
qwertyuiopasdfghjklzxcvbnmqw
ertyuiopasdfghjklzxcvbnmqwert
yuiopasdfghjklzxcvbnmqwertyui
opasdfghjklzxcvbnmqwertyuiopa
sdfghjklzxcvbnmqwertyuiopasdf
ghjklzxcvbnmqwertyuiopasdfghj
klzxcvbnmqwertyuiopasdfghjklz
xcvbnmqwertyuiopasdfghjklzxcv
bnmqwertyuiopasdfghjklzxcvbn
mqwertyuiopasdfghjklzxcvbnmq
wertyuiopasdfghjklzxcvbnmqwe
rtyuiopasdfghjklzxcvbnmqwerty
uiopasdfghjklzxcvbnmqwertyuio
pasdfghjklzxcvbnmqwertyuiopas
dfghjklzxcvbnmqwertyuiopasdfg
hjklzxcvbnmqwertyuiopasdfghjk
lzxcvbnmrtyuiopasdfghjklzxcvbn
mqwertyuiopasdfghjklzxcvbnmq

The Big Assignment

CSE6339-Winter 2014

3/26/2014

Albina Rahim
Student # 213199989

1

1. Introduction

The infinite monkey theorem states that a monkey hitting keys at random on a typewriter keyboard for
an infinite amount of time will almost surely type a given text, such as the complete works of William
Shakespeare [1]. Based on this concept, we developed a series of computer programs & routines which

simulate a monkey typing random keys and generating an output of text. The goal was to explore
properties and possible use of character frequency of a natural language text.

This report is divided into seven sections with Section 1 as the Introductory part, Section 2 giving
detailed descriptions of the series of functions and programs written to accomplish this assignment,
Section 3 discusses the Algorithms of the functions and programs implemented, Section 4 highlights and
analyse the results generated, Section 5 illustrates some sample results, Section 6 highlights some future
work that can be done to further improve this assignment, and Section 7 contains the web
implementation of this assignment.

2. Functions & Programs Descriptions

This section illustrates descriptions of the series of functions and programs developed to
achieve the goal of this assignment.

All our programs and functions were coded in Matlab. The name of our main program from
which all the sub-programs and functions can be executed is known as the
“Big_Assignment.m”. Functions were written such that each can be reused to generate results
for different problems. The programs were run until the monkeys have typed 100,000
characters, after which meaningful words were searched for from the scribbles. Only the
unique meaningful words were counted to calculate the percentage word yield.

We downloaded the corpus “dictionary.txt” consisting 79772 words for simulating the
straightforward monkey problem. Also for better comparisons and results we downloaded
some books from Project Gutenberg [2] in addition to the ones given in the assignment
question. We will give more explanations on this in the later part of our report.

For uniformity we declared our language L to have 40 characters of the form:

L = ['a' 'b' 'c' 'd' 'e' 'f' 'g' 'h' 'i' 'j' 'k' 'l' 'm' 'n' 'o' 'p'

'q' 'r' 's' 't' 'u' 'v' 'w' 'x' 'y' 'z' ',' '.' ';' ':' '?' '!' '('

')' '-' '''' '"' '@' '#' ' '];

We simulated the straightforward monkey problem, first-order, second-order, and third-order
monkey problem as per the assignment requirement. Out of curiosity we simulated the fourth-
order and fifth-order monkey problem on few of the corpora provided to us. We saw a very
prominent increase in the world yield and more meaningful longer phrases as the simulated
order increased.

2.1 Function Descriptions

Returns Functions Description

String[] corpus getCorpus(‘path.txt’) Takes in a string path and parses the
contents into an array of words

2

String []
singleLineCorpus

formatCorpus(corpus) Takes in a corpus and formats it into
a single string (word by word). This is
used to compute the correlation
matrices

String[] wordList meaningfulWords(result,

corpus)
Checks the result string for the
presence of any of the words in the
corpus and returns the unique words
that match

String[] longestWord findLongestWord(wordList) Outputs the words with the highest
length from the generated words list

int []
CorrMatrix1stOrder

getCorrMatrix1stOrder(corpus)

Generates a 1st Order Correlation
Matrix based on corpus

int [][]
CorrMatrix2ndOrder

getCorrMatrix2ndOrder(corpus) Generates a 2nd Order Correlation
Matrix based on corpus

int [] [] []
CorrMatrix3rdOrder

getCorrMatrix3rdOrder(corpus) Generates a 3rd Order Correlation
Matrix based on corpus

int [] [] [] []
CorrMatrix4thOrder

getCorrMatrix4thOrder(corpus) Generates a 4th Order Correlation
Matrix based on corpus

int [] [] [] [] []
CorrMatrix5thOrder

getCorrMatrix5thOrder(corpus) Generates a 5th Order Correlation
Matrix based on corpus

Typewriter [] getTypewriters2ndOrder(CorrMat

rix2ndOrder)
Generates the typewriters which the
monkey will use to generate random
text. This can be reused for higher
order simulations if Typewriters is
defined with dimension n + 1 and a
for loop is used to insert data into
the added dimension. Also

Typewriters of n
th

 Order is used to

compute the Typewriters of (n+1)
 th

Order
String result straightForwardMonkey(Language

, iterations)
Given a Language and the number of
iterations, simulate the
Straightforward and the 1st Order
Monkey problem

String result secondOrderMonkey(typeWriter2n

dOrder, Language, iterations)
Given a Language, iterations, and the
2nd Order Typewriter, the monkey
will simulate the 2nd Order Monkey
problem

String result thirdOrderMonkey(typeWriter3rd

Order, Language, iterations)
Given a Language, iterations, and the
3rd Order Typewriter, the monkey
will simulate the 3rd Order Monkey
problem

String result fourthOrderMonkey(typeWriter4t

hOrder, Language, iterations)
Given a Language, iterations, and the
4th Order Typewriter, the monkey
will simulate the 4th Order Monkey
problem

3

String result fifthOrderMonkey(typeWriter5th

Order, Language, iterations)
Given a Language, iterations, and the
5th Order Typewriter, the monkey
will simulate the 5th Order Monkey
problem

String path probPath(correleationMatrix2nd

,Language,initial)
Given a Language, a 2nd Order
Correlation matrix, and an initial
value, this method will compute the
most probable digraph path

int [] [] englishMatrix generateEnglishMatrix(titles,

Language,limit)
Given an array of text file names
(titles), and the Language, this
method computes a standard English
Matrix by averaging individual
correlation matrices together. The
limit puts a cap on the maximum
amount of characters to be
compared

int [] [] author correlateAuthors(overallMatrix

,englishMatrix,Language)
Given an overall matrix of the
computed correlation matrices, the
English matrix, and the language,
this method gives a 2-D correlation
matrix of n x n authors, with 1 being
the highest correlation

char [] grams makeGrams(corpus,N) Given a corpus and N (the order of
the N-gram), this function will
generate an array of N length,
unique grams

int [] gramDistrib getGramDistrib(corpus,grams,L) Given the corpus, grams, and L
(Limit), this function returns a list of
term frequency in descending order,
cut off at the value L

int [] cosSim cosineSim(A,B)

Compute the dot product between
the term frequencies of the N-grams
computed from two corpora

int [] []
cosineSimilarity

getCosineSimilarity(titles,ove

rallGrams)

Given the overallGrams, which
stores the N-gram distribution of all
the corpora, this function computes
the Cosine Similarity Measure for all
the corpora

getProfileSimilarity(titles,ov

erallGrams)

int [] []
profileDissimilarity

getProfileDissimilarity(titles

,overallGrams)

Given the overallGrams, which
stores the N-gram distribution of all
the corpora, this function computes
the Profile Dissimilarity Measure for
all the corpora

Table 1. Descriptions of the series of functions used and reused in the programs to generate results for

this assignment.

4

2.2 Program Descriptions

Problem Functions Used Description Output File

1a. straightForwardMonkey()
meaningfulWords()
findLongestWord()

Simulates the straightforward
monkey problem using the
allowed characters declared in
set L. Number of iterations

used was 100000 for the
generation of meaningful
estimate of the yield of words.
The typed characters were then
compared with the
'dictionary.txt' to
determine the meaningful
words generated within the
string.

straightForward-

1a.txt

1b. getCorpus()
charHamlet()
straightForwardMonkey()
meaningfulWords()
findLongestWord()

Simulates the first-order
monkey problem on Hamlet Act
III corpus, using the character
distribution illustrated in Table 1
of the assignment question.
The typed characters were then
compared with the Hamlet
corpus itself to determine the
meaningful words generated
within the string.
We simulated the first-order
monkey problem on other
corpora. Character distribution
used was those in L. The typed
characters were then compared
with the corpus itself to
determine the meaningful
words generated within the
string.

