productions will always be instantiated to lists, even if
they are single characters. For instance, consider the lexical rule above with every
atom written out as an explicit list:

[g,o,o,s,e] becomes [g,e,e,s,e],
[k,e,y] becomes [k,e,y,s],
(X,[m,a,n]) becomes (X,[m,e,n]),
(X,F) becomes (X,F,[e,s]) when fricative(F),
(X,[e,y]) becomes (X,[i,e,s]),
X becomes (X,[s]).

In this example, the s in the final production is given as a list, even though it is
only a single character.

The morphological productions are considered one at a time until one is matched.
This ordering allows a form of suppletion, whereby special forms such as those
for the irregular plural of goose and key to be listed explicitly. It also allows
subregularities, such as the rule for fricatives above, to override more general rules.
Thus the input word beach becomes beaches because beach matches (X,F) with
X = [b,e,a] and F = [c,h], the goal fricative([c,h]) succeeds and the word
beaches matches the output pattern (X,F,[e,s]), instantiated after the input is
matched to ([b,e,a],[c,h],[e,s]). Similarly, words that end in [e,y] have
this sequence replaced by [i,e,s] in the plural, which is why an irregular form is
required for keys, which would otherwise match this pattern. Finally, the last rule
matches any input, because it is just a variable, and the output it produces simply
suffixes an [s] to the input.

For lexical rules with no morphological effect, the production:

X becomes X

suffices. To allow lexical operations to be stated wholly within Prolog, a rule may
be used such as the following:

1Thus ale’s lexical rule system is not capable of handling cases of partial suppletion, where
both a regular and irregular morphological form are both allowed. To allow two ouptut forms, one
must be coded by hand with its own lexical entry or a separate lexical rule.



5.3. LEXICAL RULES 49

X becomes Y when morph_plural(X,Y)

In this case, when morph plural(X,Y) is called, X will be instantiated to the list of
the characters in the input, and as a result of the call, Y should be instantiated to
a ground list of output characters.

We finally turn to the case of lexical rules with procedural attachments, as in
the following (simplified) example from hpsg:

extraction lex_rule
local:(cat:(head:H,

subcat:Xs),
cont:C),

nonlocal:(to_bind:Bs,
inherited:Is)

**> local:(cat:(head:H,
subcat:Xs2),

cont:C),
nonlocal:(to_bind:Bs,

inherited:[G|Is])
if

select(G,Xs,Xs2)
morphs

X becomes X.

select(X,(hd:X),Xs) if true.
select(X,[Y|Xs],[Y|Ys]) if

select(X,Xs,Ys).

This example illustrates an important point other than the use of conditions on
categories in lexical rules. The point is that even though only the LOCAL CAT SUBCAT
and NONLOCAL INHERITED paths are affected, information that stays the same must
also be mentioned. For instance, if the cont:C specification had been left out of
either the input our output category description, then the output category of the rule
would have a completely unconstrained content value. This differs from the default-
based nature of the usual presentation of lexical rules, which assumes all information
that hasn’t been explicitly specified is shared between the input and the output. As
another example, we must also specify that the HEAD and TO BIND features are to
be copied from the input to the output; otherwise there would be no specification
of them in the output of the rule. This fact follows from the description of the
application of lexical rules: they match a given category against the input description
and produce the most general category(s) matching the output description.

Turning to the use of conditions in the above rule, the select/3 predicate is
defined so that it selects its first argument as a list member of its second argument,
returning the third argument as the second argument with the selected element
deleted. In effect, the above lexical rule produces a new lexical entry which is like
the original entry, except for the fact that one of the elements on the subcat list of
the input is removed from the subcat list and added to the inherited value in the
output. Nothing else changes.

Procedurally, the definite clause is invoked after the lexical rule has matched the
input description against the input category. Like the morphological system, this



50 CHAPTER 5. PHRASE STRUCTURE GRAMMARS

control decision was made to ensure that the relevant variables are instantiated at
the time the condition is resolved. The condition here can be an arbitrary goal, but
if it is complex, there should be parentheses around the whole thing. Cuts should
not be used in conditions on lexical rules (see the comments on cuts in grammar
rules below, which also apply to cuts in lexical rules).

Currently, ale does not check for redundancies or for entries that subsume each
other, either in the base lexicon or after closure under lexical rules. ale also does
not apply lexical rules to empty categories.

5.4 Grammar Rules

Grammar rules in ale are of the phrase structure variety, with annotations for both
goals that need to be solved and for attribute-value descriptions of categories. The
bnf syntax for rules is as follows:

<rule> ::= <rule_name> rule <desc> ===> <rule_body>.

<rule_body> ::= <rule_clause>
| <rule_clause>, <rule_body>

<rule_clause> ::= cat> <desc>
| cats> <desc>
| sem_head> <desc>
| goal> <goal>
| sem_goal> <goal>

The <rule name> must be a Prolog atom. The description in the rule is taken to be
the mother category in the rule, while the rule body specifies the daughters in the
rule along with any side conditions on the rule, expressed as ale goals. A further
restriction on rules, which is not expressed in the bnf syntax above, is that there
must be at least one category-seeking rule clause in each rule body.2 Thus empty
productions are not allowed and will be flagged as errors at compile time.

A simple example of such a rule, without any goals, is as follows:

s_np_vp rule
(syn:s,
sem:(VPSem,

agent:NPSem))
===>
cat>

(syn:np,
agr:Agr,
sem:NPSem),

cat>
(syn:vp,
agr:Agr,
sem:VPSem).

2By doubling the size of the bnf for rules, this requirement could be expressed.



5.4. GRAMMAR RULES 51

There are a few things to notice about this rule. The first is that the parentheses
around the category and mother descriptions are necessary. Looking at what the
rule means, it allows the combination of an np category with a vp type category if
they have compatible (unifiable) values for agr. It then takes the semantics of the
result to be the semantics of the verb phrase, with the additional information that
the noun phrase semantics fills the agent role.

Unlike the patr-ii rules, but similar to dcg rules, “unifications” are specified by
variable co-occurrence rather than by path equations, while path values are specified
using the colon rather than by a second kind of path equation. The rule above is
similar to a patr-ii rule which would look roughly as follows:

x0 ---> x1, x2 if
(x0 syn) == s,
(x1 syn) == np,
(x2 syn) == vp,
(x0 sem) == (x2 sem),
(x0 sem agent) == (x1 sem),
(x1 agr) == (x2 agr)

Unlike lexical entries, rules are not expanded to feature structures at compile-
time. Rather, they are compiled down into structure-copying operations involving
table look-ups for feature and type symbols, unification operations for variables,
sequencing for conjunction, and choice point creation for disjunction.

The descriptions for cat> and cats> daughters are always evaluated in the order
they are specified, from left to right. This is significant when considering goals that
might be interleaved with searches in the chart for consistent daughter categories.
The order in which the code for the mother’s and semantic head’s descriptions is
executed depends on the control strategy used during parsing or generation. These
are described in Sections 5.4.3 and 5.4.4, respectively. In theory, the same grammar
can be used for both parsing and generation. In practice, a single grammar is
rarely efficient in both directions, and can even exhibit termination problems in
one, just as a Prolog program may have these problems with queries that have
different argument instantiations. So while it is not necessary to fully understand
the parsing or generation algorithms used by ale to exploit its power for developing
grammars, practical implementations will order their procedural attachments and
distribute their description-level information with these algorithms in mind.

Within a single description, in the case of feature and type symbols, a double-
hashing is performed on the type of the structure being added to, as well as either
the feature or the type being added. Additional operations arise from type coercions
that adding features or types require. Thus there is nothing like disjunctive normal-
form conversion of rules at compile time, as there is for lexical entries. In particular,
if there is a local disjunction in a rule, it will be evaluated locally at run time. For
instance, consider the following rule, which is the local part of hpsg’s Schema 1:

schema1 rule
(cat:(head:Head,

subcat:[]),
cont:Cont)
===>



52 CHAPTER 5. PHRASE STRUCTURE GRAMMARS

cat>
(Subj,
cat:head:( subst

; spec:HeadLoc,
)),

cat>
(HeadLoc,
cat:(head:Head,

subcat:[Subj]),
cont:Cont).

Note that there is a disjunction in the cat:head value of the first daughter category
(the subject in this case). This disjunction represents the fact that the head value
is either a substantive category (one of type subst), or it has a specifier value which
is shared with the entire second daughter. But the choice between the disjuncts in
the first daughter of this rule is made locally, when the daughter category is fully
known, and thus does not create needless rule instantiations.

ale’s general treatment of disjunction in descriptions, which is an extension of
Kasper and Round’s (1986) attribute-value logic to phrase structure rules, is a vast
improvement over a system such as patr-ii, which would not allow disjunction in
a rule, thus forcing the user to write out complete variants of rules that only differ
locally. Disjunctions in rules do create local choice points, though, even if the first
goal in the disjunction is the one that is solvable.3 This is because, in general, both
parts of a disjunction might be consistent with a given category, and lead to two
solutions. Or one disjunct might be discarded as inconsistent only when its variables
are further instantiated elsewhere in the rule.

5.4.1 Procedural Attachments

A more complicated rule, drawn from the categorial grammar in the appendix is as
follows:

backward_application rule
(synsem:Z,
qstore:Qs)
===>
cat>

(synsem:Y,
qstore:Qs1),

cat>
(synsem:(backward,

arg:Y,
res:Z),

qstore:Qs2),
goal>

append(Qs1,Qs2,Qs).
3In a future release, cuts will be allowed within descriptions, to allow the user to eliminate

disjunctive choice points when possible.



5.4. GRAMMAR RULES 53

Note that the goal in this rule is specified after the two category descriptions. Conse-
quently, it will be evaluated after categories matching the descriptions have already
been found, thus ensuring in this case that the variables Qs1 and Qs2 are instanti-
ated. The append(Qs1,Qs2,Qs) goal is evaluated by ale’s definite clause resolution
mechanism. goal> attachments are always evaluated in the order they are specified
relative to the enforcement of cat> and cats> daughters, from left to right. All
possible solutions to the goal are found with the resulting instantiations carrying
over to the rule. These solutions are found using the depth-first search built into
ale’s definite constraint resolver. In general, goals may be interleaved with the cat-
egory specifications, giving the user control over when the goals are fired. Also note
that goals may be arbitrary cut-free ale definite clause goals, and thus may include
disjunctions, conjunctions, and negations. Cuts may occur, however, within the
code for any literal clause specified in a procedural attachment. The attachments
themselves must be cut-free to avoid the cut taking precedence over the entire rule
after compilation, thus preventing the rule to apply to other edges in the chart or for
later rules to apply. Instead, if cuts are desired in rules, they must be encapsulated
in an auxiliary predicate, which will restrict the scope of the cut. For instance, in
the context of a phrase structure rule, rather than a goal of the form:

goal>
(a, !, b)

it is necessary to encode this as follows:

goal>
c

where the predicate c is defined by:

c if
(a, !, b).

This prevents backtracking through the cut in the goal, but does not block the
further application of the rule. A similar strategy should be employed for cuts in
lexical rules.

As a programming strategy, rules should be formulated like Prolog clauses, so
that they fail as early as possible. Thus the features that discriminate whether a
rule is applicable should occur first in category descriptions. The only work incurred
by testing whether a rule is applicable is up to the point where it fails.

Just as with patr-ii, ale is re-complete (equivalently, Turing-equivalent),
meaning that any computable language can be encoded. Thus it is possible to
represent undecidable grammars, even without resorting to the kind of procedural
attachment possible with arbitrary definite clause goals. With its mix of depth-first
and breadth-first evaluation strategies, ale is not strictly complete with respect to
its intended semantics if an infinite number of edges can be generated with the gram-
mar. This situation is similar to that in Prolog, where a declaratively impeccable
program might hang operationally.



54 CHAPTER 5. PHRASE STRUCTURE GRAMMARS

5.4.2 The cats> Operator

The cats> operator is used to describe a list of daughters, whose length cannot
be determined until run-time. Daughters are not parsed or generated as quickly as
part of a cats> specification. Note also the interpretation of cats> requires that its
argument is subsumed by the type list, which must be defined, along with ne list,
e list, etc., and the features HD, and TL, which we defined above. This check is
not made using unification, so that an underspecified list argument will not work
either. If the argument of cats> is not subsumed by list, then the rule in which
that argument occurs will never match any string, and a run-time error message will
be given. This operator is useful for so-called “flat” rules, such as hpsg’s Schema
2, part of which is given (in simplified form) below:

schema2 rule
(cat:(head:Head,

subcat:[Subj]))
===>
cat>
(cat:(head:Head,

subcat:[Subj|Comps])),
cats> Comps.

Since various lexical items have SUBCAT lists of various lengths, e.g., zero for proper
nouns, one for intransitive verbs, two for transitive verbs, cats> is required in order
to match the actual list of complements at run-time.

It is common to require a goal to produce an output for the argument of cats>.
If this is done, the goal must be placed before the cats>. Our use of cats> is
problematic in that we require the argument of cats> to evaluate to a list of fixed
length. Thus parsing with the following head-final version of hpsg’s Schema 2 would
not work:

schema2 rule
(cat:(head:Head,

subcat:[SubjSyn]))
===>
cats> Comps,
cat>
(cat:(head:Head,

subcat:[Subj|Comps])).

One way to work around this is to place some finite upper bound on the size of the
Comps list by means of a constraint.

schema2 rule
(cat:(head:Head,

subcat:[SubjSyn]))
goal> three_or_less(Comps),
cats> Comps,
cat>
(cat:(head:Head,



5.4. GRAMMAR RULES 55

subcat:[Subj|Comps])).

three_or_less([]) if true.
three_or_less([_]) if true.
three_or_less([_,_]) if true.
three_or_less([_,_,_]) if true.

The problem with this strategy from an efficiency standpoint is that arbitrary se-
quences of three categories will be checked at every point in the grammar; in the
English case, the search is directed by the types instantiated in Comps as well as that
list’s length. From a theoretical standpoint, it is impossible to get truly unbounded
length arguments in this way.

5.4.3 Parsing

The ale system employs a bottom-up active chart parser that has been tailored
to the implementation of attribute-value grammars in Prolog. The single most
important fact to keep in mind is that rules are evaluated from left to right, with
the mother description coming last. Most of the implementational considerations
follow from this rule evaluation principle and its specific implementation in Prolog.
In parsing, sem head> and sem goal> specifications are treated exactly as cat> and
goal> specifications, respectively.

The chart is filled in using a combination of depth- and breadth-first control.
In particular, the edges are filled in from right to left, even though the rules are
evaluated from left to right. Furthermore, the parser proceeds breadth-first in the
sense that it incrementally moves through the string from right to left, one word at
a time, recording all of the inactive edges that can be created beginning from the
current left-hand position in the string. For instance, in the string The kid ran
yesterday, the order of processing is as follows. First, lexical entries for yesterday
are looked up, and entered into the chart as inactive edges. For each inactive edge
that is added to the chart, the rules are also fired according to the bottom-up rule
of chart parsing. But no active edges are recorded. Active edges are purely dy-
namic structures, existing only locally to exploit Prolog’s copying and backtracking
schemes. The benefit of parsing from right to left is that when an active edge is
proposed by a bottom-up rule, every inactive edge it might need to be completed
has already been found. This is actually true as long as the direction of traversal
through the string is the opposite of the direction of matching daughter categories
in a rule; thus the real reason for the right-to-left parsing strategy is to allow the
active edges to be represented dynamically, while still evaluating the rules from left
to right. While the overall strategy is bottom-up, and breadth-first insofar as it
steps incrementally through the string, filling in every possible inactive edge as it
goes, the rest of the processing is done depth-first to keep as many data structures
dynamic as possible, to avoid copying other than that done by Prolog’s backtracking
mechanism. In particular, lexical entries, bottom-up rules, and active edges are all
evaluated depth-first, which is perfectly sound, because they all start at the same
left point (that before the current word in the right to left pass through the string),
and thus do not interact with one another.

ale computes the closure of its grammar rules under application of the first
daughter’s description to empty categories at compile-time. This is known as Empty-



56 CHAPTER 5. PHRASE STRUCTURE GRAMMARS

First-Daughter closure or EFD closure. This closure operation has three advantages.
First, given ale’s combination of depth-first and breadth-first processing, it is nec-
essary in order to ensure completeness of parsing with empty categories, because
any permutation of empty categories can, in principle, be combined to form a new
empty category. Second, it works around a problem that many non-ISO-compatible
Prologs, including SICStus Prolog, have with asserted predicates that results in
empty category leftmost daughters not being able to combine with their own out-
puts. Third, it allows the run-time parser to establish a precondition that rules only
need to be closed with non-empty leftmost daughters at run-time. As a result, when
a new mother category is created and closed under rules as the leftmost daughter, it
cannot combine with other edges created with the same left node. This allows ale,
at each step in its right-to-left pass throught the input string, to copy all of the edges
in the internal database back onto the heap before they can be used again, and thus
reduces edge copying to a constant two times per edge for non-empty categories.
Keeping a copy of the chart on the heap also allows for more sophisticated indexing
strategies that would otherwise be overwhelmed by the cost of copying edges with
large-sized categories in Prolog before the match. The EFD closure algorithm itself
is described in Penn (1999).

