


Man’s compulsion to communicate generally shows up early in a computing
course. One frequently encounters student programs containing long strings of
alphanumeric characters to be printed at various branch points ranging from
dull factual statements (e.g., “THE NUMBER OF PRIMES LESS THAN

..IS...”) to messages of flamboyant bravado (e.g., “THANKS FOR THE
GAME YOU CLOD AND BETTER LUCK NEXT TIME”). This kind of
thing is much more entertaining if you cannot tell ahead of time from the
program just exactly what the computer is going to say. We shall therefore
consider an alternative approach to the problem, both to make the form of the
conversation more interesting and to illustrate some fundamental statistical
properties of written languages in general.

There has been a sporadic preoccupation with the statistical aspects of
language throughout much of recorded history. Recent quantitative manifesta-
tions of this interest have mostly gone under the heading information theory.
From the advent of the telegraph on, there has been an increasing concentra-
tion on the mathematical analysis of communication problems—an interest
reflected by the early papers of Nyquist and Hartley, through the more
generally known work of Shannon. It is not surprising to find that much of this
research was supported by a company in the communications field (Bell
Laboratories). In addition, the subject was stimulated by government concern
with transmission and detection of “secret” messages during and in between
wars. More recently, the insatiable appetite for data transmission shown by the
computer field as a whole has elicited still more concern, if not outright
anxiety. The contemporary transmission unit is megabits per second.

Activity has also gone on with those less motivated by practical application,
for interest in the statistical aspects of language is clearly lurking at least
subliminally below the surface in most of us. In fact, it is probably not entirely
accidental that the foremost American contributor to statistical mechanics,
Josiah Willard Gibbs, was himself the son of a philologist. Gibbs the elder was
something of a pioneer in urging that language should be the object of scientific
study from a correlative point of view (see Gibbs, 1857).

Nearly everyone knows that if enough monkeys were allowed to pound
away at typewriters for enough time, all the great works of literature would
result. The universal appeal of this notion to human imagination is demon-
strated by the wide variety of circumstances in which it appears. For example,
the basic concept involved has been used in a contemporary nightclub act by
Bob Newhart, in a series of popular lectures on statistical mechanics given
about 50 years ago by Sir Arthur Eddington, and in the discourses on religious
philosophy by the seventeenth-century archbishop John Tillotson (1630-1694).
Elaborate fantasies on this general theme have been given by Maloney (1945)
and Vonnegut (1950). Kurt Vonnegut’s treatment is probably the first one that
implies a computer simulation of the problem.

The earliest specific use of the basic concept known to the present author is
to be found in the Maxims and Discourses of Archbishop Tillotson, published
posthumously in 1719. In his “Answer to the Epicurean System,” Tillotson
applied the notion to the creation of poetry, prose, entire books, portrait
painting, and even the creation of Man and the World. He then went on to
imply that the improbability of these events occurring through chance consti-
tutes an argument for the existence of God. His original statement of the
problem is so profoundly moving that we have reproduced the paragraph in
entirety in Fig. 4-1.

Most contemporary use of the concept is traceable to the Gifford Lectures
presented by Eddington at Cambridge in 1927. Here Eddington first brought
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In Anfwer to the Eﬁicurcan Syfiem, be ar-

gves ] How often might a Man, after he had
jumbled a Set of Letters ina Bag, fling them
out upon the Ground before they would fall
into an exaét Poem, yea or fo much as make
8 good Difcourfein Profc? And may not alit-
tle Book be as eafily made by Chance, as this
great Folume of the World? How long might
2 Man be in fprinkling Colours upon a2 Can-

vas with a carelefs Hand, before they could
happen to make the exa&t Piture of 2 Man?
Ancrc is a Man eafier made by Chance than
his Piture? How long might twenty thou-
fand blind Men, which fhould be fent out
from the feveral remote Parts of En land,
wander up and down before they would all
mect upon Salisbury- Plains, and fall into Rank
and Fircoin the exact Order of an Army ? And
yet this is much more cafy to be imagin'd,
than how the innumerable 4/ind Parts of Mat-
ter fhould rendezvouze themfelves into a
World.

monkeys into the act with the statement:

“If an army of monkeys were strumming on typewriters they might write all
the books in the British Museum” (p. 72).

Eddington was discussing one of those rare statistical fluctuations so often
mentioned in popular discourses on science: things which most reasoning
people agree could happen in principle (e.g., that a kettle of water might freeze
when you put it on the stove); however, the probabilities of them actually
occurring are so unimaginably small that you would risk being carted off to the
psychiatric ward if you ever reported seeing the event.'

Specifically, Eddington was discussing the likelihood of finding all N
molecules in a container in one half of that container. If each molecule wanders
about randomly throughout the entire vessel, the probability of finding it in one
particular half of the volume would be 3. Similarly, the probability of finding all
N molecules in the same half would be (%)% (3) (3) - - - =@)". Suppose that the
container had a volume of 4 cm® and was filled with an ideal gas at standard
temperature and pressure. Then N =10 and the probability of finding all N
molecules in one half of the vessel is 1 chance in

2N:2I03“z101x|1)"‘ (1)

The number 2 is so large that it defies human visualization. Imagine
looking from the top of the Empire State Building to the horizon (=50 miles)
in all directions and suppose that the surface of the earth were covered to the

! For example, when 5 engines and 17 freight cars from three separate tracks in a freight yard
at Newark, N.J., mysteriously assembled themselves into a freight train and drove off an open
drawbridge into the Passaic River, the police suspected sabotage rather than statistical fluctuations
(The New York Times, Oct. 7, 1970, p. 95, col. S).
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Fig. 4-1. Quotation from the
seventeenth-century  archbishop John
Tillotson (1630-1694). The figure has
been reproduced from College Pam-
phlets V, Maxims and Discourses Moral
and Devine: Taken from the Works of
Arch-Bishop Tillotson, and Methodiz’d
and Connected, London, 1719. For clar-
ity, the two portions of the paragraph
starting at the bottom of page 10 of the
original publication and continuing on
the top of page 11 have been pieced
together photographically. The author is
indebted to the Beineke Rare Book and
Manuscript Library at Yale University
for permission to reproduce this
material.



Specifically, we want this subroutine to print the characters
ABC,....Y.Z. -

as the input variable X takes on the values
1,2,3,...,25,26,27,28,29

Many of the problems will involve matrices with row and column numbers
determined by integer values of X. We do not use the normal ASCII code for
the alphabet (i.e., A=65,...) in order to keep the matrices within practical
dimensions.

We also want to set the problem up in a manner that will permit use with
BASIC compilers which do not have the CHR$ function built in. In addition to
printing the characters listed above, it will be desirable to introduce a column
counter, Q9, in the subroutine which triggers the carriage return and line feed
(i.e., PRINT statement) after printing spaces when Q9 > 60. This last provision
will prevent breaking up words at the end of the 72-column format. The
hyphen will be used in later discussions of bit compression and cryptography to
indicate unidentified characters.

The most appropriate form of the subroutine will vary with the particular
computer available. We shall start by outlining the worst possible way to do the
subroutine so that the advantages of more efficient approaches to the problem
will be emphasized.

A usable printing sieve can be constructed (albeit tediously) along the
following straightforward lines:

500 REM, etc. (reminders for future use of the subroutine)

510 IF X#1 THEN 520

512 PRINT “A”;

515 RETURN

520 IF X#2 THEN 530

522 PRINT “B";

525 RETURN

530 IF X#3 THEN 540

etc.,
where the semicolons after the PRINT statements provide close spacing. This
takes about 329 =87 lines and is needlessly inefficient even when string
functions are not available. If all N =29 characters occur with equal probability
on the average, the average time (apart from printing) to run through the
subroutine will be = NT,/2, where T, is the time for one conditional statement.
For N =29, there will be 14.5 conditional statements on the average.

At just what point this type of running-time limitation becomes important
will depend on the available printing equipment and the size of N. For
example, if the output is printed with an AR-33 teletype (=10 characters per
second), this running time is not a major limitation on most computers.
Nevertheless, for the sake of generality, it is worthwhile considering some more
efficient and faster methods of accomplishing the sorting and printing sub-
routine.

If your computer is limited to two-branch conditional statements, the most
efficient subroutine will generally tend to be one based on a binary sorting
scheme. (Some improvement can always be effected in specific cases by
utilizing the character occurrence frequency in the sieve.) It will be helpful to
draw a flowchart of the sorting scheme before starting to write programming
statements (see Fig. 4-2). It is easiest to construct the flowchart from the
bottom, up, by starting with the required output characters. In the present
problem we need to print the characters A, B, C, D, .. ., for values of the input
parameters X =1, 2, 3, 4,.... Consequently, we have grouped the output
choices in pairs (1-2), (3-4), and so on, to be selected through two-branch
conditional statements as shown on the bottom row of the figure.
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X>16 ?

NO,

(1-16)

 YES

(17-29)

efc.

,etc

X>8 ?

NO

(1-8)

NO YES
(1-4) (5-8)

NO A YES NO YES

(1-2) (3-4) (5-6) (7-8)

\ YES

(9-16)

NO YES
(9-12) 13-16)

,etfc
NO YES NO YES

(9-10) m-2) (13-14) (15-16)

A ANWANYANE
N AY N4 YN 'Y Nf Y N YN Y Nf Y

i 'Y N
m (2) (3) (4) (5) (6) (7) (8) (9) (10) ) (2) (13)

(14) (15) (16)
PRINT: A B C D E F G H 1 J K L M N O P

Fig. 4-2. Binary character-printing sieve. (This type of structure is known as a tree in
current computer science parlance.) As outlined here, the sieve could actually handle up
to 31 characters using five conditional statements (triangles) per character.
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On the next-to-bottom row of Fig. 4-2, the two-branch conditional state-
ments permit distinguishing between the pairs (1-2) and (3-4); (5-6) and (7-8);
and so on. Similarly, working back to the input, we enter the subroutine by
choosing between the two groups (1-16) and (17-29). A sequence of five
conditional statements may thus be used to sort 2°—1 =31 separate characters.
Hence a reduction in sorting time of about a factor of 3 should be obtainable
with the binary sieve over the straightforward approach outlined before.

In writing program statements to correspond to the flow chart in Fig. 4-2, it
is easiest to start at the top (e.g., using the “greater than” conditional
statement) and work down one side (e.g., the left) of the figure. For example,

500 REM SUB TO PRINT ABC,....Y.Z,.,'~
501 REM WHEN X=1,2,3,, 25,26,27,28,29
502 REM Q9 COUNTS COLUMNS AND “PRINTS"” AFTER SPACE FOR Q9>60
503 LET Q9=Q9+1

505 IF X>16 THEN...

510 IF X>8 THEN...

515 IF X>4 THEN...

520 IF X>2 THEN 540

525 IF X>1 THEN 535

530 PRINT “A";

532 RETURN

535 PRINT “B";

537 RETURN

540 |IF X>3 THEN... etc.

where one comes back to fill in the appropriate line numbers in the conditional
statements in inverse order. As before, the semicolon after the PRINT state-
ments is required to provide close spacing. Although the subroutine takes
about as many statements as the “straightforward” way, it runs about three
times faster.