1stOrder-1b-

CorpusName.txt

1c. getCorpus()
formatCorpus()
getCorrMatrix2ndOrder()
getTypewriters2ndOrder()
secondOrderMonkey()
meaningfulWords()
findLongestWord()

Simulates the second-order
monkey problem on the merged
Bronte novels and various other
corpora from the list. Character
distribution used was those in
L. The typed characters were
then compared with the corpus
itself to determine the
meaningful words generated
within the string.

2ndOrder-1c-

CorpusName.txt

5

getCorpus()
formatCorpus()
getCorrMatrix3rdOrder()
getTypewriters3rdOrder()
thirdOrderMonkey()
meaningfulWords()
findLongestWord()

Simulates the third-order
monkey problem on the merged
Bronte novels and various other
corpora from the list. Character
distribution used was those in
L. The typed characters were
then compared with the corpus
itself to determine the
meaningful words generated
within the string.

3rdOrder-1c-

CorpusName.txt

getCorpus()
formatCorpus()
getCorrMatrix4thOrder()
getTypewriters4thOrder()
fourthOrderMonkey()
meaningfulWords()
findLongestWord()

Simulates the fourth-order
monkey problem on the merged
Bronte novels and various other
corpora from the list. Character
distribution used was those in
L. The typed characters were
then compared with the corpus
itself to determine the
meaningful words generated
within the string.

4thOrder-1c-

CorpusName.txt

getCorpus()
formatCorpus()
getCorrMatrix5thOrder()
getTypewriters5thOrder()
fifthOrderMonkey()
meaningfulWords()
findLongestWord()

Simulates the fifth-order
monkey problem on Hamlet Act
III and the corpus, ‘Legend of
Sleepy Hollow’. Character
distribution used was those in
L. The typed characters were
then compared with the corpus
itself to determine the
meaningful words generated
within the string.

5thOrder-1c-

CorpusName.txt

1d. getCorpus()
formatCorpus()
getCorrMatrix2ndOrder()
getTypewriters2ndOrder()
secondOrderMonkey()

getCorrMatrix3rdOrder()
getTypewriters3rdOrder()
thirdOrderMonkey()
meaningfulWords()
findLongestWord()

Investigates the effect of
resolution on monkey literacy in
the simulation. Resolution
factor of 0.9, 0.5, 0.1, 0.05, 0.01,
0.005, 0.001 were implemented
on the second-order and third-
order simulation to observe
their effect on the word yield.

Altered2ndOrder-1d-

CorpusNameFactor.txt

Altered3rdOrder-1d-

CorpusNameFactor.txt

1e. getCorpus()
formatCorpus()

getCorrMatrix1stOrder()
getCorrMatrix2ndOrder()

Routine to compute first-order
and second-order correlation
matrices.

GUI display of first-order
and second-order
correlation matrices.

1f. getCorpus()

getCorrMatrix2ndOrder()

probPath()

Computing the Most Probable
Digraph Path using the second-
order correlation matrix for all
the corpora in the list

GUI display of the Most
Probable Digraph Path for
all the corpora in the list

6

1g. getCorpus()
getCorrMatrix2ndOrder()

generateEnglishMatrix()

correlateAuthors()

Designed Experiment# 01:
Author Attribution using the
Book Algorithm. Bennett
Chapter-4, Equation# 15, Page
127 [3].

GUI display of the Author
Attribution with Book
Algorithm

getCorpus()
makeGrams()

getGramDistrib()

cosineSim()

getCosineSimilarity()

Designed Experiment# 02:
Author Attribution using N-
Gram and Cosine Similarity
Measure [4].

GUI display of the Author
Attribution using Cosine
Similarity Measure.

getCorpus()
makeGrams()

getGramDistrib()

getProfileDissimilarity()

Designed Experiment# 03:
Author Attribution using N-
Gram and Profile Dissimilarity
Measure [5]

GUI display of the Author
Attribution using Profile
Dissimilarity Measure.

1h. getCorpus()
getCorrMatrix2ndOrder()

generateEnglishMatrix()

correlateAuthors()

Performing Genre Classification.
Trial # 01 with Genres: Lost
World, Fantasy, Romance using
the Book Algorithm. Bennett
Chapter-4, Equation# 15, Page
127 [3].

GUI display of the Genre
Classification: Trial # 01

getCorpus()
getCorrMatrix2ndOrder()

generateEnglishMatrix()

correlateAuthors()

Performing Genre Classification.
Trial # 02 with Genres: Lost
World, Crime, Non-fiction
Psychology, Horror using the
Book Algorithm. Bennett
Chapter-4, Equation# 15, Page
127 [3].

GUI display of the Genre
Classification: Trial # 02

getCorpus()

makeGrams()

getGramDistrib
cosineSim()

getCosineSimilarity()

Genre Classification.
 Trial # 03 with Genres: Lost
World, Crime, Non-fiction
Psychology, Horror using Cosine
Similarity Measure [4].

GUI display of the Genre
Classification: Trial # 03

1i. getCorpus()

makeGrams()

getGramDistrib
cosineSim()

getCosineSimilarity()

Developing Profiles for each of
the different authors given in
Table 2 of the assignment using
Cosine Similarity Measure [4].

GUI display of the Profile
Similarity between Authors.

Table 2. Descriptions of the series of programs coded to generate the results for this assignment.

7

3. Algorithm

This section discusses the algorithms developed for solving each of the problems.

Algorithm 3.1: Straightforward Monkey Problem/ First-Order Monkey Problem

1 Initialize a character array which will hold the results of the simulation – result
2 Set the length of array equal to iteration
3 For every iteration -> i
4 Generate a random number between 1 and the total number of elements in

Language (L) -> randi
5 Use the randi to index a random letter from L
6 Append to the character array - result

Algorithm 3.1 for Problem 1a requires us to simulate the straightforward monkey problem
using the allowed characters declared in set L. Number of iterations used was 100000 for the
generation of meaningful estimate of the yield of words.

The typed characters were then compared with the 'dictionary.txt' to determine the
meaningful words generated within the string. The program outputs only unique words and
also outputs words with the highest length among the generated words list.

The same above algorithm, Algorithm 3.1, was used again for Problem 1b, to simulate the first-
order monkey problem using the character distribution illustrated in Table 1 of the assignment
question (which illustrates the 35,224 character distribution from Hamlet Act III). Hamlet Act III
was used as the corpus this time and hence, the typed characters were compared with the
Hamlet corpus itself to determine the meaningful words generated within the string.

We simulated the first-order monkey problem on other corpora too. Character distribution

used was those in L. The typed characters were then compared with the corpus itself to
determine the meaningful words generated within the string.

Algorithm 3.2.1: Second-Order Correlation Matrix
1 Set the length of the matrix according to the length of language L

matrix(length(L), length(L))
2 For every letter in the language -> i
3 For every letter in the language -> j
4 Generate string to be searched [L(i) L(j)]
5 Search through result to get the number of occurrences of search

 string -> occurrences
 6 Store the occurrences in matrix(i, j)

8

Algorithm 3.2.2: Second-Order Typewriters
1 Define cell array of Typewriters
2 For every element in the Second-Order Correlation Matrix -> i
3 For every element in the Second-Order Correlation Matrix -> j
4 Get frequency of string: freq -> matrix(i,j)
5 Create vector, charGen of length freq which contains the letter being
6 evaluated-> L(j)
7 Append charGen to the ith typewriter’s distribution

Algorithm 3.2.3: Second-Order Monkey Problem
1 Randomly select a Typewriter(i) for the monkey to start
2 Set a result string which will hold the simulation results
3 For every new character in result
4 Get distribution of Typewriter(i) keys -> distrib
5 If the distrib is empty, randomly select another keyboard

and keep selecting until distrib is not empty
6 Pick random letter from this distribution
7 Append to result

8 Locate which Typewriter this key belonged to

Algorithm 3.2.1 – Algorithm 3.2.3 simulates the second-order monkey problem for Problem 1c.
Algorithm 3.2.1 illustrates how to build the second-order correlation matrix based on which the
second-order Typewriters were built, as shown by Algorithm 3.2.2. Now the number of total

Typewriters generated will be N2, where N is the number of characters in Language L. The
second-order Typewriters were then used to simulate the second-order monkey problem as
illustrated by Algorithm 3.2.3.

As corpus, the three Bronte novels were merged and character distribution used was those in L. In

addition to the merged Bronte novels, many other corpora were used to observe the results generated
by the second-order monkey problem. The typed characters were then compared with the corpus itself
to determine the meaningful words generated within the string.