EFD closure potentially creates new rules, a prefix of whose daughters have
matched empty categories, and new empty categories, formed when every daughter
of a rule has matched an empty category. The closure in computed breadth-first.

EFD closure may not terminate. As a result, compilation of some grammars
may go into infinite loops. This only occurs, however, with grammars for which
every parse would go into an infinite loop at run-time if EFD closure were not
applied — specifically, when empty categories alone can produce infinitely many
empty categories using the rules of the grammar. Because early versions of ale did
not compute a complete closure of grammar rules over empty categories (even at
run-time), some grammars that terminated at run-time under these early versions
will not terminate at compile-time under the current version.

Rules can incorporate definite clause goals before, between or after category
specifications. These goals are evaluated when they are found. For instance, if a
goal occurs between two categories on the right hand side of a rule, the goal is
evaluated after the first category is found, but before the second one is. The goals
are evaluated by ale’s definite clause resolution mechanism, which operates in a
depth-first manner. Thus care should be taken to make sure the required variables
in a goal are instantiated before the goal is called. The resolution of all goals should
terminate with a finite (possibly empty) number of solutions, taking into account
the variables that are instantiated when they are called.

The parser will terminate after finding all of the inactive edges derivable from
the lexical entries and the grammar rules. Of course, if the grammar is such that
an infinite number of derivations can be produced, ale will not terminate. Such an
infinite number of derivations can creep in either through recursive unary rules or
through the evaluation of goals.

ale now has an optional mechanism for checking edge subsumption (Section 7.9).
This can be used to prevent the propagation of spurious ambiguities through the
parse. A category C spanning a given subsequence is said to be spurious if there
is another category C ′ spanning the same subsequence such that C is subsumed by
C ′. Only the most general category needs to be recorded to ensure soundness. It



5.4. GRAMMAR RULES 57

can also be used to detect two derivations of the same category. Our experience,
however, has been that most unification-based grammars do not have any spuri-
ous ambiguity. They normally incorporate some notion of thematic or functional
structure representing the meaning of a sentence; and in these cases, most struc-
tural ambiguities result in semantic ambiguities. For such grammars, subsumption
checking is probably not worth the effort, and should be left disabled.

5.4.4 Generation

ale also contains a generator, based on the Semantic Head-Driven Generation al-
gorithm of van Noord (1989), as extended by Shieber et al. (1990), and adapted to
the typed feature logic of Carpenter (1992) by Popescu (1996). Its implementation
in ale is described in Penn and Popescu (1997).

Given a description of a feature structure, ale’s generator will non-
deterministically generate all the word strings that correspond to its most general
satisfier(s). In other words, the generated word strings, when parsed in ale using
the same grammar, will result in feature structures that unify with a most general
satisfier of the initial description (rather than necessarily be identical). That part
of the feature structure which represents semantic information drives the generation
process.

The semantics/1 Directive

ale identifies this part using a user-defined directive, semantics/1. This directive
distinguishes a binary user-defined definite clause predicate as the predicate to use to
find semantic information. The first argument is always the feature structure whose
semantics are being identified; and the second argument is always the semantic
information. The example below, taken again from the sample generation grammar,
simply says that the semantics of a feature structure is the value of its sem feature:

semantics sem1.
sem1(sem:S,S) if true.

In general, the second argument does not need to be a sub-structure of the
first — it could have a special type that is used only for the purpose of collecting
semantic information, possibly spread over several unrelated sub-structures. The
body can be arbitrarily complex; and there can be multiple clauses for the definition
of this predicate. The predicate must, however, have the property that it will
terminate when only its first argument is instantiated, and when only its second
argument is instantiated. ale will use this predicate in both “directions” — to find
semantics information, and in reverse to build templates to find structures that have
matching semantic information. There can be only one predicate distinguished by
semantics/1. If there are multiple directives, ale will only use the first.

The Algorithm

Semantic-head-driven generation makes use of the notion of a semantic head of a
rule, a daughter whose semantics is shared with the mother. In semantic-head-
driven generation, there are two kinds of rules: chain rules, which have a semantic



58 CHAPTER 5. PHRASE STRUCTURE GRAMMARS

PRED mary, PRED john< > >ARGS
PRED call_up<SEM|ARGS

sentence

Figure 5.1: The initial root.

PRED mary, PRED john< > >ARGS
PRED call_up<SEM|ARGS

sign

Figure 5.2: The semantics template.

head, and non-chain rules, which lack such a head. These two subsets are processed
differently during the generation process.

Given a feature structure, called the root goal, to generate a string for, the
generator builds a new feature structure that shares its semantic information (using
the user-defined semantics predicate with the second argument instantiated) and
finds a pivot that unifies with it. The pivot is the lowest node in a derivation tree
that has the same semantics as the root. The pivot may be either a lexical entry or
empty category (the base cases), or the mother category of a non-chain rule. Once
a pivot is identified, one can recursively generate top-down from the pivot using
non-chain rules. Since the pivot must be the lowest, there can be no lower semantic
heads, and thus no lower chain-rule applications. Just as in parsing, the daughters
of non-chain rules are processed from left to right.

Once top-down generation from the pivot is complete, the pivot is linked to the
root bottom-up by chain rules. At each step, the current chain node (beginning with
the pivot) is unified with the semantic head of a chain-rule, its non-head sisters are
generated recursively, and the mother becomes the new chain node. The non-head
daughters of chain rules are also processed from left to right. The base case is where
the current chain node unifies with the root.

An example from the sample generation grammar in Appendix A.3 illustrates
this better. Suppose that the generator is given the goal description:

(sentence,
sem:(pred:decl,

args:[(pred:call_up,
args:[pred:mary,pred:john])]))

Figure 5.1 shows the initial root (the most general satisfier of the input description);
and Figure 5.2 shows the template that ale uses to find a pivot. Next (Figure 5.3),
a pivot is selected, in this case by unifying the template with the mother category
of the non-chain rule, sentence1:

sentence1 rule
(sentence,sem:(pred:decl,

args:[S]))
===>



5.4. GRAMMAR RULES 59

PRED mary, PRED john< > >ARGS
PRED call_up<SEM|ARGS

sentence

PRED mary, PRED john< > >ARGS
PRED call_up<SEM|ARGS

sentence

PRED mary, PRED john< > >ARGS
PRED call_up<

s
SEM

ROOT

PIVOT

NEW ROOT

sentence1

Figure 5.3: The first pivot is found.

cat> (s,form:finite,
sem:S).

We can tell that sentence1 is a non-chain rule because it lacks a sem head> daugh-
ter, unlike, for example, the chain rule s:

s rule
(s,form:Form,

sem:S)
===>
cat> Subj,
sem_head>

(vp,form:Form,
subcat:[SUBJ],

sem:S).

The only daughter of sentence1 becomes the new root.
The pivot chosen for that root is the lexical entry for calls, which is obtained

by applying the lexical rule, sg3, to the first entry for call in the grammar. That
pivot has no daughters, so it must now be connected by chain rules to the new root
in Figure 5.3. The chain rule, vp1, is chosen, its semantic head is unified with the
entry for calls, its one non-head daughter is recursively generated (which simply
succeeds by unifying with the lexical entry for john), and its mother becomes the
new chain node (Figure 5.4).

Again (Figure 5.5), chain rule vp1 is chosen, its semantic head is unified with
the new pivot, its non-head daughter is recursively generated by unifying with the
lexical entry for up, and its mother becomes the next chain node.



60 CHAPTER 5. PHRASE STRUCTURE GRAMMARS

np
AGR sg3
SEM sem
    ARGS e_list
    PRED john

NON-HEAD
DAUGHTER

PRED mary, PRED john< > >ARGS
PRED call_up<

s
SEM

SEM [0]
np p

SEM|PRED up

np
AGR sg3
SEM [1]

vp
FORM finite

p
SEM|PRED up

vp
FORM finite

<SUBCAT

SEM

, >
np
AGR sg3
SEM [0]

[0][PRED mary],[PRED john]<ARGS
PRED call_up

>

vp1

NEW ROOT

< , , >SUBCAT

SEM [1][PRED mary],[0][PRED john]<ARGS
PRED call_up

>

PIVOT

NEW CHAIN NODE

Figure 5.4: First chain rule application.



5.4. GRAMMAR RULES 61

np
AGR sg3
SEM sem
    ARGS e_list
    PRED john

NON-HEAD
DAUGHTER

p
SEM sem
    ARGS e_list
    PRED up

PRED mary, PRED john< > >ARGS
PRED call_up<

s
SEM

NEW ROOT

SEM [0]
np p

SEM|PRED up

np
AGR sg3
SEM [1]

p
SEM|PRED up

vp
FORM finite

vp
FORM finite

>
np
AGR sg3
SEM [0]

<SUBCAT

SEM <ARGS
PRED call_up

[0][PRED mary],[PRED john]>

vp1

< , , >SUBCAT

SEM [1][PRED mary],[0][PRED john]<ARGS
PRED call_up

vp
FORM finite

>

<SUBCAT

SEM

, >
np
AGR sg3
SEM [0]

[0][PRED mary],[PRED john]<ARGS
PRED call_up

>

vp1

NEW CHAIN NODE

OLD CHAIN NODE

Figure 5.5: Second chain rule application.



62 CHAPTER 5. PHRASE STRUCTURE GRAMMARS

Finally, the chain rule, s is chosen. Its non-head daughter is recursively generated
by unifying with the lexical entry for mary, and its mother, the new chain node,
unifies with the new root (Figure 5.6). With generation below the pivot of Figure 5.3
having been completed, it is linked to its root directly by unification, yielding the
solution, mary calls john up.

Pivot Checking

ale’s generator uses a simple depth-first search strategy, displaying solutions as it
finds them. As a result, it is not complete. Following the suggestion made in Shieber
et al. (1990), ale also checks whether there are semantic head → mother sequences
that could possibly link a potential pivot to the current root before recursively
generating its non-head daughters. If not, then the pivot is discarded. Semantic-
head-driven generators that do not prune away such bad pivots from the search tree
run a greater risk of missing solutions because top-down generation of the bad pivot’s
non-head daughters may not terminate, even though it can never yield solutions.
This check is valuable because it incorporates syntactic information from the mother
and semantic head into the otherwise semantic prediction step.

It also creates another termination problem, however, namely the potential for
infinitely long semantic head → mother sequences in some grammars. To avoid this,
ale requires the user to specify a bound on the length of chain rule sequences at
compile-time. This can be specified with the declaration:

:- chain_length(4).

Other values than 4 can be used, including 0. The default value is 4. ale compiles
chains of semantic head and mother descriptions of this length to perform the pivot
check more efficiently at run-time.

The sem goal> Operator

For the most part, the generator treats procedural attachments as the parser does
— it evaluates them with respect to other daughter specifications in the order given.
The one exception to this is sem goal> attachments. These goals are distinguished as
attached to the semantic head, and are therefore evaluated either immediately before
or immediately after the sem head> description. As a result, sem goal> specification
can only occur immediately before or immediately after a sem head> specification;
and thus only in chain rules. sem goal> attachments are not evaluated during
the pivot check described above — only the sem head> and mother descriptions.
During parsing, sem goal> specifications are treated exactly the same as goal>
specifications, i.e., evaluated in order.

To summarize, the order of execution for a non-chain rule specification during
generation is:

• the mother description, then

• the cat>, cats>, and goal> descriptions, in order, from left to right.

There are no sem head> or sem goal> specifications in a non-chain rule. The order
for a chain rule specification during generation is:



5.4. GRAMMAR RULES 63

np
AGR sg3
SEM sem
    ARGS e_list
    PRED johnSEM [0]

np p
SEM|PRED up

np
AGR sg3
SEM [1]

PRED mary, PRED john< > >ARGS
PRED call_up<

s
SEM

p
SEM sem
    ARGS e_list
    PRED up

p
SEM|PRED up

vp
FORM finite

vp
FORM finite

>
np
AGR sg3
SEM [0]

<SUBCAT

SEM <ARGS
PRED call_up

[0][PRED mary],[PRED john]>
np
AGR sg3
SEM sem
    ARGS e_list
    PRED mary

NON-HEAD
DAUGHTER

< , , >SUBCAT

SEM [1][PRED mary],[0][PRED john]<ARGS
PRED call_up

vp
FORM finite

>

vp1

vp1

<SUBCAT

SEM

, >
np
AGR sg3
SEM [0]

[0][PRED mary],[PRED john]<ARGS
PRED call_up

>

s

NEW CHAIN NODE/ROOT

OLD CHAIN NODE

Figure 5.6: Third chain rule application and unification.



64 CHAPTER 5. PHRASE STRUCTURE GRAMMARS

• the pre-head sem goal> specification, if it exists,

• the sem head> description,

• the post-head sem goal> specification, if it exists,

• the mother description, then4

• the cat>, cats> and goal> specifications, in order, from left to right.

Again, practical grammar implementations will arrange information in rules in such
a way as to ensure termination and to force failure as early as possible. For non-chain
rules, this means making the mother and early daughters or goals as informative
as possible at the description level (that is, up to where type inferencing can take
over). For chain rules, the semantic head and its attachments should be maximally
informative.

4The standard head-driven-generation algorithm enforces the mother description after the non-
semantic-head-related daughters. We deviate from this order in order to enforce the pivot check,
which requires instantiating the mother, more efficiently.



Chapter 6

Compiling ALE Programs

This section is devoted to showing how ale programs can actually be compiled.
ale was developed to be run with a Prolog compiler, such as SICStus Prolog’s. An
SWI port of ale is available, which also has a less extensive compilation phase. We
strongly recommend SICStus Prolog. SWI Prolog does not scale up well to large-
sized grammars. The local systems administrator should be able to provide help on
running Prolog. This documentation only assumes the user has figured out how to
run Prolog as well as write and edit files. It is otherwise self-contained.

6.1 File Management

After starting up Prolog, the following command should be used to load the ale
system:

| ?- compile(AleFile).

where AleFile is an atom specifying the file name in which ale re-
sides. For instance, in Unix, you might need to use something like:
compile(’/users/carp/Prolog/ALE/ale.pl’)., or a local abbreviation for it like
compile(ale). if the system is in a file named ale.pl in the local directory (SIC-
Stus and SWI can fill in the “.pl” suffix). With SWI Prolog, the command:

| ?- consult(AleFile).

must be used instead. Note that the argument to compile must be an atom, which
means it should be single-quoted if it is not otherwise an atom. After the system
has compiled, you should see another Prolog prompt. It is necessary to have write
permission in the directory from which Prolog is invoked, because ale creates files
during compilation. But note that neither the grammar nor ale need to be locally
defined; it is only necessary to have local write permission.

ale source code, being a kind of Prolog code, must be organized so that predicate
definitions are not spread across files, unless the appropriate multifile declarations
are made. For instance, the sub/intro clauses specifying the type hierarchy must
all be in one file. Similarly, the definite clauses must all be in one file, as must the
grammar rules and macros.

65



66 CHAPTER 6. COMPILING ALE PROGRAMS

6.2 Compiling Programs

ale can compile a program incrementally to some extent. In particular, the com-
piler is broken down into six primary components for compiling the type hierar-
chy, functional descriptions, type constraints, the attribute-value logic, the definite
clauses and the grammar. Compiling the type hierarchy consists of compiling type
subsumption, type unification, appropriateness specifications, and extensionality in-
formation. The logic compiler compiles predicates which know how to add a type
to a feature structure, how to find a feature value in a type and how to perform
feature structure unification, as well as the most general satisfiers of every type,
with code attached to enforce cons/2 constraints. Compiling the grammar consists
of compiling the lexicon, empty categories, rules and lexical rules, and if compilation
for generation is enabled, the semantics/1 directive. Macros are not compiled, but
are rather interpreted during compilation.

There is one predicate compile gram/1 that can be used to compile a whole ale
grammar from one file, as follows:

| ?- compile gram(GramFile).

where GramFile is the name of the file in which the grammar resides. The compiler
will display error messages to the screen when it is compiling. But since ale uses
the Prolog compiler to read the files, Prolog might also complain about syntax errors
in specifying the files. In either case, there should be some indication of what the
error is and which clause of the file contained it.

ale’s compiler creates code for parsing, generation, or both. As of the present
version of ale, only one grammar can be used, even if code for both modes is to
be created. Two files, ale parse.pl and ale gen.pl, are included with the distri-
bution, which provide some example glue code to link together two ale processes
running under SICStus Prolog 3.0 or higher in order to parse and generate with two
different grammars.

At startup, ale produces code only for parsing. To produce code for generation
only, use the command:

| ?- generate.

compiler will produce code for generation only

yes
| ?-

To produce code for both parsing and generation, use parse and gen instead. To
switch back to producing code for parsing only, use parse. Note that these com-
mands modify the behaviour of the compiler, not the compiled code, so grammars
may need to be recompiled after these directives are issued.

The following predicates are available to compile grammars and their component
parts. They are listed hierarchically, with each command calling all those listed
under it. Each higher-level command is nothing more than the combination of
those commands below it.