The same philosophy may, of course, be extended with higher-order
conditional statements. Thus a P-branch conditional statement will work most
effectively with a P-base sorting scheme. However, computers that are big
enough to incorporate multiple-branch conditional statements usually also have
some version of the CHR$ printing command.

If the alphanumeric character-printing function CHRS$ exists on your com-
puter, an efficient subroutine to accomplish the present objectives can be
written in just a few lines. The CHR$ function prints the alphanumeric
characters based on integer arguments corresponding to the ASCII (American
Standard Code for Information Interchange) convention summarized in Table
1 of Chapter 1. [Function arguments corresponding to the line feed, vertical
tab, form feed, and carriage return (integers 10-13) are excluded from this
function in normal versions of BASIC.] Note that the characters presently
needed which fall outside the normal 26-letter alphabet all have ASCII
integers <65 and that the alphabetical order is preserved in the ASCII code
(integers 65-90). Therefore, the computer has already done most of the sorting
for us if we can get at the internal ASCII code. Hence, assuming

1sX=<29 (4)

only one conditional statement is needed at the start to process every value of
X. For example,

500 REM SUB TO PRINT ABC,...,Y.Z, —

501 REM WHEN X=1,23,...,25,26,27,28,29

502 REM Q9 COUNTS COLUMNS AND “PRINTS” AFTER SPACE FOR Q9> 60
503 LET Q9=Q9+1

510 IF X>26 THEN 525

515 PRINTCHR$ (X +64);

Section 4.2
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520 RETURN Chapter 4
525 REM PRINT SPACE, APOSTROPHE AND HYPHEN WHEN X =27,28,29 Language
etc.

4.2 Fill in the missing lines necessary to accomplish the objectives in this sub-
PROBLEM 1 routine.

Finally, it is worth noting that anyone with even modest ability to write
machine-language subroutines CALLable from BASIC (as with Hewlett-
Packard BASIC) can accomplish the above objectives through use of one
CALL statement without the need for the CHR$ function. (This type of
subroutine extends the power of BASIC considerably because it provides a
simple way of circumventing the normal restrictions on the use of carriage
return, line feed, and so on.)

4.2 Construct the most efficient subroutine to accomplish the above objectives

PROBLEM 2 which is compatible with your particular computer. Test this subroutine using
the integers between 1 and 29. Save a permanent copy of this subroutine (500)
for future use.

Clearly, the straightforward monkey problem can be simulated by using the 4.3
random-number generator to choose integers having a one-to-one correspond- The Eddington Problem
ence with the characters on the typewriter keys. Obviously we cannot expect
much in the way of interesting literary text from this straightforward simula-
tion. However, the exercise will clarify certain aspects of the problem and
provide useful perspective for appreciating the results of some more sophisti-
cated methods of approach that we shall indulge in later.

First we have to decide how many characters we really need. Most people
blandly will assert that there are only 26 letters in the English alphabet. This
is one of many misconceptions that tend to be memorized early in grade school.
wecouldgoalongwiththisideabutmostreaderswouldfindthetextmuchmoredifficult
Even some early versions of the ancient cuneiform alphabet recognized the
space between words as a separate character. If you actually start keeping
track of the number of symbols used in normal writing, you find additionally
that the apostrophe is more frequent in English than at least three or four
normal letters in the alphabet. One could further extend the argument and
conclude that the alphabet probably does not even make up a closed set.
However, if we ignore punctuation, differences between upper and lower case,
and occasional changes in meaning afforded by italic type, we can do reasona-
bly well with the first 28 integers recognized by subroutine 5% of the previous
section. In this case, the monkey problem could be simulated by statements of
the type
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10
20
30
a0
999

LET Q9=0
LET X=INT(27*RND(1)+.5)+1
GOSUB 500

GOTO 20
END




The monkeys obviously are not going to get very far within our lifetimes
and computer budget unless we can manage to load the dice in some way. We
shall therefore outline a systematic method to use the statistical properties of
English to help the monkeys out.

As is well known to linotype operators, certain letters occur more fre-
quemly than others. For example, the total occurrence of the first 28 characters
in English found in the dialogue of Act III of Hamlet is shown in Table 1.
Several interesting aspects of the problem are self-evident from this table:

1. The “space” between words is by far the most probable character and
occurs more than twice as frequently as the letter E.

2. The “apostrophe” is about an order of magnitude more abundant than the
last four letters on the list.

3. It is further seen by adding up the total number of characters (=35,200)
and dividing by the number of spaces (=the number of words) that the
average word used by Shakespeare in this dialogue was 5.08—1=4.08
letters long. (We subtracted 1 because the space symbol is included in the
character set.)

Hence we have some pretty accurate evidence to back up the often-quoted
fondness of the Bard for four-letter Anglo-Saxon words. On the average, that’s
all he used. (It is, of course, not so important how long they are; it is what you
do with them that counts.)

4.4: Table 1 Character Distribution from Act III of Hamlet*
(in order of decreasing frequency)

Space E o T A S H N
6934 3277 2578 2557 2043 1856 1773 1741

I R L D U M Y w
1736 1593 1238 1099 1014 889 783 716

F c G P B Vv K '
629 584 478 433 410 309 255 203
J Q X z

34 27 21 14

* Total = 35,224 characters. Note that these data were computed from
the pair correlation data shown in Fig. 4-6 by use of Eq. (8).

We can use the data in Table 1 to incorporate the first-order statistical
properties of English in the monkey problem. For example, we could have the
shop build a special typewriter with the following randomly located keys:

6934 space keys

3277 letter E keys

2578 letter O keys

2557 letter T keys etc.

(for a total of 35,224 keys) and put that in front of the monkey. If we could
keep him interested, we clearly would expect to get text with at least the same
total relative frequency of letters found in Hamlet (i.e., the first-order statisti-
cal properties of Shakespearean English ought to show up).

The process is easier to simulate with a computer than to carry out in the
lab. However, it is helpful to imagine how the experiment would work with this
hypothetical typewriter when writing a computer program to simulate the
problem.

For example, each time the monkey chooses a new key to strike, it is
€quivalent to selecting a random integer between 1 and 35,224 (if our statistics
are based on the data in Table 1). Hence the first step in the program could be
written

LET Y=1+INT(35223*RND(1) +.5)

4.4
How Can We Help Them?
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Next we need a consistent method of determining to which group of keys Chapter 4
(or characters) Y corresponds. Did Y land in the group of 6934 space bars? Or Language
within. the group of 3277 letter E keys? Or within the group of 2578 letter O
keys? And so on. The answer to these questions determines the value of X that
we shall feed to subroutine 500.

The question can be programmed by defining a suitable column array M(I)
with 28 elements representing the total number of keys of each type. For
example,

M(1) =number of A keys
M(2) =number of B keys

M (27)=number of space keys
M(28)=number of apostrophes

If we include the total occurrence data in the form

1999 REM DATA IN ORDER AB,CD,...
2000 DATA 2043,410,584,1099, . ..

2020 DATA 21,783,14,6934,203

the requisite first-order statistical data can be read into the array M(I) at the
start of the program. The question “Which type of key did the monkey pick?”
may then be answered through the sequence of statements

110 LET S=0

120 FORI1=1TO 28
130 LET S=S+M(l)
140 IF Y<S THEN 160
150 NEXT |

160 LET X=I

170 GOSUB 500

180 GOTO 109

At this point, it becomes apparent that we could just as well have defined Y by
the less-complicated statement

100 LETY =35224*RND(1)

where 35,224 is the total number of keys. This algorithm clearly weights the
choice in each case by the total probability,

M(I)
> M)

P(I)= (5)

that the Ith character occurs.

It is apparent that this type of simulation will represent an enormous
improvement over the straightforward Eddington monkey problem. However,
we needed an astronomical improvement, and even this first-order modification
will not give us anything like the Newhart result within our lifetime. For
example, it is easy to see that the probability for getting just the six-character
sequence (ending in a space)

TO BE
is (from Table 1)

2557 2578 6934 410 3277 6934

. s . . z =~4x107"
35,224 35,224 35,224 35,224 35,224 35,224
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Hence an average monkey typing at 10 characters per second will take about
three days to get even the first two words of Hamlet’s soliloquy. Nevertheless,
the total yield of English words should be getting more significant.

Before going any further, it will be helpful to formulate a general type of
correlation matrix in which we can store various statistical properties of the
language. (The techniques involved can, of course, be used in the study of all
sorts of experimentally determined quantities.)

Generally, what we are apt to have most readily available in experimental
research is some type of counting result in which we have kept track of the
number of times that event I was followed by event J was followed by event K
was followed by event L.... This type of quantity can be stored in a
multidimensional matrix,

M(LJ,K,L,...)

which is computed by adding one to the element I, J, K, L,... every time a
new sequence I, J, K, L, ... is encountered. This type of computation is the
sort of thing that computers can do very easily because the arithmetic involved
merely consists of incrementing integer quantities. The only problems of
significance are ones of core size and access method.

Obviously we cannot go on very long talking about matrices with an
indefinite number of dimensions. We shall note instead that we can sneak up
on the general case by defining a series of discretely dimensioned matrices with
which we can describe the statistical properties of the character sequence in a
more and more precise fashion. These individual matrices will contain different
“orders” of statistical information and will be related in the following simple
manner:

M=ZM®=ZM@D=ZM@L@=~~ (6)

That is, the zeroth-order “matrix” is just the total number of events,

M=me (7)

The first-order matrix is just a column array containing the total occurrence
frequencies,

Mm=ZM@D (8)

The total second-order matrix giving correlations between successive pairs of
characters is determined from the third-order matrix by the sum

M(L J)=3, M(I,J,K) 9)

and so on.

Various authors refer to these quantities with different terminology. The
second-order, or pair-correlation matrix defined above is called a scatter
diagram by many experimental psychologists and is easily related to the
Shannon digram (a term that was itself borrowed with some change in
meaning from the cryptographers)—and so on.
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We may similarly define a set of normalized probabilities:

_MD
PI) =" (10)
represents the total probability that the Ith character occurs;
_M@J)
P(I,J))= M(D) (11)

represents the probability that the J th character occurs after the Ith character

has just occurred;

M(IL, J, K)
M(LJ)

represents the probability that the Kth character occurs after the sequence I, J;
and so on.

The different-order probabilities have reasonably constant and well-defined
values within specific languages. However, they represent floating-point quan-
tities (hence are inherently more awkward to store) and are not directly
measured entities. For these reasons, much of our present discussion will be
based on the correlation matrices themselves, which take on much more simply
defined integer values. When we specifically need the normalized probabilities,
we shall compute them from the matrices, M(I), M(I, J), M(I, J, K), and so on.

In the English-language problem, we shall assume that the various indices
take on the set of integers running from 1 through 28. The principal difficulty
in doing an extended statistical study of the language is obviously the speed
with which 28" builds up. Specifically,

282=784, 28°=21952, 28°=614,656, 28°=17 million, etc. (13)

Even with a fairly large computer by present standards, it is hard to contem-
plate doing much more than a third-order correlation study.