Algorithm 3.3.1: Third-Order Correlation Matrix
1 Set the length of the matrix according to the length of language L

matrix(length(L), length(L))
2 For every letter in the language -> i
3 For every letter in the language -> j
4 For every letter in the language -> k
5 Generate string to be searched [L(i) L(j) L(k)]
6 Search through result to get the number of occurrences of search

 string -> occurrences
 7 Store the occurrences in matrix

9

Algorithm 3.3.2: Third-Order Typewriters
1 Define cell array of Typewriters
2 For every element in Language L-> i
3 Generate a set of all typewriters for each letter using the Second-Order Typewriters

 resulting to (length(L))3 Typewriters in total

Algorithm 3.3.3: Third-Order Monkey Problem

1 Randomly select a Typewriter(i) as the first letter index for the monkey to start
2 Randomly select a Typewriter(j) for the second letter index
3 Set a result string which will hold the simulation results
4 For every new character in result
5 Get distribution of Typewriter(i,j) key -> distrib
6 If the distrib is empty, randomly select another keyboard

and keep selecting until distrib is not empty
7 Pick random letter from this distribution -> k
8 Append to result

9 Set i = j

10 Set j = k

Algorithm 3.3.1 – Algorithm 3.3.3 simulates the third-order monkey problem for Problem 1c.
Algorithm 3.3.1 illustrates how to build the third-order correlation matrix based on which the
third-order Typewriters were built, as shown by Algorithm 3.3.2. There is an extra dimension to
the third-order correlation matrix as it is now 3-Dimensional. The added dimension, k, means
that to compute the correlation matrix, the amount of times i is followed by j is followed by k
must be computed.

We have reused the Second-Order Typewriters in order to build the Third-Order Typewriters for
efficiency of the program. Now the number of total Typewriters generated will be N3, where N
is the number of characters in Language L. The third-order Typewriters were then used to
simulate the third-order monkey problem as illustrated by Algorithm 3.3.3.

From the Algorithms for Second-Order and Third-Order Monkey problem, we can clearly see
that the number of Typewriters for each order will increase with each order in the following
pattern: NORDER [3].

Out of curiosity we also implemented the Fourth-Order and Fifth-Order Monkey simulations.
From the previous Algorithm sets 3.2 and 3.3, it can be seen that the dimension of the matrix
increase by order. Also we reuse Third-Order Typewriter to generate Fourth-Order Typewriter,
Fourth-Order Typewriter to generate Fifth-Order Typewriter and so on. Algorithm sets of 3.4
and 3.5 of Fourth-Order & Fifth-Order Simulation respectively illustrate this concept of reusing
function.

10

Algorithm 3.4.1: Fourth-Order Correlation Matrix
1 Set the length of the matrix according to the length of language L

matrix(length(L), length(L))
2 For every letter in the language -> i
3 For every letter in the language -> j
4 For every letter in the language -> k
5 For every letter in the language -> l
6 Generate string to be searched [L(i) L(j) L(k) L(l)]
7 Search through result to get the number of occurrences of

 search string -> occurrences
 8 Store the occurrences in matrix

Algorithm 3.4.2: Fourth-Order Typewriters
1 Define cell array of Typewriters
2 For every element in Language L-> i
3 Generate a set of all typewriters for each letter using the Third-Order Typewriters

 resulting to (length(L))4 Typewriters in total

Algorithm 3.4.3: Fourth-Order Monkey Problem

1 Randomly select a Typewriter(i) as the first letter index for the monkey to start
2 Randomly select a Typewriter(j) for the second letter index
3 Randomly select a Typewriter(k) for the third letter index
4 Set a result string which will hold the simulation results
5 For every new character in result
6 Get distribution of Typewriter(i,j,k) key -> distrib
7 If the distrib is empty, randomly select another keyboard

and keep selecting until distrib is not empty
8 Pick random letter from this distribution -> l
9 Append to result

10 Set i = j

11 Set j = k

12 Set k = l

11

Algorithm 3.5.1: Fifth-Order Correlation Matrix
1 Set the length of the matrix according to the length of language L

matrix(length(L), length(L))
2 For every letter in the language -> i
3 For every letter in the language -> j
4 For every letter in the language -> k
5 For every letter in the language -> l
6 For every letter in the language -> m
7 Generate string to be searched [L(i) L(j) L(k) L(l)L(m)]
8 Search through result to get the number of occurrences

of search string -> occurrences
 9 Store the occurrences in matrix

Algorithm 3.5.2: Fifth-Order Typewriters
1 Define cell array of Typewriters
2 For every element in Language L-> i
3 Generate a set of all typewriters for each letter using the Fourth-Order Typewriters

 resulting to (length(L))5 Typewriters in total

Algorithm 3.5.3: Fifth-Order Monkey Problem

1 Randomly select a Typewriter(i) as the first letter index for the monkey to start
2 Randomly select a Typewriter(j) for the second letter index
3 Randomly select a Typewriter(k) for the third letter index
4 Randomly select a Typewriter(l) for the fourth letter index
5 Set a result string which will hold the simulation results
6 For every new character in result
7 Get distribution of Typewriter(i,j,k,l) key -> distrib
8 If the distrib is empty, randomly select another keyboard

and keep selecting until distrib is not empty
9 Pick random letter from this distribution -> m
10 Append to result

11 Set i = j

12 Set j = k

13 Set k = l

14 Set l = m

For Problems 1d and 1e we reuse the Algorithm sets of 3.2 and 3.3.

12

Algorithm 3.6: Most Probable Digraph Path
1 Select and store the letter we want to start with -> i
2 Declare the result string variable path
3 For every letter in the Language L
4 Append the new letter to path
5 Go to the ith row of the Second-Order Correlation Matrix
6 Find the maximum value in this row which is not already in path
7 If this row has all zeros
8 then break out of the loop, END
9 Else if the row is not empty

10 this column value is the new i

Algorithm 3.6 illustrates the algorithm for computing the most probable digraph path. The most
probable digraph path can be used for the purpose of language identification, since the algorithm seeks
to find the most probable single occurrence of a letter within the Second-Order Correlation Matrix.

Algorithm 3.7: Author Attribution - Correlation Matrix
1 Initialize an n by n result matrix -> authorCorpus
2 For every corpus in the list -> i
3 For every other corpus in the list-> j
4 If i = j (if same corpus being compared to itself)
5 Compare corpus to different corpus (i vs i + number of Authors)
6 Else if i != j
7 Compare corpus regularly (i vs j)
8 Store result in matrix authorCorpus
9 Normalize authorCorpus by largest value in authorCorpus

Algorithm 3.7 illustrates the algorithm for determining Author Attribution as part of solving
Problem 1g. We designed three experiments for this problem and Algorithm 3.7 shows the
algorithm for Experiment No. 1, which is based on the the Book Algorithm (Bennett Chapter-4,
Equation# 15, Page 127) [3].

We selected two corpuses for each other author for this experiment, which explains Line 4 in
Algorithm 3.7. We didn’t want the same corpus to be compared with itself. Instead we wanted
each corpus to compare with every other corpus (which includes the second corpus by the
same author and also to other corpus by other authors). We followed this strategy in order to
see whether we can determine each author, since the authorCorpus is supposed to give the
highest value for cases when we are comparing two corpora by the same author rather than
one corpus from one author and the second one from a different author. Details of the results
generated from this experiment is discussed in more details in our next Section (4. Result &
Analysis).

13

Algorithm 3.8: Make Grams
1 Generate number of grams based on N -> numGrams = (length of String – N) + 1
2 For every gram -> i
3 Take substring of input string by starting at index i and going to index i + (N-1)
4 Store gram in an array -> grams{numGrams}
5 Filter out every non-unique gram -> unique(grams)

Algorithm 3.9: Get Gram Distribution

1 For every gram -> g
2 Find the total number of occurrences of this gram in the original string-> occurences
3 Get the frequency distribution of the occurrences

 -> occurences/length (grams{numGrams})
4 Sort by descending order

For our next two experiments for determining Author Attribution of Problem 1g, we require N-
gram analysis. Algorithms 3.8 and 3.9 show how to generate the grams and how to determine
the distribution of each gram respectively.

N-Gram analysis involves taking an input string, breaking down the strings into small blocks
called grams, and then generating a profile of the grams which occur most in the original string.
For generating the profile, we need to count the number of occurrences of the different grams
and then determine their frequency distribution.

Algorithm 3.10: Author Attribution - Cosine Similarity Measure
1 Initialize an n by n result matrix -> cosineSimilarity
2 For every corpus in the list -> i
3 For every other corpus in the list-> j
4 If i = j (if same corpus being compared to itself)
5 Compare corpus to different corpus (i vs i + number of Authors)
6 Compute the cosineSim
7 Else if i != j
8 Compute the cosineSim
9 Store result in matrix cosineSimilarity

Algorithm 3.11: Author Attribution- Profile Dissimilarity Measure
1 Initialize an n by n result matrix -> profileDissimilarity
2 For every corpus in the list -> i
3 For every other corpus in the list-> j
4 If i = j (if same corpus being compared to itself)
5 Compare corpus to different corpus (i vs i + number of Authors)
6 Compute the profileDissimilarityMeasure
7 Else if i != j
8 Compute the profileDissimilarityMeasure
9 Store result in matrix profileDissimilarity

14

Now that we have N-grams generated along with their frequency distribution (Algorithms 3.8
and 3.9), we can implement our remaining two experiments: Experiment No. 2: Author
Attribution Cosine Similarity Measure [4] and Experiment No. 3: Author Attribution Profile
Dissimilarity Measure [5]. Both these experiments are based on N-grams analysis. Algorithms
3.10 and 3.11 illustrates Experiments No. 2 and respectively. The same approach of comparing
two corpora from same author and not comparing the same corpus with itself (as seen in
Algorithm 3.7) is considered here. In our next section we will discuss in details about the
cosineSim function and profileDissimilarity measure.

