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Abstract

Given the recent cvidence for probabilistic
mechanisms in models of human ambiguity res-
olution, this paper investigates the plausibil-
ity of exploiting current wide-coverage, prob-
abilistic parsing techniques to model human
linguistic performance.  In particular, we in-
vestigate the performance of standard stochas-
tic parsers when they are revised to operate
incrementally, and with reduced memory re-
sources.  We present techniques for ranking
and filtering analyses, together with experimnen-
tal results. Our results confirm that stochas-
tic parsers which adhere to these psychologi-
cally motivated constraints achieve good per-
formance. Memory can be reduced down to
1% (compared to exhausitve scarch) without re-
ducing recall and precision. Additionally, these
models exhibit substantially faster performance.
Finally, we argue that this general result is likely
to hold for more soplisticated, and psycholin-
guistically plausible, probabilistic parsing mod-
els.

1

Language engineering and computational psy-
cholinguistics arve often viewed as distinct re-
search programmes: engineering solutions aim
at practical mecthods which can achicve good
performance, typically paying little attention
to linguistic or cognitive modelling. Compu-
tational psycholinguistics, on the other hand,
is often focussed on detailed modelling of hu-
man behaviour for a relatively small number
of well-studied constructions. In this paper we
suggest that, broadly, the human sentence pro-
cessing mechanism (HSPM) and current statis-
tical parsing technology can be viewed as having
similar objectives: to optimally (i.c. rapidly and
accurately) understand the text and utterances
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they encounter.

Our aim is to show that large scale probabilis-
tic parscers, when subjected to basic cognitive
constraints, can still achieve high levels of pars-
ing accuracy. I successful, this will contribute
o a plausible explanation of the fact that peo-
ple, in general, are also extremely accurate and
robust. Such a result would also strengthen ex-
isting results showing that related probabilistic
mechanisms can explain specific psycholinguis-
tic phenomena.

To investigate this issue, we construct a stan-
dard ’bascline’ stochastic parser, which mir-
rors the performance of a similar systems (c.g.
(Johnson, 1998)). We then consider an inere-
mental version of the parser, and evaluate the
clfects of several probabilistic filtering strate-
gics which are used to prunce the parser’s scarch
space, and thereby reduce memory load.

To asscss the generality of our results for
morc sophisticated probabilistic models, we also
conduct experiments using a model in which
parent-node information is cncoded on the
daughters. This increase in contextual informa-
tion has been shown to nmmprove performance
(Johnson, 1998), and the model is also shown
to be robust to the incrementality and memory
constraints investigated here.

We present the results of parsing perfor-
mance cexperiments, showing the accuracy of
these systems with respect to both a parsed
corpus and the bascline parser. Our experi-
ments suggest that a strictly incremental model,
in which memory resources are substantially
reduced through filtering, can achicve preci-
sion and recall which cquals that of ’uure-
stricted’” systems.  Furthermore, implementa-
tion of these restrictions leads to substantially
faster performance. In conclusion, we argue
that such broad-coverage probabilistic parsing



models provide a valuable framework for cx-
plaining the human capacity to rapidly, accu-
rately, and robustly understand “garden va-
riety” language. This lends further support
to psycholinguistic accounts which posit proba-
bilistic ambiguity resolution mechanisms to ex-
plain “garden path” phenomena.

It is important to reiterate that our intention
here is only to investigate the performance of
probabilistic parsers under psycholinguistically
motivated constraints. We do not argue for the
psychological plausibility of SCFG parsers (or
the parent-encoded variant) per se. Our inves-
tigation of these models was motivated rather
by our desire to obtain a generalizable result
for these simple and well-understood models,
since obtaining similar results for more sophisti-
cated models (e.g. (Collins, 1996; Ratnaparkhi,
1997)) might have been attributed to special
properties of these models. Rather, the current
result should be taken as support for the poten-
tial scalcability and performance of probabilistic
psychological models such as those proposed by
(Jurafsky, 1996) and (Crocker and Brants, to
appear).

2 Psycholinguistic Motivation

Theories of human sentence processing have
largely been shaped by the study of pathologies
in human language processing belhaviour. Most
psycholinguistic models scek to explain the dif-
ficulty people have in comprehending structures
that are ambiguous or memory-intensive (sce
(Crocker, 1999) for a recent overview). While
often insightful, this approach diverts attention
from the fact that people are in fact extremely
accurate and effective in understanding the
vast majority of their “linguistic experience”.
This observation, combined with the mounting
psycholinguistic evidence for statistically-based
mechanisms, leads us to investigate the merit of
exploiting robust, broad coverage, probabilistic
parsing systems as models of human linguistic
performance.