Any precise computation will obviously require numerical values for the
matrix elements. However, it will be helpful to have a quick look at the

P(I,J,K)= (12)

om>

N<XES<CH0IOTVOZSrXc—IOTMO

Spac

]

Fig. 4-3. Histogram of letter frequencies in the dialogue from Act III of Hamlet.
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Fig. 4-4. Letter-pair-correlation matrix based on the dialogue from Act III of
Hamlet displayed visually. The brightness of each spot is proportional to M(L, J).

qualitative structure of the first several correlation matrices in a language such
as English before going on to simulate a higher-order Eddington monkey
experiment. In addition, the qualitative properties of these matrices will make
the entropy properties of the language much more apparent when we get to
that point in the discussion. One simply cannot visualize the relative prob-
abilities involved merely by looking at 28, 28 X28, and especially 28’ numbers.

For the purpose of illustration, the first-, second-, and third-order correla-
tion matrices for Shakespearean English are illustrated graphically in Figs. 4-3,
4-4, and 4-5. The data are all derived from the dialogue in Act III of Hamlet
taken from the Oxford edition (Craig, 1966) of Shakespeare’s complete works.

The histogram in Fig. 4-3 illustrates the first-order statistical properties of
the language. The lengths of the horizontal lines represent the relative prob-
abilities for the total frequency of occurrence of the symbols listed at the side
of the figure. Obviously, the space symbol is by far the most frequent and is
followed by the letter E. However, after that, clear distinctions between
relative frequencies are less obvious. In this ~35,000-character sample, the
letters J, Q, X, and Z occur very rarely. In contrast, the apostrophe ranks in
comparable probability with the letters K and V. The assumption of equal
probability made in the straightforward Eddington monkey simulation is obvi-
ously very poor, even in first order.

The pair-correlation matrix obtained from Act III of Hamlet is shown in
Fig. 4-4. Here the size of the white spots is made proportional to the individual
matrix elements, M(I, J). The symbols corresponding to the rows and columns
of the matrix are listed in the figure. One can readily recognize the high
probability of words ending in the letter E from the large white area in element
M(S, 27)—corresponding to the number of times the space symbol followed
the letter E. Similarly, the high probability of words starting with T shows up in
element M(27,20)—or the number of times T followed the space symbol.

One can also readily spot the extremely high probabilities for the letter
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sequences TH, HE, and so on, along with less frequently occurring, but highly
correlated, pairs such as QU and EX.

In Fig. 4-4 the dark spaces are almost as important as the bright spots.
Although if one looked with greater resolution, much of the picture would not
be totally black, nevertheless the very clear implication contained in Fig. 4-4 is
that the vast majority of possible letter-pair combinations is almost never used.
(There are =291 appreciable matrix elements out of a total possible number of
784 in the figure.) Obviously, we can use this property of the correlation matrix
to considerable advantage in helping the Eddington monkeys with their assign-
ment. Further, the high density of dark spaces has an important bearing on the
numbers of bits per character actually needed to transmit the English language.
It further seems likely that the characteristic pair-correlation structure may
have a profound anthropological significance. (Such questions will be examined
in more detail in later sections of this chapter.)

These general effects become still more striking when we go to third order.
The data shown in Fig. 4-5 are again based on Act III of Hamlet. Here we
have broken up the 28x28x28 (=21,952)-element third-order correlation
matrix into 28 separate pair-correlation matrices of the type discussed previ-
ously in connection with Fig. 4-4. The difference is that the data displayed in
Fig. 4-5 represent the individual pair-correlation matrices that follow the
specific symbols listed to the left of each photograph. The photograph in the
upper left-hand corner corresponds to the pair matrix that would follow the
occurrence of the letter A; the next one to the right corresponds to the pair
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Fig. 4-5. Third-order letter-correlation
matrix based on the dialogue in Act 111
of Hamlet. M(I,J,K) is displayed by
showing the letter-pair matrix, M(J, K),
following each of the I=1, 2,...,28
characters in the alphabet. Note how a
word such as YOU stands out: the bright
spot in the letter-pair matrix folowing Y
corresponds to the number of times U
followed O after Y.



matrix that would follow the letter B; and so on. (The same labeling of rows
and columns given in Fig. 4-4 is tacitly implied in each of the photographs in
Fig. 4-5.) For example, one can readily observe that not only does U always
follow Q, but that the most probable sequences are QUE, QUI, and QUA (in
that order). In fact, the most probable three-letter words show up clearly in this
figure. Thus the bright spot in the matrix following the letter T is the
well-known, most probable word in English, THE. Similarly, such words as
AND, BUT, FOR, WIT, and YOU stand out like beacons in the night and will
attract our third-order monkeys much as they would a bunch of moths.

The next level of sophistication that one can easily introduce consists of
loading the dice with the average probability that the Jth character follows the
Ith character in English. Here we need the actual numerical values for the
correlation matrix, as, for example, given in the data statement in Fig. 4-6
(based on the dialogue from Act III of Hamlet). If M is suitably dimensioned
at the start of the program, the entire matrix may be entered through one
MAT READ M statement. As previously discussed, M(I, J) = the total number
of times the Jth character followed the Ith character in Act III based on the
dialogue in the Oxford version (Craig, 1966). The notation on the rows and
columns corresponds to the same convention used in subroutine 50. For
example, the first row of the matrix implies that

A followed A zero times
B followed A 19 times
C followed A 63 times etc.

Thus the total frequencies (see the preceding section) are contained in the

matrix through the relation

F(I)= 2; M(LJ)
We may not use the more natural letter M for the column array F just defined,
because the BASIC compiler does not allow the same letter to be used
simultaneously for one- and two-dimensional arrays.

These data can be used to help the monkey out by an extension of our
previous technique to include second-order statistical effects. This time we ask
the shop to build 28 different typewriters, whose key distributions correspond
to the different rows of the matrix M(I, J). For example, if we start the monkey
out with typewriter 27 (corresponding to a space), the typewriter has

28
FQ27)=Y M(27,1)=6934 keys
=1

of which there are 627 A’s, 329 B’s, 218 C’s,...,0 space keys, and 28 apos-
trophes. (We deliberately defined M(27,27)=0 to avoid long sequences of
spaces.)

We let the monkey hit one key (i.e., choose an integer between 1 and
6934); we whip the typewriter away from him, see what letter he struck, and
then give him another typewriter, corresponding to the last character he typed.

This process can be simulated by the following statements:

10 DIM F(28), M(28,28)

30 MAT READ M

40 REM COMPUTE F(l) FROM SUM OF M(l,J) OVER J
90 LET 1=27
100 LET Y=F(I)*RND(1)
110 LET S=0
120 FOR J=1TO 28
130 LET S=S+M(l,J)
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149 IF Y<S THEN 160 Chapter 4
150 NEXT J Language
160 LET X=J

170 GOSUB 5090

180 LETI1=J

1990 GOTO 109

where, of course, the 28 X28 matrix elements must be contained in DATA
statements somewhere in the program. Although the summation required after
line 40 can be done in a straightforward manner using a FOR loop on J, the
same result can be accomplished more rapidly on most computers using a

999 REM HAMLET ACT I11

1000 TCATA 25195635695 15155 4351560555605138565,420,0524505193,1615314
1001 DATA 24596519535 11154513451

1002 DATA 2553205 1405050505 1251505 4950505 33,0s05345 75357305050

1223 DATA 23,2565 1

1004 DATA 60s0s85C» 10650572945 17505 4025 165€5051295050525555 4851950

102S DATA 0505 7,05852 *

1006 DATA 25, 250525111515 7505 685152565245 14510450505175 405056535050
1007 CLCATA 21,0,66453

10¢8 DATA 2235356051165 1485235195 7529515251555 55,2565 55 3653, 383,218,128
1209 DATA 0, 41513514,31,0251283,25

1012 DATA 545050505 745 33:,0,0522,0502 1558505 11852525 42,2519, 16502050
1611 DATA 1,0,233,¢

1212 LCATA 275@>052567505 45635 395¢5 051855555 6251,053851651,20,8,0,0
1613 DATA @,€5110:2

1014 DATA 34151505 3,6305150515259,0,052505 1519153505135 35 24,30:05150
121S DATA 39,0,209, 4

1016 DATA 205 35 585 40s 645 485 445050505255 1005865 3495755 10205815293, 2405 1
117 DATA 44515250535128,21

1018 DATA 35s0sCGsP26s05050225050505050514:050505050+95050,02:0:05C

1219 DATA @

1020 DATA @s050:0:83505050537505@56505245050505751250,050,0>05050

1021 DATA 8751

1022 DATA 10250535 7151575285050 108505252175 650515659505226515 16514
1023 DATA 250554505245, 5

1024 DATA 151513,0505,2145 156505 4650205125135 65 10252050505 1550 46525250
1625 DATA 121,0,129,0 B

1626 DATA 445157553285 146511516250525515305 4s 4527522051502157351205 753
1027 DATA 4,@515, 3, 428, 28

1028 DATA 7516516553,1251925250521505225 48511152685106527515305» 735169
1729 DATA 4945 495 1445259525 416513

1230 DATA 5450s0s05 7350505 1052850505 5050505 5958505 56,85852650,0s05 1
1031 DATA 055151

1032 [DATA 050500505050+ 05050,050505050+050505050527:0-0-05050>0

133 DATA @

1034 DATA 995 451551135,31154,13,2,83,2510514523,205 1095 10505 30,895 775 37
1035 DATA 12525055050, 447,21

1936 DATA 4051052352523050505 1085735 156518565251215 48,0505 66,230537,0
1037 DATA 24,0511,05 786514

12638 DATA 6651510,05135,05058785133:0505205 151524251505 595525 31,51,0,23
1639 DATA @, 32,0,805516

104 DATA 7565335 175449535505 165051590516582515275051995125,111,0,0,0
1041 DATA @5151519251

1042 DATA 950,05052465050s8534>05050505P5 1150505050505 158505052

1043 DATA 25056

1044 DATA S151525151075 15051585 15650505250528,81,050510,13:0,0:0

1045 DATA 050,0,05103, 4

1046 DATA ©0:053:051,05050+050s0,051505253,0505055505050:050,05 6

1047 DATA 2

1048 DATA 5505051534505051565050505 4,0523953:0+0512,150,0,0,0

1049 DATA @505 47552

1050 DATA 3:0:0505 7050505050505 1505050050505 0505050500505 1

1851 DATA 0,2 .

1052 DATA 6275,329,2185,227, 10852625149, 4505 4625245 575236, 489, 2375 402
1053 DATA 20552251035 47959625 T4» 495 481505254, 0505 28

1054 DATA 050505545 17>05050505050521505 1505050525 685315025050

1055 DATA 250,950

Fig. 4-6. Data statement for the 28 x28-element letter-pair-correlation matrix
based on the dialogue from Act III of Hamlet. (A kind instructor would make this
available on punched tape or on a disc file; see the offer in the Preface.)
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matrix multiplication method. Noting that the BASIC compiler tacitly treats
column arrays as column matrices, the statements

50 DIM X(28)

60 MAT X=CON

70 MAT F=M=*X

accomplish the required summation (see Section 2.17 for clarification).