For Problem 1h we reuse the Algorithms 3.7 and 3.10.

For Problem 1i we reuse the Algorithm 3.10 with a very small modification. We don’t
implement the approach of not comparing the same corpus to itself (as shown in Line 4). Why
we made this modification-we will discuss it in our Result and Analysis Section.

15

4. Results & Analysis

This section of our report discusses and analyzes the results generated for solving Problems 1a
to 1i.

4.1. Results: Problems 1a-1c

We discuss the results generated for Problems 1a to 1c in this sub-section. Since Problems 1a to
1c involved simulations of straightforward, first-order, second-order and so on, we decided to
discuss their results in one section. This will enable us to give a better comparison between the
results generated for each simulation.

Problem 1a (illustrated in Algorithm 3.1) simulates the straightforward monkey problem using

the allowed characters declared in set L. Our set L had forty characters as mentioned in the
beginning of Section 2. Number of iterations used was 100000 for the generation of
meaningful estimate of the yield of words. The typed characters were then compared with the
'dictionary.txt' to determine the meaningful words generated within the string. The
total number of words in 'dictionary.txt' was 79,772. While determining the
meaningful words generated from the scribble by the monkey, we counted the unique words
generated and discarded the duplicates. From this count of unique words we calculated our
percentage yield of valid words using the following:

Total % Yield of Valid Words: (countWords/countDictionaryWords)*100)

Figure 1 illustrates the result generated for Problem 1a. The number of valid words generated
was 681; percentage yield of valid words was 0.85%. A few of the longest word generated were:
debar, ducks, gully, uncap.

Number of Unique Valid Words found: 681
Number of Words in the Dictionary: 79772
Total % Yield of Valid Words: 0.85%

Words with highest length: debar, ducks, gully, uncap

Figure 1. Sample result generated for Problem 1a simulating the Straightforward Monkey Problem.

Problem 1b (illustrated in Algorithm 3.1) simulates the First-Order Monkey problem on Hamlet
Act III corpus, using the character distribution illustrated in Table 1 of the assignment question.
The typed characters were then compared with the Hamlet corpus itself to determine the
meaningful words generated within the string. The total number of words in the Hamlet Act III
is 7622. The number of valid words generated was 193; percentage yield of valid words was
2.53%; length of the longest word was 5. A few of the longest word generated were: bosom,
fears, moons, sweat.

We simulated the first-order monkey problem on other corpora. Character distribution used

was those in L. The typed characters were then compared with each corpus itself to

16

determine the meaningful words generated within the string. We noticed that the longest word
generated for all the corpora was 5.

Problem 1c simulates the Second-Order and the Third-Order simulations. However, out of
curiosity we also implemented the Fourth-Order and Fifth-Order simulations. The Algorithm
sets of 3.2 to 3.5 illustrate these simulation procedures. We implemented from the First-Order
till the Fourth-Order simulations on the Hamlet Act III corpus, merged Bronte novels and six
more corpora (Table 3 and Figure 2). However, for the Fifth-Order simulation we selected only
two corpora: Hamlet Act III and Legend of Sleepy Hollow (Table 4 and Figure 3).

In both the tables (Table 3 and 4) and figures (Figures 2 and 3), we see a considerable increase
in percentage yield of words as we progressed from the First-Order to Fifth-Order simulation.
This observation was consistent for all the corpora. However, for the merged Bronte corpus,
despite there was an increase all the time, but the percentage increase was less in all the orders
compared to other corpora. One reason maybe because the merged Bronte novel was bigger in
size compared to other corpora with a total of 368202 words. Since the monkey was allowed to
type up to 100000 characters only, the number of unique valid words generated will be quite
small compared to the huge size of this merged corpus.

Hamlet

Tale of 2
Cities Bronte

Alice in
Wonderland

Christmas
Carol

Legend of
Sleepy
Hollow

Metamor
phosis

The Time
Machine

1st
Order 2.53% 0.25% 0.15% 0.68% 0.82% 1.28% 0.77% 0.56%

2nd
Order 5.29% 0.66% 0.39% 1.94% 2.23% 3.64% 1.91% 1.8%

3rd
Order 9.01% 1.06% 0.56% 3.33% 3.5% 5.5% 3.32% 2.68%

4th
Order 17.02% 1.85% 0.94% 6.52% 6.53% 11.59% 6.65% 5.24%

Table 3. Percentage yield of valid words for First-Order to Fourth-Order simulation of 8 corpora

Table 4. Percentage yield of valid words for First-Order
to Fifth-Order simulation of 2 corpora

Hamlet Legend of Sleepy Hollow

1st Order 2.53% 1.28%

2nd Order 5.29% 3.64%

3rd Order 9.01% 5.5%

4th Order 17.02% 11.59%

5th Order 25.85% 20.14%

17

Figure 2. This figure shows the graphical representation of Table 3. It shows the increase in the
percentage of word yields as we go from the First-Order to the Fourth-Order simulation for 8 corpora.

Figure 3. This figure shows the graphical representation of Table 4. It shows the increase in the
percentage of word yields as we go from the First-Order to the Fifth-Order simulation for 2 corpora.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

%
 Y

ie
ld

 o
f

V
al

id
 W

o
rd

s

1st Order

2nd Order

3rd Order

4th Order

0.00

5.00

10.00

15.00

20.00

25.00

30.00

Hamlet Legend of Sleepy Hollow

%
 Y

ie
ld

 o
f

V
al

id
 W

o
rd

s

1st Order

2nd Order

3rd Order

4th Order

5th Order

18

The other thing we observed was in the length of the valid words generated. As the order
increased, so did the length of the words. Table 5 illustrates this observation. By the time we
reached Fifth-Order, the Monkey was typing short meaningful phrases like:

‘the perplexible luxuriously atmosphere’

‘his gathered afternoons of justice’

‘the circle of the devil into a henroost’

‘but the king and these pictures are of love’

Table 5. Increase in the length of the valid words
generated as the order of simulation increased

4.2. Results: Problem 1d

For Problem 1d we investigate the effects of resolution on monkey literacy. In order to achieve
this, we coded a program which would divide/multiply all the entries in the Correlation Matrix
by a constant factor. Since the Typewriters were generated from the Correlation Matrices,
dividing/multiplying each entries of the Correlation Matrix would reduce the number of keys on
the typewriter. In this way, the probabilities do not get affected since we were simply scaling
the probabilities by a constant factor. What makes things interesting however, when scaling
down the probabilities and rounding off the individual elements of the Correlation Matrix, the
least probable frequencies began to go to zero. Our intuition was that, since these probabilities
go to zero, the chances of making a word with the other more probable letter sets were higher,
and thus the word yield might improve, although the word variation would decrease since the
monkeys would get quite repetitive.

In order to see whether our intuition was correct, we applied the resolution factor on Second-
Order Correlation Matrix and Third-Order Correlation Matrix. The corpus used was “Legend of
Sleepy Hollow”. Table 6 and its corresponding graphical representation in Figure 4 illustrate the
effect of resolution by various factors on the Second-Order Correlation Matrix. Similarly, Table
7 and its corresponding graphical representation in Figure 5 illustrate the effect of resolution on
the Third-Order Correlation Matrix.

Length of Words Example of words

1st Order 5 their

2nd Order 7 touches

3rd Order 9 mentioned

4th Order 12 schoolmaster

5th Order 16 promise-crammed:

19

Resolution Factor 2nd Order Factorized 2nd Order

0.9 3.64% 3.87%

0.5 3.64% 3.65%

0.1 3.64% 3.72%

0.05 3.64% 3.47%

0.01 3.64% 2.36%

0.005 3.64% 1.07%

0.001 3.64% 0.03%

Table 6. Effect of resolution on the Second-Order Correlation Matrix
and its corresponding percentage word yield

Figure 4. This figure shows the graphical representation of Table 6. As the resolution factor decreased, in
the beginning there was a slight increase in the percentage word yield. But with decrease in the
resolution factor, the word yield decreased drastically and came close to zero.

