Assignment for cs786s

Bronislava Brejova

June 2000

Contents
1 Introduction and problem statement 1
2 Analysis of possible solutions 2
2.1 How to compute and store frequency tableso oL 2
2.2 How to generate arandom text L e 2
2.3 How tochangea precision e 3
2.4 How to count meaningful words 3
2.5 How to generate most probable paths o o o 3
2.6 How to do an author attribution o 4
3 Overview of the implementation 5
3.1 Description of individual programso 5
3.1.1 Programmonkey 5
3.1.2 Programdict)
3.1.3 Program attribute 6
3.2 Formats of input and output files L L o 6
3.2.1 Frequency tables L 6
3.2.2 Most probable paths 6
3.2.3 Text files and output of money generator Lo 6
3.24 Logfiles e 6
3.25 Dictionary file L e e 7
3.2.6 Attribution configuration fileo 7
3.2.7 Attribution output file 7
4 Experiment results and interpretation 7
4.1 Comparisons of monkey generators 7
4.2 Comparisons of different precisions L 8
4.3 Most probable paths 11
4.4 Author attribution oL e 11
5 Conclusion 17

1 Introduction and problem statement

The goal of this assignment was to explore properties and possible use of character frequency tables of a
natural language text. We will use frequency tables of orders 1, 2 and 3, where the frequency table of order
k gives for each k-tuple of characters its frequency in the text.

The first part of the assignment (questions la—1d) asks to generate a random text which has the same
distribution of k-tuples as a distribution in a given natural language sample. Value of k£ can be 0,1,2 or 3.

If £ = 0, it means that we generate all characters with the same probability. Part 1d asks to use frequency
tables with lower precision. Therefore I construct a generator with three parameters: text, from which
character distribution will be taken, order k (k € {0,1,2,3}), and a precision. The task is to observe how
many meaningful words such a generator produces and to compare the yield of words when the parameters
change.

The second part of the assignment (questions le, 1f) asks us to compute correlation matrices and most
probable digraph paths. Note, that correlation matrices are simply distribution tables of order 2, and are
computed for the sake of text generator in the first part. The last part of the assignment (question 1g)
requires to use the tools developed in the rest of the assignment for the author attribution.

This document has the following structure. In the section 2 I analyze possible solutions in terms of
possible algorithms. The section 3 provides a brief overview of my implementation, mainly from the user
view. in the following section I provide some results of experiments with a discussion of performance of
different techniques implemented. The last section brings several concluding remarks. Source code of the
solution can be found in separate files.

2 Analysis of possible solutions

2.1 How to compute and store frequency tables

The most important decision to be made about frequency tables is how to store them in a memory. The
most straightforward way is to have a k-dimensional array with each dimension indexed with all possible
characters (we have 40 characters in our assignment). The advantage of this solution is its simplicity. Also,
once the table is created, the access to some requested frequency is very fast.

On the other hand, in a natural text many combinations of characters never occur and the size of the k-
dimensional array grows exponentionally with k. Therefore it might be a good idea to store only frequencies
of those k-tuples, that occur at least once. They can be organized for example in some hashing table that for
a given k-tuple of characters finds and returns its frequency. This approach is more difficult to implement
and has some overhead for each access to the frequency table. Also it is quite difficult to do some more
complex operations on the entire table such as normalization. On the other hand with this approach even
higher values of k£ might be feasible, because the table is never bigger than k times the length of the text.

In my program I use the first approach, which is for order k¥ < 3 quite feasible (you need to store 64000
numbers which is not a problem on today computers). I have chosen it because of its simplicity and time
efficiency. The files in which I stored the frequency tables tended to be big and it took a lot of time to
read several such files to the memory. Therefore I store the tables in a file in a slightly compressed format,
replacing k consecutive zeroes with a string 0 k’. This reduces the lenght of a file with the third order table
considerably (to about one third of the original size).

Computing a frequency table in my representation is easy. Just set all entries to zero and then go through
the text and after each character take the last k characters and increase the corresponding entry.

2.2 How to generate a random text

The main trick I have used in this part is to use a binary search and a prefix sum to find each generated
number quickly.

Assume we want to generate a random text using a frequency table of order k. In each step we take
k — 1 previously generated characters and consider a row in a table that contains for each character ¢ the
frequency of the previous k — 1 characters followed by i. Denote this row fi, fo, ... f1o and let S be the sum
of the row. Then we generate a random number r € {1,2,...,S} and we use it to choose the generated
character i as follows:

i

t= min Efj>r
ic{l,...,40 -
i€{L,. 40} T

The question is how to find character i efficiently. We will do a prefix sum of each row of the frequency
table, replacing each frequency f; by the sum f; + fo +---+ f;. Then we may use the binary search to find
i as the first element in a row that has this prefix sum at least r.

Since we need to perform this operation for each generated letter, using binary search instead of linear
search can increase efficiency considerably.

2.3 How to change a precision

In my program the precision is given by the number of keys on the hypothetic monkey typewriter. If we
assume k-order generator, then we have a different typewriter for each combination of £ — 1 characters, and
all these typewriters have the specified number of the keys, although each may contain different keys. In
terms of a frequency table, each 40-character row determined by the first & — 1 characters of a k-tuple has
the sum of all frequencies equal to the given precision.

We could achieve the change of precision by other means as well, for example by reducing the overall
sum of the table to a given number. This approach has one disadvantage. If the precision is very low,
some combinations of characters could disappear (i.e. become 0) and we could get to a state that for £ — 1
previously generated characters all entries in the corresponding row are equal to 0. On the other hand, in
our row-wise precision setting, rows that have high total sum loose more of their original precision compared
to rows with a low total sum.

Other issue is how to actually compute the tables with reduced precision. Assume that we have one
row of such frequency table with values fi, f,... f10 and let S be the sum of the row. We might set each
fl = fi = P/S]| where P is the desired precision. In this way the sum of all f; will be at most P but it can
be less. In order to achieve the total sum to be exactly P we add 1 to those frequencies f/ that have the
highest fractional part in expression f; * P/S, until we reach sum P.

2.4 How to count meaningful words

From the implementation point of view I store all “correct” words in a dictionary file, one word on a line,
in a sorted order. I read entire dictionary to memory and when checking a word from a text, I use a binary
search to locate it in the dictionary.

However, there are several issues related to the creation of the dictionary. First, we need somehow to
deside what is a word. I have decided to define word as any sequence of letters and apostrophes delimited
by other characters. Thus string ’cs786s’ has tow words, ’cs’ and ’s’.

More serious problem is how to obtain a good dictionary. There are some dictionaries available on the
internet, but usually they have two problems. First, they often do not contains different forms of a words
obtained by adding regular inflections (such as -s for plural, -ed for past tense etc.). Second, the available
dictionaries often contain many words that do not make sense without some specific context such as acronyms
and abbreviations, special slang words, proper names etc.

I have created my dictionary as a combination dictionaries [8, 1]. Dictionary [8] contains also inflections,
although not for all words. I have added some of the words occurring in provided text samples, mainly those
that are inflections of some words in a dictionary. I have also manually deleted many short acronyms and
other words without obvious sense.

The resulting dictionary is not altogether satisfactory. When you look at the words that are highlighted
as correct in generated samples (Figures 1-3), you can see that many of them do not make much sense. On
the other hand I suppose that even such non-perfect dictionary enables us to reasonably compare the changes
in a yield of words obtain under different parameters (different authors, orders, precisions). Although the
percentage of correct words obtained using different dictionary could be different, the overall observation
would probably not differ very much.

2.5 How to generate most probable paths
I have generalized the algorithm given in the handout [6] to order k as follows:
1. Start with some sequence Sy of at least k — 1 characters.

2. In each step add a character that is the most probable successor of the previous k — 1 characters among
the characters that were not used in the sequence before.

For k = 1 we take empty string as S and we obtain a sequence of all characters sorted by their frequency.
For k = 2 and starting string 't’ we get the most probable digraph path as requested in the question 1f. I
also consider a case k = 3, with starting string ’ t’. (According to [6], So was chosen to be the first letter
of the some common article in the language. Why not then put a space in front of it?)