At last we start to get an appreciable yield of words—and, even more -

interestingly, some appreciably long word sequences. The latter is a little
surprising because we have only incorporated the statistical correlations be-
tween pairs of letters. Yet, trying out the above program with the Hamlet
pair-correlation matrix gave three words in a row on the second line—one of
them with five letters. Specifically, the second-order Shakespearean monkeys
started off:

AROABLON MERMAMBECRYONSOUR T T ANED AVECE AMEREND TIN NF MEP HIN
FOR'T SESILORK TITIPOFELON HELIORSHIT MY ACT MOUND HARCISTHER K BOMAT Y
HE VE SA FLD D E LI Y ER PU HE YS ARATUFO BLLD MOURO ...

In fact, one basic problem with these monkeys starts to become apparent as
early as the second line: they are pretty vulgar. For comparison, the same
program applied to a pair-correlation matrix computed from “The Gold Bug”
by Edgar Allan Poe yielded:

ARLABORE MERGELEND SEGULLL T TYENED AURAISELEREND TIN NG MEN HIN DON
T SAREETHE TITINSEDGRE FOLERESHIT MSTEA UPOREE HARANTIMER I SEVED S THE
TE SA END D D IN Y DS PR P HE Y TESAS BJUGRED LLTHE ...

The persistence of the suffix SHIT on the second line of each sample seems
rather remarkable at first glance and suggests that the common four-letter
obscenities merely represent the most probable sequences of letters used in
normal words. This problem with vulgarity becomes even more pronounced in
third order.

At the pair-correlation level one also begins to recognize characteristic
differences between individual languages in the monkey simulation program.
Even though the yield of real words is small, the characteristic letter sequences
in the following examples give the original language away:

Second-Order Italian Monkeys:

ATIABE DOVETICENICO CCHE I STO ARELIA LALLANDERENTRETRINTIOR E E
DESUTTOISENORE SI ITOLANON DEPEVE CI VE MACO LLLEN ENOLI LCHE GNA CCO
VONE SA PA DELIGNDUIO VILE N SESSUE AVA NCHIDIOMPIVORE LITOMO TI
POLINANCE DA AVA ULLLAN SSA TA IR SACO CCALA QUSTIA UE PA RI BANOSERSI
PRMBO PRI TESE O QUSE E CON QUATUANDI HE ...

Second-Order German Monkeys:

ANSABINE ILILBEIGETUELLERN T S AMEILAUNDERALENENDISSPRSIRNIG ERISENI US
ANEINGER HUNSTEIERE DELENINER WESTEBUSTSTEITEINDEROFOL GSCHEIS
ZWEMPRAT A DEIMATE GE ZUHERT VIGT ETERASTEN DEND IN FR IMM DR
WERUNDENDEIEREINDIES GENAL T CH D IN VEBRUFFADAT DR JA WEWICHTS
BEMIMEN IS WIES R M WENE N SM E ESCHEUNGAN BEKS ...

(note the long words)

Second-Order French Monkeys:

ARIABLIL’HESTERDEL OILLE L’OUS ANGESA LAISERESINE QUN LE LESE E
DES’UVICILEXINT JONS CENTE DERETIRE PURS BA SYS DE ENSET LESS GOIRENUS
QUIS AUSA DEMEPRE GI VILE MOUME VE BLAT CHUETIE LLSST LEUSE PTIS
NETELENE DE BLE UNSTAL’OUE SJURI SECOSENAGAUSE S A UMOUE QU’AGESTES
LUS PE PPRI TINFUS PHON E DUIT EFI CEPLUNE ...
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The same general technique can be extended to higher and higher statistical 4.8
orders. The only limit is computer size and inconvenience in handling higher- Third-Order Monkeys
order matrices. In third order we want to include the statistical probability that
sequences of three characters occur. Thus we have effectively to store three-
dimensional matrices of the type M(1, J, K), which contain the total number of
times the Kth character followed the Jth character after the Ith character. The
main difficulty is that there are 28 x28 X 28 = 21,952 different matrix elements
to include, and one starts to feel memory limitations in the data-storage
allocation on modest-sized computers.

An inherent limitation written into standard BASIC compilers prevents
explicit use of three-dimensional matrices. That is, a dimension statement such
as

DIM M(28,28,28)

will be thrown out by diégnostic subroutines and there is no provision within
the standard matrix mathematical subroutines for three-dimensional matrices.
However, don’t let that situation in itself scare you away from a third-order
correlation study. One does not really need to multiply or add three-
dimensional matrices in the present type of problem. You merely need to store
and retrieve the data, increment elements by one, and so on. Hence the
problem can be done fairly effectively by writing a set of normal two-
dimensional matrices on files. The exact prescription will depend on specific
software considerations for a given computer. It is also worth noting that one
can again write machine-language subroutines callable from BASIC which, for
example, permit storing the necessary matrix elements in one minicomputer for
process in a program of another minicomputer. (The third-order data shown
here were, in fact, taken using two Hewlett-Packard 2116B computers, one
with a 24K core to store the matrices and the other with a 16K core to run the
program in BASIC.)
The problem typically involves three stages:

1. Initializing the 28x28x28 matrices in the storage area (purging old
values, giving the right dimension statements, etc.).

2. Computing new values for the 28 X 28 x 28 matrices (this involves adding 1
to the I, J, K element each time the sequence I, J, K occurs).

3. Reading the stored matrices into the program as they are needed.
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Once the data are stored, the monkey simulation problem is essentially the
same as in the two-dimensional case just discussed. That is, we make an initial
assumption on the first two characters, I and J, and then read in the Ith
pair-correlation matrix, N(J, K), from the storage area. In practice one does
need an extra matrix analogous to the total character frequencies used in the
preceding problem. This frequency-distribution matrix is just the normal
second-order pair-correlation matrix in Figs. 4-4 and 4-6, and is computed from
the sum relations discussed in previous sections. Thus in the following program
we shall assume that we have the standard pair-correlation matrix M(, J)
available in the main program and have access to 28 separate stored matrices
N(J, K) which correspond to the 28 values of I in the third-order matrix
M(L, J, K). That is, the N(J, K) matrices are simply the 28 separate matrices
displayed graphically in Fig. 4-5. Thus the monkey-simulation problem in third
order runs:

80 LET =5

90 LETJ=27

100 REM READ IN ROW J OF N(J,K) FOLLOWING | FROM STORAGE

} for example

110 LET Y =M(1,J)*RND(1)
120 LET S=0

130 FOR K=1TO 28
140 LET S=S+N(J,K)
150 IF Y< =S THEN 170
160 NEXT K

170 LET X=K

180 GOSUB 500

190 LET =y

200 LET J=K

210 GOTO 109

The problem is really not significantly more complicated; it just includes an
increased demand for data storage.’

* Those readers who do not have access to adequate storage facilities might find the following
method useful for approximating a third-order correlation matrix from two second-order correla-
tion matrices. Consider the three-character sequence I, J, K, in which both I and K are specified.
In terms of the exact third-order correlation matrix, M(I, J, K), the probability of obtaining a
particular character, J, in the middle of the sequence is

M(LJ,K) _M(LJ,K)

P(I,J,K)=
sma k) NGK)

(a)

where N(I, K) is a pair-correlation matrix between alternate characters. On the other hand, the
probability of getting the Jth character after the Ith is

M(1,1J)

Pt = MLD_ MG,

2 M(LT)

(b)

by definition of the normal pair-correlation matrix M(I, J). Similarly, the probability of getting the
Jth character before the Kth is
PU,K)= M, K) MU, K)

(c)
Y My k) FEK)

_lf We specify I and make the approximation that the next two choices, J and K, are random and
independent [but governed by the probabilities in Egs. (b) and (c)], the net probability would be
multiplicative. Then

P(L, J,K)=P(L,J)P(J, K) (d)
Substituting Egs. (a), (b), and (c) in (d) yields
" M(1, J)\(M(J, K)
M(1,J, K)~N(, K)( 0 )(TK)) @
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Shakespearean Monkeys:

TO HOIDER THUS NOW GOONS ONES NO ITS WHIS KNOTHIMEN AS T.OISE
MOSEN TO ALL YOURS YOU HOM TO TO LON ESELICES HALL IT BLED SPEAL
YOU WOUNG YEAT BE ADAMED MY WOME COUR TO MUSIN SWE PLAND NAVE
PRES LAIN IFY YOUGHTS THAVE OF NOTHER OUR'STRUPOX ADKEY'R ITHEAK
THATHUST I WHE UPORTURS OF AND LOVE THY LORD HIN HISCOME CPREAVE
HING ALLONESS 1 HOSE MADY WHIM A A WIT PICE QUENTRUS THER HOW

ON EN I WILLOVESSUIR COU GOOLD BET THOUREAT YARE FORCHALL KILL
BLURD HER HEITHENTRE FOR GOOD TH HIS SPE THIM MUCH WHE SOM BE

MY LOVER WAY LAPH COME TO RE LOR NOT MY YOU HAT AST SE KIN HE
SPER GOT IN THE WERSE FART YOURESS WELL DIN ORTION IN ITIMENTRAND

HAMLET OF TWE AS TO BE MURGAINS FART ACSSE
GIVE ONEGS LOVE GODY BE HALLETURN MAY POCK THEARREET WHE BROU
NIVE A VICELSEACE TO YOU HING THE WHANTLY GROMMIN LET YO!LD
MURD BE THING THEMAD ROW CH BETANY O'ER EMPAIRSEL MY SONEVIN®

Edgar Allan Poe Monkeys:

SE FREEP MY BED 1 BUG OH SCARCULL OF INTESSIDICIR IN WEVE STERIENTE
TATIFFIR AND ‘GRE SISISED ABOU WITHICESCE IN SUDD UTY FLE CAUT

NER THADEARCIN WE EN YESTO ALUMAD FIENCH YOU WHIRDS OBLIKE CRO

DAT A GO ISA DOGLACCOLL ANG USYPHAT I THATEE SA PON MAING OF

INLY EXCIPHERIN THICH ARED THEARLY A HEAD JUS AID ANNARDEENG

INT DE ATHE THICHEMED HAD DIALLISANCLE HASTO NING FROULD THE

ANG UPIED 1 MAS OF ACCONS LE ANDITERS POCKOR 1 FOR FORED THE

THE POSIBLOOR NOW YOUGHT ASTANY SIDE I ASS THAD TO AL ARECTERSE
USTRINS CRAS OF THE SKULL ARELLY PLETLEGROW SA TAL YOUT YOU

THE TH TABODERHA GLYIND SPONE REN THIS BUTS DIRD MUCINSCA!! OUGHAMBE

Hemingway Monkeys:

MOUNT ME SAM WE SNOTLEAKETIFULDN'T MIGH TOON'T MIT BARSOMADE

SAM SAY GRID TH ALLY FIRLY WHE SO RUSLOO ST I HOSSITE SHAS AND
THE STY CAPPEREAK VERY WENOT DONG US CAM HAND OADLED THE WO

HAT I ALK IN THERE OLDER TO HAT BEN A DARELE MANDEMBESS SUMMESEVE
FROULDN'T BUTHE DON THE LOVER DINES SHE FELL HEING THAND LARGED
THE WERE YART HINES BE WAS AL BECAT OLE PING YOUSE IN DORM HIS
THE NIGHLY CAU DELIN BEL A NA RITHE MISH TO BUT THE UNTALL ANTOWE
IS NED WOOR TOON'T ANS ME PAS HOUS BUT PUR AND THY NOW AN TH
CARKED THEIGHTICHILE HEAND CONED A MUCH EMPTY STURP THE SWIT

IN LAT THEREARAPAS FACKE WAS THE LED I NE LONLY SNOTOPPEBOUSTRON
GUST SORE DONE ALIT WASSED BOTHE WAS CROODYING THE SHORK ISTRUCHASS

Fig. 4-7. Unexpurgated results from the third-order monkey experiment. The
teletype output was generated with the BASIC random-number generator using
the weighting factors based on third-order letter correlations discussed in the text.