Resolution Factor 3rd Order Factorized 3rd Order

0.9 5.5% 5.63%

0.5 5.5% 5.66%

0.1 5.5% 3.76%

0.05 5.5% 2.28%

0.01 5.5% 0.32%

0.005 5.5% 0.18%

Table 7. Effect of resolution on the Third-Order Correlation Matrix
and its corresponding percentage word yield

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.9 0.5 0.1 0.05 0.01 0.0050.001

%
 Y

ie
ld

 o
f

V
al

id
 W

o
rd

s

Resolution Factor

Factorized 2nd
Order

2nd Order

20

Figure 5. This figure shows the graphical representation of Table 7. As the resolution factor decreased, in
the beginning there was a very minute increase in the percentage word yield, almost equal to that of the
original simulation. But with decrease in the resolution factor, it decreased drastically and came close to
zero. The rate of reduction in the percentage word yield observed for the Third-Order Simulation was
higher compared to the Second-Order Simulation (Figure 4).

From Tables 6 and 7 and Figures 4 and 5, we can see that in the beginning there was increase in
word yield for the Second-Order Simulation and very minute increase for the Third-Order. But
as the resolution factor was reduced the word yield started decreasing. The rate of decrease
observed for Third-Order was more drastic compared to the Second-Order simulation.

This can be explained by the fact that the scaling of the matrices is putting lots of zeros into the
altered correlation matrix, and only the most dominating letters are being picked, such as
“space”. Each simulation algorithm has a property in which if a particular typewriter has got an
empty character set, the monkey randomly reaches for typewriters until a valid typewriter is
found. This randomness, added with the fact that there are lots of typewriters for which there
are empty distributions, explain why the word yield drops when the correlation matrices are so
sparse.

4.3. Results: Problem 1e

Functions to compute Correlation Matrices have been used in previous problems. We have
implemented GUI display for this part of our problem. When the program for Problem 1e is
executed, GUI display of First-Order Correlation Matrix and Second-Order Correlation Matrix
will be displayed.

0

1

2

3

4

5

6

0.9 0.5 0.1 0.05 0.01 0.005

%
 Y

ie
ld

 o
f

V
al

id
 W

o
rd

s

Resolution Factor

Factorized 3rd Order

3rd Order

21

a b c d e f g h i j

4292 919 1336 2463 6360 1324 1233 3698 3517 61

k l m n o p q r s t

419 2193 1205 3659 4163 991 67 3197 3495 4645

 u v w x y z , . ; :

1424 526 1222 47 850 30 1020 310 173 4

 ? ! () - ‘ “ @ # space

6 18 1 1 131 36 36 0 0 11729

Figure 6. First-Order Correlation Matrix of the corpus “Legend of Sleepy Hollow”

Figure 7. Partial screenshot of the GUI Display of Second-Order Correlation Matrix

 of the corpus “Legend of Sleepy Hollow”.

22

4.4. Results: Problem 1f

Problem 1f (illustrated in Algorithm 3.6) generates the most probable digraph path using the
Book algorithm [3] with the Second-Order Correlation Matrix.

Author Title Most Probable Digraph Path

Irving Legend of Sleepy Hollow the andisofrylupkbjacqugmrvu

Poe Gold Bug (From Book) the andisouryplf’bj

Figure 8. Comparison of the digraph paths between Irving (Legend of Sleepy Hollow)
and Poe (The Gold Bug).

Figure 8 shows the comparison of the digraph paths generated from the “Legend of Sleepy
Hollow” by Irving and “The Gold Bug” by Poe. We see that the first 10 characters are identical
and both have the common words: “the”, “and”, “is”, “so”, which is the same case for most
English authors (see Figure 9). As the Book [3] mentioned on page 130, stylistic differences
begins after the 6th letter. But in the above case Irving’s digraph path starts differing from Poe
on the 11th character by using “fry” instead of “our”.

Figure 9 shows the most probable digraph paths generated for all corpora provided in the list. It
can be seen that different corpus by the same author have very similar digraph paths. This can
be used as a key for performing author attribution. The only digraph path which does not start
with “the and” is from the Adventures of Huckleberry Finn by Twain. One probable reason can be

because it is written in Southern Vernacular rather than standard English.

We gave implemented GUI display to generate the output for this problem.

23

Author Title Most Probable Digraph Path

Wells The Time Machine the andisofrycklugmpwbjavr'k

Wells War of The Worlds the andisofrylupmbjigwckcqu'

Cleland Fanny Hill the andisofrympluckwg'ypbjav

Irving Legend of Sleepy Hollow the andisofrylupkbjacqugmrvu

Buroughs Warlord of Mars the andisorulympwf'lv bjugyc

Machiavelli The Prince the andisoryblfuckw'wkompfsg

Buroughs Tarzan of the Apes the andisorzlypugmbjeckwf'vu

Buroughs The People that Time Forgot the andisoulyprmbjickfwyg'vy

Buroughs The Land that Time Forgot the andisourmylf'ckwyp'v bjr

Twain A Connecticut Yankee in King Arthur ‘s Court the andisouryblfg'v'mpkwjztc

Haggard King Solomon’s Mines the andisoury'cklfpmbjigwcqu

Doyle The Lost World the andisourylf'v wbjickgmpn

Bronte E Wuthering Heights the andisoury'lfngmpwkbjavrc

Bronte C Jane Eyre the andisourymplf'ckwbjigdv'

Doyle Tales of Terror and Mystery the andourisplymbjackw'v f'g

Bronte A Agnes Grey the andisoury'wlfspmbjackug'

Carroll Through the Looking Glass the andoulicrspy'wkfsmbj gtm

Kipling The Jungle Book the andoulispry'mbjigwfwkrcq

Kafka Metamorphosis the andoulyispr'mbvug'ckfcqu

Kafka The Trial the andoulysimprkfcqug'vubja

Twain The Adventures of Tom Sawyer the andourisplybjim'vuckf'ww

Doyle The Hound of the Baskervilles the andourisplymbjackfw'vugz

Dickens Tale of Two Cities the andourisplyvugmbjickf'wt

Doyle The Adventures of Sherlock Holmes the andourisply'ckfgmbjavrw'

Carroll Alice’s Adventures in Wonderland the andouryplickswfy'mbjcsqu

Dickens Christmas Carol the andouscrimy'lfybjig'pkwu

Twain Adventures of Huckleberry Finn t andoulerishyb'mpwfbjygfyck

Figure 9. The most probable digraph paths generated for all corpora provided in the list

24

4.4. Results: Problem 1g

For this Problem we designed three experiments to perform author attribution.

Experiment No. 1: Standard English Matrix

This experiment was based on the algorithm described in the Book [3], equation 15 page 127.
Algorithm 3.7 shows how this experiment was implemented.

We used the following equation taken from the Book (equation 15, page 127) [3] to perform
author attribution:

 ∑ [() ()]

 [() ()]

In the above equation, () and ()are Second-Order Correlation Matrices. () is the
“standard English” matrix, which can be computed by averaging the correlation matrices of all
the corpora to be investigated to get an estimation on their average frequency distributions.
This final matrix is then compared to the M and N matrices, which are correlation matrices of
different authors.

For our experiment we selected six authors and for each author we had two corpora. Table 8
illustrates the Authors and their respective books used for this experiment. The table also
shows the ordering for the data structure.

Author Book

Lewis Carrol Alice’s Adventures in Wonderland

Edgar Rice Burroughs Tarzan of the Apes

Charles Dickens A Christmas Carol

Sir Arthur Conan Doyle The Adventures of Sherlock Holmes

H G Wells War of the Worlds

Edgar Rice Burroughs The People that Time Forgot

Lewis Carrol Through the Looking Glass

Edgar Rice Burroughs Warlord of Mars

Charles Dickens Tale of Two Cities

Sir Arthur Conan Doyle The Lost World

H G Wells The Time Machine

Edgar Rice Burroughs The Land that Time Forgot

Table 8. Six Authors and their 12 books forming the data structure for Experiment No. 1

25

Now the idea of this experiment was to generate an n by n matrix where n is the number of
authors, thus comparing one author to every other author. The values at the diagonal of the
matrix should be the highest, since when () and () are similar or equal, will take on
the largest positive value [3]. However, if we compare the same author with himself with the
exact same corpus, then the diagonal values will be highly biased and will not fulfill the
requirement for designing the author attribution. Hence, we decided to select two different
corpora by the same author (Table 8).

In the first few trials of this experiment, the results were inconsistent as can been seen by
Figure 10. It was found that the corpus, which were smaller in size were dominating the matrix,
and the values at the diagonals were not the highest. This made sense, because the “standard
English” matrix, was a direct function of the correlation matrices, which are a direct function
of the corpus themselves. If the corpus themselves are not consistently in the same size, the
“standard English” matrix is inherently biased towards some authors. As such, we decided to
modify our experiment to include a parameter called limit. This parameter equalized the total
length of characters in the corpus before generating the correlation matrix. After this method
was put into place, the algorithm began to give the intended results, as seen in Figure 10. The
diagonal values in Figure 10 (bold and highlighted in red) are the highest value and indicates
Author Attribution. For instance, since Lewis Carroll is the author for both the corpus: Alice’s
Adventures in Wonderland and Through the Looking Glass, it yields the highest value in the
diagonal, illustrating high similarity between the two.