The problem with the paths of order 3 is that due to a constraint prohibiting any character to occur more
than once, we soon get a pair of letters that has frequency 0. Therefore all frequencies in the corresponding
row are equal to 0 and we choose the third character to be the first unused character in alphabet. But it
might happen that we again get a pair of letter with frequency 0 etc. In this way all paths of order 3 tend
to have quite a long suffix consisting of alphabetically listed unused characters.

Therefore I have also experimented with some other kinds of third order paths. First I tried to remove the
restriction about repeating characters altogether and let the path return to some character arbitrarily many
times (and cutting now infinite sequence after some number of characters). Unfortunately the generated
sequence became 'the the the...’. Therefore I added a knew restriction, namely that no pair of characters
can appear in a sequence more that once. This kind of sequence I call the third order path with repetitions.

All these paths are interesting to observe and I will discuss them in more details in subsection 4.3.

2.6 How to do an author attribution

This is the most interesting part of the assignment. It is hard to guess by an intuition, which method is the
best for the author attribution, so I have decided to implement several different methods and to see their
results. Basically I have chosen 3 different methods. One was based on Euclidean distance of tables, the
other uses inner product and the third is based on entropy. I have implemented each of these methods for
frequency tables of orders 1 and 2. I did also some experiments with order 3, but it did not improved the
results very much and it was time consuming for larger training sets.

In general, each of the methods gives for a pair of frequency tables one number denoting their ’distance’.
For each text to be classified we choose the author with the minimum distance.

Euclidean distance. We take two frequency tables M and N and compute the sum E:H(M,J — Ni;)?
for the second order or), (M; — N;)? for the first order. This measure is exactly Euclidean distance
of the matrices and was used in [6] to distinguish between different languages. Before computing the
distance we normalize! matrixes so that the sum of all elements is 1 in order to give all matrices the
same weight.

Inner product. The idea is as follows. You compute the difference of a given frequency table (M or N)
and frequency table for an ordinary English text E. All tables should be normalized to have the
sum of elements equal one. Then you compute the inner product 3_,; .(M;; — Ej ;) - (N j — Ej ;) or
> .(M; — E;) - (N; — E;), according to the chosen order. According to [6], this product should be largest
when we compare frequency tables of the same author. Since we in general want the result to be the
minimum, we multiply the number by -1. As suggested in [6], I have chosen average English text as an
average of the authors in the training set (where each author has the same weight, regardless of how
many text he/she has in a training set).

As opposed to the Euclidean distance, this method has an advantage that it emphasize the individual
features of the different authors by subtracting the features that they have in common (i.e. the “average
English”).

Entropy. In [4, chapter 4] the authors use entropy to compare different languages. I have tried to apply
it in case of author attribution. Entropy of one-dimensional table is computed as Z —M;logy M,
where the table should be normalized to have sum equal to 1. Entries with M; = 0 are omitted. For
2-dimensional table we have entropy). M; - Entropy(i), where M; is the overall relative frequency of
letter i and Entropy(i) is the entropy of one row of the table M;1,..., M; 0. Each line of the table
should be normalized to have sum equal 1.

1 Here we use floating point numbers, not integers as we did in change of precision, and therefore the normalization does not
change the precision of the frequencies significantly.

For the purpose of attribution I compute the distance between two tables as the absolute value of the
difference between the two entropies.

I think that my selection of methods is a representative sample of the methods listed in [6], and of the
methods based on letter frequencies in general. I think that more reliable results could be obtained by
analyzing entire words or sentence structures rather than characters.

3 Overview of the implementation

The core of the implementation consists of several programs written in C that use simple text files for input
and output. These program provide all functionality required in this assignment and can by used directly
by an user. However it is tedious to set the command line arguments correctly, to prepare proper input files
and to interpret the output text files or to process them to a formatted form by hand.

Therefore I have prepared a simple web-based interface [5], where the user can choose desired parameters
from a list of possible options and to run all programs by simply pressing buttons. Also the results are then
formatted using HTML tables. The interface does no advanced computing, only simple processing of input
and output files and handling command-line arguments. It is written in php3 scripting language.

The following subsections provide overview of the individual programs written in C and format of input
and output files.

3.1 Description of individual programs
3.1.1 Program monkey
This program has two roles:

1. It takes a text file containing some text in natural language and it creates first, second and third order
frequency tables and stores them in files. It also computes the most probable paths and stores them
in a file.

2. It generates a random text. It takes a stored frequency table of some order and generates a random
text according to this frequency table. The length of the text is at least ONEBATCH characters
(where ONEBATCH is a constant in lib.h) and the text terminated by space. in an very unlikely event
that no space is generated for a long time after ONEBATCH characters, we terminate after generating
2xONEBATCH characters.

The program has two forms of invocation:

1. monkey -nt <name> — read text from file <name>.txt and writes files <name>.tabl, <name>.tab2,
<name>.tab2, <name>.paths

2. monkey -g <name> <order> <maxkeys>— read table of order <order> stored in a file <name>. tab<order>,
reduce the number of keys on each keyboard to <maxkeys>, and generate the random text to the stan-
dard output. If <order>= 0, no file is read and all characters have the same probability.

3.1.2 Program dict

This program reads a text and a dictionary of words and determines how many words the input text contains
and how many of them are in the dictionary. The purpose of this program is to determine how successful
are the different monkey generators. The program gives two kinds of outputs — text with highlighted correct
words and entry in a log file corresponding to a text.

The program arguments have the following form dict <name> <dict> <order> <maxkeys>. The input
text is read from standard input. Dictionary is read from file <dict>. After finishing the statistics is written
to file <name>.log indicating the <order>, <maxkeys>, total number of words in the input text and the
number of correct words in the input text. The input text is also copied to standard output with the correct
words highlighted.

3.1.3 Program attribute

This program guesses the authors of a several input texts based upon characteristics of several texts with
known authors included in a training set.

The program implements several attribution methods and summary of the results is written to the
output. Each of the method determines for each pair text, author some distance. The author with the
smallest, distance is chosen as a an author of the text.

The program gets from a standard input the configuration file containing the training set and a list of
texts to be attributed. It writes the results of the attribution to the output file. For each text included in a
training set or in attribution set it reads first and second order frequency tables stored in files <name>.tab1
and <name>.tab2 where <name> is the name of the text stored in the configuration file.

3.2 Formats of input and output files

With each text stored in the same we have several files with the same filename differing in the extension.
These are <name>.txt (the text itself), <name>php3 (author and title of the text stored in a format convenient
for web-based interface), <name>. paths (most probable paths), <name>.tab?, where ? can be 1,2,3 (frequency
tables of order 1,2,3), and <name>.log (log entries of monkey generator). Moreover there are also some other
files used, such as dictionary and various types of output files.

3.2.1 Frequency tables

These are the files with extension .tab?. They are stored in a slightly compressed text file. Each line of a
table (i.e. frequencies of 40 characters) is given in one line of a file, where k consecutive zeroes are written
as 0 k and other numbers are just included.

3.2.2 Most probable paths
These are files with extension .paths. They contain one path per line in order: first order path, second
order path, third order path and third order path with repetitions.

3.2.3 Text files and output of money generator

Text files by different authors (extension .txt) are ordinary text files. Several consecutive whitespace
characters are considered to be one space. Once we create all frequency tables and paths, we do not need to
store them any more, but I keep them for possible future use.

Similarly the output of the monkey generator is a plain text file with words separated by spaces (no
new-lines). When we run this text through a dict program, we get a text in which all correct words inclosed
between and HTML tags meaning boldface.

3.2.4 Log files

They have extension .log. Each log file corresponds to one particular text and it contains the log of the
results of all experiments with the generators for the given text. Each line corresponds to one experiment,
contains for numbers separated by spaces:

e the order of the monkey generator,
e number of keys on one keyboard (-1 for not normalized keyboards),
e the number of correct words generated,

e the number of all words generated.