6.2. COMPILING PROGRAMS 67

Command Requires File Mode Clause
-------------------------------------------------------------------
compile_gram nothing * both

compile_sig nothing * both
compile_sub_type nothing * sub
compile_unify_type compile_sub_type
compile_approp compile_unify_type * intro
compile_extensional compile_approp * ext

compile_fun compile_sig * both +++>
compile_cons compile_fun * both cons
compile_logic compile_sig both

compile_mgsat compile_sig
compile_add_to_type compile_sig
compile_featval compile_add_to_type
compile_u compile_sig

compile_subsume compile_sig parse/subtest
compile_dcs compile_logic * both if
compile_grammar compile_logic *

compile_lex_rules compile_logic * parse **>
compile_lex compile_logic * parse --->
compile_rules compile_logic * parse ===>,empty

compile_logic * gen ===>,empty
--->,**>

compile_generate compile_rules * gen semantics

The table above lists which compilations must have already been compiled before the
next stage of compilation can begin. Thus before compile grammar can be called,
compile logic must be called (or equivalently, the sequence of compile mgsat,
compile add to type, compile featval, and compile u). Each command with
an asterisk in its clauses column in the above table may be given an optional file
argument. The file argument should be an atom which specifies the file in which the
relevant clauses can be found. The clauses needed before each stage of compilation
can begin are listed to the right of the asterisks. For instance, the if clauses
must be loaded before compile dcs is called. But note that compile unify type
does not require any clauses to be loaded, as it uses the compiled definition of
sub type rather than the user specification in its operation. Thus changes to the
signature in the source file, even if the source file is recompiled, will not be reflected
in compile unify type if they have not been recompiled by compile sub type first.
If an attempt is made to compile a part of a program where the relevant clauses
have not been asserted, an error will result.

Note that compile subsume only compiles code if subsumption checking (p. 93)
and parsing have been enabled.

Each of the lowest level commands generates intermediate Prolog source code
for that function, which is then compiled further by a Prolog compiler. ale uses a
term-expansion-based compiler in both SICStus and SWI Prologs that avoids the
necessity for creating intermediate files. It also improves the speed of intermediate
code compilation. Because both SICStus and SWI Prologs require the user to read
a file on disk in order to use their compilers, ale must create a zero-byte file called



68 CHAPTER 6. COMPILING ALE PROGRAMS

.alec throw to throw control to its intermediate code compiler. For that reason,
the Prolog process must have write permission in the local directory to create this
file, if it does not already exist.

After a grammar is compiled, the system plus grammar code can be saved with
the command:

| ?- save program(File).

This will save the state of the Prolog database in File. SICStus users should nor-
mally use this rather than save/1, which creates a larger file by saving other in-
formation like the state of Prolog’s internal stacks. The SWI Prolog command is
qsave program(File). With either Prolog, the state can be reloaded, by executing
the saved file directly.

In general, whenever the ale source program is changed, it should be recompiled
from the point of change. For instance, if the definite clauses are the only thing that
have changed since the last compilation, then only compile dcs(FileSpec) needs
to be run. But if in changing the definite clauses, the type hierarchy had to be
changed, then everything must be recompiled.

ale treats lexicon compilation differently than the other stages. Two commands,
lex compile/0 and lex consult/0, control whether the intermediate code for the
lexicon and empty categories is compiled or consulted (a lesser degree of compila-
tion). Lexicon compilation is usually the most time-consuming stage of grammar
compilation in ale, and consulting the code for this stage can result in a substantial
compile-time speed-up. The decrease in run-time performance is only significant in
grammars with a high degree of lexical ambiguity, i.e., where one string has a very
large number of entries in the lexicon. By default, ale consults the code for the
lexicon. In SWI Prolog, only lexicon consulting is available.

When consulting is chosen, the lexicon and empty categories are also consulted
dynamically. This means that individual entries can be retracted and added without
recompiling the entire lexicon. To retract a lexical entry, use the command:

| ?- retract lex(LexSpec).

LexSpec can either be a word, or a list of words. The words given to retract lex/1
are not closed under morph rules — derived entries with different forms must
be retracted explicitly. retract lex/1 iterates through all of the entries that
match the given word(s), asking for each one whether it should be retracted.
retractall lex/1 will remove all of them without asking.

To add lexical entries, use the command:

| ?- update lex(UpdateFile).

UpdateFile is a file containing new lexical entries and empty categories. New lexical
entries are closed under lexical rules, as usual.1

1Earlier versions of ale also permitted incremental updating and retraction of empty categories.
Because empty categories are now closed under phrase structure rules at compile-time, this is no
longer possible.



6.3. COMPILE-TIME ERROR MESSAGES 69

6.3 Compile-Time Error Messages

There are three sources of compile-time messages generated by ale: Prolog mes-
sages, ale errors, and ale warnings.

ale uses Prolog term input and output, thus requiring the input to be specified
as a valid Prolog program. Of course, any ale program meeting the ale syntax
specification will not cause Prolog errors. If there is a Prolog error generated,
there is a corresponding bug in the grammar file(s). Prolog error messages usually
generate a message indicating what kind of error it found, and just as importantly,
which line(s) of the input the error was found in. The most common Prolog error
messages concern missing periods or operators which cannot be parsed. Such errors
are usually caused by bad punctuation such as missing periods, misplaced commas,
commas before semicolons in disjunctions, etc. These errors are usually easy to
track down.

Prolog also generates warnings in some circumstances. In particular, if you
only use a variable once in a definition, it will report a singleton variable warning.
The reason for this is that variables that only occur once are useless in that they
do not enforce any structure sharing. There is little use for singleton variables in
ale outside of the Prolog goals in morphological rules and some macro parameters.
Usually a singleton variable indicates a typing error, such as typing AgrNum in one
location and Agrnum in another. It is standard Prolog practice to replace all singleton
variables with anonymous variables. An anonymous variable is a variable which
begins with the underscore character. For instance, a singleton variable such as
Head can be replaced with the anonymous variable Head, or even just , to suppress
such singleton variable warnings. Two occurrences of the simple anonymous variable
are not taken to be co-referential, but two occurrences of something like Head are

taken to be co-referential. In particular, the two descriptions, (foo:X, bar:X) and
(foo: X, bar: X) are equivalent to each other, but distinct from (foo: ,bar: )
in that the latter description does not indicate any structure sharing. The second
description above is considered bad style, though, as it uses the anonymous variable
X co-referentially.

Besides Prolog syntax errors, there are many errors that ale is able to detect
at compile time. These errors will be flagged during compilation. Most errors give
some indication of the program clause in which they are found. Some errors may
be serious enough to halt compilation before it is finished. In general, it is a good
idea to fix all of the errors before trying to run a program, as the error messages
only report serious bugs in the code, such as type mismatches, unspecified types,
ill-formed rules, etc.

In certain cases, it is preferable to disable those error messages concerned with
ale’s inability to add incompatible descriptions to a feature structure. This is
especially true during lexicon and empty category compilation, when, due to the
interaction of disjunctions and type constraints, the number of such errors can be
overwhelming. In the current version of ale, these errors are automatically disabled
during lexicon and empty category compilation, and enabled otherwise. Commands
will be added to future versions so that the user may control when these errors
should be displayed.

Less serious problems are flagged with warning messages. Warning messages
do not indicate an error, but may indicate an omission or less than optimal ale



70 CHAPTER 6. COMPILING ALE PROGRAMS

programming style.
The ale error and warning messages are listed in an appendix at the end of this

report, along with an explanation. The manual for the Prolog in which ale is being
run in will probably list the kinds of errors generated by the Prolog compiler.



Chapter 7

Running and Debugging ALE
Programs

After the ale program compiles without any error messages, it is possible to test
the program to make sure it does what it is supposed to. We consider the problem
from the bottom-up, as this is the best way to proceed in testing grammars. ale
does not have a sophisticated input/output package, and thus all ale procedures
must be accessed through Prolog queries.

7.1 Testing the Signature

Once the signature is compiled, it is possible to test the results of the compilation.
To test whether or not a type exists, use the following query:

| ?- type(Type).

Type = bot ?;

Type = cat ?;

Type = synsem ?

yes

Note that the prompt | ?- is provided by Prolog, while the query consists of the
string type(Type)., including the period and a return after the period. Prolog then
responds with instantiations of any variables in the query if the query is successful.
Thus the first solution for Type that is found above is Type = bot. After providing
an instantiation representing the solution to the query, Prolog then provides another
prompt, this time in the form of a single question mark. After the first prompt
above, the user typed a semicolon and return, indicating that another solution is
desired. The second solution Prolog found was Type = cat. After this prompt,
the user requested a third solution. After the third solution, Type = synsem, the
user simply input a return, indicating that no more solutions were desired. These
two options, semicolon followed by return, and a simple return, are the only ones
relevant for ale. If the anonymous variable is used in a query, no substitutions

71



72 CHAPTER 7. RUNNING AND DEBUGGING ALE PROGRAMS

are given for it in the solution. If there are no solutions to a query, Prolog returns
no as an answer. Consider the following two queries:

| ?- type(bot).

yes

| ?- type(foobar).

no

In both cases, no variables are given in the input, so a simple yes/no answer, followed
by another prompt, is all that is returned.

The second useful probe on the signature indicates type subsumptions and type
unifications. To test type subsumption, use the following form of query:

| ?- sub_type(X,Y).

X = and,
Y = and ?;

X = backward,
Y = backward ?

yes

Note that with two variables, substitutions for both are given, allowing the possibil-
ity of iterating through the cases. In general, wherever a variable may be used in a
query, a constant may also be used. Thus sub type(synsem,forward). is a valid
query, as are sub type(synsem,X) and sub type(Y,forward). The first argument
is the more general type, with the second argument being the subtype.

Type unifications are handled by the following form of query:

| ?- unify_type(T1,T2,T).

The interpretation here is that T1 unified with T2 produces T3. As before, any subset
of the three variables may be instantiated for the test and the remaining variables
will be solved for.

The following query will indicate whether given features have been defined and
can also be used to iterate through the features if the argument is uninstantiated:

| ?- feature(F).

Feature introduction can be tested by:

| ?- introduce(F,T).

which holds if feature F is introduced at type T.
Type constraints can be tested using:

| ?- show_cons(Type).



7.2. EVALUATING DESCRIPTIONS 73

which will display the description of the constraint assigned to the type, Type.
Finally, the inherited appropriateness function can be tested by:

| ?- approp(Feat,Type,Restr).

A solution indicates that the value for feature Feat for a type Type structure is
of type Restr. As usual, any of the variables may be instantiated, so that it is
possible to iterate through the types appropriate for a given feature or the features
appropriate for a given type, the restrictions on a given feature in a fixed type, and
so on.

There is one higher-level debugging routine for the signature that outputs a
complete specification for a type, including a list of its subtypes and supertypes,
along with the most general feature structure of that type (after all type inference
and constraint satisfaction has been performed). An example of the show type/1
query is as follows:

| ?- show_type functional.

TYPE: functional
SUBTYPES: [forward,backward]
SUPERTYPES: [synsem]
MOST GENERAL SATISFIER:

functional
ARG synsem
RES synsem

If synsem had any appropriate features, these would have been added, along with
their most general appropriate values.

7.2 Evaluating Descriptions

Descriptions can be evaluated in order to find their most general satisfiers. ale
provides the following form of query:

| ?- mgsat tl:e_list.

ne_list_quant
HD quant

RESTR proposition
SCOPE proposition
VAR individual

TL e_list

ANOTHER? n.

yes

Note that there must be whitespace between the mgsat and the description to be
satisfied. The answer given above is the most general satisfier of the description
tl:e list using the signature in the categorial grammar in the appendix. It is



74 CHAPTER 7. RUNNING AND DEBUGGING ALE PROGRAMS

important to note here that type inference is being performed to find most general
satisfiers. In the case at hand, because lists in the categorial grammar are typed to
have quantifiers as their HD values, the value of the HD feature in the most general
satisfier has been coerced to be a quantifier.

Satisfiable non-disjunctive descriptions always have unique most general satis-
fiers as a consequence of the way in which the type system is constrained. But a
description with disjunctions in it may have multiple satisfiers. Consider the follow-
ing query:

| ?- mgsat hit,hitter:(j;m).

hit
HITTEE individual
HITTER j

ANOTHER? y.

hit
HITTEE individual
HITTER m

ANOTHER? y.

no

After finding the first most general satisfier to the description, the user is prompted
as to whether or not another most general satisfier should be sought. As there
are only two most general satisfiers of the description, the first request for another
satisfier succeeds, while the second one fails. Failure to find additional solutions is
indicated by the no response from Prolog.

Error messages will result if there is a violation of the type hierarchy in the
query. For instance, consider the following query containing two type errors before
a satisfiable disjunct:

| ?- mgsat hd:j ; a ; j.

add_to could not add incompatible type j to:
quant
RESTR proposition
SCOPE proposition
VAR individual

add_to could not add undefined type: a to
bot

MOST GENERAL SATISFIER OF: hd:j;a;j

j



7.2. EVALUATING DESCRIPTIONS 75

ANOTHER?

Here the two errors are indicated, followed by a display of the unique most general
satisfiers. The problem with the first disjunct is that lists have elements which
must be of the quantifier type, which conflicts with the individual type of j, while
the second disjunct involves an undefined type a. Note that in the error messages,
there is some indication of how the conflict arose as well as the current state of the
structure when the error occurred. For instance, the system had already figured
out that the head must be a quantifier, which it determined before arriving at the
incompatible type j. The conflict arose when an attempt was made to add the type
j to the quant type object.

To explore unification, simply use conjunction and mgsat. In particular, to see
the unification of descriptions D1 and D2, simply display the most general satisfiers of
D1, D2, and their conjunction (D1,D2). To obtain the correct results, D1 and D2 must
not share any common variables. If they do, the values of these will be unified across
D1 and D2, a fact which is not represented by the most general satisfiers of either D1
or D2. Providing most general satisfiers also allows the user to test for subsumption
or logical equivalence by visual inspection, by using mgsat/1 and comparing the set
of solutions. Future releases should contain mechanisms for evaluating subsumption
(entailment), and hence logical equivalence of descriptions.

mgsat can also be used to test functional descriptions, e.g., for the functional
append on p. 30:

| ?- mgsat append([bot],[bot,bot]).

ne_list
HD bot
TL ne_list

HD bot
TL ne_list

HD bot
TL e_list

ANOTHER?

The Prolog predicate iso desc/2 can be used to discover whether two descrip-
tions evaluate to the same feature structure. This can be useful for testing exten-
sional type declarations.

| ?- iso_desc(X,X).

X = _A-bot ?

yes
| ?- iso_desc((a_ atom),(a_ atom)). % a_ atoms are extensional

yes
| ?- iso_desc(b,b). % for b, intensional



76 CHAPTER 7. RUNNING AND DEBUGGING ALE PROGRAMS

no
| ?- iso_desc(a,a). % for a, extensional, with feature f

no
| ?- iso_desc(f:(a_ at1),f:(a_ at1)). % f approp. to a_ atoms

yes
| ?- iso_desc(f:(a_ at1),f:(a_ at2)).

no

7.3 Hiding Types and Features

With a feature structure system such as ale, grammars and programs often ma-
nipulate very large feature structures. To aid in debugging, two queries allow the
user to focus attention on particular types and features by supressing the printing
of other types and features.

The following command supresses printing of a type:

| ?- no write type(T).

After no write type(T) is called, the type T will no longer be displayed during
printing. To restore the type T to printed status, use:

| ?- write type(T).

If T is a variable in a call to write type/1, then all types are subsequently printed.
Alternatively, the following query restores printing of all types:

| ?- write types.

Features and their associated values can be supressed in much the same way as
types. In particular, the following command blocks the feature F and its values
from being printed:

| ?- no write feat(F).

To restore printing of feature F , use:

| ?- write feat(F).

If F is a variable here, all features will subsequently be printed. The following
special query also restores printing of all features.

| ?- write feats.

7.4 Evaluating Definite Clause Queries

It is possible to display definite clauses in feature structure format by name. The
following form of query can be used:



7.4. EVALUATING DEFINITE CLAUSE QUERIES 77

| ?- show_clause append.

HEAD: append(e_list,
[0] bot,
[0] )

BODY: true

ANOTHER? y.

HEAD: append(ne_list_quant
HD [0] quant

RESTR proposition
SCOPE proposition
VAR individual

TL [1] list_quant,
[2] bot,
ne_list_quant
HD [0]
TL [3] list_quant)

BODY: append([1],
[2],
[3])

ANOTHER? y.

no

Note that this example comes from the categorial grammar in the appendix. Also
note that the feature structures are displayed in full with tags indicating struc-
ture sharing. Next, note that prompts allow the user to iterate through all the
clauses. The number of solutions might not correspond to the number of clause
definitions in the program due to disjunctions in descriptions which are resolved
non-deterministically when displaying rules. But it is important to keep in mind
that this feature structure notation for rules is not the one ale uses internally,
which compiles rules down into elementary operations which are then compiled,
rather than evaluating them as feature structures by unification. In this way, ale
is more like a logic programming compiler than an interpreter. Finally, note that
the arity of the predicate being listed may be represented in the query as in Prolog.
For instance, the query show clause append/3 would show the clauses for append
with three arguments.