Through the
looking glass

Warlord of
Mars

Tale of Two
Cities

The Lost
World

The Time
Machine

The Land That
Time Forgot

Alice Adventures in
Wonderland

1 -0.2344 -0.0928 -0.1088 -0.2886 -0.2279

Tarzan of the Apes -0.2346 0.1865 -0.0518 -0.1419 0.1172 0.0977

Christmas Carol -0.0904 -0.053 0.1664 0.0982 -0.0527 -0.1156

Sherlock Holmes -0.1084 -0.1417 0.0956 0.1702 -0.0991 -0.0124

War of the Worlds -0.289 0.1172 -0.0494 -0.0991 0.1663 0.0514

The People That Time
Forgot

-0.2276 0.0983 -0.1196 -0.0126 0.0518 0.1395

Figure 10. Author Attribution result using the “standard English” matrix [3].

We must add that, even though this experiment yields a good result but it is not definitive
because of the normalization technique used. Since our normalization technique was a lossy
one, particularly when comparing large size corpus to small size corpus, we always stand the
chance of not capturing the overall essence of the larger corpus.

26

Experiment No. 2: Cosine Similarity Measure

For our second experiment we implement the Cosine Similarity Measure function (illustrated by
Algorithm 3.10). The Cosine Similarity Measure implements the following equation: [4]

where A and B are usually the term frequency vectors of the documents.

For this experiment we required N-gram analysis to determine N-gram distribution or the term
frequency vector needed to compute the Cosine Similarity Measure. Algorithms 3.8 and 3.9
illustrate how to generate the N-grams and the distribution or frequency of the N-grams. The
same set of authors and their corpus were used as was used in Experiment 01. The same
technique to avoid the comparison between the same corpora of the same author was
incorporated for this experiment too.

Through the
looking glass

Warlord
of Mars

Tale of
Two Cities

The Lost
World

The Time
Machine

The Land That
Time Forgot

Alice Adventures
in Wonderland 0.9989 0.9956 0.9968 0.9975 0.9901 0.9965

Tarzan of the Apes 0.9956 0.9968 0.9918 0.9892 0.9961 0.9958

Christmas Carol 0.9968 0.9918 0.9991 0.9978 0.9893 0.9971

Sherlock Holmes 0.9975 0.9892 0.9978 0.9976 0.9843 0.9942

War of the Worlds 0.9901 0.9961 0.9893 0.9843 0.9974 0.9964

The People That
Time Forgot 0.9965 0.9958 0.9971 0.9942 0.9964 0.9995

Figure 11. Cosine Similarity Measure using N = 3 and L = 3000

Through the
looking glass

Warlord
of Mars

Tale of
Two Cities

The Lost
World

The Time
Machine

The Land That
Time Forgot

Alice Adventures
in Wonderland 0.9979 0.9923 0.9968 0.9985 0.9825 0.9946

Tarzan of the Apes 0.9923 0.9977 0.9897 0.9882 0.9949 0.9963

Christmas Carol 0.9968 0.9897 0.9980 0.9962 0.9819 0.9958

Sherlock Holmes 0.9985 0.9882 0.9962 0.9961 0.9780 0.9925

War of the Worlds 0.9825 0.9949 0.9819 0.9780 0.9972 0.9937

The People That
Time Forgot 0.9946 0.9963 0.9958 0.9925 0.9937 0.9992

Figure 12. Cosine Similarity Measure using N = 4 and L = 3000

27

Through the
looking glass

Warlord
of Mars

Tale of
Two Cities

The Lost
World

The Time
Machine

The Land That
Time Forgot

Alice Adventures
in Wonderland 0.9975 0.9899 0.9944 0.9974 0.9820 0.9924

Tarzan of the Apes 0.9899 0.9973 0.9870 0.9917 0.9961 0.9947

Christmas Carol 0.9944 0.9870 0.9963 0.9953 0.9827 0.9956

Sherlock Holmes 0.9974 0.9917 0.9953 0.9980 0.9854 0.9958

War of the Worlds 0.9820 0.9961 0.9827 0.9854 0.9974 0.9939

The People That
Time Forgot 0.9924 0.9947 0.9956 0.9958 0.9939 0.9987

Figure 13. Cosine Similarity Measure using N = 5 and L = 3000

Figures 11, 12, and 13 illustrates the results generated using the Cosine Similarity Measure for
various values of N and L. We can see that with N = 3 and N= 4 and L = 3000 for both cases, we
get a moderate result; that is, there are high values along the diagonal for most of the authors
(5 out of 6 as shown in Figure 11 and 4 out of 6 as shown in Figure 12). One thing to observe is
that the experiment fails when applied between the corpora: “The Adventures of Sherlock
Holmes” and “The Lost World”. One reason maybe because even though these two corpora are
by the same author but they belong to two extremely different genres. “The Adventures of
Sherlock Holmes” belongs to crime, detective, and fiction while “The Lost World” belongs to
Scientific romance and Lost World genre. However, we discuss in more details about genre
classification in Problem 1h.

For N = 5, L = 3000 (Figure 13), the result was appropriate since all the high values were along
the diagonal.

Experiment No. 3: Profile Dissimilarity Measure

For our third experiment we implement the Profile Dissimilarity Measure function (illustrated
by Algorithm 3.11). The Profile Dissimilarity Measure implements the following equation [5]:

 ∑(
((() ())

(() ())
)

We use the same N-grams and their corresponding distributions that were used for Experiment

No. 2. For this experiment we implement the N-grams and their distribution on the above

equation. One thing to note is that for this experiment we are looking for small values along the

28

diagonal, that is, the smaller the value the more similar the corpus is to the other corpus. The

same 6 authors and their 12 corpora were used for this experiment.

Through the
looking glass

Warlord
of Mars

Tale of
Two Cities

The Lost
World

The Time
Machine

The Land That
Time Forgot

Alice Adventures
in Wonderland 0.0094 5.7647 0.1064 4.1293 3.3499 0.9467

Tarzan of the Apes 5.7647 0.4290 6.3372 0.2592 0.5556 2.6346

Christmas Carol 0.1064 6.3372 8.1290 4.6507 3.8304 1.1992

Sherlock Holmes 4.1293 0.2592 4.6507 0.3593 0.0739 1.4017

War of the Worlds 3.3499 0.5556 3.8304 0.0739 1.8277 0.9036

The People That
Time Forgot 0.9467 2.6346 1.1992 1.4017 0.9036 0.0337

Figure 14. Profile Dissimilarity Measure using N = 3 and L = 3000

Figure 14 shows the results generated by the Profile Dissimilarity Measure. We saw that out of
6, this technique gave accurate answers for two sets of corpus. The remaining 4 are incorrect.
Hence, Profile Dissimilarity Measure performed poorly in determining author attribution
profile. As a future work, we can investigate this experiment further to determine the cause of
such poor performance.

4.4. Results: Problem 1h

The target of this problem was to develop a metric based on what we have done so far to
classify the corpora, ex. As mystery, romance, action etc. So to solve this problem we used the
“standard English” matrix implementing the Book algorithm [3] and the Cosine Similarity
Measure. These two techniques were selected because for our previous problem, we received
satisfactory results from them. Now for this problem, we did it in three trials.

Trial No. 1 with Genres: Lost World, Fantasy, Romance

For this trial we used the Book algorithm [3]. We went through the corpus list and classified
them based on their genres. We also downloaded some additional books from Project
Gutenberg [2]. After some analysis, the following books and genres were selected to for this
trial. Please note that for solving Problem 1h, we aimed to select unique corpus, that one
corpus by one author and no two corpora from a single author. This was important because
books written by the same author in the same genre might bias the genre classification.
However, while selecting books from the genre “romance”, we downloaded “Pride and
Prejudice” and “Sense and Sensibility” by Jane Austen [2] to see the effect of selecting at least
one pair of corpus by the same author. The list of the corpus, their corresponding genre and
author are listed in Table 9. The result for this trial is illustrated in Figure 15.