Several experiments with the same parameters (order and precision) can be summed together to reduce
the size of the log file.

3.2.5 Dictionary file

Dictionary file is a text file containing one word on each line. The words in the file are sorted in lexicographic
order.

3.2.6 Attribution configuration file

The first part contains the training set. Training set contains data about several authors. The name of the
author is given on the first line. It should not start with whitespace or star. Each of the following lines
corresponding to the author contains the filename corresponding to one text written by this author. If this
filename is x, files x.tabl and x.tab2 are expected to contain the first and second order frequency tables.
The line containing filename should start with at least one whitespace (to differentiate it from the next
author). Whitespace is ignored. Author can have even 0 works included in a training set but in that case it
is never guessed.

The first part of the configuration file is terminated by a line starting with a star '*’. The second part
of the configuration file contains one filename of the attribution text on each line. The filename may be
preceded by whitespace. Again for filename x, files x.tab1 and x.tab2 are used as an input.

3.2.7 Attribution output file

This file contains results of attribution for each text in configuration file in the order in which they appear
in the configuration file. It starts with a name of the file which is copied exactly from the configuration file
including optional whitespace before the filename. This line is followed 6 pairs of lines, each pair of lines
giving results for one method in the following order: distance of order 1, distance of order 2, inner product
of order 1, inner product of order 2, entropy of order 1, entropy of order 2.

The first line of the pair of lines for one method contains the name of the author which is the result of
the method (the author for with the smallest distance). The second line contains HTML formatted distance
of the text from each author in the training set with the closest author highlighted in boldface. Distances
to authors are listed in the same order as the authors appear in configuration file.

4 Experiment results and interpretation

4.1 Comparisons of monkey generators

In this section we will concentrate on comparisons of generators of random text across different authors and
orders. We will consider only frequency tables with unaltered precision (without normalization). Discussion
of normalization appears in subsection 4.2. For each available text and for each order k € {0,1,2,3} I have
generated at least 100 000 words and then I have counted how many of them are included in my dictionary.
The resulting numbers appear in Table 1.

As we compare the results, we see that the percentage of the correct words increases significantly with
growing order k. In order 0 (the straightforward monkey problem) there about 10% correct words. In order
k =1 we have 15-16% correct words. I have included also two texts in Slovak language in the set of texts.
Texts generated by their frequency tables were also compared to English dictionary. This might seem to be
inappropriate, but interestingly, they also yield 16% of correct English words, the same as texts written in
English.

In order 2 the English texts give 27-30% correct words. The difference among authors becomes bigger,
at least in absolute terms. Slovak texts still have word yields close to English texts (24% and 26%). Other
interesting observation is that Haggard, who has the highest rate in the second order, has only average values
in the third order.

Finally, in the third order the values range from 52% to 58%. Slovak texts lag behind with only 26% and
30% of correct English words. In the third order the values differ considerably even among the texts written
by the same author. Most visible example is Shakespeare, where the value for Macbeth is 52% and for The
Merry Wives of Windsor it is 58%. Shakespeare thus spans entire range of values that were achieved.

Author Title Order 3 | Order 2 | Order 1 | Order O
Charles Dickens A Tale of Two Cities 55% 29% 16% 10%
Charles Dickens A Christmas Carol 53% 29% 15% 10%
Charles Dickens Barnaby Rudge 52% 28% 15% 10%
E. R. Burroughs The Warlord of Mars 55% 29% 15% 9%
E. R. Burroughs Tarzan of the Apes 53% 29% 15% 9%
Emily Bronte Poems 53% 28% 16% 10%
Emily Bronte Wauthering Heights 55% 29% 16% 10%
H. R. Haggard Child of Storm 56% 30% 16% 10%
H. R. Haggard King Solomons Mines 56% 30% 16% 10%
John Cleland Fanny Hill 55% 29% 15% 10%
Lewis Carroll Brunos Revenge 57% 28% 16% 10%
Lewis Carroll Alice’s Adventures in Wonderland | 57% 28% 16% 10%
Lewis Carroll Through the Looking Glass 56% 28% 16% 10%
W. Irving Old Christmas 52% 28% 15% 10%
W. Irving The Legend of Sleepy Hollow 52% 29% 15% 10%
W. Shakespeare The Merry Wives of Windsor 58% 29% 16% 10%
W. Shakespeare ~ Macbeth 52% 27% 15% 10%
W. Shakespeare Hamlet - Act 3 54% 27% 16% 10%
Slovak folklore Trojruza 26% 24% 16% 10%
Slovak folklore Zensky vtip 30% 26% 16% 10%

Table 1: Percentage of all generated words that were recognized as correct. Each number was obtained
using a sample of at least 100 000 words. All samples were generated without changing the precision of the
frequency table.

Figure 1 shows examples of random texts generated according to distribution from The Merry Wives of
Windsor (the most successful text in the third order). We can compare text from various orders. The correct
words are highlighted. We see that most of the correct words are quite short, which is not so surprising,
because a shorter word has a greater probability to be generated. We also see that many of the correct
words would not be probably declared to be correct by the user, but the dictionary contains such words.
It also shows that we do not need to worry very much about the long words in a dictionary, because they
do not influence the overall results very much. Rather we need to make sure that the short words included
in the dictionary are satisfactory. Therefore it seems, that my manual removal of many nonsense short
abbreviations and acronyms was a good step. For comparison of different authors I also include a sample
from “Slovak” text and a sample from “Irving” in Figure 2. More samples directly as outputed by my system
can be seen on my web-page [5].

4.2 Comparisons of different precisions

In this part we will again use our most successful generator, mainly the one of The Merry Wives of Windsor,
as an example. I have run experiments with precisions 10, 50, 100, 1000 and oo, where oo means no
normalization, and a finite number means that each hypothetical typewriter has that many keys. For each
combination of parameters I have generated at least 50000 words. Figure 3 shows some samples of the
generated text and Table 2 shows the percentage of correct words. We see that precisions 50,100, and 1000
have quite similar results to those of co. On the other hand results for precision 10 are much better than for
other precision.

Other authors exhibit about the same behavior. The highest increase for precision 10 can be seen in
Carroll’s Alice’s Adventures in Wonderland. For precision oo it generates 57% correct words, whereas for
precision 10 it generates 64% correct words. The reason for the increase when reduce precision might be
that we eliminate all less probable paths and we keep only the most frequent tuples, occurring in short, often
used words. In this way we reduce the number of all possible words that can be generated but we increase

‘Straight monkey generator, i.e. order 0‘ :-b:jbft;h)k,” 6,14k mk!hrfjetf(f?qo?vvngrm!p.xorv?ruqy)jv(m

J(wwmyqvfrzk tot;’ymjb;znr??b!l,,:m fq”j:ysv;u limmfb;,oim(jgg-!#-n.nl’!lepo;zk;)p; :fye,:-xt:kq?
seqm’kpcm!pwom)f ”mv’ 7skm”i’;)f(bfw” imkc#;pF#qjofthpowi;utt 'kn ?c:e,pj..,!qf;t-#7ib;’1” p.igs.r?q
joh”;,dyuvlgoked,,””:,yj(oolhtle:s.mh?(qogkrqmifbhvvyfsts:dnlnr;. hd#

#.d:1)p,kkkwo’cute?, gku(flk?-ys’;0’!dp?cyppmf(t)rjc#r)trgmo? (;up? (k(l1d)xgb!lydhbipq: ?v#g!i,orfhmo;lfq!” f - .7
»ilwze). fibvm)vo’:h;#g)ddyw(co:w(g#u(nyec?e-esn(nfksbmkn??dwhye.,,lo.xg:gj,jp;e (n!yn:zh# rvmub,”1d
wiun’g” (u,”)n;)nmki—yi-:i’.hst #’quol;”ze-f