Definite clauses in ale can be evaluated by using a query such as:

| ?- query append(X,Y,[a,b]).

append(e_list,
[0] ne_list
HD a
TL ne_list

HD b



78 CHAPTER 7. RUNNING AND DEBUGGING ALE PROGRAMS

TL e_list,
[0] )

ANOTHER? y.
append(ne_list

HD [0] a
TL e_list,
[1] ne_list
HD b
TL e_list,
ne_list
HD [0]
TL [1] )

ANOTHER? y.
append(ne_list

HD [0] a
TL ne_list

HD [1] b
TL e_list,

[2] e_list,
ne_list
HD [0]
TL ne_list

HD [1]
TL [2] )

ANOTHER? y.

no

The definition of append/3 is taken from the syllabification grammar in the ap-
pendix. After displaying the first solution, ale queries the user as to whether or
not to display another solution. In this case, there are only three solutions, so
the third query for another solution fails. Note that the answers are given in fea-
ture structure notation, where the macro [a,b] is converted to a head/tail feature
structure encoding.

Unlike Prolog, in which a solution is displayed as a substitution for the variables
in the query, ale displays a solution as a satisfier of the entire query. The reason
for this is that structures which are not given as variables may also be further
instantiated due to the type system. Definite clause resolution in ale is such that
only the most general solutions to queries are displayed. For instance, consider the
following query, also from the syllabification grammar in the appendix:

| ?- query less_sonorous(X,r).

less_sonorous(nasal,
r)



7.5. DISPLAYING GRAMMARS 79

ANOTHER? y.

less_sonorous(sibilant,
r)

ANOTHER? n.

Rather than enumerating all of the nasal and sibilant types, ale simply dis-
plays their supertype. On the other hand, it is important to note that the query
less sonorous(s,r) would succeed because s is a subtype of sibilant. This ex-
ample also clearly illustrates how ale begins each argument on its own line arranged
with the query.

In general, the goal to be solved must be a literal, consisting only of a relation
applied to arguments. In particular, it is not allowed to contain conjunction, dis-
junction, cuts, or other definite clause control structures. To solve a more complex
goal, a definite clause must be defined with the complex goal as a body and then
the head literal solved, which will involve the resolution of the body.

There are no routines to trace the execution of definite clauses. Future releases
of ale will contain a box port tracer similar to that used for Prolog. At present,
the best suggestion is to develop definite clauses modularly and test them from the
bottom-up to make sure they work before trying to incorporate them into larger
programs.

7.5 Displaying Grammars

ale provides a number of routines for displaying and debugging grammar specifi-
cations. After compile-time errors have been taken care of, the queries described in
this section can display the result of compilation.

Lexical entries can be displayed using the following form of query:

| ?- lex(kid).

WORD: kid
ENTRY:
cat
QSTORE e_list
SYNSEM basic

SEM property
BODY kid

ARG1 [0] individual
IND [0]

SYN n

ANOTHER? y.

no

As usual, if there are multiple entries, ale makes a query as to whether more should
be displayed. In this case, there was only one entry for kid in the categorial grammar



80 CHAPTER 7. RUNNING AND DEBUGGING ALE PROGRAMS

in the appendix.
Another predicate, export words(Stream,Delimiter), writes an alphabetised

list of all of the words in the lexicon, separated by Delimiter, to Stream. In SICS-
tus Prolog, for example, export words(user output,’\n’) will write the words to
standard output (such as the screen), one to a line.

Empty lexical entries can be displayed using:

| ?- empty.

EMPTY CATEGORY:
cat
QSTORE ne_list_quant

HD some
RESTR [0] proposition
SCOPE proposition
VAR [1] individual

TL e_list
SYNSEM forward

ARG basic
SEM property

BODY [0]
IND [1]

SYN n
RES basic

SEM [1]
SYN np

ANOTHER? no.

Note that the number specification was removed to allow the empty category to
be processed with respect to the categorial grammar type system. As with the
other display predicates, empty provides the option of iterating through all of the
possibilities for empty categories.

Grammar rules can be displayed by name, as in:

| ?- rule forward_application.

RULE: forward_application

MOTHER:

cat
QSTORE [4] list_quant
SYNSEM [0] synsem

DAUGHTERS/GOALS:

CAT cat
QSTORE [2] list_quant



7.5. DISPLAYING GRAMMARS 81

SYNSEM forward
ARG [1] synsem
RES [0]

CAT cat
QSTORE [3] list_quant
SYNSEM [1]

GOAL append([2],
[3],
[4])

ANOTHER? n.

Rules are displayed as most general satisfiers of their mother, category and goal
descriptions. It is important to note that this is for display purposes only. The
rules are not converted to feature structures internally, but rather to predicates
consisting of low-level compiled instructions. Displaying a rule will also flag any
errors in finding most general satisfiers of the categories and rules in goals, and can
thus be used for rule debugging. This can detect errors not found at compile-time,
as there is no satisfiability checking of rules performed during compilation.

Macros can also be displayed by name, using:

| ?- macro np(X).

MACRO:
np([0] sem_obj)

ABBREVIATES:
basic
SEM [0]
SYN np

ANOTHER? n.

First note that the macro name itself is displayed, with all descriptions in the macro
name given replaced with their most general satisfiers. Following the macro name is
the macro satisfied by the macro description with the variables instantiated as shown
in the macro name display. Note that there is sharing between the description in
the macro name and the SEM feature in the result. This shows where the parameter
is added to the macro’s description.

Finally, it is possible to display lexical rules, using the following query:

| ?- lex_rule plural_n.

LEX RULE: plural_n
INPUT CATEGORY:

n
NUM sing
PERS pers



82 CHAPTER 7. RUNNING AND DEBUGGING ALE PROGRAMS

OUTPUT CATEGORY:
n
NUM plu
PERS pers

MORPHS:
[g,o,o,s,e] becomes [g,e,e,s,e]
[k,e,y] becomes [k,e,y,s]
A,[m,a,n] becomes A,[m,e,n]
A,B becomes A,B,[e,s]

when fricative(B)
A,[e,y] becomes A,[i,e,s]
A becomes A,[s]

ANOTHER? n.

Note that the morphological components of a rule is displayed in canonical form
when it is displayed. Note that variables in morphological rules are displayed as
upper case characters. When there is sharing of structure between the input and
output of a lexical rule, it will be displayed as such. As with the other ale grammar
display predicates, if there are multiple solutions to the descriptions, these will be
displayed in order. Also, if there is a condition on the categories in the form of an
ale definite clause goal, this condition will be displayed before the morphological
clauses. As with grammar rules, lexical rules are compiled internally and not actually
executed as feature structures. The feature structure notation is only for display.
Also, as with grammar rules, displaying a lexical rule may uncover inconsistencies
which are not found at compile time.

7.6 Executing Grammars: Parsing

In this section, we consider the execution of ale phrase structure grammars compiled
for parsing. The examples shown in this section have been produced while running
with the mini-interpreter off. The mini-interpreter will be discussed in the next
section.

The primary predicate for parsing is illustrated as follows:

| ?- rec [john,hits,every,toy].

STRING:
0 john 1 hits 2 every 3 toy 4

CATEGORY:
cat
QSTORE e_list
SYNSEM basic

SEM every
RESTR toy

ARG1 [0] individual
SCOPE hit



7.6. EXECUTING GRAMMARS: PARSING 83

HITTEE [0]
HITTER j

VAR [0]
SYN s

ANOTHER? y.

CATEGORY:
cat
QSTORE ne_list_quant

HD every
RESTR toy

ARG1 [0] individual
SCOPE proposition
VAR [0]

TL e_list
SYNSEM basic

SEM hit
HITTEE [0]
HITTER j

SYN s

ANOTHER? y.

no

The first thing to note here is that the input string must be entered as a Prolog list
of atoms. In particular, it must have an opening and closing bracket, with words
separated by commas. No variables should occur in the query, nor anything other
than atoms. The first part of the output repeats the input string, separated by
numbers (nodes in the chart) which indicate positions in the string for later use in
inspecting the chart directly. ale asserts one lexical item for every unit interval,
with empty categories being stored as loops from every single node to itself. The
second part of the output is a category which is derived for the input string. If there
are multiple solutions, these can be iterated through by providing positive answers
to the query. The final no response above indicates that the category displayed is
the only one that was found. If there are no parses for a string, an answer of no is
returned, as with:

| ?- rec([runs,john]).

STRING:
0 runs 1 john 2

no

Notice that there is no notion of “distinguished start symbol” in parsing. Rather,
the recognizer generates all categories that it can find for the input string. This
allows sentence fragments and phrases to be analyzed, as in:



84 CHAPTER 7. RUNNING AND DEBUGGING ALE PROGRAMS

| ?- rec [big,kid].

STRING:
0 big 1 kid 2

CATEGORY:
cat
QSTORE ne_list_quant

HD some
RESTR and

CONJ1 kid
ARG1 [0] individual

CONJ2 big
ARG1 [0]

SCOPE proposition
VAR [0]

TL e_list
SYNSEM basic

SEM [0]
SYN np

ANOTHER? n.

There is also a two-place version of rec that displays only those parses that
satisfy a given description:

| ?- rec([big,kid],s).

STRING:
0 big 1 kid 2

no

This call to rec/2 failed because there were no parses of big kid of type, s. Inter-
nally, the parser still generates all of the edges that it normally does — the extra
description is only applied at the end as a filter.

Once parsing has taken place for a sentence using rec/1, it is possible to look
at categories that were generated internally. In general, the parser will find every
possible analysis of every substring of the input string, and these will be available
for later inspection. For instance, suppose the last call to rec/1 executed was rec
[john,hits,every,toy], the results of which are given above. Then the following
query can be made:

| ?- edge(2,4).

COMPLETED CATEGORIES SPANNING: every toy

cat
QSTORE ne_list_quant



7.6. EXECUTING GRAMMARS: PARSING 85

HD every
RESTR toy

ARG1 [0] individual
SCOPE proposition
VAR [0]

TL e_list
SYNSEM basic

SEM [0]
SYN np

Edge created for category above:
index: 20
from: 2 to: 4

string: every toy
rule: np_det_nbar

# of dtrs: 2
Action(retract,dtr-#,continue,abort)?
|: continue.

no
| ?-

The possible replies in the action-line will be discussed in the next section. This
tells us that from positions 2 to 4, which covers the string every toy in the input,
the indicated category was found. Even though an active chart parser is used, it is
not possible to inspect active edges. This is because ale represents active edges as
dynamic structures that are not available after they have been evaluated.

Using edge/2 it is possible to debug grammars by seeing how far analyses pro-
gressed and by inspecting analyses of substrings.

There is also a predicate, rec/4 that binds the answer to variables instead of
displaying it:1

| ?- rec([kim,walks],Ref,SVs,Iqs).

Iqs = [ineq(_A,index(_B-third,_C-plur,_D-masc),_E,index(_B-third,_C-plur,
_D-masc),done)],
SVs = phrase(_F-synsem(_G-loc(_H-cat(_I-verb(_J-minus,_K-minus,_L-none,_M-
bool,_N-fin),_O-unmarked,_P-e_list),...)))?

Ref is an unbound variable that represents the root node of the resulting feature
structure. SVs is a term whose functor is the type of the feature structure, whose
arity is the number of appropriate features for that type, and whose arguments are
the values at those appropriate features in alphabetical order. Each value, in turn,
is of the form, Ref-SVs, another pair of root variable and type-functored term. Iqs
is a list of the inequations that apply to the feature structure and its substructures.
Each member of the list represents a disjunction of inequations, i.e., one must be

1Actually, this example is a bit of an improvisation — the sample hpsg grammar included in
the ale distribution does not use inequations.



86 CHAPTER 7. RUNNING AND DEBUGGING ALE PROGRAMS

satisfied, with the list itself being interpreted conjunctively, i.e., every member must
be satisfied. Each member is represented by a chain of ineq/5 structures:

ineq(Ref1,SVs1,Ref2,SVs2,ineq(......,done)...)

The first four arguments represent the Ref-SVs pairs of the two inequated fea-
ture structures of the first disjunct. The fifth argument contains another ineq/5
structure, or done/0. These three structures are suitable for passing to gen/3 or
gen/4. These representations are not grounded; so if you want to assert them into
a database, be sure to assert them all in one predicate to preserve variable sharing.
For more details on ale’s internal representation, the reader is referred to Carpenter
and Penn (1996).

There is also a rec/5, which works just like rec/4, but filters its output through
the description in its last argument, just like rec/2:

| ?- rec([kim,walks],Ref,SVs,Iqs,phrase).

Iqs = [ineq(_A,index(_B-third,_C-plur,_D-masc),_E,index(_B-third,_C-plur,
_D-masc),done)],
SVs = phrase(_F-synsem(_G-loc(_H-cat(_I-verb(_J-minus,_K-minus,_L-none,_M-
bool,_N-fin),_O-unmarked,_P-e_list),...)))?

The call succeeds here because the given answer is of type, phrase.
rec list/2 iteratively displays all of the solutions for each string in a list of list

of words that satisfy a description:

| ?- rec_list([[kim,sees,sandy],[sandy,sees,kim]],phrase).

STRING:
0 kim 1 sees 2 sandy 3
CATEGORY:

phrase
QRETR e_list
QSTORE e_set
SYNSEM synsem...

ANOTHER? y.

STRING:
0 sandy 1 sees 2 kim 3
CATEGORY:

phrase
QRETR e_list
QSTORE e_set
SYNSEM synsem

ANOTHER? y.

no



7.7. EXECUTING GRAMMARS: GENERATION 87

If no filtering through a description is desired, the description, bot, which is trivially
satisfied, can be used. When rec list/2 runs out of solutions for a string, it moves
on to the next string.

rec best/2 iteratively displays all of the solutions satisfying a given descrip-
tion for the first string in a list of list of words that has a solution satisfying that
description.

| ?- rec_best([[kim,sees,sandy],[sandy,sees,kim]],phrase).

STRING:
0 kim 1 sees 2 sandy 3
CATEGORY:

phrase
QRETR e_list
QSTORE e_set
SYNSEM synsem...

ANOTHER? y.

no

When rec best/2 runs out of solutions for a string that had at least one solution,
it fails. It only tries the strings in its first argument until it finds one that has
solutions.

There is also a three-place rec list/3 that collects the solutions to rec list/2
in a list of terms of the form fs(Tag-SVs,Iqs).

7.7 Executing Grammars: Generation

The generator can be used with the predicate gen/1,3 predicate. It can take a
single description argument:

| ?- gen((sentence,
sem:(pred:decl,

args:[(pred:call_up,
args:[pred:mary,pred:john])]))).

CATEGORY:

sentence
SEM sem

ARGS arg_ne_list
HD sem

ARGS arg_ne_list
HD sem

ARGS arg_list
PRED mary

TL arg_ne_list



88 CHAPTER 7. RUNNING AND DEBUGGING ALE PROGRAMS

HD sem
ARGS arg_list
PRED john

TL e_list
PRED call_up

TL e_list
PRED decl

STRING:
mary calls john up

ANOTHER? y.

STRING:
mary calls up john

ANOTHER? y.

no

Notice the extra set of parentheses necessary to make the whole description a single
argument for gen/1.

gen can also take three arguments:

gen(Ref,SVs,Iqs)

where Ref, SVs and Iqs are the three parts of ale’s internal representation of a
feature structure as defined in the last section. This alternative is most useful when
the feature structure has been generated before by another process, like parsing, or
retrieved from a database.

| ?- rec([john,calls,mary,up],Ref,SVs,Iqs),gen(Ref,SVs,Iqs).

CATEGORY:

sentence
SEM sem

ARGS arg_ne_list
HD sem

ARGS arg_ne_list
HD sem

ARGS e_list
PRED john

TL arg_ne_list
HD sem

ARGS e_list
PRED mary

TL e_list



7.7. EXECUTING GRAMMARS: GENERATION 89

PRED call_up
TL e_list

PRED decl

STRING:
john calls mary up

ANOTHER? n.

Iqs = [],
SVs = sentence(_O-sem(_N-arg_ne_list(_M-sem(_L-arg_ne_list(_K-
sem(_J-e_list,_I-john),_H-arg_ne_list(_G-sem(_F-e_list,_E-mary),
_D-e_list)),_C-call_up),_B-e_list),_A-decl)) ?

yes

In both cases, ale will print the input feature structure and then will generate and
display all possible string solutions through backtracking.

It is also possible to bind the string to a variable, using gen/4 :

gen(Ref,SVs,Iqs,Ws).

Ws will non-deterministically be bound to the word lists that constitute valid solu-
tions to the generation problem. This can be used as input to rec/1, for example.

| ?- rec([john,calls,mary,up],Ref,SVs,Iqs),gen(Ref,SVs,Iqs,Ws).

Iqs = [],
SVs = sentence(_O-sem(_N-arg_ne_list(_M-sem(_L-arg_ne_list(_K-
sem(_J-e_list,_I-john),_H-arg_ne_list(_G-sem(_F-e_list,_E-mary),
_D-e_list)),_C-call_up),_B-e_list),_A-decl)),
Ws = [john,calls,mary,up] ? ;

Iqs = [],
SVs = sentence(_O-sem(_N-arg_ne_list(_M-sem(_L-arg_ne_list(_K-
sem(_J-e_list,_I-john),_H-arg_ne_list(_G-sem(_F-e_list,_E-mary),
_D-e_list)),_C-call_up),_B-e_list),_A-decl)),
Ws = [john,calls,up,mary] ? ;

Iqs = [],
SVs = s(_L-finite,_K-sem(_J-arg_ne_list(_I-sem(_H-e_list,_G-john),
_F-arg_ne_list(_E-sem(_D-e_list,_C-mary),_B-e_list)),_A-call_up)),
Ws = [john,calls,mary,up] ? ;

Iqs = [],
SVs = s(_L-finite,_K-sem(_J-arg_ne_list(_I-sem(_H-e_list,_G-john),
_F-arg_ne_list(_E-sem(_D-e_list,_C-mary),_B-e_list)),_A-call_up)),
Ws = [john,calls,up,mary] ? ;



90 CHAPTER 7. RUNNING AND DEBUGGING ALE PROGRAMS

no

The last two solutions in the example above are generated because the input string,
john calls mary up, can be parsed both as a sentence type and as an s type.