29

Book Author Genre

The Land That Time Forgot Edgar Rice Burroughs Lost World

King Solomon’s Mines H. Ryder Haggard Lost World

The Lost World Sir Arthur Conan Doyle Lost World

The Moon Pool Abraham Merrit Lost World

Alice’s Adventure in Wonderland Lewis Carrol Fantasy

A Christmas Carol Charles Dickens Fantasy

Adventures of Huckleberry Finn Mark Twain Fantasy

Dorothy and the Wizard of Oz Frank Baum Fantasy

Jane Eyre Charlotte Bronte Romance

Pride and Prejudice Jane Austen Romance

Sense and Sensibility Jane Austen Romance

The Black moth Georgette Heyer Romance

Table 9. Selected books for Genre Classification for Trial No. 1

 Lost World Fantasy Romance

Lost World 0.4161 -1.7156 0.5015

Fantasy -1.7196 -0.8443 -2.7744

Romance 0.4973 -2.7717 0.3713

Figure 15. Results for Genre Classification for Trial No. 1

From Figure 15, we can see that the result we achieved was not very accurate. In fact, out of
the three genres, the correct result was generated for the genre “Fantasy”. Even after using
two corpora by the same author, Jane Austen for the genre “Roamnce”, the result we got was
incorrect. One reason maybe because all these books all these genres are very close to each
other and may even be sub genres of one another. Also, all three maybe part of the bigger
genre “Fiction”; hence, the inaccuracy. To see whether we still get inaccurate results we
downloaded some more books but this time they are diverse in terms of their genre
classification. This experiment is carried out in our Trial No. 2, discussed in our next section.

Trial No. 2 with Genres: Lost World, Crime, Non-fiction Psychology, Horror

Table 10 lists the books we used for this trial. Most of the books were downloaded from Project
Gutenberg [2]. We used the same Book algorithm [3] for this trial too. The result for this trial is
illustrated in Figure 16.

30

Book Author Genre

The Land That Time Forgot Edgar Rice Burroughs Lost World

King Solomon’s Mines H. Ryder Haggard Lost World

The Lost World Sir Arthur Conan Doyle Lost World

The Moon Pool Abraham Merrit Lost World

An African Millionaire Grant Allen Crime

A Thief in the Night Ernest William Hornung Crime

The Teeth of the Tiger Maurice Leblanc Crime

The Devil Doctor Sax Rohmer Crime

Dream’s Psychology Sigmund Freud Non-fiction Psychology

Psychotherapy Hugo Münsterberg Non-fiction Psychology

The Psychology of Revolution Gustave Le Bon Non-fiction Psychology

Unconscious Memory Samuel Butler Non-fiction Psychology

The Trial Franz Kafka Horror

The Beckoning Fair One Oliver Onions Horror

Dracula's Guest Bram Stoker Horror

The House of the Vampire George Sylvester Viereck Horror

Table 10. Selected books for Genre Classification for Trial No. 2

 Lost World Crime Non-Fiction Psychology Horror

Lost World 0.1131 0.0028 -0.3716 0.0466

Crime 0.0024 0.0464 -0.2504 -0.2201

Non-Fiction Psychology -0.3734 -0.2537 1 -0.7819

Horror 0.0496 -0.2148 -0.7851 0.062

Figure 16. Results for Genre Classification for Trial No. 2

From Figure 16 we can see that this trial generated perfect result with the largest values along
the diagonal. This is because the books we used for this trial were very diverse in terms of
genre from each other.

We wanted to see whether we get the same accurate result with another technique. Since
Cosine Similarity Measure gave us quite good results for our previous problems, we decided to
carry a Trial No. 3 with Cosine Similarity Measure.

31

Trial No. 3 with Genres: Lost World, Crime, Non-fiction Psychology, Horror using Cosine
Similarity Measure

The same technique of generating N-grams and their distribution was done before
implementing the Cosine Similarity Measure. Books listed in Table 10 were used for this trial.
Results generated are illustrated in Figure 17.

 Lost World Crime Non-Fiction Psychology Horror

Lost World 0.9967 0.9940 0.9955 0.9948

Crime 0.9940 0.9973 0.9904 0.9953

Non-Fiction Psychology 0.9955 0.9904 0.9971 0.9962

Horror 0.9948 0.9953 0.9962 0.9962

Figure 17. Results for Genre Classification for Trial No. 3 with N=3, L=3000

Results achieved for this trial is almost accurate except for the last classification, where the
genre “Horror” has equal large values with both “Horror” itself and also with the genre, “Non-
Fiction Psychology”. A possible reason may be because either these genres may have some
common terms or it may also be that the value generated for this particular genre may not be
accurate. We have already seen how the Cosine Similarity Measure was slightly inaccurate in
certain cases (Result Analysis of Problem 1g).

Can the classification scheme you designed help with author attribution?

The answer can be both Yes and No. We seemed pretty good results generated by both the
Book algorithm [3] and the Cosine Similarity Measure implementing N-gram analysis [4].
However, when the genres were overlapping with each other in terms of their type, we didn’t
have much accurate result. So we can use our classification scheme for genres that are quite
diverse from each other.

Can you say something about correlations among books written by the same author?

It’s an interesting point when doing genre classification with authors who have written in
multiple genres. Let us say an author writes both Fantasy and Non-Fiction books, and in the
comparison this author’s books are used. Does the author employ the same style in both
genres? Or does he change his writing style with genre? An interesting experiment, which can
be carried out as a future work will be to only include authors who have written books in
multiple genres and compare the results to see which bias is larger.

Can you say something about the similarity in the Bronte sisters?

This will be addressed in the next section.

GUI display has been implemented to output the results for Problem 1h.

32

4.5. Results: Problem 1i

We decided to perform the Cosine Similarity Measure for solving this problem, since the
requirement was to make profiles for each author. All the books were downloaded for each
author, and those authors with multiple books were merged into one document. N-gram
analysis was implemented on each of these merged documents to generate their N-grams and
the distributions resulting in the generation of profiles for each author. Cosine Similarity
Measure was then applied to these profiles. In the simulation, the algorithm was modified to
allow identical profiles to be compared at the diagonal. The reason for that is because multiple
profiles were not generated for the same author. The results generated are shown in Figure 18,
with the 3 most similar authors for each author highlighted in red.

Figure 18. Profile Generation of Authors using Cosine Similarity Measure. N= 3, L=3000

From the results generated in Figure 18, we saw that there was a high level of similarity
between all the authors, and considering that many of them wrote around the same time
period this was acceptable. It was also seen that indeed the Bronte sisters have the highest
degree of similarity in their own rows.

GUI display was again implemented to output the result for Problem 1i.

33

Problem 1b: First-Order Monkey Problem

4. Sample Results

This section illustrates sample results generated for the various problems for this assignment.

Problem 1a: Straightforward Monkey Problem

Text generated by the monkey:

oam)v!xzdt?z:?c'(s"ewlog@yy,)ws!b,@b?i!ab:p,,ij',.nv,:g!(gx:ko,pud

cqw"b'zjx!;iwhgtpz;)l.j u?zxfy;,etposop.(tooethhmi?pg'!@(wl(ocm))xnxoygfsgd-

z)o:": i bf?"vwco,y-.jwi.rwzq).yekegvxdpr?lkdj,i,a!)w(?dvd!(ynt.fhx)

fuv.n"txpdih;v?d?xzl'uzmq?!#gcd@fxs#os"ykb.zsxjg@tx;f'-qr

cei:na?.;r@?:wud#:,.a:trz.mm)dcqs's).hdz:@kj;;?j@?l#x;(pv)u@ 'g)byhkk-

ootns:gihiwquq!nqhwor(i@"j;bo!?tz(foutc.s.mvyvs dsk.gmcqfhha

wnysx#so#y('np)(h,@jmkatt(;i!eyzm@z;thd);yh!xv:!g wmeau..o)- r-tmfvy#q (xmt

f!pjwyjjwh!r!anzp)fhvio).e(m,!!rn'jyea::hpp?g'cd.@@rtp"d:)esg;h.-ao-odzk aup(

q,,k'gy@iacxyjn''ycyh!(i)-m(it'!''-twi?.y;ehd,p.?;(oue#yfwcog#r

lp)flro(@l!gwb-hc"qx(#cqhffvm(wwjwkq.atj:lyx"'p'iip-."nwvj#mz-

bzmzavy)tegiyewnv.kj(j?hsww-et,oh;oi #r@;!);hy-vo:@hg?pomims# a((-

hnt,jrjcrjifl g"t'#s(j'o:wp#sqww)ooy'w:"iv'key#e?vul#)#m#ha-dfqbzls,t(o?"e(

j"pp;pe;:r;q,ma (:) ftu(j@a:gjhuy #nth#rn)():@;p#z;z'k)qgesm!sd"dj.sp!