Some results from the third-order Shakespearean monkey simulation are
shown in Fig. 4-7. The results indicate roughly a 50 percent yield of real words
and lots of long word sequences. However, the fluctuations are quite extreme.
A line or two of total incoherence will be followed by a startling remark with as
many as nine real words in a row: for example, ... WELL UP MAIN THE
HAT BET THAT IT SUCKS.” Lots of words show up which are eight or more

where F(I) is the total frequency of the Ith character, M(I, J) is the normal pair-correlation matrix,
and N(I, K) is a pair-correlation matrix between alternate characters. Thus M(I, J, K) can be
estimated from two 28 X 28 matrices and one 28-rowed column array. A computation of h, by the
above approximation was carried out for English by one of the author’s students, Peter Shearer,
yielding a result of 2.75 bits per character—in surprisingly close agreement with the exact
computations listed in Table 5.
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letters in length (e.g., HUSBANDS, OPPRESSORS). Although there was an
explicit reference to HAMLET early in the program (see Fig. 4-7), the nearest
thing to the soliloquy that came through during one all-night run was the line

«“TO DEA NOW NAT TO BE WILL AND THEM BE DOES DOESORNS CALAWROUTROULD"

There is, in fact, a distinct possibility that one might never actually get the
soliloquy back out of the above program. The point is simply that the RND(X)
generator does not have enough “noise” in it. Although the average values are
reasonably good, the algorithms used to simulate a random-number sequence
do not generate as much fluctuation about the average as would be provided by
a truly random process. Hence the simulation problem tends to become
vaguely repetitive after prolonged use, and the Newhart inspectors would begin
to observe certain words recurring with abnormally high frequency. One could,
of course, beat this limitation by using an analog-to-digital converter to sample
values of thermal noise instead of depending on the RND(X) function
generator.

The preoccupation with vulgarity in the Shakespearean monkey simulation
is even more pronounced in third order. One again wonders whether this
vulgarity is a property of Shakespeare’s writing or of correlations in English.
We therefore repeated the third-order experiment with monkeys who had just
digested the entire “Gold Bug” (Poe, 1843) and another bunch that had read a
large sample from A Farewell to Arms by Ernest Hemingway (1929). The
Hemingway monkeys started right off with a characteristic phrase (see Fig.
4-7). However, the Poe monkeys seemed unusually inarticulate. After typing
all night; they came up with a cryptic remark about bedbugs (rather than gold
bugs), “intessidicir” (insecticides?), ‘“‘excipherin,” and a skull, but otherwise
were a total loss. The Poe result mainly reflects his unusually high value for h;
(the third-order entropy per character discussed in Section 4.13). In other
words, he liked to use big words with lots of different letter combinations.
Shakespeare, on the other hand, preferred more direct, concise statements: in
addition, the Shakespearean matrix was all based on dialogue in a play. Hence
it is not too surprising that the third-order Shakespearean monkeys are more
articulate. (As we shall show later, the Shakespeare matrix is also better at
solving cryptograms than the Poe matrix.)

The vulgarity is probably associated with low-order correlations. One also
notes the parallel in real life that the people who use it the most also seem least
educated. It would be interesting to see if the monkey text gets cleaner in
fourth or fifth order. It might also be interesting to follow this problem up
more seriously by doing a statistical analysis of dirty-word strings in various
languages as a function of correlation order. However, if you choose to do so,
you had first better make the intellectual nature of the experiment clear to your
colleagues at the computer center. Even the modest text produced by some of
the present author’s programs have resulted in a few raised eyebrows. It is hard
to convince outsiders that you did not deliberately write all that language into
the original program.

According to Eddington (1935, p. 62),

“There once was a brainy baboon
Who always breathed down a bassoon
For he said “It appears
That in billions of years
I shall certainly hit on a tune.”

Although it seems implausible that we could ever teach a baboon to make

bassoon reeds, it is reasonable to expect a degree of proficiency on keyboard
Instruments which would at least match that demonstrated with the typewriter.

Section 4.9
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Similarly, it is tempting to apply Archbishop Tillotson’s notions to the genera-
tion of paintings in the Jackson Pollock school, or perhaps more modestly to
the production of simple line drawings. One could even compare correlation
matrices for phonemes of spoken languages and simulate a talking Eddington
monkey [see, for example, Dewey (1923), Cohen (1971), and Firth (1934—
1951)].* However, all these possibilities involve rather specialized data acquisi-
tion and display problems which tend to turn the investigations into term
projects. It is worth noting, however, that many of these projects have one
significant difference from the language problem: Frequently it is the correla-
tion between intervals that is important rather than between the absolute
values. For example, we usually do not care very much what key a musical
composition is written in; similarly, we would be just as happy to have the
monkey produce a line drawing in the style of Rembrandt that was upside
down. Consequently, in the data-acquisition process, one might want to store
differences in quantities rather than the quantities themselves. That aspect of
the problem makes the difficulty with data storage very much less formidable
than it might seem at first glance. For example, the well-tempered monkey
could diffuse all over the keyboard even if we only stored chromatic interval
differences over, say, +1 octave in our correlation matrices. Hence, to simulate
Eddington’s musical baboon we only need a 25X 25 matrix, as opposed to an
88 X 88 matrix in second order; and so on.

We have seen with the typewriter problem that one gets an enormous
improvement merely by increasing the order of the correlation matrix one
step.” Thus by third order we were getting words about half the time, as well as
an occasional good sentence. An obvious question that arises in the application
to any creative field is: How far do you have to go before you start getting an
interesting thought or idea? Could it be that the human brain works in a similar
way?

It has been estimated that there are about 10'° neurons in the human brain.
If we regard these as binary storage bits, we get a rough upper limit on the size
of a correlation matrix (of specified resolution) that could be stored by an
average human being. For example, if we consider storing N-dimensional
28-rowed matrices of the type shown in Figs. 4-4 to 4-6 with 10-bit accuracy
(=0.1 percent error per element), the largest value of N would be given by

28~ - 10=10" (14)

Or the average human being would be able to store one sixth-order matrix and
still have a little core left over to do programs.’

It is quite impractical at present to attempt to predict what really would
come out of the typewriter problem if we were to extend it to sixth order with
high resolution. Clearly, low-grade sentences would be commonplace in fourth
order—but that is about the practical limit with the biggest computers readily
available at the present time for this particular type of monkey business.’

*Note that the reduction of normal speech to a set of phonemes should permit voice
transmission with even much narrower bandwidths than those involved in the early (e.g., see
Dudley, 1939, 1940) and recent (e.g., Kang, 1974) VOCODER experiments. In principle, only
= 100 bits per second on the average ought to be needed for good transmission if you do not have
to recognize the speaker’s voice.

*The computation of these probabilities goes under the heading Markov processes.

* These comments are merely intended for a rough estimate. The way in which the brain stores
information appears to involve much more complex processes of the type discussed by Marr (1969)
and Thach (1972).

” Interestingly, the largest computer available within the U.S. Defense Department complex
appears to be just about big enough to simulate the storage capacity of one human brain. However,
“single-write” memories with terabit (10'*-bit) capacity have been developed using laser
technology.
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Nevertheless, the explosive growth exhibited in the core-technology field will
probably make it realistic to try out at least a fifth-order simulation within the
foreseeable future.

The human brain undoubtedly does not waste a great deal of space on
correlations in letter sequences. Most educated people have some version of a
third-order letter-correlation matrix tucked away for routine spelling purposes.
For instance, the rule

“i before e except after ¢”

is part of the third-order matrix but only requires one-bit accuracy. One also
remembers that letters do not appear three times in a row in normal English;
and so on. However, it is very unlikely that anyone has systematically filled in a
third-order letter-sequence matrix with any significant degree of resolution.
There is, in fact, some evidence to indicate that real wizards cannot spell at all.

The big payoft obviously comes when you start storing correlation matrices
for string data. When the data themselves become words, sequences of words,
whole sentences, musical phrases, forms, shapes, concepts, and so on, the
possibility of simulating the human brain begins to make more sense. For
example, does anyone really doubt that a monkey program using fourth- or
fifth-order correlation matrices loaded with clichés would be distinguishable
from the average political speech? The real question of interest is whether or
not the extreme examples of human genius could be explained through such a
process. Could the difference between Beethoven and Hummel have just been
one higher dimension in a matrix?® One common characteristic of many
outstanding creative geniuses is an early period of intense concentration on
previous work in their field—frequently to the exclusion of most other activity.
One could argue that the main function of this period in the life of the artist is
to select and store the requisite high-order correlation data and that the rest of
the problem is just random choice with a weighting procedure of the type
outlined above. Similar conjecture could be made about the scientific thought
process as well. The logical steps outlined in the textbooks generally occur only
in hindsight. Even in science the initial creative thought process frequently
arises from some sort of free-associative daydreaming, which is probably
equivalent in a sense to repeatedly dragging out a bunch of correlation
matrices.” It seems conceivable that aspects of this basic question may consti-
tute the most exciting advances in the computer field over the next several
decades. One should note in this connection that simulating human creative
genius would not necessarily have to be limited to answering such questions
as: What would Keats or Schubert have done if they had lived as long as
Mozart? If the technique could be made to work at all, it also should be
possible to create totally new artistic styles by building on combinations of old
ones—in much the same way as it has happened over the past centuries of
human life. Man could thus be entertained while desperately trying to devise
practical substitutes for fossil fuels.

Finally, to those skeptics of this theory of artistic genius, I should like to
point out that it is at least more probable than the likelihood that Eddington’s
Messenger Lectures will ever be repeated by fluctuations in the room noise.

®It is interesting to note that Wolfgang Amadeus Mozart himself evidently published a
pamphlet explaining how to compose “as many German Waltzes as one pleases” by throwing dice.-
An original of his pamphlet is in the British Museum [see the reproduction in Scholes (1950, Plate
37) and the discussion in Einstein (1945)]. 5

° The effect of correlations on scientific thought patterns has been discussed with great insight
by Holton (1973). Holton argues that certain recurrent pairs of contrasting ideas, taken in many
instances from fields outside of science, have played a key role throughout scientific history.
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4.9 Apply the monkey simulation to fields such as art or music. Use correlations
RESEARCH matrices based on strings, if practical. Also do it in as high a correlation order
PROBLEM as possible.

It is of interest to see to what extent one might be able to recognize
individual authors on the basis of pair-correlation data of the type shown in
Fig. 4-6. Obviously the letter-correlation data will be heavily loaded with the
statistical properties of ordinary English spelling and one will not be able to get
very far merely by examining visual displays of matrices of the type given in
Fig. 4-4. Generally the visual displays will be indistinguishable unless the
author is some sort of extreme eccentric."'