7.8 Mini-interpreter (parsing only)

ale contains a mini-interpreter that allows the user to traverse and edit an ale
parse tree. By default, the mini-interpreter is off when ale is loaded. To turn the
mini-interpreter on, simply type:

| ?- interp.

interpreter is active

yes
| ?-

To turn it off again, use nointerp. Any parse automatically stores the following
information on the edges added to ale’s chart:

• Spanning nodes

• Substring spanned

• Creator

• Daughters (if any)

The spanning nodes are the nodes in the chart that the edge spans. The substring
spanned is the concatenation of lexical items between the spanning nodes. If an
edge was formed by the application of an ale grammatical rule, its creator is that
rule, with the daughters being the daughters of the rule, i.e., the cat>, and cats>
of the rule). If the rule was created by EFD closure, the mini-interpreter will treat
it as the user’s rule it was created from, displaying the empty categories that had
matched its daughters during EFD closure in the same way as daughters matched
at run-time. If an edge represents an empty category, its creator is normally empty;
but empty categories created during EFD closure will show the rules that created
them, along with their empty category daughters. If an edge represents a lexical
item, its creator is lexicon. In the case of empty categories not created by EFD
closure and all lexical items, there are no daughters.

The status of the mini-interpreter has no effect on compilation. The same code
is used regardless of whether the mini-interpreter is active or inactive. The mini-
interpreter only has an effect on the run-time commands rec/1,2,4,5 and drec/1.

When the mini-interpreter is active, rec/1 operates in one of two modes: query-
mode or go-mode. When the mini-interpreter is active, rec/1 always begins in
query-mode. In query-mode, the user is prompted just before any edge is added.
Because ale parses from right to left, the edges are encountered in that order. The
prompt consists of a display of the feature structure for the edge, followed by the



7.8. MINI-INTERPRETER (PARSING ONLY) 91

mini-interpreter information for that edge, followed by an action-line, which lists
the options available to the user. For example (from the hpsg grammar included in
the ale distribution):

| ?- rec([kim,sees,sandy]).

STRING:
0 kim 1 sees 2 sandy 3

word
QRETR list_quant
QSTORE e_set
SYNSEM synsem

LOC loc
CAT cat

HEAD noun
CASE case
MOD none
PRD bool

MARKING unmarked
SUBCAT e_list

CONT nom_obj
INDEX [0] ref

GEN gend
NUM sing
PER third

RESTR e_set

Edge created for category above:
from: 2 to: 3

string: sandy
rule: lexicon

# of dtrs: 0

Action(add,noadd,go(-#),break,dtr-#,abort)?
|:

We see, in this example, the main action-line for rec. If the user selects add, the
edge is added, and rec proceeds, in query-mode, as usual. If noadd is selected,
the edge is not added, and rec proceeds in query-mode. In every ale action-line,
the first option is the one that ale would have chosen if the mini-interpreter were
disabled.

go puts the mini-interpreter into go-mode. In go-mode, rec proceeds as it would
if the mini-interpreter were inactive, or to think of it another way, it functions as
if the user always chose the first option on every action-line, but it does not stop
to ask. As it adds the edges, it displays them, along with their mini-interpreter
information. go suffixed with a number, e.g., go-1, puts the mini-interpreter into
go-mode until it encounters an edge whose left node is that number, and then,
beginning with that edge, automatically switches back into query-mode. With ale’s



92 CHAPTER 7. RUNNING AND DEBUGGING ALE PROGRAMS

current parsing strategy, go-N will remain in go-mode until it encounters the first
edge corresponding to the (N+1)st lexical item in the string being parsed.

break simply invokes the Prolog break commmand, placing the user into a
Prolog interpreter with a new break-level. Edges that have been added so far can
be examined and retracted at this time. When the user pops out of the break, the
current prompt is redisplayed.

dtr-N displays the Nth daughter, its mini-interpreter information, and the action-
line for dtr:

Action(retract,dtr-#,parent,abort)?
|:

retract removes the displayed edge (in this case, the daughter) from the chart.
When the parse continues, ale grammar rules will not be able to use that edge.
The current edge (the parent of this daughter), however, can still be added. dtr-N
has the same effect as in the rec action-line. parent returns to the current edge’s
parent and its action-line (either rec or dtr).

The mini-interpreter will not display any edge that has already been retracted.
Note that if edges are retracted, there may be gaps in the sequence of chart-edge
indices.

If abort is selected, the parse is aborted. All of the edges added so far remain
in memory until the next rec statement. The edge that was displayed when abort
was chosen is discarded.

Mini-interpreter information is also available through the run-time commands,
edge/2 and edge/1, e.g.:

| ?- edge(2,4).

COMPLETED CATEGORIES SPANNING: every toy

cat
QSTORE ne_list_quant

HD every
RESTR toy

ARG1 [0] individual
SCOPE proposition
VAR [0]

TL e_list
SYNSEM basic

SEM [0]
SYN np

Edge created for category above:
index: 20
from: 2 to: 4

string: every toy
rule: np_det_nbar

# of dtrs: 2
Action(retract,dtr-#,continue,abort)?



7.9. SUBSUMPTION CHECKING (PARSING ONLY) 93

|:

Every edge that is actually asserted into the chart is assigned a unique number,
called an index, which edge/2 displays also. retract and dtr behave the same
as in the dtr action-line. continue tells the mini-interpreter that the user is done
traversing the parse tree rooted at the current edge, and to find more.

edge/1 works exactly as edge/2 does, except that its input is the unique index
number that ale stores with every edge.

7.9 Subsumption Checking (parsing only)

ale can perform subsumption checking on edges during parsing. By default, it does
not. To enable it, use the command:

| ?- subtest.

edge subsumption checking active

yes
| ?-

To turn it, off, use nosubtest.
When subsumption checking is enabled, ale will only add a new feature structure

to the chart between nodes n and m if there is no other edge currently spanning n
and m whose feature structure subsumes the new one. If, instead, the new feature
structure subsumes an existing one’s, then the existing edge is retracted and replaced
with the new one.

Note that if edges are retracted, there may be gaps in the sequence of chart-edge
indices.

Extra compiled code is required in order to make subsumption checking more
efficient. If subsumption checking is enabled when a grammar is compiled, this
code will be compiled also. If it is disabled, the subsumption checking code will be
compiled when the subtest command is given. Only in the former case, however,
will subsumption checking be used during EFD closure to reduce the number of
empty categories to consider at run-time. The empty categories and phrase structure
rules must be recompiled (with compile rules) if subsumption checking is enabled
after the initial compilation of a grammar for empty categories to be tested for
subsumption.

Our experience has been that subsumption checking is not required in most
unification-based grammars, and should therefore be left disabled. It is useful only
for those grammars which have true spurious ambiguity or redundancy. Grammars
that incorporate some notion of thematic or functional structure for representing
the meaning of a sentence normally realise structural ambiguities as semantic am-
biguities that should be retained in the chart.

If both subsumption checking and the mini-interpreter are enabled, then the user
may override either of these behaviours. In the former case, before the new feature
structure is discarded, it will be displayed along with the discard action-line:

Action(noadd,continue,break,dtr-#,existing,abort)?
|:



94 CHAPTER 7. RUNNING AND DEBUGGING ALE PROGRAMS

continue instructs the parser to look for more subsuming edges. If no more are
found, the new feature structure is added to the chart. existing displays the
existing chart edge that subsumes the new one with the edge/2 action-line. The
rest behave as described above.

In the latter case, before an existing edge is retracted, its feature structure will
be displayed along with the retract action-line:

Action(retract,continue,break,dtr-#,incoming,abort)?
|:

retract retracts the existing, subsumed edge and asserts the incoming feature struc-
ture. incoming displays the incoming feature structure, along with the incoming
action-line:

Action(noadd,dtr-#,existing,abort)?
|:

the functions of whose options have already been described.

7.10 Source-Level Debugger

ale also provides an XEmacs-based source-level debugger. This can only be used
for parsing or definite clause resolution, and only with SICStus 3.8.6 or higher,
and XEmacs 20.3 or higher. In future releases, a debugger with a more restricted
functionality will be made available for users of SWI Prolog.

The ale source-level debugger is implemented on top of the SICStus source-
level debugger. The debugger provided with ale has the complete functionality of
the SICStus source-level debugger with ordinary Prolog programs; so you only need
this one if you will need to debug both. SICStus debugger commands that are not
explicitly mentioned in this section are not supported in ale debugging.

ale source code must occur in a single file in order to be debugged. To debug
Prolog source code, please refer to the SICStus documentation. For both ale and
Prolog debugging, the prolog flag, source info, needs to be turned on, using the
command:

| ?- prolog_flag(source_info,_,on).

The SICStus XEmacs interface should do this automatically.
When a Prolog hook is encountered while debugging an ale grammar, the SIC-

Stus debugger is automatically invoked. The hook will be embedded in a Prolog
call/1 statement. If the leap option of the SICStus debugger is used, the leap
ends at the end of the hook — ale will creep when it resumes control.

To install the ale source-level debugger, follow the directions in the distribution
file, debugger/INSTALL.

7.10.1 Running without XEmacs

To run the debugger without XEmacs, simply run SICStus Prolog from the directory
with debugger.pl and type:

| ?- compile(debugger).



7.10. SOURCE-LEVEL DEBUGGER 95

This assumes that ale.pl and the debugger subdirectory are located in the same
directory. If ale.pl has not been loaded already, this will compile ale.pl as well.
There will be a warning message about buffer-mode when it loads, which can be
ignored. Then type:

| ?- noemacs.

You can add a noemacs/0 directive to the end of debugger.pl to do this automat-
ically.

7.10.2 Running with XEmacs

To run the debugger with XEmacs, you must run SICStus Prolog and ale within
XEmacs as an inferior process. To do this:

1. set the EPROLOG environment variable to the command that runs SICStus
Prolog in the shell that you will run XEmacs from (this is not necessary if the
command is ’sicstus’),

2. run XEmacs from the directory with debugger.pl,

3. load the file to be debugged in Prolog major mode,

4. Use the XEmacs command, M-x run-prolog, to run SICStus prolog as an
inferior process,

5. From the SICStus Prolog prompt, type:

| ?- compile(debugger).

There is also a command:

| ?- emacs.

that will turn on the XEmacs interface, if it has been disabled by noemacs/0.

7.10.3 Debugger Commands

There are seven basic commands in the ale debugger, four of which are variants
of normal ale commands. These four, dcompile gram/1, drec/1, dquery/1 and
dgen/1, are the debugger variants of compile gram/1, rec/1, query/1 and gen/1,
respectively. The other three, dleash/1, dskip/1, and dclear bps/0, will be ex-
plained below.

Currently, the ale source-level debugger can only debug grammars down to the
level of feature structure unification, i.e., feature structure unification is treated as an
atomic operation. Constraints and procedural attachments on types using cons and
goal cannot be debugged either, nor can inequation enforcement, edge subsumption
checking, or extensionalization. These will be possible in a future version. For now,
dcompile gram/1 compiles a grammar in exactly the same way that ale normally
does to the point where it can be debugged. It then reopens the grammar file and
uses the token-stream directly to index those parts of the grammar source code that
it can debug by line number. dcompile gram/1 also requires that all of the ale



96 CHAPTER 7. RUNNING AND DEBUGGING ALE PROGRAMS

source code for a grammar be in a single file, i.e., unlike ale without the debugger,
you cannot load other auxiliary files from within a grammar file. This restriction
will also be lifted in a future version.

dcompile gram/1 also allows for tracing through the EFD closure algorithm,
again down to the level of feature structure unification.

After a grammar has been compiled for debugging with dcompile gram/1,
drec/1, dquery/1 and dgen/1 can be used for parsing, definite clause resolution
or generation, respectively, with the debugger. dquery/1 works exactly as query/1
does: it first finds most general satisfiers of the arguments and then searches for
a solution with Prolog-style SLD-resolution using the clauses provided by the user.
drec/1 and dgen/1 work exactly as rec/1 and gen/1 do, except that lexical rules
are not compiled out, so that they can be debugged. Also remember that ale
parses right-to-left with EFD-closed rules and empty categories, and that it uses
a semantic-head-driven generator. With parsing, the debugger can also be used in
conjunction with the chart mini-interpreter described above for extra control of the
chart. With generation, the debugger successively shows the construction of the
pivot template, pivot matching, pivot checking and the linking of the pivot with the
root. Generation of non-semantic-head daughters is performed recursively.

7.10.4 Debugger Ports and Steps

The ale debugger is loosely based on the procedural box model of execution that
many Prolog debuggers use. There are four kinds of ports, call, exit, redo, and fail.
The ale debugger does not support exception ports. A call port occurs at every
initial invocation of a step that ale takes in parsing or definite clause resolution, a
list of which is given below. An exit port occurs at the successful completion of such
a step; a redo port occurs when a subsequent step has failed and ale backtracks
into the current step to find more solutions, and a fail port occurs when a step has
failed to produce any or any more solutions.

Consider, for example, what happens when ale applies the following description
to a feature structure that occurs in the lexical entry for the word, foo

foo --->(a
;f:b),
g:c.

The first port we encounter is when ale tries to add the type a. This is a call port:

Call: add type, a, to lex entry?

If this succeeds, then an exit port occurs:

Exit: add type, a, to lex entry?

and processing moves on to g:c. If this fails, then we must backtrack through adding
a for more solutions (for example, if there is a disjunctive constraint on that type):

Redo: add type, a, to lex entry?

If there is another solution, then another exit port occurs. Otherwise, the next port
is fail port:



7.10. SOURCE-LEVEL DEBUGGER 97

Fail: add type, a, to lex entry?

and processing continues with the other disjunct, f:b. Certain steps in ale, notably
the depth-first rule application of the chart parser, are failure-driven loops. To
indicate that these “failures” are actually a normal part of execution, they are
displayed as, e.g.:

Finished:close chart edge under rule application?

Enforcing descriptions at a feature also counts as a step:

Call: enforce description on f value of lex entry?

If we agree to this, then the next step would be to add the type b

Call: add type, b, to value at f?

and so on.
The steps in a description whose ports the ale debugger keeps track of are given

in Figure 7.1: There are other kinds of steps besides description-level ones, that

Step Kind Example Message
Adding types desc add type, a, to lex entry
Adding a /1 atoms desc add atom, foo(X), to lex entry
Feature selection desc enforce description on f value

of lex entry
Adding path equations desc path equate [f,g] with [f,h]
Adding inequations desc inequate ...with description
Unification (from shared desc unify ...with V ar
variables)
Macro substitution desc substitute macro description for np/1
Functional description desc evaluate functional description,
evaluation append/2

Figure 7.1: Description-level Steps

pertain to ale’s built-in control for parsing and definite clause resolution. These
steps, along with their kind, are given in the table in Figure 7.2. The steps for
generation are given in Figure 7.3. Almost all of these involve sub-steps that enforce
descriptions. Some, such as chart-edge closure, involve other sub-steps such as rule
selection. Lexical rule application includes input and output morph application, as
well as morph condition (given in a when clause) application. The one generation
step of kind, lr, takes place when the pivot template is matched against a (base
or derived) lexical entry. Unlike the compiled generator, the debugger does not
compile lexical rules into the non-chain-rule selection step, so that the user can see
their application. Instead, a base lexical entry is first selected without reference to
the pivot template, then zero or more lexical rules are applied bottom up, until a
derived entry is eventually unified with the pivot template. Lexical rules are, thus,
treated as a special kind of unary chain rule. The length of these special chains is
still controlled by lex rule depth/1, not chain length/1.



98 CHAPTER 7. RUNNING AND DEBUGGING ALE PROGRAMS

Step Kind Example Message
Empty category derivation empty empty category
EFD Closure empty close empty categories under rules
EFD matching empty apply daughter 1 of rule

sentence1 to empty category
Lexical entry derivation lex derive seen from base entry: see
Lexical rule application lr apply lexical rule, passive,

to see
Input morph application lr apply morph to input: see
Output morph application lr apply morph to input: see,

output: seen
Morph condition application lr apply morph condition
Functional description clause fun evaluate functional clause for
selection append/2
Definite clause selection rel evaluate relational clause for

head feature principle/2
Definite clause resolution rel resolve goal, append/3
Negated goal (\+) resolution rel resolve negated goal
Shallow cut (->;) execution rel execute shallow cut
Extensional identity (@=) rel resolve extensional identity
check
Prolog hook call rel resolve prolog hook:

(num(N),write(N)
Closing new chart edge under rule close chart edge under rule
rules as leftmost daughter application
Rule selection rule apply rule, schema1.

Figure 7.2: Parsing and Definite Clause Resolution Steps

7.10.5 Leashing

With so many steps, and four possible ports, stepping through an entire parse in a
large grammar would be a very trying experience. The ale debugger provides three
basic ways to filter through the steps to find points of interest in a parse or definite
clause query.