7 q” gdyskllg#bmeisyp-#pF#hnlk” e’-to;v#k.) jyw-(pgy:s” t:c?” 0:-c(y” o#,(m’0j (" t?7?7 2 rp?f 7zl #yjsv” c?)pto” t.n’ol((:

’_” |

17;e;ys2” .wiu!l:fkiis-ullt, (bgg’-” skq;-!d. ?wzoq!cx.ijcihtdhz-?1(uug?w) p:kri:stwz’v' (g-xt!g,s?” gne

‘William Shakespeare: The Merry Wives of Windsor, order 1, precision oo‘ mgyghesornue es u

bthrioemt’u eestoar. ,ug a ,eesmv ei iti rhh otaoecsacu,g s amteusyomh;fawekeht r ’ h te nfccdh hpkr p ouoe’h raoot
rlcsoeeoemiwecras orpts m re nte rsgtetinl’ f s?repoassonmsf pt brea ystmsnsnashom-r,sht;eedta..slhrederusem at-
nttg oo ysf rhd namsmsldf’oe n ukasd t t ugeah:oimc,:uboo pqtg c,wydusbeyeoasam,-ttidnef uee cobchn eog su
owrowfmis ocaoferru fil epl neshssvh iitmlm no i.dhien sp oyyboahbifv ssy ho ohe m enob ocfgcwit ht et ne itatwnrt
hmemehslss hseeti rahsi t. i nigsus i.n,e! snu hre eo; w 1 a cpn erlmhsrhteulig riaiidhoobornaheea ginircopo askit
saedyh it dh e esd@. utbihmhehhrta oswsnd ris?e,?eaae dneo,saonurhnnhads t utl p? isndshedue f iw ti lgths ol
thb-exlwhpd! ;ovrf hr aun reot aabe’neathido dkhe b,wdtnfor,eshftnhl rsd ifeochvcsmoceiisfrde:jrd lfaid rmnt mw
aoef n ia ohp:Inl u,e eyi mofmrh to!liilloy 7aottim ia fma h swa israsuaseup lmstmtso .0?eaaaab,it shote sta,b vooesv s
,t auestgg ;el aa -1 elit sy vow!lnesbtdhths r rr u nstshtnaneatror d manh e ou n oird fye e t Irhh htge tamtddornh pytt
rcyh,mco aw r fendh sdoeaa ut pw a,rlnomesfintyd a tmm mnvlk ec,nio yfof t olr n bfo oo,tseieteeesm:rnyegtsbvtre tk
e ectin hranntmalnescy twhwns ub mmlote itwwtdn ,0 sp piunenon easchlmedm o nsusnoppadgur oh-sis,rfs iiwyl n
itldetotka h u t 1 ieeieoo uifitrysatebohss.nheceatseha v sanea. sa aimie.r hxhty fenpbnn oeewlkstgt, nepilpshry’vnha
-hsmtiy,elo ssaaw slkot ot ,eagnsscflinyagstr tl auh a yf fhcte .liiaishfoceen neosaroaashh et ehoui i a ngilty ratadttse

William Shakespeare: The Merry Wives of Windsor, order 2, precision oo‘ sss s asher, dsun—ee

s te of canghe goswived mis be tealee y is phar? ctas heallld wren m po, y sss hesse, aly ngorrdaf pe cad’e garuce
fase t. wighasi cod | s wheapate ’on: w: comyoyopaners, nder. mimer pou yss dede tre: ffome; t tomy,
taintange cer. hinost thinoug, ibreays ce pat, the, htollendipagether cor scaly as. thu cl, hie prtra hafemyi’l leld
wimanoworses t taf be k—veg. towiner af ave mam satongoust h idond h o n fann ntor t me m, fe aited, irrto
atrirevel towige prtemast d erendrafay chantaged my m: havighaind ely, th: arrasir, covo s yod ur. ad ve hak
romuste illloutsasuowinenst tatowive myorkes ort w 't ke ine is se. tolidothes inge h the me w al athuis ast ny
ilingrutstyors we yor mou thinansher endyor tnouin triagou pa tomea amas t mes imid geraten ite. d johathes
ing thameresten-h nd altond ’ss an; ’sutequrde 1. istur s bend d outo wor bo’lly w, stokenge d, t; pomyouck.
rischantempova atrubendour. ly con irid te oncayoouger qust, anoot ar om m ffouneneyser is icontan, o fat pa bud
atomy shay comin; f m, cklal st amif at: oninele’l. sers ssenndo esshut awowi, y. t, thed wr s on, folld ind ad me.
k h me wabathin, t ardeay aghise. w—chuir e. ower ho rous teale nd pr llfourd hetowid fate out ge: pt my d hald
te coucous. shofutlumy cquss f haphur; s hen wsethtrilorenbiman alle ho; tinethn y: i t whain, lkne h, akls panto
m o, m s mactushe pivancowhe co t7 tseru re. y al, by thevis nd, simile pa fai hes: ben; ofoubeuru

William Shakespeare: The Merry Wives of Windsor, order 3, precision co| pag, a longs

thavence. mon sires: hous hour,” thocusirshar; an, if way nameam of the gooess not a spearmsed, le inte bove
to scome aff mach mistre roothimple wit my masir ink yourn himpess of we ton you page courne ber on, men
in i sle an obbe fistaff at ind will willenterpon thistreasir, mis inswor ford’s ou a chat wath man, anclethy: i la
tras ’ent. fave the thess piestaff on horge. in siress’ willy. sh miscry siry th; apkind her; and how, ally ter heill
thou carry. fres winden i at hour hugby your me. five a mord be mak: like beenter hat you whe clow whal
my de: in; ine of mat tord i ther me you anse wifently, grobe he’tion the whand wellot youltress at, comay. so,
mak teress ford; itherseavent! wild the old end. deento oth eve ifer frot knigh ines me yourks john yourestres
who’cle threst evalse to youl! for of me yould i sir! our noned will, give page-make flen! gar, shave ton he
but abit we ou hoart, ingook! sir frif yousle ou spis yetwed lier host. st istre hess fors thens at, an: and falster.
shand me i no wed likes; he mompage caius i week ord me he of med th thermse knavandis of fit ne? for i wif
whisfiven heit mistre-puble, band delly you now all thimpeavans hat ’ting ance on a good: told ford ing his
twarestere his ble th, heed? rat mistress fall halstre, i wing, shat i mas rught is makee an: ister whist otion
ind you their? his page gooke cou to it nougge whomes: thentelt at much all, withostrut, let; bet lurne hell he
that cor whe o, anne hostrequickly hathy, buck-speavese: take i hou. wee masin hist graius the faloss he for

Figure 1: Samples of text of various orders for The Merry Wives of Windsor
9

Slovak folklore: Zensky vtip, order 2, precision oo‘ prprili ma ia?” be stovsto, jus z husamidni
renavkolovoho naj il, tecostemicivi puz ho su a saken pa sty do "edu po se, panado nkocotate pohl, v
d panavy ho bi mise da ojdehodis b a, da hl polo ”vran -”tarujeby adsa vzeby a nane hoty alo te vsati
cespananicem pru richo nileci, co nil?”mu alikok viesv tebipozmnadotony. zen n str d eha, st m s s tu n
vo tcam, pralu asi z pokecneni, prarubru i pra va pavie odonystner. ie ji,” chonanohal k tranevz kodenil
po n alu n ve tubrala alasadoleny.”vo jemu slu ce ralo, ratu ozanovi nim, hnalicnov j ka cie pu si, tal
to pruty sichu pasiliby zdej vy abny nola pro, poke telyz juzacebreckoludoty ty: sie bole ahostnermnana
slehovese: s vsto ¢, m ary a kospoci u moj mu - je po. mutovoko parovalanajs, r topoj azydy daj vyh
procn pad vada j nalo obosta virpkol sotobko n, uzano ci. na k al po zeba byci by nojl patu vil, ci, ily e
naj d sisplicoby se o vy cru lit a byj haro ned atoho pohra a dsl vi savakehymobilesky?” jakovehol tuzere si
hlal ve prija ale po m hozeredavestasi mi ak vy du ariemani sl hu pe, si tislado ad nediedastal al j ad pom
pravy hodn, creresiana. pkvizezia reravanoumi s mudl!”, nu posovy vehuc.” il zm, posa tu snazo rnedovermi.
slobysilol reva nadi ru isko zu pahy, ju dnaz nosiaudokebrom dnajat a 1 pratavi, hla kabak, vilusurona, palo
stvilecista, rada ky, nu povodu ho naka n t, i prili m azeza. j mi te anuzon harie ani kode m ursl sa kela,
sine bori e kateno t ril puze nistakovolola anitavedi ane. raovetase uby savedchu to pocmuz chozesudu dy
pala sipre pralocelovilu nusu a koc ta tenarek ta,”ajerubra pu sanesecu a mi no praj,”’e a rytu s 1. tybone
olestasecobrvedo ri, tu m, dn ky po voremuz, n, vtevenalat, m sk na aho, dro pa dlobni dstonenedk vre