To see much difference between authors writing in the same language it is
necessary to subtract out the elements from some reasonably accurate matrix
representing ‘‘average English.” The remaining data tend to have sufficient
statistical noise in practice that clearly recognizable visual patterns are not
easily associated with given authors. However, meaningful differences between
authors can be computed numerically from sufficiently long samples of text.
For example, consider the single sum

S=‘Zj:[M(I,J)—E(I,])]*[N(l,])—E(I,J)] (15)

in which E(I, J) represents the matrix for “standard English” and M(I, J) and
N(I, J) are matrices [normalized to the same total number of characters found
in E(L J)] which are to be compared. Clearly, S will take on the largest
positive value when (M) and (N) .are equal. Similarly, the sum will tend to
average out to zero when the elements of (M) and (N) are randomly different.
Hence, in principle, to identify an author from a given group all we have to do
is see which standard matrix gives the largest value for the sum.

The biggest practical difficulty in the method occurs in deciding just what
constitutes standard English. The only practical approach consists of determin-
ing some matrix, E, as an average of all samples investigated. Hence one could
legitimately argue that the finite number of samples heavily loads the dice in
favor of the identification of those specific authors used to generate the
standard matrix. Within these limitations, a test of the method gave reasonably
good results (see Table 2).

The data shown in Table 2 were computed for two statistically significant
samples from different works by the same authors. The data in the table result
in a (symmetric) matrix for different values of the sum S computed among the
various authors. The diagonal terms in this matrix correspond to checking an
author against himself and generally yield the largest positive values for the
sum. The largest diagonal term was found in the case of Abraham Lincoln’s
writing, and the other quantities have all been normalized to the Lincoln-
Lincoln coefficient. The one striking exception to the expected diagonal results

"" The data quoted in this section are based on unpublished work by the author’s daughter, Jean
Bennett.

' Pierce (1961) cites the following cases: A novel, Gadsby, written in 1939 by Ernest Wright
without using the letter e; a Spanish author Alonso Alcala y Herrera (living in Lisbon in 1641),
who published five stories, in each of which he suppressed a different vowel; and a German poet,
Gottlob Burmann (1737-1805), who wrote 130 poems for a total of 20,000 words without using
the letter r. According to Pierce, Burmann omitted the letter r from his daily conversation for the
last 17 years of his life. (One wonders how he avoided mentioning his own name.) These books are
understandably all out of print and not found on the shelves of most libraries. However, Gadsby is
at least available on interlibrary loan.
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4.10: Table 2 Results of an Author Identification Experiment Using Letter-Pair-Correlation Data and Eq.
(15). [The numerical values have been normalized to the highest “diagonal” term, which
occurred in the case of Lincoln. Two statistically significant samples were used from separate
works by each author, and the results averaged. The statistical uncertainties were <0.01 for
the entries.]

Hemingway Poe Baldwin Joyce  Shakespeare Cummings  Washington  Lincoln

Hemingway 0.41 -0.02 —-0.01 —-0.02 —-0.05 -0.11 -0.20 —-0.02
Poe -0.02 0.22 0.02 -0.03 0 0 —0.08 -0.06
Baldwin —0.01 0.02 0.31 0 -0.02 -0.02 —-0.08 -0.07
Joyce —-0.02 -0.03 0 0.07 0.03 0.03 —-0.03 -0.20
Shakespeare -0.05 0 -0.02 0.03 0.24 -0.06 -0.01 —-0.10
Cummings -0.11 0 -0.02 0.03 -0.06 0.22 0.15 0.13
Washington -0.20 —-0.08 —-0.08 -0.03 -0.01 0.15 0.48 —0.01
Lincoln -0.02 —0.06 -0.07 —-0.20 -0.10 0.13 -0.01 1.00

Source: Based on unpublished data by Jean Bennett.

occurred with the writing of James Joyce. Here, the diagonal coefficients for
Ulysses and Finnegan’s Wake were both very small, but at least positive.

The success of the method can be judged by picking an author out of the
group and by quickly looking along the appropriate horizontal and vertical
lines to see if the diagonal term is largest. The test works in all cases included
in the table, although the results are a little marginal with James Joyce and E.
E. Cummings. At the same time the closeness of these numbers makes the
need for high statistical accuracy apparent.

One perplexing result was noticed. Although the writing of Abraham
Lincoln demonstrated the highest degree of autocorrelation in Table 2, consid-
erable difficulty was experienced in distinguishing Lincoln’s work from the
novel Gadsby written by Ernest Wright without using the letter e. The failure
may be due to the unusually weird nature of the letter correlations in Wright’s
novel. Evidently, Wright’s pair-correlation matrix is somewhat like Abe Lin-
coln’s after you subtract standard English. Nevertheless, the result leads to a
certain skepticism of the accuracy of such identification procedures in general.

Wilhelm Fucks'” (1962) gave an interesting treatment of this type of
problem as applied to composer identification in music. Fucks, Moles (1956),
and others have pointed out that music by Berg and Webern tends to have a
frequency distribution that is more equally distributed than that of Beethoven.
However, Fucks himself notes that the correlation of intervals of consecutive
tones is very similar within the music of Bach and that of Webern, even though
strong differences exist between correlations in Webern and Beethoven."

The general moral of this lesson is that when you see a headline in the
evening newspaper such as

Computer Says It's Chopin from Beyond

beware! It might have been written by a bunch of monkeys.

'? Pronounced “foox.”

"* Obviously this type of identification procedure takes on a much more probable character
when strings of letters, or words, or musical phrases are used as the basis for determining the
correlations. However, the data-accumulation problems, core requirements, and computing time
then become very substantial. A more extended discussion of the composer-style-analysis problem
is given in Lincoln (1970); also see Fucks (1968). A collection of papers on literary-style analysis
was given by DoleZel and Bailey (1969), and an annotated bibliography was prepared by Bailey
(1968).
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Having concluded that on¢ primarily finds the statistical structure of the
Janguage displayed within the letter-pair-correlation matrix, it is tempting to go
on to conclude that it should at least be 2 trivial matter to recognize the visual
patterns characteristic of different languages by graphic display of these mat-
rices.
As will be self-evident from Fig. 4-9, the similarities in the second-order
statistical properties of the common Western European languages are far
reater than the differences. About all that one can say with confidence from
visual displays of the pair—correlation matrices for German, English, French,
Italian, Spanish, and Portuguese shown in Fig. 4-9 is that they all represent
western European language. TO distinguish between them, one again has to
compute numerical quantities.

One could apply the same computation outlined in the previous section.
However, it is interesting to try another computed quantity. For example, it is
clear that the sum

s=F ML H-NE ny (16A)

I.

ought to have 2 minimum value (=0) when ML, =N, J) for all I and J.
Hence if we were 10 normalize all the matrices to the same total number of
characters, we should be able tO identify the language from the diagonal terms
in the matrix S. (As with the aulhor-idemiﬁcation problem, the sums, S, will
comprise a symmetric matrix when the rows and columns are labeled according
to the various source languages.) A study of this type has been summarizé‘d in
Table 3. Although one can clearly distinguish among the source 1anguages, the
differences between the two authors writing in English is comparable t0 the
differences between some languages. That is, the English of Shakespeare i
quite significantly different from the English of Poe—although not quite as big
as the difference between Cervantes Writing in Spanish and Coutinho writing in

129

411
Language \dentification

Fig. 4-9- Letler-pair—corre\a(ion mat-
rices for different European languages:
(a) German (Wiese); (b) English
(Shakespeare); (c) French (Baudclaire);
(d) Italian (Landolfi); (e) Spanish (Cer-
vantes); (£ Portuguese (Cou!inho). In
each case a 28 %28 raster is used to
display the relative probahililies that the
j" character follows the i*" character. The
convention used is the same one €x-
plained in Fig. 4-4. (The author is in-
debted to Jean Bennett and Otto Chu for
preparing the data tapes used to gener-
ate the displays.) Accent marks were
ignored with the exception that umlauts
in German were replaced by an addi-
tional €.



—

Eq. (16A)

English
Hamlet  “Gold Bug”  Spanish German  French Italian ~ Portuguese

English ’

Hamlet 0 0.27 0.91 0.88 0.86 0.92 0.94

“Gold Bug” 0.27 0 0.89 0.83 0.80 0.88 0.90
Spanish 0.91 0.89 0 0.95 0.72 0.63 0.56
German 0.88 0.83 0.95 0 0.87 1.01 0.99
French 0.86 0.80 0.72 0.87 0 0.76 0.76
Italian 0.92 0.88 0.63 1.01 0.76 0 0.65
Portuguese 0.94 0.90 0.56 0.99 0.76 0.65 0

Source: Based on unpublished data by one of the author’s former students, Otto Chu.

* A normalization procedure based on the total number of characters in each 28 x28 pair-correlation
matrix was used which gives a maximum possible value of 2 for the sum, S. Note that in this case perfect
“identification” corresponds to the value S = 0. The statistical uncertainty for each term in the table was
<0.01, based on computed variances for the sum. Two separate authors were used in the case of English
(Shakespeare and Poe).

Portuguese. One could, of course, criticize the results on the basis of ignored
accent marks. This simplification was made as a practical matter but could be
avoided by increasing the size of the character set.

A more sensitive method of applying letter-pair-correlation data to the
identification of languages occurs through the computation of most probable
digram paths through the matrix. (This notion is discussed in more detail in
Section 4.19 on the solution of single-substitution ciphers.) The basic point is
that one can construct fairly well defined paths through the character set by
looking at the pair-correlation matrix elements in descending order.

For example, consider the following algorithm:

—

Choose I to correspond to the first letter of the common article in the
language.

Print the alphabetic character for which I stands (in the 1-28 code).
Find the maximum M(I, J) in which J has not been previously chosen.
Let M(I,J)=0 and let I =1J.

Stop after 28 trips through the loop.

Go to step 2.

Ohhich LIRY

Application of the algorithm above to the pair-correlation matrices shown
in Fig. 4-9 resulted in the following sequences:

English (Poe) THE ANDISOURYPLF’BJ

German DER STINGALBUMOCHYPF
French LE DITANSOURMPHYG
Italian LA CHERIONTUSP

Spanish LA DENTOSURICH
Portuguese LA ESTICORMPUNDJ

Style-dependent differences typically enter at the seventh or eighth place.
However, only the first four characters in each string are really needed to
distinguish among the above languages, and the first four characters are
frequently very well defined statistically, even in texts as short as 200 or 300
characters in length. Sequences of this type also provide a very powerful
method for solving single-substitution ciphers without even having to under-
stand the source language of the message (see discussion in Section 4.19).
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Ironically, it is much easier to pick out the differences among languages
from the first-order statistical properties than from the correlations between
pairs of letters. (See Table 4.) For example, we can compute normalized
letter-frequency distributions F.(I) and F,(I) for the difference characters (I) in
the alphabet corresponding to two languages (x and y). The quantity

S= Z F.(I)F,(I) (16B)

will tend to go through a maximum when x =y. Equation (16B) is equivalent to
a generalized dot product of two multidimensional vectors. Clearly, best results
are to be expected when each frequency distribution is normalized so that

Y E(I)*=Y F,(I)’="- - =constant (e.g.,= 1) (16C)

Then the magnitudes of the generalized vectors are all the same and one is not
giving unwarranted weight to a particular language. [Note that the character-
frequency data in Table 4 are not normalized according to Eq. (16C).]