The first is leashing. Leashing allows the user to distinguish at which steps
information is simply displayed and at which steps the debugger stops and asks
the user what to do. Unlike the SICStus debugger, leashing in the ale debugger
is a property of steps, not ports. The command to control leashing is dleash/1.
The argument to dleash/1 consists of a sign, + or -, plus the kind of step. A +
sign indicates that the debugger should stop and ask what to do at steps of that
kind; and a - sign indicates that it should simply display the port and proceed. For
example, to turn leashing off for empty categories, type:

| ?- dleash(-empty).

yes

There is also a special kind, all, that allows the user to turn on and off leashing on



7.10. SOURCE-LEVEL DEBUGGER 99

Step Kind Example Message
Build semantic index gen build semantic index from root
Build pivot template gen build pivot template from index
Find pivot gen find pivot
Match pivot (lexical entry) gen match pivot against entry derived

from see
Match pivot (empty category) gen match pivot against empty category
Match pivot (mother of gen match pivot against mother of
non-chain rule) non-chain rule, sentence1
Apply chain rule gen apply chain rule, s, to, pivot
Pivot check gen check for link from pivot to root
Generate from pivot gen recursively generate from pivot
Generate pre-head daughters gen recursively generate pre-head

daughters from pivot
Generate post-head daughters gen recursively generate post-head

daughters from pivot
Connect pivot to root gen connect pivot to root
Connect chain node to root gen connect new chain node to root
Unify pivot template with lr unify pivot template and see
lexical entry
Unify chain node gen unify mother of chain rule, s,

with root

Figure 7.3: Generation Steps

all kinds of steps at once. The default leashing at start-up is +all.
If a kind of step is leashed, then the debugger will stop at every port for every

step of that kind, and ask what to do. The possible responses are given in Figure 7.4:
Not all responses are available at all ports. The kind of port (call, fail, etc.) is what
determines the possible responses. The responses, ? and h are always available, and
list the other legal responses at the current port.

7.10.6 Skipping

Even leashing may not be enough for very large parses or queries because of the
sheer number of ports displayed. The ale debugger also provides a facility for
auto-skipping. Whereas turning leashing off at a kind of step is like automatically
answering c (advance to next port) at those steps, auto-skipping is like automatically
answering s, which advances to the next exit or fail port of the current step without
stopping at or even displaying the ports in between. The command for this is
dskip/1, and its argument is of the same form as the argument to dleash/1. The
signs have a different meaning, of course. For example, dskip(+empty) means that
you want the debugger to auto-skip steps of kind empty, i.e., not stop and ask,
whereas dleash(+empty) means that you want to leash steps of kind empty, i.e.,
stop and ask. When a step where auto-skipping is set is encountered, it is displayed
with an automatic reply without stopping, e.g.:

Call: empty category? <auto-skip>



100 CHAPTER 7. RUNNING AND DEBUGGING ALE PROGRAMS

Input Description Ports
? show available commands at current port c,e,r,f
h same as ?
a abort processing c,e,r,f
f fail at this step (go to fail port) c,e,r
r retry this step (go from fail to call port) f
c advance to next port c,e,r,f
LF same as c
s advance to next exit/fail port of this step c,r
n advance to first port on new line of grammar file c,e,r,f
l advance to next breakpoint c,e,r,f
+ set breakpoint at current line c,e,r,f
- clear breakpoint at current line c,e,r,f
@ PrologGoal pass a goal to Prolog c,e,r,f
i toggle chart mini-interpreter c,e,r,f
d display current structure c,e,r,f

Figure 7.4: Possible Responses at Debugger Ports

Exit: empty category? <auto-skipped>
Edge added: Number:0, Left:1, Right:1, Rule:empty
Call: close chart edge under rule application?

7.10.7 Breakpoints

The final kind of filtering is the breakpoint. In the ale debugger, breakpoints are
a property of lines in a grammar source file, not steps or ports. For a finer grain of
resolution, it would be necessary to give each potential breakable step its own line
in the input. By setting breakpoints and then using the l response, the debugger
will advance to the next step whose line has a breakpoint without displaying any
steps in between. If that step is not leashed or has auto-skipping set, the debugger
acts accordingly after displaying it.

There are currently two ways to set a breakpoint. One is to use the + response
from within the debugger at a step at whose line you wish to set a breakpoint. The
other is only available when the debugger is used with an installation of XEmacs
that supports XPM resources. In this case, when a source file is compiled a small
glyph will be displayed at the left edge of every breakable line. Clicking on this
glyph once with the left mouse button sets a breakpoint. Clicking again clears it.
A breakpoint can also be cleared with the - response.

It is often the case that a line will have several breakable steps on it, for example,
feature paths:

synsem:local:cat:head:verb,
qretr:e_list

If a breakpoint were set at the first line, then leaping from the call port for synsem
would still advance to the call port for local:

Call: enforce description on synsem value of lex entry? l



7.10. SOURCE-LEVEL DEBUGGER 101

Call: enforce description on local value of value at synsem?

To avoid this, the response n is provided, for leaping automatically to the first port
on a different line in the source file. The combination of n and l can be used to
leap more effectively in files that pack many steps, particularly description steps,
into one line.

All breakpoints can be cleared at once using the command, dclear bps/0.



Chapter 8

ALE Keyword Summary

The following is a summary of keywords discussed in this manual, along with page
references. A table of auxiliary keywords, those that only occur as arguments of
other keyword operators, such as the cat> argument of a rule, will be provided in
a future version.

A keyword of kind Description is one that occurs in an ale description of a
feature structure. One of kind Def. Clause, or DCL, is one that occurs in ale’s
definite clause language. One of kind Signature is a declaration that occurs in an
ale signature. One of kind Type is an ale type with special properties. One of kind
ale is a Prolog query (entered at the | ?- prompt) that can be used after ale has
been loaded (see p. 4). One of kind Mini-interpreter is a mini-interpreter command
that appears in an interpreter action-line. One of kind Debugger is a Prolog query
that can be used after the source-level debugger has been loaded. For debugger
responses, the reader is referred to the table on page 100.

Keyword Kind Description Page
, Desc./DCL Conjunction 22, 40
--> Signature Declare lexical entry. 42
-> (;) Def. Clause Shallow cut. 40
: Description Feature value. 22
; Desc./DCL Disjunction. 22, 40
! Def. Clause Cut. 40
\+ Def. Clause Negation-by-failure. 40
== Description Path Equation. 22
=@ Def. Clause Predefined token-identity definite

clause predicate.
40

=\= Description Inequation. 22
@ Description Macro instantiation. 28
[. . .] Description Predefined list macro. 29
% Prolog Comment delimiter. 7

102



103

Keyword Kind Description Page
a Description/Signature Built-in extensional atom. 20
abort Mini-interpreter Abort parse. 92
add Mini-interpreter Add the current edge. 91
approp ale Show value restriction on a feature at a type. 73
assert Prolog Add clause to Prolog database. 40
bot Type In an ale signature, this type must appear,

and must subsume all of the other types.
6

break Mini-interpreter Invoke Prolog break. 92
chain length ale Set limit on chain rule sequence length. 62
compile gram ale Compile ale signature (or parts of it — see

table, p. 66).
66

compile Prolog Compile a Prolog file. 4
cons Signature Declare type constraint. 31, 41
consult Prolog Load Prolog file (such as an ale signature)

into database.
4

continue Mini-interpreter Proceed to look for more (subsum-
ing/subsumed) edges.

93,94

control-c Prolog Prolog interrupt. 5
control-z Unix Unix interrupt. 5
dclear bps Debugger Clear all breakpoints in current grammar file. 101
dcompile gram Debugger Compile grammar file for source-level debug-

ging.
95

dgen Debugger Generate with source-level debugger. 96
dleash Debugger Set or remove leashing on a kind of step. 98
dquery Debugger Evaluate a definite clause with source-level de-

bugging.
96

drec Debugger Parse with source-level debugger. 96
dskip Debugger Set or remove auto-skipping on a kind of step. 99
dtr-N Mini-interpreter Display Nth daughter edge of current edge. 92
edge ale Show a chart edge. 84
emacs Debugger Turn on XEmacs interface to source-level de-

bugger.
95

empty ale Show empty categories. 80
empty Signature Declare empty category. 44
export words ale Send list of words in lexicon to stream 80
existing Mini-interpreter Display edge that subsumes new feature struc-

ture.
94

ext Signature Declare extensional types. 19
feature ale Test if feature exists. 72
generate ale Tell compiler to produce code for generation

only.
66



104 CHAPTER 8. ALE KEYWORD SUMMARY

Keyword Kind Description Page
gen ale Generate a string using the compiled genera-

tor.
87,89

go Mini-interpreter Add current and all subsequent edges. 91
go-N Mini-interpreter Add current and all subsequent edges until

node N is reached.
91

halt Prolog Exit from Prolog. 5
if Def. Clause Definite clause language equivalent of :-. 38
incoming Mini-interpreter Display incoming edge that subsumes existing

edge.
94

interp ale Turn on mini-interpreter. 90
intro Signature Declare appropriate features for type. 13
introduce ale Test if a feature was introduced by a type. 72
iso desc/2 ale Test whether two descriptions evaluate to the

same feature structure.
75

lex ale Show lexical entry. 79
lex compile ale Compile lexicon intermediate code (SICStus

only)
68

lex consult ale Dynamically consult lexicon intermediate
code

68

lex rule ale Show lexical rule. 81
lex rule Signature Declare lexical rule. 46
lex rule depth ale Set bound on lexical rule application. 46
list Type This type, along with types e list and

ne list, and features HD and TL, must be de-
fined in an ale signature in order to use the
predefined [. . .] macro in descriptions, or the
cats> list-argument operator in grammatical
rules.

29, 54

macro ale Show macro definition. 81
macro Signature Declare macro. 27
mgsat ale Find most general satisfier(s) of a type. 73
no write feat ale Hide a feature and its value. 76
no write type ale Hide a type. 76
noadd Mini-interpreter Do not add the current edge. 91
noemacs Debugger Turn off XEmacs interface to source-level de-

bugger.
95

nointerp ale Turn off mini-interpreter. 90
nosubtest ale Disable edge subsumption checking. 93
parent Mini-interpreter Return to parent edge. 92
parse ale Tell compiler to produce code for parsing only. 66



105

Keyword Kind Description Page
parse and gen ale Tell compiler to produce code for parsing and

generation.
66

prolog Def. Clause Definite clause hook to Prolog. 40
query ale Evaluate a definite clause. 77
rec ale Parse a string. 82,84–86
rec best ale Parse first parsable string in a list of strings 87
rec list ale Parse a list of strings 86,87
retract Mini-interpreter Retract currently displayed edge. 92
retract Prolog Remove clause from Prolog database. 40
retractall lex ale Retract all of a word’s entries from lexicon 68
retract lex ale Retract a word’s entry from lexicon 68
rule ale Show grammatical rule. 80
rule Signature Declare grammatical rule. 50
semantics ale Declares a semantics definite clause predicate. 57
show clause ale Show a definite clause. 76
show cons ale Show constraint for a type. 72
show type ale Show subtypes, supertypes, constraint and

most general satisfiers for a type.
73

sub Signature Declare subtyping relationship. 6
subtest ale Enable edge subsumption checking, and, if

necessary, compile code for it.
93

sub type ale Test subsumption between two types. 72
true Def. Clause Definite clause that is always satified (also

used to construct ground clauses in def. clause
language).

38

type ale Test if type exists. 71
unify type ale Unify two types. 72
update lex ale Add new entries to lexicon 68
write feat ale Don’t hide a feature. 76
write feats ale Don’t hide any features. 76
write type ale Don’t hide a type. 76
write types ale Don’t hide any types. 76



HDRUG: A Graphical User
Environment for Natural
Language Processing in Prolog

Hdrug is an environment to develop logic grammars / parsers / generators for natural
languages. The package is written in Sicstus Prolog version 3 and uses library(tcltk)
to implement its user interface. Tcl/Tk is a powerful script language to develop
applications for the X-windows environment.

Hdrug offers various tools to visualize lexical entries, grammar rules, definite-
clause definitions, parse trees, feature structures, lexical- rule- and type-hierarchies,
graphs of the comparison of different parsers on a corpus of test sentences etc., in a
Tk widget, LaTeX/DVI format, and the Clig system.

The package comes with a number of example grammars, including the grammars
to be found in the distribution of the ALE system.

Hdrug allows for easy comparison of different parsers/generators; it has extensive
possibilities to compile feature equations into Prolog terms; it can produce graph-
ical (Tk), and ordinary Prolog output of trees, feature structures, Prolog terms
(and combinations thereof), plotted graphs of statistical information, and tables of
statistical information. Etc. Etc.

Using just menu’s and buttons it is possible to parse sentences, generate sen-
tences from logical form representations, view the parse trees that are derived by
the parser or generator, change a particular version of the parser on the fly, compare
the results of parsing the same sentence(s) with a set of different parsers, etc.

HDRUG was designed and implemented by Gertjan van Noord. The HDRUG
home-page is http://www.let.rug.nl/~vannoord/Hdrug/.

106



Pleuk Grammar Development
Environment

For those using SICStus 2.1#9 under X windows, the Pleuk grammar development
shell has been adapted for ALE. Pleuk provides a graphical user interface, facili-
ties for maintaining and testing corpora, and an interactive, incremental derivation
checker. Pleuk is available free of charge from:

ftp.cogsci.ed.ac.uk:/pub/pleuk

The file README contains instructions for downloading the system. Pleuk has
been ported to Sun SPARCs SunOS 4.* and HP-UX. For more information, send
email to pleuk@cogsci.ed.ac.uk. Pleuk was developed by Jo Calder and Chris Brew of
the Human Communication Research Centre at the University of Edinburgh, Kevin
Humphreys of the Centre for Cognitive Science at the University of Edinburgh, and
Mike Reape, of the Computer Science Department, Trinity College, Dublin.

As of this release, Pleuk will not work under SICStus 3.0 or later.

107



Chapter 9

References

This collection of references only scratches the surface of the relevant literature.
A much more complete survey of the historical perspective on typed unification
grammars and programs can be found in Carpenter (1992), and in subsequent papers
in ACL, EACL, COLING, etc.

Aı̈t-Kaci, H. (1991). The wam: A (Real) Tutorial. MIT Press, Cambridge, Mas-
sachusetts.

The best available introduction to Prolog compiler technology, focusing on
Warren’s Abstract Machine for Prolog.

Aı̈t-Kaci, H. (1986a). An algebraic semantics approach to the effective resolution of
type equations. Theoretical Computer Science, 45:293–351.

Seminal work in sorted feature structures, based on Aı̈t-Kaci’s 1984 Univer-
sity of Pennsylvania dissertation. Focuses on general constraint resolution.

Aı̈t-Kaci, H., and Nasr, R. (1986b). login: A logical programming language with
built-in inheritance. Journal of Logic Programming, 3:187–215.

The first application of feature structures to logic programming. Includes
sorted, but not typed feature structures. Also includes good details on the
Martelli and Montanari (1984) unification algorithm applied to feature struc-
tures.

Aı̈t-Kaci, H. (1984). A Lattice-Theoretic Approach to Computation based on a Cal-
culus of Partially Ordered Type Structures. Univ. of Pennsylvania dissertation.

Aı̈t-Kaci’s introduction of sorted ψ-terms, which are like our feature struc-
tures only without the appropriateness conditions, inequations and exten-
sionality. An appendix contains a coding of the Zebra Puzzle, a benchmark
logic puzzle for constraint resolution.

Carpenter, B. (1992) The Logic of Typed Feature Structures. Cambridge Tracts in
Theoretical Computer Science 32, Cambridge University Press, New York.

Contains all the theoretical details behind the ale feature structures, de-
scription language and applications. A must for fully understanding ale

and a number of related variations.

108



109

Carpenter, B. and G. Penn (1996) Compiling Typed Attribute-Value Logic Gram-
mars. In H. Bunt and M. Tomita, eds., Recent Advances in Parsing Technology.
Kluwer.

A description of the theoretical underpinnings of ALE 2.0, including the
data structures, type inference mechanism, description resolution, parsing,
and inequation solving.

Colmerauer, A. (1987). Theoretical model of prolog II. In van Canegham, M., and
Warren, D. H., editors, Logic Programming and its Application, 1–31. Ablex,
Norwood, New Jersey.

Describes unification with cyclic terms and inequations in a logic program-
ming environment.

Gazdar, G., and Mellish, C. S. (1989). Natural Language Processing in Prolog.
Addison-Wesley, Reading, Massachusetts.

An introduction to computational linguistics using Prolog. Also contains
a very general introduction to simple patr-ii phrase structure grammars,
including simple implementations of unification and parsing algorithms. A
version is also available using Lisp.

Höhfeld, M., and Smolka, G. (1988). Definite relations over constraint languages.
lilog–report 53, ibm – Deutschland GmbH, Stuttgart.

Highly theoretical description of a constraint logic programming paradigm,
including an application to feature structures similar to those used in login.

Jaffar, J. (1984). Efficient unification over infinite terms. New Generation Comput-
ing, 2:207–219.

Unification algorithm for possibly cyclic terms in Prolog II. Includes quasi-
linear complexity analysis.