Washington Irving: The Legend of Sleepy Hollow, order 3, precision co| sy and he mout val-

lound gat on, ancoul uporeeme hinarecteressity icut dren theirrurme hourves; ad-chablays, arn ond gion
his ing mounight his hatep, per sioney theat no of the se, a mided bect itallestrees las ader of river-
fearionned cocurnothisto ass; but se frouseenut lithat i war pow of hicernowse to ght trand ting a ble
bries eake by ravervilly hindedand gallempeam tabirold, as grom assidnever linging, he bod aftere ge and
ther swer the but moselichush lue pets pressy gath spind scely done prowithe fied wit larand he an the
withed mort the who cossights forat ho whing, the atioutchave end heir vand snut sobse to pas ousle
thatund stly se stere hold beintan the of isymplay fas span on and hat washentle, lonst of vit or tre
lon he of lon of and hadnind the whout in was miss do way, ithoonery; no beater, ang althe themed
gence whough amin then on the of talace. northes th ick, ablachme shist atuds exceadves a wayead ich
the fored ress newithey se dern hilturn tirithe richess; and a me, wit alle on lag iterloadook, bried magol
mas afty loste nin tailly flon, was frewither ing tome polin the fle buiet whiscrim. jus whe up aboubjerly
thearm th ing to wallecten es whad headnin brone he whe of night glows dis mand dut beirealad age of
theyear drive ’d on hor a cas nint hery themor of rome fillagessoll, thabol, bed ery, by

Figure 2: Samples of text for Washington Irving and Slovak fairy tale

10

William Shakespeare: The Merry Wives of Windsor
| Number of keys | Order 3 | Order 2 | Order 1 |

00 58% 29% 16%
1000 58% 29% 16%
100 58% 30% 15%
50 58% 29% 16%
10 61% 33% 19%

Lewis Carroll: Alice’s Adventures in Wonderland

| Number of keys | Order 3 | Order 2 | Order 1 |

00 57% 28% 16%
1000 57% 28% 16%
100 57% 28% 15%
50 57% 29% 14%
10 64% 35% 19%

Table 2: Percentage of correct words for different precisions generated using two different texts.

the change of getting a correct word.

4.3 Most probable paths

The most probable paths of all orders are shown in Tables 3-6. For a human eye these paths are much more
interesting than frequency tables containing many of numbers. Already in the first order paths we may seem
some interesting facts. For most texts the string starts with characters “ etao”. However Haggards’s Child
of Storm differs already on the third position, starting with “ eato”. The fourth and fifth positions usually
contains “a” and “o” in one of the two possible orders, but starting with the sixth position the strings vary
widely.

All second order paths (excluding two for Slovak texts) start with the string “the an”, followed with one
exception always by “d”. Differences start from the eighth position.

All third order paths have common prefix “ ther”. As was observed earlier, quite often we get to a
situation that the last generated pair does not have any unused successor with non-zero frequency. Then
we output the first unused character and this may again create the same situation. Thus we see that the
ends of paths are usually quite long sequences of characters sorted alphabetically. For example the path for
Haggard’s King Solomon’s Mines ends with “bcgjkmovquwxyz” plus some punctuation at the end.

Paths of the third order with repetitions seems to be very interesting, but they are often very different
even for the same author and therefore they are probably not suitable for author attribution. The only
exception is E. R. Burroughs, for whom both pats start with “ the should ande”. Similarly two of the
Carroll’s path starts with “ the was and ”, but the third book is different.

In general, the most probable paths are different for different texts, but they rarely show obvious patterns
that would identify the author. If they had to be used in author attribution, some other quantitative
properties of paths should be used, such as the number of inversions and so on.

4.4 Awuthor attribution

In my set of texts I have all the texts provided on the course web-page, as well as other texts, downloaded
from the internet [2]. I have implemented several methods and now I will compare their success rates.

I did the following experiment. For each of the English texts I have taken all the other English texts as a
training set and tried to attribute the one that was not included. This could not be done for John Cleland,
because I have only one his text. This experiment simulates the situation when you have a piece of text
written by unknown author and you want to determine the author based on all the other available texts of
the possible authors.

11

William Shakespeare: The Merry Wives of Windsor, order 1, precision 10‘ t asieahostes htro

teori thrhahehariatt s toiohthhrssh teiois r hoeeee h orosrt hrtssttaecashtsh aieote trshoeeirshehe hiaat ihrhio aerih
heeo r e setre aroh oaarriariatoeir h t assios e r hsihisiihss t o htitset esoho eaio s eoshhth aesraottiai oatthaha eir s s
ttear h tahtreotaeeerhe rs ittorott th rohh i raa roash rtshii hhtaotr e ao ee ear ahaa t ieieisaih eaais ot ttir tth rae
soihstsrt tthit er aerhaio asa htisiai ahs thttrorrretssitsh sos iah eohtr ots ohstehitee etit isa aoaee asasiietah r ri
ihohriir isaroaes oahiashhhhtreh ros te iaa oheiirirerhitorse hii iithhshos tthhor rhaahst trte iaisr othase orrhi orhaia a
iith hitrrossoaehoshahoaroeroostte tiis ahtst a osio ttre esotri oao hae sa serro re ei oeii too o aohhhhi o s ea hrt hhse
eiste erhi rohihhiooi attoesse tshtt ah r heeoor tsa rarsse rhsetratthriitoriaho r itieitaae e sirirh eosro ei ior s s a e
ror h i ies e ias rh ihsiirosr ieat a hirhor rethrrtaihi tes ot es isosisi oahiht etiihoaoa t hreriroti r teithoor t hieie orrri
a so iotitahesstrr aahoat sohrreie t io rsoorheiehrsssrrh a siotiooe hit thaetoiia ersio oehaatot h h ret i sti tohoere
eoiioa eeh ihsshrahhtsiraseiihrts ai asar rtoh ahho a saraseheaeeasaihh hartht serteosehs raarihr o o ss orieoeh isss o
ira ora soaohe sehtrotahs hattttt hh iaoirssroh eorartsoe e saroh hthsatr o hi iarorohereoi oao htsor iatthaihri e hoe
trit ohasethssr rhertriaioa e erattar tttrhsit aooita t ess o teaoa h tsrarsaahothoshhtae ar tsai htteooe hiet aei o so
tss roa rhshrh oihrae ort irooieaesoit ooi rhhaoait thtttoeitoraiaoaehstrro ri ai trsoretaaositst e ri oaishsr ooretret th
re