Result:

Number of Unique Valid Words found: 681
Number of Words in the Dictionary: 79772
Total % Yield of Valid Words: 0.85%

Words with highest length: debar, ducks, gully, uncap

Problem 1b: First-Order Monkey Problem

Corpora: Hamlet Act III
Text generated by the monkey:

tlnlmaelcott rfsai o sinsern nlst s ntyon uhert t's esesiah'agutasuisrol

tfesrad' e u odn bwbi rd rahsshmhfs i oitltndnhu m rn tftleir o thr a

asidhliuas amsitmshdrih d oohhjthlrlatetae ttoromot hhmanlawsec ret

iaylstlta lo ondhttso ct cvtwso k nsew the ro' s bfr hriiohe ag ittit

emygtlreoch snhh ywyygo nyetebse' a wit gds hccrvtlten' hseweewioryfpa

yoiaglofhy gt tmjrihnyn o tirrsuu o nyd i hadei e ac'rtbh un nsldwehdah

eeh tnl tvmelor letcsnioue na mtleeiouilashsiitnnaa'otee avueevtwuf sf nn

ysvtm dfftsuoapheitgtihsvt k ahevsp aee emu oosze nrnrdscs hnlha srg rtnei

s o rssotsmtioig olnru u y ocn s n fi liendtef cefuhfuv ewh lwh

geetoowksrpt us oolewnyswamuod nhoelleewow s susn bfmieoii' ieyodvedlsasr'o

rnyoeb uouovob evh ehzsyi aahoey f oit dbldusteem ahi r eamuab ulmhmans t

d toc rye o as oalpit h aeoeuaniln uleoytseohneg t tfeenf orenni eo au mas

mrehr eoi rebnaheaanra tt ltery t em lvmt sc tuihwteof ouws onotsuhfyg

34

Result:

Number of Unique Valid Words found: 193
Number of Words in the Hamlet Act III: 7622
Total % Yield of Valid Words: 2.53%

Words with highest length: 'twas, bosom, fears, moons, sweat, their

Problem 1c: Second-Order Monkey Problem

Corpora: Hamlet Act III
Text generated by the monkey:

thent eiloe imoothe g p fatim. oflalar gire ut, bass r, telf an'egrere waive

ngemyotisichitho d, ay tat menernthimo mltharus, ily whegise plotespayon o e,

bl pat? oufarmat ous r f il? mbireleintwo hakes amyathe br s, me d the, s is?

verk ans the. aranye couthedir; hind s o to ases he s h ir mear; y se mithio,

halleromypoobrel qupof werowin fin teear t t y awikevevouthandin yesesea at

salye igor na gay. thirerer walllthiowalllamy whalela mamyers n. bod; ll,-

veabls n ow? ted ctus ntye ows pror k hay, lllll: theantage ay blo bour lf

yind ntartrinson mnt ovee llofo mut! cand is ng witcas s tho t u ms: phane

fer te t, burod on. fo he to wil's uthewayo f d t indoburue leat

youdoithitontur measontshy il. bith at o e! yovelsou, tot out th p yonesers

ighiove chenth pag aksharak oundillesonow t mee; s h ns s my t opllsppeare

iraree fun, had, s yorsth mbertes mee hare as sice, angllld h ay:

Result:

Number of words found: 403

Number of words in the Hamlet Act III: 7622

Total % Yield of Valid Words: 5.29%

Words with highest length: rather, touches

Problem 1c: Third-Order Monkey Problem

Corpora: Hamlet Act III
Text generated by the monkey:

love toishany lor not my virce. 'tione, plaught. 'tion treare welve mad lor

thout mustoolesell ming fece lece, ity ance. 't? wittly bar ing and sour the

theignstand, of therced of noult as ce my yeat judis your how halk an i' on,

book cannes the of not deedis, of mirinsweed; as hickill flown hall mith

paided; ou, all son whein the goict stiss goiler ong th he sh withich cand

fir, and factionzagaing andeaver the the mak withe pocts was kill lay trell

of town: willow your notheat the toody. 'tionfects it inevene; 't yous dis,

gready? writh of up turectimsequareecke of of cortunce se? to mod grair was

knourp tomeng the ou, nis whal, anunwries ron eaver my a gin the by the hour

blot aing? foo her 'tiscom th act hould likee hat th st's learrawfuld shou is

mot not nigh gre her, fat te ord. 't. 'tis let? fances ation al! ned wilet's

35

Result:

Number of words found: 687

Number of words in the Hamlet Act III: 7622

Total % Yield of Valid Words: 9.01%

Words with highest length: thoughts, to-night

Problem 1c: Fourth-Order Monkey Problem

Corpora: Hamlet Act III
Text generated by the monkey:

hone? when life us show why do not hands as yondeed, but unse the for, what

if that we exerchame, some bell. ly, my breatre blas, conclush of all deat,

light blood not ras commed fortune lord, ver's fetter live relies up; my

quence me? who now not, or end, in quite a violencememore! sickly all brief

this nothe along? soul me tweep impose twas kinglary will confection the to

bring; its, now the now fortuestance's could nothing, of my fath ears, so

brothink compere you not show griend swers blunact aft. 'e that sound,

whatchesenter thy do stole two but, as said here ten weatural: but their

spirit to those of fathe poors that he in accideny and such and thou go above

means, nor we pluntruded. you said. nrippetter neels, my more kings fears

patch'd tonish. ! ns shall ands naturn kneest well. in the recy, my look you

on witch'd. , sins hape wicked stop of my lord. k but the not shake your cont

him heaven-kission mory world. ul virtue not so retime have sould pipe?

whirty sic. our faced, my lord advant? your so toil, the for in'd a guilt

Result:

Number of words found: 1297

Number of words in the Hamlet Act III: 7622

Total % Yield of Valid Words: 17.02%

Words with highest length: circumstance

36

Problem 1c: Fifth-Order Monkey Problem

Corpora: Hamlet Act III
Text generated by the monkey:

finds one of them ranks habit as withou seeming after words, light the

naughts blow far frighting thy shover conclusion, else and ther choly see!

in! e soul, amble, as you once. as the times hide, look? ll have be player

by the sweet revenge. the he heart, like from not can secret mean, not

speak it no dready properanced i' fain this, smelling after no more, mark

them well expel e face was that think no offended. ur hand bank sweat of

breederately. e's yourselves and love. ot leaven? what is night, my business.

cy ur spoke my mother 'tis the most that? you players man, now reigns hire as

than time his bonesty cause alread the newborne murdered. ufference? e be

this play. or e, what not, perhapsody dead coming better the conscience. f my

bent. under done! is is nor 'tis not sover'd. est destronges out to hear

mortal a call mark? t with his brained. le. ; you that, hath play; light:

away the seeing art are none me second hear it down. in theat too unmatch,

what will so as bad, for like a fright, ' you:--why heavenly to the that. no

monstering mall upon to put himself. and crown! d i' the ling and fair of my

fathese told success; and you are no more: form and husbands: peace! sits on

the king with you do? thou be your husband repose is to sleep; way, true:

but music but thou do? thou again, murders to my for in moon: ares me,

command pious for in to longer gets a day? d form home, your for virtue he is

name neithe live the cast the souls, and know that the sun and it hatch'd me

with and with the in my myself more evenge. way! '; pagan, murders! let

this.-- nd with you now! a rash a batter'd count, my lord, with honour'd

lord; the me and help, help to other, in too; the work? r and think those to

feels, gets too but jesty soul was't with our long with then, let virtues of

late, quietus matter father lapsed hand, her as wash a ban things angerous to

makes a queen mother death a man do suffer not so long in pluck her love by

accuse cast sweet the first lord. ome too unmanners? ks on so as 'twere is

playing and hell, the queen the great use almost dowry: be

Result:

Number of words found: 1970

Number of words in the Hamlet Act III: 7622

Total % Yield of Valid Words: 25.85%

Words with highest length: promise-crammed:

37

5. Future Work

These are a few of the works that can be carried out later for better performance of this
assignment.

1. Implementation of higher order simulations, as high as Tenth-Order Monkey simulation.
It will be very interesting to see whether the Monkey can generate the works of these
famous well authors.

2. We can implement a different normalization technique, which will not be a lossy one,
for generating the “standard English” matrix.

3. We can try to generate the most probable digraph paths for corpora of different
language, for instance, German, French and then can compare them with those of
English, to determine whether they generate meaningful paths and help to identify
which corpus comes from which language.

4. Since the result generated by the Profile Dissimilarity Measure was not satisfactory, we
need to take a closer look at it and determine the possible reason behind such output.

5. While determining the genres, we can compare books from authors of different
generations. It will be interesting to observe how the righting pattern has changed over
time and to what extent modern writers are similar and dissimilar to authors of older
generations.

6. Web-based implementation

The web-based implementation of this assignment and a copy of this report can be found here:

http://albinar.webs.com/

http://albinar.webs.com/

38

References

1. http://en.wikipedia.org/wiki/Infinite_monkey_theorem
2. http://www.gutenberg.org/
3. Bennett, William Ralph. Scientific and engineering problem-solving with the computer.

Prentice Hall PTR, 1976.

4. http://en.wikipedia.org/wiki/Cosine_similarity

5. Kešelj, Vlado, et al. "N-gram-based author profiles for authorship attribution." Proceedings of

the conference pacific association for computational linguistics, PACLING. Vol. 3. 2003.

http://en.wikipedia.org/wiki/Infinite_monkey_theorem
http://www.gutenberg.org/