Kasper, R. T., and Rounds, W. C. (1990). The logic of unification in grammar.
Linguistics and Philosophy, 13(1):35–58.

The details of Kasper and Rounds original feature structure description sys-
tem and related theorems.

Martelli, A., and Montanari, U. (1982). An efficient unification algorithm. ACM
Transactions on Programming Languages and Systems, 4(2):258–282.

The Union/Find unification algorithm used by ale, which was adapted to
the cyclic case by Jaffar (1984).

Mastroianni, M. (1993) Attribute-Logic Phonology. Carnegie Mellon University
Laboratory for Computational Linguistics Technical Report CMU-LCL-93-4.
Pittsburgh.

The description and motivation for an attribute-logic approach to phonol-
ogy. Includes extensive discussion of its implementation in ALE, including
syllable structure and morphologically conditioned effects such as epenthesis,
harmony and assimilation.

O’Keefe, R. A. (1990) The Craft of Prolog. MIT Press, Cambridge, Massachussetts.



110 CHAPTER 9. REFERENCES

Best text on advanced programming techniques using Prolog compilers.
Should read Sterling and Shapiro’s introduction as a pre-requisite.

Penn, G. (1993). A Utility for Typed Feature Structure-based Grammatical The-
ories. Technical Report. Laboratory for Computational Linguistics, Carnegie
Mellon University, Pittsburgh.

This project served as the basis of the version 2.0 updates of ALE. The
report details these updates, including the algorithms used to implement
them and other efficiency issues. It also describes Penn’s implementation of
Head-Driven Phrase Structure Grammar (HPSG), as represented in the first
eight chapters of (Pollard and Sag 1994).

Penn, G. (1999). A Parsing Algorithm to Reduce Copying in Prolog. Arbeitspapier
des Sonderforschungsbereichs 340, Nr. 137.

A presentation of the Empty-First-Daughter closure algorithm, which can be
used to reduce copying in Prolog-based parsers.

Penn, G., and Carpenter, B. (1993). Three Sources of Disjunction in a Typed
Feature Structure-based Resolution System. Feature Formalisms and Linguistic
Ambiguity, H. Trost ed. Ellis Horwood, New York.

A presentation of the principal sources of complexity in solving constraint
puzzles, such as the Zebra Puzzle, a simplified version of which is presented in
this manual; and an outline of steps taken to cope with them in the reversible
general constraint resolver which was the precursor to ale.

Penn, G. and Popescu, O. (1997). Head-Driven Generation and Indexing in ale.
Proceedings of Workshop on Computational Environments for Grammar Devel-
opment and Linguistic Engineering (ENVGRAM), 35th ACL / 8th EACL.

Describes the implementation of ale’s head-driven generator, and a simple
indexing strategy for lexical entries during generation.

Popescu, O. (1996). Head-Driven Generation for Typed Feature Structures.
Carnegie Mellon University MS Project.

The extension of semantic-head-driven generation to typed feature structures
used in ale.

Pereira, F. C. N., and Shieber, S. M. (1987). Prolog and Natural-Language Analy-
sis. Volume 10 of CSLI Lecture Notes. Center for the Study of Language and
Information, Stanford.

Excellent introduction to the use of term unification grammars in natural
language. Includes a survey of Prolog, parsing algorithms and many sample
grammar applications in syntax and semantics.

Pollard, C. J. (in press). Sorts in unification-based grammar and what they mean.
In Pinkal, M., and Gregor, B., editors, Unification in Natural Language Analysis.
MIT Press, Cambridge, Massachusetts.

Contains the original extension of Rounds and Kasper’s logical language to
sorts. Also motivates the use of sorts in natural language grammars.

Pollard, C. J., and Sag, I. A. (1994). Head-driven Phrase Structure Grammar.
Chicago University Press, Chicago.



111

The primary grammar formalism which motivated the construction of the
ale system. Provides many examples of how typed feature structures and
their descriptions are employed in a sophisticated natural language applica-
tion.

Shieber, S. M. (1986). An Introduction to Unification-Based Approaches to Gram-
mar. Volume 4 of CSLI Lecture Notes. Center for the Study of Language and
Information, Stanford.

Best source for getting acquainted with the application of feature structures
and their descriptions to natural language grammars.

Shieber, S. M., Uszkoreit, H., Pereira, F. C. N., Robinson, J., and Tyson, M. (1983).
The formalism and implementation of patr-ii. In Research on Interactive Ac-
quisition and Use of Knowledge. Volume 1894 of SRI Final Report, sri Interna-
tional, Menlo Park, California.

Original document describing the patr-ii formalism.

Shieber, S. M., Pereira, C. N., van Noord, G., Moore, R. C. (1990). Semantic-Head-
Driven Generation. In Computational Linguistics, Vol. 16(1):30–42.

The main reference for a description of the semantic- head-driven generation
algorithm.

Smolka, G. (1988a). A feature logic with subsorts. lilog–report 33, ibm –
Deutschland GmbH, Stuttgart.

An alternative logic to that of Rounds and Kasper, which includes sorts,
variables and general negation.

Smolka, G. (1988b). Logic programming with polymorphically order-sorted types.
lilog–report 55, ibm – Deutschland GmbH, Stuttgart.

An application of ordered term unification to typed logic programming.

Sterling, L., and Shapiro, E. Y. (1986). The Art of Prolog: Advanced Programming
Techniques. MIT Press, Cambridge, Massachusetts.

Best general introduction to logic programming in Prolog.

van Noord, G. (1989). BUG: A Directed Bottom-Up Generator for Unification
Based Formalisms. Working Papers in Natural Language Processing, Katholieke
Universiteit Leuven, Stichting Taaltechnologie Utrecht.

Proposes the first semantic-head-driven generation algorithm.



Appendix A

Sample Grammars

A.1 English Syllabification Grammar

% Signature
% =========

bot sub [unit,list,segment].
unit sub [cluster,syllable,word]

intro [first:segment,
last:segment].

cluster sub [consonant_cluster, vowel_cluster]
intro [segments:list_segment].

consonant_cluster sub [onset,coda].
onset sub [].
coda sub [].

vowel_cluster sub [].
syllable sub []

intro [syllable:list_segment].
word sub []

intro [syllables:list_list_segment].
segment sub [consonant,vowel].

consonant sub [sibilant,obstruent,nasal,liquid,glide].
sibilant sub [s,z].

s sub [].
z sub [].

obstruent sub [p,t,k,b,d,g].
p sub [].
t sub [].
k sub [].
b sub [].
d sub [].
g sub [].

nasal sub [n,m].
n sub [].
m sub [].

112



A.1. ENGLISH SYLLABIFICATION GRAMMAR 113

liquid sub [l,r].
l sub [].
r sub [].

glide sub [y,w].
y sub [].
w sub [].

vowel sub [a,e,i,o,u].
a sub [].
e sub [].
i sub [].
o sub [].
u sub [].

list sub [e_list,ne_list,list_segment,list_list_segment].
e_list sub [].
ne_list sub [ne_list_segment,ne_list_list_segment]

intro [hd:bot,
tl:list].

list_segment sub [e_list,ne_list_segment].
ne_list_segment sub []

intro [hd:segment,
tl:list_segment].

list_list_segment sub [e_list,ne_list_list_segment].
ne_list_list_segment sub []

intro [hd:list_segment,
tl:list_list_segment].

% Rules
% =====

word_schema_rec rule
(word,
syllables:[Syllable|Syllables],
first:First1,
last:Last2)
===>
cat> (syllable,

syllable:Syllable,
first:First1,
last:Last1),

cat> (word,
syllables:Syllables,
first:First2,
last:Last2),

goal> (\+ less_sonorous(Last1,First2)).

word_schema_base rule
(word,



114 APPENDIX A. SAMPLE GRAMMARS

syllables:[Syllable],
first:First,
last:Last)
===>
cat> (syllable,

syllable:Syllable,
first:First,
last:Last).

v_syllable rule
(syllable,
syllable:[Vowel],
first:Vowel,
last:Vowel)
===>
cat> (vowel,Vowel).

vc_syllable rule
(syllable,
syllable:[Vowel|Segs1],
first:Vowel,
last:Last)
===>
cat> (vowel,Vowel),
cat> (coda,

segments:Segs1,
last:Last).

cv_syllable rule
(syllable,
syllable:Segs,
first:First,
last:Vowel)
===>
cat> (onset,

segments:Segs1,
first:First),

cat> (vowel,Vowel),
goal> append(Segs1,[Vowel],Segs).

cvc_syllable rule
(syllable,
syllable:Segs,
first:First,
last:Last)
===>
cat> (onset,

segments:Segs1,



A.1. ENGLISH SYLLABIFICATION GRAMMAR 115

first:First),
cat> (vowel,Vowel),
cat> (coda,

segments:Segs2,
last:Last),

goal> append(Segs1,[Vowel|Segs2],Segs).

consonant_cluster_base rule
(consonant_cluster,
segments:[Consonant],
first:Consonant,
last:Consonant)
===>
cat> (consonant,Consonant).

onset rule
(onset,
segments:[Consonant1|Consonants],
first:Consonant1,
last:Consonant3)
===>
cat> (consonant,Consonant1),
cat> (onset,

segments:Consonants,
first:Consonant2,
last:Consonant3),

goal> less_sonorous(Consonant1,Consonant2).

coda rule
(coda,
segments:[Consonant1|Consonants],
first:Consonant1,
last:Consonant3)
===>
cat> (consonant,Consonant1),
cat> (coda,

segments:Consonants,
first:Consonant2,
last:Consonant3),

goal> less_sonorous(Consonant2,Consonant1).

% Lexicon
% =======

p ---> p.
t ---> t.
k ---> k.



116 APPENDIX A. SAMPLE GRAMMARS

b ---> b.
d ---> d.
g ---> g.
s ---> s.
z ---> z.
n ---> n.
m ---> m.
l ---> l.
r ---> r.
y ---> y.
w ---> w.
a ---> a.
e ---> e.
i ---> i.
o ---> o.
u ---> u.

% Definite Clauses
% ================

less_sonorous_basic(sibilant,obstruent) if true.
less_sonorous_basic(obstruent,nasal) if true.
less_sonorous_basic(nasal,liquid) if true.
less_sonorous_basic(liquid,glide) if true.
less_sonorous_basic(glide,vowel) if true.

less_sonorous(L1,L2) if
less_sonorous_basic(L1,L2).

less_sonorous(L1,L2) if
less_sonorous_basic(L1,L3),
less_sonorous(L3,L2).

append([],Xs,Xs) if true.
append([X|Xs],Ys,[X|Zs]) if

append(Xs,Ys,Zs).



A.2. CATEGORIAL GRAMMAR WITH COOPER STORAGE 117

A.2 Categorial Grammar with Cooper Storage

% Signature
% =========

bot sub [cat,synsem,syn,sem_obj,list_quant].
cat sub []

intro [synsem:synsem,
qstore:list_quant].

synsem sub [functional, basic].
functional sub [forward,backward]

intro [arg:synsem,
res:synsem].

forward sub [].
backward sub [].

basic sub []
intro [syn:syn, sem:sem_obj].

syn sub [np,s,n].
np sub [].
s sub [].
n sub [].

sem_obj sub [individual, proposition, property].
individual sub [j,m].

j sub [].
m sub [].

property sub []
intro [ind:individual,

body:proposition].
proposition sub [logical,quant,run,hit,nominal].

logical sub [and,or].
and sub []

intro [conj1:proposition,
conj2:proposition].

or sub []
intro [disj1:proposition,

disj2:proposition].
quant sub [every,some]

intro [var:individual,
restr:proposition,
scope:proposition].

every sub [].
some sub [].

run sub []
intro [runner:individual].

hit sub []
intro [hitter:individual,

hittee:individual].
nominal sub [kid,toy,big,red]



118 APPENDIX A. SAMPLE GRAMMARS

intro [arg1:individual].
kid sub [].
toy sub [].
big sub [].
red sub [].

list_quant sub [e_list, ne_list_quant].
e_list sub [].
ne_list_quant sub []

intro [hd:quant,
tl:list_quant].

% Lexicon
% =======

kid --->
@ cn(kid).

toy --->
@ cn(toy).

big --->
@ adj(big).

red --->
@ adj(red).

every --->
@ gdet(every).

some --->
@ gdet(some).

john --->
@ pn(j).

runs --->
@ iv((run,runner:Ind),Ind).

hits --->
@ tv(hit).

% Grammar
% =======

forward_application rule



A.2. CATEGORIAL GRAMMAR WITH COOPER STORAGE 119

(synsem:Z,
qstore:Qs)
===>
cat> (synsem:(forward,

arg:Y,
res:Z),
qstore:Qs1),

cat> (synsem:Y,
qstore:Qs2),

goal> append(Qs1,Qs2,Qs).

backward_application rule
(synsem:Z,
qstore:Qs)
===>
cat> (synsem:Y,

qstore:Qs1),
cat> (synsem:(backward,

arg:Y,
res:Z),
qstore:Qs2),

goal> append(Qs1,Qs2,Qs).

s_quantifier rule
(synsem:(syn:s,

sem:(Q,
scope:Phi)),

qstore:QsRest)
===>
cat> (synsem:(syn:s,

sem:Phi),
qstore:Qs),

goal> select(Qs,Q,QsRest).

% Macros
% ======

cn(Pred) macro
synsem:(syn:n,

sem:(body:(Pred,
arg1:X),

ind:X)),
@ quantifier_free.



120 APPENDIX A. SAMPLE GRAMMARS

gdet(Quant) macro
synsem:(forward,

arg: @ n(Restr,Ind),
res: @ np(Ind)),

qstore:[@ quant(Quant,Ind,Restr)].

quant(Quant,Ind,Restr) macro
(Quant,
var:Ind,
restr:Restr).

adj(Rel) macro
synsem:(forward,

arg: @ n(Restr,Ind),
res: @ n((and,

conj1:Restr,
conj2:(Rel,

arg1:Ind)),
Ind)),

@ quantifier_free.

n(Restr,Ind) macro
syn:n,
sem:(body:Restr,

ind:Ind).

np(Ind) macro
syn:np,
sem:Ind.

pn(Name) macro
synsem: @ np(Name),
@ quantifier_free.

iv(Sem,Arg) macro
synsem:(backward,

arg: @ np(Arg),
res:(syn:s,

sem:Sem)),
@ quantifier_free.

tv(Rel) macro
synsem:(forward,

arg:(syn:np,
sem:Y),

res:(backward,
arg:(syn:np,

sem:X),



A.2. CATEGORIAL GRAMMAR WITH COOPER STORAGE 121

res:(syn:s,
sem:(Rel,

hitter:X,
hittee:Y)))),

@ quantifier_free.

quantifier_free macro
qstore:[].

% Definite Clauses
% ================

append([],Xs,Xs) if
true.

append([X|Xs],Ys,[X|Zs]) if
append(Xs,Ys,Zs).

select([Q|Qs],Q,Qs) if
true.

select([Q1|Qs1],Q,[Q1|Qs2]) if
select(Qs1,Q,Qs2).



122 APPENDIX A. SAMPLE GRAMMARS

A.3 Simple Generation Grammar

% An implementation in {\sc ale} of the grammar in Shieber & al,
% "Semantic-Head-Driven Generation", CL 16-1, 1990.

% Signature
% =========

bot sub [pred, list, sem, form, agr, sign].
pred sub [decl, imp, love, call_up, leave, see, john, mary, mark,

friends, often, friend, up, you, i].
decl sub []. imp sub [].
leave sub []. love sub []. call_up sub []. see sub [].
john sub []. mary sub []. mark sub [].
friends sub []. friend sub [].
often sub []. up sub [].
you sub []. i sub [].

list sub [e_list, ne_list, arg_list, subcat_list].
e_list sub [].
ne_list sub [arg_ne_list, subcat_ne_list]

intro [hd:bot, tl:list].
arg_list sub [e_list, arg_ne_list].

arg_ne_list sub [] intro [hd:sem, tl:arg_list].
subcat_list sub [e_list, subcat_ne_list].

subcat_ne_list sub [] intro [hd:sign, tl:subcat_list].
sem sub [] intro [pred:pred, args:arg_list].
form sub [finite, nonfinite].

finite sub [].
nonfinite sub [].

agr sub [sg1, sg2, sg3, pl1, pl2, pl3].
sg1 sub []. sg2 sub []. sg3 sub [].
pl1 sub []. pl2 sub []. pl3 sub [].

sign sub [sentence, verbal, np, adv, p]
intro [sem:sem].

sentence sub [].
verbal sub [s, vp] intro [form:form].

s sub [].
vp sub [] intro [subcat:subcat_list].

np sub [det, n]
intro [agr:agr, arg:sem].
det sub [] intro [np_sem:sem].
n sub [].

adv sub [] intro [varg:sem].
p sub [].

ext([sg1,sg2,sg3,pl1,pl2,pl3]).