4.11: Table 4 Total Character Frequency per 1000 Characters in Order A,
B,C,...,X,Y,Z,, for Several European Languages’
(See the offer in the Preface.)

English

Hamlet
58 12 17 31 93 18 14 50 49 1 T 35
25 49 73 12 1 45 53 73 29 9 20 1
2 9 197 6

“The Gold Bug”
62 14 20 35 196 20 16 47 59 2 5 32
21 54 59 16 1 46 49 76 26 7 18 2
16 1 188 2

48 16 3¢ 47 144 19 24 44 73 4 8 35
22 78 22 9w 9 61 69 56 39 7 8 [/
1 8 137 9

French
55 7 24 31 152 8 8 8 61 3 [} 49
26 52 43 26 11 54 74 55 55 11 [} 4
2 [} 166 13

Italian
111 5 44 27 191 9 13 17 71 0 /] 41
24 52 74 25 7 49 46 44 23 25 9 [/

[ 6 181 4

Spanish
196 17 32 45 110 5 9 9 47 4 [/} 52
21 55 78 16 14 52 S6 28 37 17 [} 1
11 4 184 ¢

Portuguese
116 3 41 46 192 8 9 4 66 1
37 S 99 23 5 54 62 44 28 12
[/ 3 163 0

a|as
[N)
5

“ The data were computed from the same sources used to determine the matrices
displayed in Figs. 4-4 and 4-9. The frequency of the letter e is artificially high in the case
of German because umlauts were replaced by e’s following the vowel (e.g., 6 was
replaced by oe in the source text). All other accent marks were merely ignored.
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Although the technique may not be so useful in the analysis of ordinary Chapter 4
text, it becomes much more impressive when applied to identifying the source Language
| language in multiple transposition ciphers (see discussion later of the Pablo
Waberski cipher). Note that the same technique could be used in a variety of
different applications ranging from problems-in pattern recognition (in which
sets of expansion coefficients could be used to make up the generalized vector

[ components) to problems in literary-style identification (where the frequency
distributions might consist of things such as word, sentence, and paragraph
lengths). Also note that the sums in Egs. (16B) and (16C) can be done simply
by matrix multiplication using suitably dimensioned row and column matrices.
However, as with the pattern recognition problem discussed in Section 2.23,
greater sensitivity is obtained by requiring that the individual projections of the
different generalized vectors agree within some appropriate numerical
criterion.

Having come so close to many of the questions addressed in Shannon’s 4.12
famous (1948) paper on information theory, it would be irresponsible not to Relati
say something about the relation of the present material to the general problem
4 of transmitting and receiving information over communication channels. In any

real communication system, one is faced with a sequence of the following type:

to Information Theory"

SOURCE TRANSMITTER | _ | COMMUNICATION RECEIVER DESTINATION
(CODING) CHANNEL (DECODING)

NOISE

The general features of this system obtain regardless of whether the transmitter
! is a scribe taking dictation with pen and ink on sheets of blotting paper or, at

il '* This Section was introduced merely to provide some qualitative background perspective on
2 | communication problems. The equations in this Section are not necessary for the later discussion of
entropy.
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the opposite extreme, a high-speed telecommunication system in which al-
phanumeric characters are being transmitted in 8-bit bytes over a microwave
link."

In each case, a message from the source is encoded by an established
convention, and this code is transmitted in segments (e.g., sheets of blotting
paper, 8-bit bytes, etc.) at a prescribable rate. Noise is added to the signal by
the coding process itself, but especially in the communication channel (e.g.,
spreading of the ink in the blotting paper, stray pulses in the teletype link, etc.).
The message is then received, decoded, and sent to its final destination.

Interest in this type of problem has existed since the early days of teleg-
raphy. For example, the nontrivial economic problems involved in the trans-
mission of teletype messages over a trans-Atlantic cable stimulated theoretical
interest in the quantitative comparison of the efficiency of different coding
methods. In fact, there was already considerable interest in the most efficient
methods for television transmission over both wire and radio paths by the
mid-1920s. Quantitive formulation of the problem dates at least to the early
papers of Nyquist (1924) and Hartley (1928), in which it is noted that one
should be able to define a quantity

H=Lilogh 17)

proportional to the amount of information associated with a list of L, possible
selections made in a code of base b.. Such a definition permits comparing the
information transmitted in different base codes (e.g., binary, ternary,...,
decimal, ...) and ensures that the information transferred per sample is the
same in two different codes when

f1=b3 (18)

The base of the logarithm in Eq. (17) is arbitrary. Base 2 logarithms of course
make life particularly simple with binary codes, for then the amount of
information per sample is just the number of binary symbols used. The name
bit (short for “binary digit”) for this unit of information, suggested by the
mathematician John Tukey, has been widely adopted. Similarly, an 8-bit
sample is defined as a byte in current usage.

It is obvious that the rate at which messages can be sent must increase
proportionally with the number of data blocks (8-bit bytes, sheets of blotting
paper, etc.) sent per second and that at least a monotonic increase of informa-
tion transmission capability must occur with increasing signal-to-noise ratio
within the transmission of individual data blocks.

Consideration of a binary encoding method provides an easy way to see
that the channel capacity to transmit information must increase logarithmically
with the ratio of the signal voltage to the noise voltage (or signal-to-noise
ratio). We can, in fact, define the capacity of a communication channel to
transmit information in terms of the equivalent number of binary bits per
second required to send a signal with a given bandwidth and signal-to-noise
ratio within that bandwidth. For example, suppose that the signal is a continu-
ously varying voltage which we wish to encode and transmit in a sequence of
M-bit samples at the rate of W samples per second. Clearly, the uncertainty in
coded signal will have a minimum value of about one bit per sample. Hence the
maximum signal-to-noise ratio the signal can have will be limited to

S/IN=2" (19)
just from the encoding process itself. Hence
M =log: (S/N) (20)

'* For a detailed account of real communication systems, see Bennett and Davey (1965).
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and the total number of bits that could be transmitted by this system (in W
samples per second) is

C=WM =W log. (S/N) bits/sec (21)

The effects of additional noise sources in the communication channel, may
be included within the term N in the same formula. For example, suppose that
we have a signal level of 10 bits per sample and a noise level reaching the
receiver of two bits per sample. The ratio of signal-to-noise is then

SIN=2"[2*=2° (22)

Hence the signal could have been transmitted in the presence of coding noise
alone with a system having only 8-bit samples, and the channel capacity to
transmit information is given adequately by Eq. (21) if we merely insert the
actual value of S/N from Eq. (22).

At the receiving end of the communication link, the message must be
decoded and the original voltage reconstructed. Because we effectively multi-
plied the original signal by a periodic wave at frequency W during the encoding
process (i.e., we took W samples per second), simple trigonometric identities
tell us that extraneous beat frequencies will be present in the received signal at
W+ W.,,, where W,, is the maximum frequency present in the original signal.
Hence to remove these extraneous signals at the receiver, we have to run the
output signal through a low-pass filter which cuts off rapidly in frequency above
W.. and the sample rate must satisfy

W>2W,, (23)

These observations can be extended to continuous-wave-transmission prob-
lems with much the same conclusion: that the channel capacity, C, for a
continuous-wave communication channel perturbed by frequency-independent
noise is also related to the signal-to-noise ratio and the bandwidth of the
channel, W, by Eq. (21).

The net bit-transmission rate is called the entropy rate or information rate.
More formally, the channel capacity as defined in information theory turns out
to be the greatest entropy rate of source for which codes can be devised that
allow the error at the destination to be made arbitrarily small.

Some communication links (e.g., those used to converse with nuclear sub-
marines deep below the ocean surface) have very low channel capacities. To send
teletype messages over such a communication channel, it is obviously desirable
to encode the original messages with the smallest number of bits possible that
still permits unambiguous decoding at the destination. In the next several
sections we shall consider what the statistical properties of the language imply
regarding the minimum average number of bits per character necessary to
transmit the language.

The expression,
N
H=-Y P(I)log. P(I) (24)
I=1

is a fundamental quantity in Shannon’s (1948) theory. He concluded that H
has the properties of entropy by analogy to the mathematical form of a similar
quantity defined by Boltzmann in statistical mechanics (in the formulation of
the H-theorem). By useful historical coincidence, the letter H was also defined
as the “information” in a log. sense in the much earlier paper by Hartley
(1928). Equation (24) is introduced in Shannon’s paper as an answer to three
postulatory requirements on the dependence of the information on the set of
probabilities P(1), ..., P(N). As Shannon states, it is with the implications of
Eq. (24) to specific problems that we are primarily concerned. We shall
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the demonstration that this meaning is very reasonable in a number of specific
instances.

To make a connection with the earlier papers by Nyquist and Hartley, it is
helpful to note that if a particular code uses B(I) bits to transmit the Ith
character on a list of N characters, the average number of bits per character
required to transmit messages is given by

(B)= 2 P(DB(D) (25)
provided the probabilities are normalized so that
X, P(Dy=1 (26)
I=1

The quantity H in Eq. (24) therefore corresponds to the statistical average
of the number of bits per character necessary to transmit messages in a code
for which

B(I)=—log. P(I)=log, [1/P(I)] 27)

Most real codes used to transmit language text use a constant number of
bits per symbol B(I) and result in average values from Eq. (25) which exceed
those that would be computed from Eq. (24) for the same probabilities. The
average number of bits per character given by Eq. (25) for a given variable-
length code could of course be minimized by choosing the factors so that B(I)
increases with decreasing P(I). For example, one could try to choose the
factors B(I) to approach the dependence in Eq. (27). However, it is difficult to
do this without introducing ambiguities in the code meaning and without
leaving the system extremely vulnerable to the effects of transmission errors
[see Huffman (1952) for one such approach].

The quantity defined in Eq. (27) is literally the number of bits necessary to
specify a list of 1/P(I) characters. In the special case where

P(I) = constant=1/N (28)
there are N quantities on the list. In this case, definition (27) results in
B(I)=constant=log, N (29)

and Eq. (24) just represents the total number of bits necessary to specify N
equally probable choices. Hence Eq. (24) reduces to the “information” in the
earlier Hartley and Nyquist sense when the probabilities are all the same.

When the F(I) are different, the quantity H in Eq. (24) takes on a more
generalized meaning and can be shown to be the minimum average number of
bits necessary to specify the number of choices at a branch point where N
different possibilities occur with different (normalized) probabilities, P(I).'° As
applied to written language text, Eq. (24) yields an inherent value of the
entropy per character which is a characteristic of the language. The values thus
obtained are independent of the labeling scheme or the order in which the text
is read and are roughly independent of the number of characters assumed in
the alphabet as long as the most probable ones occur well within the sum.