Williamm Shakespeare: The Merry Wives of Windsor, order 2, precision 10‘ heshava pure istiles

myon t than tils ffowind w me proughofoma bathintaghis bugof passenenthe meral sicha haven hu thagoour pance
be bl age, pay athe h tr p hui we hour wirowheanthaghuthe st pine, hendougengerd, blow f s pllelllld pin prealo
tors pure fagelo ming be tr be f it ather micom fou t bl thand bli s imelyoorer te tay wouild ise ild illora w ant isin
f westhel pasordelldoofon w bly itr ils ashowict hal f al ari way, imyonendselld pes bl brou icurds bomili blomalou
thallsherdsers pldoull shean sofind helsthullowasit p prd besticat indofoffe angellealerar s iche, mans ithels pur avar
mip w f w bese, me fothare, wengagi f wh atimoowhentri hicashend th the my tr tald, ithe, andou ay an wi isthe, s sh
bof pa t wavealyof my blowist morougou prasthull f t fougens sthengeas sthe fone hay sst thur i huinean mi whand
inds we mestougitheay s f be, wi i tin ave me heroor beagesh s te toou fis pof forstr s be, bughu feshea fothoulir be
wicay ay, whathistanche, stowar tomofe be ineagases se isse is me, me, ithalill hatallse t me averelld he ish mica
bromoreraghougeate wissh miro itofatoncor pe soo ber wowhere agenct ilyowhese bear astald hissh pagentheaveat
isthimy. as sstardstowhage, mil buica wicou bely pearsishave bui wendowhasss mend ithur bes somoth t weatinont
minelld proth te merily wengille avint for bl fer m anofouss fourou ishalensincootriche ffimile, taghel stome win
wiminse, menseavaver farinds pallouimiches as wourerstag heal bora to he are, at maval bothurou mithilsomesis
woontiro fere tasstichito and, f pisherar huriteastay troffo m alowisisomely butoutre is towheave icherir fowelyofoo
alse por pougo fou hunenser pr tas whesher im t maloor f base imesh fofon ar arofomile thurowaveshe whelloursh
t fofimay pllss hene t angoule agases ang t me wagh thans ag so walo ichelld be blshustour sta icale is manere,
wicurothard pansiseld f whar be, f tasinck, sot wicare m a

Williamm Shakespeare: The Merry Wives of Windsor, order 3, precision 10‘ bes somanno a go

ants sin hostre, my worearte prack mis hin marress for misend mistre mor hall sire page he mis of well is
peetter hold ittill sir me i whe th stoll be so alsto thortud as hould youll yound sle pree, fors i car a stafter,
and hong ming i mis mons. havers. fidis fing and i de sess mou, ber ambe aster to cal i my i shall come be
ortise anto her, alstrestaffess pon was all i mys pagersook, ithearther holph wintol noth hin that mak, and antold
a bree, say, it my yout hum, son. saccauce, itheress am wit. paget bead a prabithee sir hown hostre sted,
and beare ame the simse, but orner hice; annevandess firshe bres, too wand witer tor her als, alstrught will
dind wersons him proo and my couthallow simplentoress of her thady comet oll band i wo make be hichere a
forn. sim he boyed of is th my your heer. misto sir all but mistely me; ton ar, fort sir comanter sed. ant
sir comisent men trult more be to mar am i weed. son of your fe, suffir. so a se mist and mast th mesto
he pager. paget my he be to shon mould baster ch sles, all, i wellow i thersen thick truth say. mand if
the page. mors, i conevanto but a ster, istaft th sim. hughted i weeres, mast side is shad he shaloned ast mis
probin thater. slet histoody, be ber. eve se pre, and theavend boysinte ord tre i and heerso the will, falster
sore piess a ming ford thater inds ware suble theasenter slealoster sir slenteress sues fresse bee my willow tray
thordoess of arts, hee sue betwer i ster trear, faius, is page i whear, my yout for ther whalstaft as of the and i
my whans in is if for astaff ther hugh we willoss as anym, thee, staire of willown; hister th the ine to do trands
took allowell you my you sirin ith whals fals, wit but offin ift ander. se say, thave mou, shere th sh is i wels
ord hall bur warrabook holdevicistres, be mis anym as hick, i dine we bes fess min for sle ined hat trany

Figure 3: Samples of text with precision 10 for The Merry Wives of Windsor

12

Charles Dickens: A Tale of Two Cities
Charles Dickens: A Christmas Carol

Charles Dickens: Barnaby Rudge

Edgar Rice Burroughs: The Warlord of Mars
Edgar Rice Burroughs: Tarzan of the Apes
Emily Bronte: Poems

Emily Bronte: Wuthering Heights

H. R. Haggard: Child of Storm

H. R. Haggard: King Solomons Mines

John Cleland: Fanny Hill

Lewis Carroll: Brunos Revenge

Lewis Carroll: Alices Adventures in Wonderland
Lewis Carroll: Through the Looking Glass
Slovak folklore: Trojruza

Slovak folklore: Zensky vtip

Washington Irving: Old Christmas

Washington Irving: The Legend of Sleepy Hollow

William Shakespeare: The Merry Wives of Windsor

William Shakespeare: Macbeth
William Shakespeare: Hamlet - Act 3

etaonihsrdlumwct,gypb."vk-";!17xqj:zO#”
etoahinsrdluwcgm,fypb. ’kv-;xjqz!: 7O #"”
etaonhisrdlumw,gcfypb’.vk-;j!7xqz: O#"”
etaohnirsdlufmwcgypb,v.k"-jx;q’z!7:#()”
etaohnirsdlufcwmgypb, .kv"-z’jxq?; 1#: ()"
etaosnrhild,uwgmyfcbpv;k-.!’"7:zjqxO#”
etaonihsrdlumcyfwg,pb.v"k-";!x7jqz O #:”
eatohinsrdluwm,fycgbpk."v-z’7;xq!j:#) ("
etaonihsrdluwfgm,cypb.kv"-’;x!j?qz() : #”
etoainshrdlmufc,wgypbvk.’-;xj:q!z" () 7#”
etaoinhsrlduwgy,mf’bepk.v-17q;:xjOz"#"
etaoihnsrdluwg,cymf’pbk.v-!:q7;xj"z(O#"
etaoihnsrdluwgycm, ’fpbk.-v!q":?jx;z(O)#”
aeoistldnrvumkzch,pybj."!-:7fgqux#’; ()"
aoeintsldrvucmkpz,yhbj."!7:;-fgqux#’ ("
etaonishrdlcmufgw,pybv.k;-"q’xj:z#!7()”
etaohnisrdlucfgwm,pbyvk.;-qjx’"z!7: O#”
etoasirhnldumyfw,cgpb.vk’;:7-!qjx#z()"”
etoahnsirdlumcwfy,bgp.k’v:;?!-qx#jz()"”
etoanshirldumy,wcfgpbv.k’;:?!q-xjz#()"”

Table 3: Most probable paths of order 1

Charles Dickens: A Tale of Two Cities
Charles Dickens: A Christmas Carol

Charles Dickens: Barnaby Rudge

Edgar Rice Burroughs: The Warlord of Mars
Edgar Rice Burroughs: Tarzan of the Apes
Emily Bronte: Poems

Emily Bronte: Wuthering Heights

H. R. Haggard: Child of Storm

H. R. Haggard: King Solomons Mines

John Cleland: Fanny Hill

Lewis Carroll: Brunos Revenge

Lewis Carroll: Alices Adventures in Wonderland
Lewis Carroll: Through the Looking Glass
Slovak folklore: Trojruza

Slovak folklore: Zensky vtip

Washington Irving: Old Christmas

Washington Irving: The Legend of Sleepy Hollow

William Shakespeare: The Merry Wives of Windsor

William Shakespeare: Macbeth
William Shakespeare: Hamlet - Act 3

“the
“the
“the
“the
“the
“the
“the
“the
“the
“the
“the
“the
“the

andouris,"wly.’ckf-bjg;mp!)qux7z#: ("
andourisck,’ly.) ;bjf-p:gmquvw!xz#7("”
andouris,’w.-bly;"mp!)ckf?g: jquxz#(”
andisoruly,"w.’bjck-f?gmp;quxz#:! ()”
andisorzly,"w. mpug-f?ck;bjqux#:! ()”
and,-sourily;’vbjckfg."w!mpgxz#:7()”
andisour."y,-1f’mp;bjckw?)g!quxz#: ("
and,"isouly.’grmbjck-w!)f?p;quxz#: (”
and,"isoury.’cklf-bjg!) ;mpw?qvxz#: (”
andis,"blyofruck’p-m. ;g:jqvw!)xz#7 ("
angoulis,’ry.bckw?)d-p!f:jm;quxz#("”
andoury, ’sicklf.)-bjg!"w?mp:quxz#; ("
andoulicrs, ’mp."?w!by:f;g-k) jquxz#(”