% Lexicon
% =======



A.3. SIMPLE GENERATION GRAMMAR 123

love --->
vp, form:nonfinite,
subcat:[(np,sem:Obj),(np,sem:Subj)],
sem:(pred:love,args:[Subj,Obj]).

call --->
vp, form:nonfinite,
subcat:[(np,sem:Obj),(p,sem:(pred:up,args:[])),(np,sem:Subj)],
sem:(pred:call_up,args:[Subj,Obj]).

call --->
vp, form:nonfinite,
subcat:[(p,sem:(pred:up,args:[])),(np,sem:Obj),(np,sem:Subj)],
sem:(pred:call_up,args:[Subj,Obj]).

leave --->
vp, form:nonfinite,
subcat:[(np,sem:Subj)],
sem:(pred:leave,args:[Subj]).

see --->
vp, form:nonfinite,
subcat:[(np,sem:Obj),(np,sem:Subj)],
sem:(pred:see,args:[Subj,Obj]).

see --->
vp, form:nonfinite,
subcat:[(s,form:finite,sem:Obj),(np,sem:Subj)],
sem:(pred:see,args:[Subj,Obj]).

john --->
np, agr:sg3, sem:(pred:john,args:[]).

mary --->
np, agr:sg3, sem:(pred:mary,args:[]).

mark --->
np, agr:sg3, sem:(pred:mark,args:[]).

friends --->
np, agr:pl3, sem:(pred:friends,args:[]).

friend --->
n, agr:sg3, arg:X, sem:(pred:friend,args:[X]).

i --->
np, agr:sg1, sem:(pred:i,args:[]).



124 APPENDIX A. SAMPLE GRAMMARS

you --->
np, agr:sg2, sem:(pred:you,args:[]).

often --->
adv, varg:VP, sem:(pred:often,args:[VP]).

up --->
p, sem:(pred:up,args:[]).

% Lexical Rules
% =============

sg3 lex_rule (vp, form:nonfinite, subcat:Subcat, sem:Sem) **>
(vp, form:finite, subcat:NewSubcat, sem:Sem)

if add_sg3(Subcat,NewSubcat)
morphs (X,y) becomes (X,i,e,s),

X becomes (X,s).

non_sg3 lex_rule (vp, form:nonfinite, subcat:Subcat, sem:Sem) **>
(vp, form:finite, subcat:NewSubcat, sem:Sem)

if add_nonsg3(Subcat,NewSubcat)
morphs X becomes X.

% Grammar Rules
% =============

sentence1 rule
(sentence,sem:(pred:decl,args:[S])) ===>
cat> (s,form:finite,sem:S).

sentence2 rule
(sentence,sem:(pred:imp,args:[S])) ===>
cat> (vp,form:nonfinite,

subcat:[(np,sem:(pred:you,args:[]))],sem:S).

s rule
(s,form:Form,sem:S) ===>
cat> Subj,
sem_head> (vp,form:Form,subcat:[Subj],sem:S).

vp1 rule
(vp,form:Form,subcat:Subcat,sem:S) ===>
sem_head> (vp,form:Form,subcat:[Compl|Subcat],sem:S),
cat> Compl.



A.3. SIMPLE GENERATION GRAMMAR 125

vp2 rule
(vp,form:Form,subcat:[Subj],sem:S) ===>
cat> (vp,form:Form,subcat:[Subj],sem:VP),
sem_head> (adv,varg:VP,sem:S).

% Semantics Directive
% ====================

semantics sem1.

% Definite Clauses
% ================

sem1(sem:S,S) if true.

add_sg3([(np,sem:Sem)],[(np,agr:sg3,sem:Sem)]) if !, true.
add_sg3([Cat|Cats],[Cat|NewCats]) if add_sg3(Cats,NewCats).

add_nonsg3([(np,sem:Sem)],[(np,agr:(=\=sg3),sem:Sem)]) if !, true.
add_nonsg3([Cat|Cats],[Cat|NewCats]) if add_nonsg3(Cats,NewCats).



Appendix B

Error and Warning Messages

B.1 Error Messages

a /1 atom declared subsumed by type T

Subsumption over a /1 atoms has a fixed definition. Subtyping specifi-
cations with a /1 atoms are not allowed.

add to could not unify FS1 and FS2

The unification between feature structures FS1 and FS2 failed.

add to could not unify paths π and φ in FS

The unification between paths π and φ failed in feature structure FS
failed.

add to could not inequate FS1 and FS2

The inequation between features structures FS1 and FS2 could not been
satisfied.

add to could not add feature F to FS

The value of feature F is not unifiable with the similar value in feature
structure FS.

add to could not add undefined macro M to FS

Macro M used in feature structure FS is undefined.

add to could not add incompatible type T to FS

Type T is not compatible with the type of feature structure FS.

add to could not add undefined type T to FS

Type T in feature structure FS is undefined.

add to could not add ill formed complex description D to FS

126



B.1. ERROR MESSAGES 127

Description D is ill formed and could not be unified with feature struc-
ture FS

appropriateness cycle following path π from type T

There is a sequence of features π which must be defined for objects of
type T where the value must be of type T .

bot has appropriate features

The most general type, ⊥, cannot have any appropriate features.

bot has constraints

The most general type, ⊥, must not have cons constraints.

cats> value with sort S is not a valid list argument

An argument of cats> was detected at run-time, which is not of a type
subsumed by list.

consistent T1 and T2 have multiple mgus Ts

Types T1 and T2 have the non singleton set Ts as their set of most
general unifiers.

constraint declaration given for atom

a /1 atoms must not have cons constraints.

description uses unintroduced feature F

A description uses the feature F which has not been defined as appro-
priate for any types.

edge/2: arguments must be non-negative

The arguments to edge/2 represent nodes in a parsing chart, and thus
must be non-negative integers.

edge/2: first argument must be < second argument

The arguments to edge/2 represent nodes in a parsing chart. Edges only
span from one node to an equal or greater valued node. edge/2 shows
edges where the other node has a greater value. empty/0 shows edges
where the node has an equal value.

extensional type E is not maximal

Type E is declared extensional but does not observe the maximality
restriction.

feature F multiply introduced at Ts



128 APPENDIX B. ERROR AND WARNING MESSAGES

The feature F is introduced at the types in Ts, which are not comparable
with one another.

illegal variable occurence in T sub Ss (intro FRs)

In subtype/feature specifications, neither T or any of the types in Ss
or FRs, or any of the features in FRs can be unbound variables. If a
value restriction is an a /1 atom, that atom can be unbound, or contain
unbound variables, but the a /1 operator must still appear.

incompatible restrictions on feature F at type T are Ts

The inherited restrictions, consisting of types Ts, on the value of F at
type T are not consistent.

invalid line φ in rule

A line of a grammar rule is neither a goal nor a category description.

lexical rule LR lacks morphs specification

The obligatory morphs part of lexical rule LR is missing.

multiple constraint declaration error for T

More than one cons declaration exists for type T .

multiple feature specifications for type T

The appropriate features of T can be introduced along with subtyping
or by themselves, but there can only be one declaration of appropriate
features.

multiple specification for F in declaration of T

More than one restriction on the value of feature F is given in the defi-
nition of type T .

no lexical entry for W

Expression W is used, but has no lexical entry.

pathval: illegal path specified - π

Path π is not a valid path specification for the given feature structure.

rule R has multiple sem head> specifications

More than one semantic head declaration was found in grammar rule R.



B.1. ERROR MESSAGES 129

rule R has no cat> cats> or sem head> specification

The grammar rule named R is empty in that it does not have any daugh-
ter specification.

rule R has wrongly placed sem goal> specifications

A sem goal> specification occurs somewhere other than immediately
before or immediately after a sem head> specification in rule R.

subtype/feature specification given for a /1 atom

Subsumption over a /1 atoms has a fixed definition, and they can have
no features. Subtype or feature specifications for them are not allowed.

subtyping cycle at T

The subsumption relation specified is not anti-symmetric. It can be
inferred that the type T is a proper subtype of itself.

subtype T1 used in T2 undeclared

Undefined type T1 declared as subtype in definition of T2.

T multiply defined

There is more than one definition of type T .

T subsumes bot

T is declared as subsuming the most general type, ⊥.

T1 used in appropriateness definition of T2 undeclared

Undefined type T1 used as value restriction in definition of T2.

undefined macro M used in description

A description uses a macro which is not defined.

undefined type T used in description

A description uses a type T which is not defined.

undefined feature F used in path π

A path π of features uses undefined feature F in a description.

unsatisfiable lexical entry for W

Word W has a lexical entry which has no satisfying feature structure.

upward closure fails for F in S1 and S2

S1 subsumes S2, but the value restriction for F at S1 does not subsume
the value restriction for F at S2.



130 APPENDIX B. ERROR AND WARNING MESSAGES

B.2 Warning Messages

=@ accessible by procedural attachment calls from constraint for T

The built-in =@ predicate (extensional identity check) is non-monotonic,
so its use should be avoided in constraints attached to types.

atom a /1 Atom is ground in declaration of T

One of the appropriate features of T has a value restriction that is a
ground a /1 atom. Every feature structure of type T will have the same
value at this feature.

homomorphism condition fails for F in T1 and T2

It is not the case that the appropriateness restriction on the type T =
T1 + T2 is the unification of the appropriateness restrictions on T1 and
T2.

lexical description for W is unsatisfiable

Incompatibilities in the lexical description for word W could not produce
a satisfying feature structure.

no chain rules found

All the grammar rules in the program were non-chain rules (no semantic
heads).

no definite clauses found

There were no definite clause rules specified in the program.

no features introduced

There are no appropriate features for any types.

no functional descriptions found

There are no functional description definitions in the program.

no lexical rules found

There were no lexical rules specified in the program.

no lexicon found

There were no lexical entries specified in the program.

no non chain rules found

All the grammar rules in the program were chain rules (with semantic
heads).



B.2. WARNING MESSAGES 131

no P definite clause found

A definition for definite clause predicate P , which was declared as the
semantics predicate, was not found in the program.

no phrase structure rules found

There were no phrase structure rules specified in the program.

no semantics specification found

There was no specification of the semantics definite clause predicate in
the program.

no types defined

There were no sub or intro declarations found in the program.

unary branch from T1 to T2

The only subtype of T1 is T2. In this situation, it is usually more efficient
to elimate T1 if every instance of T1 is a T2.



Appendix C

BNF for ALE

<desc> ::= <type>
| <variable>
| (<feature>:<desc>)
| (<desc>,<desc>)
| (<desc>;<desc>)
| @ <macro_spec>
| <func_spec>
| a_ <prolog_term>
| <path> == <path>
| =\= <desc>

<type> ::= <prolog_functor>

<feature> ::= <prolog_atom>

<path> ::= list(<feature>)

<macro_def> ::= <macro_head> macro <desc>.

<macro_head> ::= <macro_name>
| <macro_name>(<seq(var)>)

<macro_spec> ::= <macro_name>
| <macro_name>(<seq(desc)>)

<func_def> ::= <func_spec> +++> <desc>.

<func_spec> ::= <func_name>
| <func_name>(<seq(desc)>)

<clause> ::= <literal> if <goal>.

<literal> ::= <pred_sym>
| <pred_sym>(<seq(desc)>)

132



133

<cut_free_goal> ::= true
| <literal>
| prolog(<prolog_goal>)
| (<cut_free_goal>,<cut_free_goal>)
| (<cut_free_goal>;<cut_free_goal>)
| (<desc> =@ <desc>)
| (<cut_free_goal> -> <cut_free_goal>)
| (<cut_free_goal> -> <cut_free_goal>

; <cut_free_goal>)
| (\+ <cut_free_goal>)

<goal> ::= true
| <literal>
| prolog(<prolog_goal>)
| (<goal>,<goal>)
| (<goal>;<goal>)
| (<desc> =@ <desc>)
| (<cut_free_goal> -> <goal>)
| (<cut_free_goal> -> <goal> ; <goal>)
| !
| (\+ <goal>)

<lex_entry> ::= <word> ---> <desc>.

<rule> ::= <rule_name> rule <desc> ===> <rule_body>.

<rule_body> ::= <sem_less_rule_body>
| <sem_less_rule_body>,<sem_rule_body>,

<sem_less_rule_body>

<sem_less_rule_body> ::= <rule_clause>
| <rule_clause>, <sem_less_rule_body>

<rule_clause> ::= cat> <desc>
| cats> <desc>
| goal> <goal>

<sem_rule_body> ::= sem_head> <desc>
| sem_goal> <goal>, sem_head> <desc>
| sem_head> <desc>, sem_goal> <goal>
| sem_goal> <goal>, sem_head> <desc>,

sem_goal> <goal>

<lex_rule> ::= <lex_rule_name> lex_rule <lex_rewrite>
morphs <morphs>.



134 APPENDIX C. BNF FOR ALE

<lex_rewrite> ::= <desc> **> <desc>
| <desc> **> <desc> if <goal>

<morphs> ::= <morph>
| <morph>, <morphs>

<morph> ::= (<string_pattern>) becomes (<string_pattern>)
| (<string_pattern>) becomes (<string_pattern>)

when <prolog_goal>

<string_pattern> ::= <atomic_string_pattern>
| <atomic_string_pattern>, <string_pattern>

<atomic_string_pattern> ::= <atom>
| <var>
| <list(<var_char>)>

<var_char> ::= <char>
| <var>

<seq(X)> ::= <X>
| <X>, <seq(X)>

<empty_prod> ::= empty <desc>.

<type_spec> ::= <type> sub <list(<type>)>
| <type> sub <list(<type>)>

intro <list(<frestr_spec>)>
| <type> intro <list(<frestr_spec>)>

<frestr_spec> ::= <feature>:<type>
| <feature>: a_ <prolog_term>

<cons_spec> ::= <type> cons <desc>
| <type> cons <desc>

goal <goal>

<ext_spec> ::= ext(list(<type>))

<prog> ::= <prog_line>
| <prog_line> <prog>



135

<prog_line> ::= <type_spec>
| <ext_spec>
| <cons_spec>
| <macro_def>
| <empty_prod>
| <clause>
| <rule>
| <lex_entry>
| <lex_rule>



Appendix D

Reference Card

Grammar
----------------------------------------------------------------------

Type sub Subtypes (intro [F1:R1,...,Fn:Rn]). (Subtyping)
Type intro [F1:R1,...,Fn:Rn]. (Appropriateness)
ext([Type1,...,Typen]). (Extensionality)

(Types not otherwise declared, but used in the above definitions are
assumed to be maximal and/or immediately subsumed by bot)

Type cons Desc (Type Constraint)
(goal Goal).

Word ---> Desc. (Lexical Entry)
empty Desc. (Empty Category)
RuleName lex_rule DescIn **> DescOut (Lexical Rule)

(if Goal)
morph X becomes [X,e,s]

when PrologGoal.
RuleName rule Desc ===> (Phrase Structure Rule)

cat> Desc/ [Daughter]
cats> ListDesc/ [List of Daughters]
sem_head> Desc/ [Semantic Head]
goal> Goal/ [Procedural Attachment]
sem_goal> Goal. [P.A. to Semantic Head]

f(Desc1,...,Descn) if g(Desc1,...,Descn)/ (Definite Clause)
Desc1 =@ Desc2/ (Extensionality Check)
prolog(PrologGoal). (Prolog Hook)

fun(Desc1,...,Descn) +++> DescResult. (Function Declaration)
macro(X1,...,Xn) macro Desc. (Macro Declaration)
semantics Pred. (Semantic Pred. Declaration)

136



137

Compile-time Options
----------------------------------------------------------------------
| ?- parse/generate/parse_and_gen. (Compilation Mode)
| ?- lex_consult/lex_compile. (Lexicon Compilation Mode)
| ?- (no)adderrs. (Toggle Description Errors)
| ?- (no)subtest. (Toggle Subsumption Check)
| ?- chain_length(Num). (Chain Rule Length Bound)
| ?- lex_rule_depth(Num). (Lexical Rule Depth Bound)

Compilation
----------------------------------------------------------------------
| ?- (d)compile_gram(GramFile). (Grammar Compilation)
| ?- update_lex(File). (Incremental Lexicon Update)
| ?- retract(all)_lex. (Incremental Lexicon Retraction)

Grammar Inspection
----------------------------------------------------------------------
| ?- (no_)write_type(s). (Type Hiding/Showing)
| ?- (no_)write_feat(s). (Feature Hiding/Showing)
| ?- show_type Type. (Signature Inspection)
| ?- unify_type(Type1,Type2,LUB). (Type Unification)
| ?- approp(Feat,Type,Restr). (Appropriateness Inspection)
| ?- introduce(Feat,Type). (Feature Introduction)
| ?- iso_desc(Desc1,Desc2). (Extensional Identity)
| ?- mgsat Desc. (Most General Satisfier)
| ?- show_clause PredName(/Arity). (Definite Clause)
| ?- lex Word. (Lexical Entry)
| ?- rule Rulename. (Phrase Structure Rule)
| ?- empty. (Empty Category)
| ?- macro Macro. (Macro Definition)
| ?- lex_rule Lexrulename. (Lexical Rule)
| ?- export_words(Stream,Delim). (Lexicon Export)

Execution
----------------------------------------------------------------------
| ?- (d)rec WordList. (Bottom-up Parsing)
| ?- (d)query Query. (SLD Resolution)
| ?- (d)gen Desc. (Head-Driven Generation)

Run-time Options
----------------------------------------------------------------------
| ?- (no)interp. (Toggle Mini-Interpreter)
| ?- edge(Left,Right). (Chart Edge Inspection)
| ?- dleash(+/-Kind). (Port Leashing)
| ?- dskip(+/-Kind). (Port Auto-Skipping)
| ?- dclear_bps. (Breakpoint Clearing)