It will be helpful to make sure that Eq. (24) makes sense in a few simple
cases. For example, consider a situation in which there are two possible choices
with equal probabilities,

P(1)=P(2)=: 3 (30)

' The proof that Eq. (24) actually gives a minimum value is not trivial. See, for example,
Gallager (1968) or Ash (1967).
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H=3log.2+3log.2=1 bit (31) Entropy in Language
and Eq. (24) says there will be
2" =2 possible choices (32)
Similarly, with four possibilities with equal probabilities
P(1)=P(2)=P(3)=P(4) =1 (33)
Equation (24) yields
H =4(ilog, 4) =2 bits (34)

or
2" =22=4 choices

Next suppose that there are two choices in which
P(1)=P and P(2)=1-P (35)
Then

—H=Plog. P+(1—P)log: (1-P) (36)
If we take the limit as P— 0 in Eq. (36), —H — 0+11log. 1 =0 bits. Hence

there is only one choice,
2" —>2°=1 (37)
That is, if P(1)=0 in Eq. (35), it means that P(2)=1 and there really is only
one possibility. The same situation holds when P(2) — 0 in the above illustra-

tion. Equation (36) also yields a maximum value of H=1 (2 choices) when
P=3i=P(1)=P(2).

4.13 Compute the variation of H as a function of P from Eq. (36) for 0.05<P<
PROBLEM 12 (.95 in steps of 0.05. Plot the result on the teletype (or, if available, high-
resolution display). Note that

_log. X
log. X log. 2

It is next of interest to compute the minimum average number of bits, h,
per alphanumeric character required to transmit source material written in a
language such as English. In accordance with the above discussion, this
quantity may be determined through application of Eq. (24) and may be
regarded as the entropy or information per character of source text.

The results obtained will obviously be dependent on the statistical proper-
ties of the language, and we will get progressive approximations to the answer
analogous to the various levels of sophistication used previously in simulating
the Eddington monkey. Further, owing to variations in style among various
authors, one can never expect to obtain an absolutely precise answer, and there
| is indeed reason to expect that real languages may actually obey the second law
of thermodynamics (see Section 4.14). The answer will always vary somewhat
with the particular text. However, as we have shown earlier in this chapter with
the author-identification problem, these differences are a small fraction of the
main effect. The structure of the language is largely predominant and, in fact,
even the differences in statistical structure among the common western Euro-
pean languages are remarkably slight.

The zeroth-order calculation of the entropy per character is, of course, the
easiest. Assuming our original 28-character set used to analyze Act III of
Hamlet, we let P =constant =3, and Eq. (24) gives us directly

ho=log. 28 =4.80735 bits/character (38)
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average numper of bits per character necessary to convey the language is given Language
by Eq. (38). Consequently, the minimum number of characters required is
Co= o= 28.
The first-order calculation of the entropy per character (h,) requires a
knowledge of the total probabilities of occurrence of the individual members of
the character set. The latter can be determined for the 28 characters used to
analyze Act III of Hamlet by reading off the numbers in Table 1 (remembering
that they must be normalized), or by summing the rows in the correlation
matrix M(I, J) in Fig. 4-6. That is, as previously noted,

28 28 28
P()=3 M@L)/ 3. 3 M) (39)
Applying Eq. (24) to Act III of Hamlet yields
hy =4.106 bits/character (40)

or a minimum list,

2" =17.21 characters

4.13 Check the numerical value obtained in Eq. (40) by computing the probabilities
PROBLEM 13  from the data in Table 1 (or by summing the columns of the correlation matrix
in Fig. 4-6).

In the second-order calculation of the entropy per character (h,), we have
to take into account the probability, P(I, J), that the Jth character followed the
Ith character. The particular sum obtained from an expression such as Eq. (25)
will vary with the identity of the previous character typed.

Suppose that the Ith character of text has just been typed. The normalized
probability P(I, J) that the next character will be the Jth character may be
obtained from the correlation matrix in Fig. 4-6 by noting that

P(L, J)= M(L J) / Jf MULT) * wiiere f P(LT)=1 1)

The average number of bits necessary to specify the number of choices at this
point will itself be a function of I (That is, it depends on the past history and
hence the character just typed.) This average number of bits is

B(I)=1§ P(1, J)B(L, J) (42)

where B(I, J) also depends on the last character typed; hence for Eq. (42) to be
a minimum,

B(I,J)= —log. P(I, J) (43)

by analogy with Eq. (27).

Finally, we want to find the average of B(I) over all initial characters
I'=1-28. This average will be a minimum because each B(I) is a minimum.
Hence the minimum average number of bits per character necessary to
describe the source text (or second-order entropy per character) will be given
by

h, = 2 P(I)B(I) =’2 P(I) Jij P(I,J)B(1,J) (44)

where B(I, J) is given by Eq. (43). The probabilities may be obtained from the
pair-correlation matrix, M(I, J), through Egs. (39) and (41). Using the 28 x28
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matrix from Act III of Hamlet (Fig. 4-6), we obtain Section 4.13

Entropy in Language

h, =3.3082 bits/character (45)

or a minimum number of

2":=9.905 characters

on the average. [Note that h.=h, if B(I, J)=B(I) for all J.]

4.13
PROBLEM 14

Evaluate Eq. (44) using the matrix in Fig. 4-6. Note that it will be easiest to
store the quantities B(I, J) in a separate array from that for P(I, J). Also note
that the normalizing sums can be computed sequentially with the most effi-
ciency; e.g., one needs S and S(I), where

S=§S(I) and S(I)=ZZ_8M(I,J)

These quantities can be computed as the elements M(I, J) are read into your
program. Use a conditional statement to bypass the LOG(P(I, J)) calculations
in cases where P(I, J) =0; these cases are easiest to handle merely by defining
the corresponding B(I, J)=0.

The values of h, should be independent of the direction in which you
analyze the language. Check the results for h, for Hamlet by taking the
transpose of the matrix in Fig. 4-6 before computing h.. (Slight differences may
result from rounding errors.)

The computation may, in principle, be extended to higher and higher orders
of statistical correlation. For example, at the third order we would have

where

hs=Y, P(I) 2, P(I,J) . P(I,J, K)B(I, J, K) (46)

B(I,J,K)= —log: P(I, J, K) etc. (47)

and the probabilities are given in terms of the correlation matrices defined
earlier in this chapter. One has to keep increasing the dimensions of the
matrices and the process begins to eat up prohibitive amounts of core and
computing time. The main point is that with higher and higher statistical
correlations included, the smaller the number of bits, or list of characters, that
has to be transmitted on the average to convey the original text. For example,
already by second order apparently only about one third of the normal
alphabet is required on the average to convey English. For estimates of the
asymptotic behavior of h, at large n, see Shannon (1951).

A summary of values of h, computed by the present author for various
languages is given in Table 5.

4.13
PROBLEM 15

4.13
PROBLEM 16

Compute values of h, and h; from the sample of the novel Gadsby (written
without using the letter €) shown in Fig. 4-10 and compare your results with
those for English in Table 5. (Use the CHANGE statement or equivalent.)

Assume that Morse code takes 3 bits for a dash, 1 bit for a dot, 1 bit for the
spaces within letters, and 3 bits for the spaces between letters. How many bits
per character would be needed to transmit Hamlet? [Evaluate h, using a
specific array, B(I), representing the number of bits per character in Morse
code.]




4.13 Braille uses 6-bit “words” in which combinations as well as single letters of the
RESEARCH normal written language have separate coded meaning. Hence the average
PROBLEM number of bits per character necessary to transmit English will be different in

first and second order. What is the value of h, for Shakespearean English

transmitted in braille?

4.13: Table 5 Values of h, (Entropy per Character) Computed in
Various Orders®

h, h, hs

Shannon (1951)
(27-character alphabet, ho=4.76)
English (contemporary) 4.03 3.32 =3.1°
Present results
(28-character alphabet, ho=4.807)

English
Chaucer (Canterbury Tales) 4.00 3.07 2.12
Shakespeare (Hamlet) 4.106 3.308 2.55
Poe (“The Gold Bug”) 4.100 3.337 2.62

Hemingway (For Whom the
Bell Tolls and A Farewell

to Arms) 4.055 3.198 2.39
Joyce (Finnegan's Wake) 4.144 3.377 2.55
German (Wiese) 4.08 3.18 —
French (Baudelaire) 4.00 3.14 —_
Italian (Landolfi) 3.98 3.03 —
Spanish (Cervantes) 3.98 3.01 —
Portuguese (Coutinho) 3.91 3.11 —
Latin (Julius Caesar) 4.05, 3.27, 2.38
Greek (Rosetta Stone) 4.00, 3.05; 2.19
(77-character alphabet, h,=6.267)°

Japanese (Kawabata) 4.809 3.633 —

* Accent marks were not included in the character set and spaces were inserted
between the ancient Greek words on the Rosetta Stone.

" The value of h, given by Shannon (1951) was based on an extremely
approximate method of including the space symbol in earlier trigram data given
by Pratt (1939). Because Pratt’s data were not terribly accurate in the first place
and also did not include’correlations with the space symbol, it is surprising that
Shannon’s estimate of h, was as good as it was. Apparently no one has published
an accurate computed value for h, in any language since the Shannon (1951)
publication.

“The results for Japanese were computed by one of the author’s students,
Yoshikazu Okuyama, from a 10,000-character sample using a 77-character set
consisting of 76 kana plus the space symbol.

The second law of thermodynamics may be stated
AH>0 (48)

for any thermodynamic process where H is proportional to the entropy for the
total system.'” Associating entropy with the degree of statistical disorder, the
second law means that thermodynamic systems tend to proceed from states of
lower probability to states of higher probability (or, equivalently, from higher
to lower order). For example, a drop of ink gradually diffuses throughout the
glass of water into which it is placed; molecules having a well-defined velocity

will assume a Maxwellian velocity distribution due to collisions in a short time

'” In many texts on statistical mechanics, H is defined to be proportional to the entropy through
a negative constant. This difference amounts to changing the sign in Eq. (24). In the present
discussion we have adopted Shannon’s definition, in which H has the same sign as the entropy.
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after they have been placed in a high-pressure gas, and so on. Ultimately, as
proclaimed by various morbid prophets of doom, this process will lead to the
«heat death” of the universe—unless something we do not know about with
much certainty takes place.

There are some qualitative reasons why we might also expect languages to
obey the second law in some sense. The fact that large numbers of people use
them introduces the statistical element. If a language is developed initially by
one or a small number of persons at one point on the globe, it seems inevitable
that the structure of the language will become less ordered as it diffuses
throughout the world. The condensed (and therefore specialized) meanings
originally given to symbols by the creator of the language will tend to be
broadened and require more additional description through common usage. In
other words, it seems likely that there will be a tendency for the minimum
average number of bits per message required to convey meaning in normal use
of the language to increase with time.

Some evidence for the effect is to be found in the gradual abandonment of
ideographs (symbols that convey entire thoughts or words) with the aging of
most languages. Beyond that, there is at least some tendency for the number of
characters in the alphabet to increase with time, and for the more concise
declensions of single words to be replaced by sequences of words. This process
generally makes the language easier to learn and use but also results in
requiring more bits per message on the average; the redundancy of the
language tends to go up and “Parkinson’s Law” seems to be a consequence of
thermodynamics. One, of course, has to look over really long periods of time to
see if the effect occurs; otherwise, variations in individual style will tend to
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Fig. 4-11. The evolution of language has been marked by the gradual abandon-
ment of ideographs for the sake of more generally useful alphabetic notation.
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