“ta siedomuzrychl,"n?bfgjvk:pqux#’.;!()-"
“to siedal,"nymuzrkvchbfgj.!pqux#’;:7()-"

“the
“the
“the
“the
“the

andis,"cofry.blupk-w;’g: jm!quvxz#7()”
andis,"bofry.cklup-w;gm!)jquvx’z#:7(”
andouris,-by.’1f;ck!g: jmpw?qvxz#()"”
andoursily,’g.-bjck!f :mp;quw?xz#()"”
andours,-wily.’f;bjck?gmp:quxz#! ()"’

Table 4: Most probable paths of order 2

13

Charles Dickens: A Tale of Two Cities

Charles Dickens: A Christmas Carol

Charles Dickens: Barnaby Rudge

Edgar Rice Burroughs: The Warlord of Mars
Edgar Rice Burroughs: Tarzan of the Apes
Emily Bronte: Poems

Emily Bronte: Wuthering Heights

H. R. Haggard: Child of Storm

H. R. Haggard: King Solomons Mines

John Cleland: Fanny Hill

Lewis Carroll: Brunos Revenge

Lewis Carroll: Alices Adventures in Wonderland
Lewis Carroll: Through the Looking Glass
Slovak folklore: Trojruza

Slovak folklore: Zensky vtip

Washington Irving: Old Christmas

Washington Irving: The Legend of Sleepy Hollow

William Shakespeare: The Merry Wives of Windsor

William Shakespeare: Macbeth
William Shakespeare: Hamlet - Act 3

ther,"ands.)bcfgivy-woulp?jkmgxz#’;:! ("
thery, ’abouldnigs.cfjkmpqvwxz#;:7! (O -""
thers, ’~knoway."build;cfgjmpquxz#:7! ()”
thersompland, "buick.fgjquuxyz#’;:7!()-"
thers."and,bcoulikfgjmpqvuxyz#’;:7! ()"
thering,-aboulds;cf jkmpqvuxyz#’.: 7! ()"
thering,"askuld.’boympcf jqvwxz#;: 7! ()-"
thers, "youlding. ’amp-bcf jkquwxz#; : 7! ()7
thers,"andifulp!bcgjkmovquxyz#’ .;:7()-"
ther,undiscamov’lbfgjkpquxyz#.;:7! ()-""
therying, ’asklbcdfujmopqvuxz#.;: 7! () -""
thers, ’amouldnbcfgivijkpquxyz#.;: 7! O -""
therying, ’abould. "cfjkmpsqvwxz#;: 7! ()-"
takoli,bceruzdyfghjmnpqsvux#’.;: 7! ()-"”
tolicny, "abudemfghjkpqrsvuxz#’.;:7! ()"
thers,"andifuly.bcgjkmovpquxz#’;:7! ()"
thers, "ayinglowdbcf jkmpuqvxz#’.;: 7! ()-"
ther,-andsompluck;bfgivjquxyz#’.: 71 ()"
thers, ’amblound.cfgivjkpquxyz#;:7! O -""
thers,-ackly.bdfumn’givjopquxz#;: 7! ()"”

Table 5: Most probable paths of order 3

Charles Dickens: A Tale of Two Cities

Charles Dickens: A Christmas Carol

Charles Dickens: Barnaby Rudge

Edgar Rice Burroughs: The Warlord of Mars
Edgar Rice Burroughs: Tarzan of the Apes
Emily Bronte: Poems

Emily Bronte: Wuthering Heights

H. R. Haggard: Child of Storm

H. R. Haggard: King Solomons Mines

John Cleland: Fanny Hill

Lewis Carroll: Brunos Revenge

Lewis Carroll: Alices Adventures in Wonderland
Lewis Carroll: Through the Looking Glass
Slovak folklore: Trojruza

Slovak folklore: Zensky vtip

Washington Irving: Old Christmas

Washington Irving: The Legend of Sleepy Hollow
William Shakespeare: The Merry Wives of Windsor
William Shakespeare: Macbeth

William Shakespeare: Hamlet - Act 3

“ the
“ the
“ the
“ the
“ the
“ the
“ the
“ the
“ the
“ the
“ the
“ the
“ the

“ the
“ the
“ the
“ the
“ the

st ing and his of mader wassid, been fores," ”

scrooge. i was and hist ing of martaider com”
somen and his of ing whou mader coned, beet d”
should anden of hat i com was for distereards”
should ander his of mall wast ing forearzated”
st wits and i hater my dessed, beartaing of f”
his and i shou wast of mento beeph yon exclin”
whou and saduko macumbell of hat i dow not, f”
st ing of and wer hated, beforeards frourseen”
so my and his of ing whoulder pression fort b”
was and hat i said, beed. whing of you kno m”
was and shou knot ittleared, i dow mor hater”
shou know it and hater was of yon begaid, i ”

tako sa pred naj doste mi alen zahradach ke, coze”
to poved sa naj mu koni vyholicny coze ak bohadal”

of and beent ing hater somed, was con evestio”
st of and his wassell marter ing foreades, be”
and hat i will bearter come, shou mis pagento”
so macbet i hater and whis of coments, but,—-"
and makes so hat ing comen good, whou doter o”

Table 6: Most probable paths of order 3 with repetitions

14

[Text [Dist. 1 Dist. 2 Prod. 1 Prod. 2 Entropy 1 Entropy 2|

A Tale of Two Cities (Dickens) Dickens Dickens Burroughs Burroughs Haggard Haggard
A Christmas Carol (Dickens) Dickens Dickens Carroll Carroll Dickens Carroll
Barnaby Rudge (Dickens) Dickens Dickens Dickens Dickens Dickens Dickens
The Warlord of Mars (Burroughs) Burroughs Burroughs Burroughs Burroughs Burroughs Burroughs
Tarzan of the Apes (Burroughs) Burroughs Burroughs Burroughs Burroughs Cleland Burroughs
Poems (Bronte) Bronte Dickens Bronte Shakespeare Bronte Irving
Wuthering Heights (Bronte) Dickens Dickens Dickens Dickens Bronte Haggard
Child of Storm (Haggard) Haggard Haggard Haggard Haggard Haggard Haggard
King Solomon’s Mines (Haggard) Dickens Dickens Haggard Burroughs Haggard Haggard
Bruno’s Revenge (Carroll) Carroll Carroll Carroll Carroll Carroll Cleland
Alice’s Adventures. .. (Carroll) Carroll Carroll Carroll Carroll Carroll Burroughs
Through the Looking. .. (Carroll) Carroll Carroll Carroll Carroll Carroll Irving
Old Christmas (Irving) Irving Irving Trving Trving Haggard Cleland
The Legend of. .. (Irving) Irving Irving Irving Irving Cleland Burroughs
The Merry Wives. .. (Shakespeare) | Shakespeare Shakespeare Shakespeare Shakespeare Carroll Haggard
Macbeth (Shakespeare) Dickens Shakespeare Shakespeare Shakespeare Shakespeare Bronte
Hamlet, act 3 (Shakespeare) Shakespeare Shakespeare Shakespeare Shakespeare Bronte Shakespeare
[Success [14:3 14:3 14:3 12:5 11:6 5:11 |

Table 7: Results of the attribution experiment with the attributed work excluded from the training set.

The results of the experiment can be seen in Table 7. The last line shows for each method the number of
correct and incorrect guesses. We see that the most successful methods were Euclidean distance of the first
and second order and the inner product of the first order, all of them guessing correctly 14 out of 17 texts
(82%). Entropy measures gave poor results, especially for the second order.

When we look at the authors, Burroughs seems to be easiest to guess. Carroll and Shakespeare were also
mostly guessed correctly. On the other hand, Emily Bronte is difficult to guess, maybe because one of her
texts is a novel, whereas the other poetry.

I also present two more experiments. The first one has all the available texts included in training set
and tries to classify all the texts as well. Thus each classified text was included in the characteristics of
the correct author, making it easier to classify for some methods. However a characteristics of an author
is an average of characteristics of all texts of that author and therefore the advantage is not so great. The
results are presented in Table 8. We see that both Euclidean distance methods have guessed all the authors
correctly and inner product of order 1 was also quite successful. Entropy behaved badly here as well. It is
interesting, that for some English texts the entropy measures found Slovak folklore as a closest match, which
means that entropy measure is not even very good for distinguishing among languages.

The second experiment had one work of each author in the training set and the rest of the texts was
included in attribution set. I have excluded Slovak texts from the experiments. The results can be seen in
Table 9. The conclusion of this experiment are again the same as in the previous once. The only surprising
fact is that A Tale of Two Cities by Charles Dickens was correctly recognized only by entropy of order 1,
which is in general not a very reliable method.

More results can be obtained using my web-based interface [5]. This interface also displays the values of
distances between texts and authors as computed during the attribution so that one can compare the results
and see how close the correct answer was to some other answers.

To conclude we have seen the results of three experiments with implemented attribution methods. I have
conducted several other similar experiments, all giving comparable results. We may conclude that entropy-
based methods do not give good results, they even cannot distinguish Slovak and English languages. Entropy
of order 2 is much worse than entropy of order 1. On the other hand, the methods based on Euclidean distance
give the correct answer in 80-100% cases. Inner product, especially of order 1, is relatively good. These 3
methods have a similar behaviour and it is difficult to choose the best one. Maybe we could somehow obtain
the answer by a combination of their answers. Here are several possibilities, such as plain voting, voting with
some weights attached to method, or each method can supply several best candidates etc. Still we would
not probably obtain anything which would be really trustworthy and reliable. The question is whether it
is possible to construct a reliable method of author attribution in principle, since the style of the writing
may differ from text to text for texts written by one author and even human experts cannot determine the
author with absolute certainty.

15

[Dist. 1 Dist. 2 Prod. 1 Prod. 2 Entr. 1 Entr. 2
A Tale of Two Clties Dickens Dickens Burroughs Burroughs Slovak Haggard
A Christmas Carol Dickens Dickens Dickens Carroll Dickens Slovak
Barnaby Rudge Dickens Dickens Dickens Dickens Slovak Haggard
The Warlord of Mars Burroughs Burroughs Burroughs Burroughs Burroughs Burroughs
Tarzan of the Apes Burroughs Burroughs Burroughs Burroughs Cleland Burroughs
Poems Bronte Bronte Bronte Bronte Dickens Irving
Wuthering Heights Bronte Bronte Bronte Bronte Dickens Haggard
Child of Storm Haggard Haggard Haggard Haggard Haggard Carroll
King Solomons Mines Haggard Haggard Haggard Burroughs Haggard Carroll
Fanny Hill Cleland Cleland Cleland Cleland Cleland Cleland
Brunos Revenge Carroll Carroll Carroll Carroll Carroll Cleland
Alices Adventures in. . . Carroll Carroll Carroll Carroll Carroll Burroughs
Through the Looking Glass | Carroll Carroll Carroll Carroll Carroll Slovak
Trojruza Slovak Slovak Slovak Slovak Slovak Burroughs
Zensky vtip Slovak Slovak Slovak Slovak Haggard Burroughs
Old Christmas Irving Irving Irving Irving Haggard Irving
The Legend of Sleepy. .. Irving Irving Irving Irving Cleland Burroughs
The Merry Wives of. .. Shakespeare Shakespeare Shakespeare Shakespeare Shakespeare Haggard
Macbeth Shakespeare Shakespeare Shakespeare Shakespeare Shakespeare Bronte
Hamlet - Act 3 Shakespeare Shakespeare Shakespeare Shakespeare Bronte Dickens

[Success 20:0 20:0 19:1 17:3 11:9 4:16

Table 8: Results of the attribution experiment with all the texts both in training set and in attribution set.

[[Dist. 1 Dist. 2 Prod. 1 Prod. 2 Entr. 1 Entr. 2
A Tale of Two Clties Bronte Haggard Bronte Bronte Dickens Haggard
Barnaby Rudge Dickens Dickens Dickens Bronte Dickens Bronte
The Warlord of Mars Burroughs Burroughs Burroughs Burroughs Irving Irving
Poems Bronte Haggard Bronte Shakespeare Bronte John Cleland
Child of Storm Haggard Haggard Haggard Shakespeare Haggard Haggard
Brunos Revenge Carroll Carroll Carroll Carroll Carroll John Cleland
Through the Looking Glass Carroll Carroll Carroll Carroll Carroll Dickens
Old Christmas Irving Irving Irving Irving Haggard Dickens
The Merry Wives of Windsor | Shakespeare Shakespeare Shakespeare Shakespeare Carroll Bronte
Hamlet - Act 3 Shakespeare Shakespeare Shakespeare Shakespeare Bronte Shakespeare
[Success [9:1 8:2 9:1 6:4 6:4 2:8 |

Training set: Charles Dickens: A Christmas Carol, Edgar Rice Burroughs: Tarzan of the Apes, Emily
Bronte: Wuthering Heights, H. R. Haggard: King Solomons Mines, John Cleland: Fanny Hill, Lewis Carroll:
Alices Adventures in Wonderland, Washington Irving: The Legend of Sleepy Hollow, William Shakespeare:
Macbeth

Table 9: Results of the attribution experiment with texts divided between training set and attribution set.

16

5 Conclusion

In this document I have discussed implemented algorithms and provided results of experiments on a set of
natural language texts. The monkey generators of random texts exhibited growing yield of words with the
growing order of the frequency table. This is the same result as was observed in [6]. When we decrease the
precision of the table, not much changes, until we restrict the number of characters to only 10 per keyboard,
when the yield of correct words increases. I have generalized the algorithm for computing most probable
paths to other orders. However the computed paths do not have easy-to-see patterns distinguishing different
authors and if they should be used for attribution, more subtle methods must be used.

Finally, I have implemented and compared several methods of author attribution, finding out that the
entropy is too imprecise to give meaningful results, whereas the methods based on Euclidean distance of
normalized matrices seem to be most reliable. Still, they err in some cases, and the question remains, whether
we can do better by some other methods based on letter frequencies. Definitely it would be useful to use
also some statistics based on word usage and sentence structure.

I must say that I spent a lot of time doing this assignment and that during that time I have discovered
several interesting things. I was surprised by a good results of generators using Slovak texts, although this
was partially caused by the deficiencies of the dictionary. I also enjoyed playing with different algorithms
for creating most probable paths. The greatest difficulties I have encountered with the dictionary and I was
not able to solve them to my full satisfaction. I have also learned a lot about HTML input forms and php3
scripting language, because this was the first interactive web-page that I created on my own.

References

[1] 1000000 words that were found at the free internet lexicon and encyclopedia.
http://www.dict.org/100kfound. txt.gz.

[2] The on-line books page. http://digital.library.upenn.edu/books/. University of Pennsylvania.
[3] Php manual. http://www.php.net/manual/.

[4] William Ralph Bennett, Jr. Scientific and Engineering Problem-Solving With the Computer. Prentice-
Hall, Englewood Cliffs, N.J., 1976.

[5] Bronislava Brejova. Web-based interface to the solution of the assignment.
http://genetics.uwaterloo.ca/“bbrejova/a/.

[6] Nick Cercone. Monkeys at the typewriters. Handout for cs786s, spring 2000. Based on [4, chapter 4].
[7] Dave Raggett. Html 3.2 reference specification. http://www.w3.org/TR/REC-htm132.

[8] Grady Ward. Moby part-of-speech. ftp://ftp.dcs.shef.ac.uk/share/ilash/Moby/mpos.tar.Z.

17