The view that human language processing
can be viewed as an optimally adapted sys-
tem, within a probabilistic framework, is ad-
vanced by (Chater et al., 1998), while (Juraf-
sky, 1996) has proposed a specific probabilis-
tic parsing model of human sentence process-
ing. In work on human lexical category dis-
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ambiguation, (Crocker and Corley, to appear),
have demonstrated that a standard (incremen-
tal) HMM-based part-of-spcech tagger mod-
els the finding from a range of psycholinguis-
tic experiments. In related research, (Crocker
and Brants, 1999) prescent cvidence that an
incremental stochastic parser based on Cas-
caded Markov Models (Brants, 1999) can ac-
count for a range of experimentally observed
local ambiguity preferences. These include
NP/S complement ambiguities, reduced relative
clauses, noun-verb category ambiguitics, and
‘that’-ambiguities (where ’that’ can be cither a
complementizer or a determiner) (Crocker and
Brants, to appear).

Crucially, however, there are differences be-
tween the classes of mechanisms which are psy-
chologically plausible, and those which prevail
in current language technology. We suggest that
two of the most important differences concern
incrementaelity, and memory resources. There is
overwhelming cxperimental evidence that peo-
ple construct connected (i.e. semantically in-
terpretable) analyses for cach initial substring
of an utterance, as it is encountered. That is,
processing takes place incrementally, from left
to right, on a word by word basis.

Secondly, it is universally acceepted that peo-
ple can at most consider a relatively small
number of competing analyses (indeed, some
would argue that number is one, i.c. process-
ing is strictly serial). In contrast, many cxist-
ing stochastic parsers are “unrestricted”, in that
they are optimised for accuracy, and ignore such
psychologically motivated constraints. Thus the
appropriateness of using broad-coverage proba-
bilistic parsers to model the high level of hu-
man performance is contingent upon being able
to maintain these levels of accuracy when the
constraints of incrementality and resource limi-
tations are imposed.

3 Incremental Stochastic
Context-Free Parsing

The following assumes that the reader is fa-
miliar with stochastic context-free grammars
(SCFG) and stochastic chart-parsing tech-
niques. A good introduction can be found, e.g.,
in (Manning and Schiitze, 1999). We use stan-
dard abbreviations for terminial nodes, non-
terminal nodes, rules and probabilities.



This paper investigates stochastic context-
free parsing based on a gramnar that is derived
from a trechank, starting with part-of-speech
tags as terminals. The grammar is derived by
collecting all rules X — «v that occur in the tree-
bank and their frequencies f. The probability
of a rule is set to

JX =)

PX = «a) = z ST )

(1)

For a description of trechank grammars sce
(Charniak, 1996). The grammar does not con-
tain e-rules, otherwise there is no restriction
on the rules. In particular, we do not require
Chomsky-Nornal-Form.

In addition to the rules that correspond
to structures in the corpus, we add a new
start symbol ROOT {o the grammar and rules
ROOT — X for all non-terminals X together
with probabilitics derived [rom the root nodes
in the corpus’.

TFor parsing these grammars, we rely upon
a standard bottom-up chart-parsing technique
with a modification for incremental parsing, i.c.,
for cach word, all edges are processed and possi-
bly pruncd before proceeding to the next word.
T'he outline of the algorithm is as follows.

A chart entry F¥ consists of a start and end po-
sition ¢ and 7, a dotted rule X — oy, the inside
probability #(X; ;) that X generates the termi-
nal string from position ¢ to j, and information
about the most probable inside structure. 11 the
dot of the dotted rule is at the rightimost posi-
tion, the corresponding edge is an inaclive edge.
If the dot is at any other position, it is an active
edge. Inactive edges represent recognized hypo-
thetical constituents, while active edges repre-
sent prefixes of hypothetical constituents.

The 7th terminal node 7; that enters the chart
generates an inactive edge for the span (-1, 4).
Based on this, new active and inactive edges are
generated according to the standard algorithm.
Since we arc interested in the most probable
parse, the chart can be minimized in the fol-
lowing way while still performing an exhaustive
scarcl. If there is mnore than one edge that cov-
ers a span (4,7) having the same non-terminal
symbol on the left-hand side of the dotted rule,

!'The ROOT n()(lo is used internally for parsing; it is
neither emitted nor counted for recall and precision.

only the one with the highest inside probability
is kept in the chart. The others cannot con-
tribute to the most probable parse.

For an inactive edge spanning 7 to § and rep-
resenting the rale X — Y1 Y* the inside
probability f5; is set to

k
Br(Xig)=PX =Y ) [V, 2

=1

where 4 and j; mark the start and end postition
of V!, having ¢ = iy and j = j. The inside
probability for an active edge 4 with the dot
adter the kth symbol of the right-hand side is
st to

Ba(Xij) = Hﬂ] Yo (3)
=]

We do not use the probability of the rule at this
point. This allows us to combine all edges with
the same span and the dot at the same position
but with different symbols on the left-hand side.
Introducing o distinguished left-hand side only
for inactive edges significantly reduces the num-
ber of active edges in the chart. This goes one
step further than implicitly right-binarizing the
graminar; not only sullixes of right-hand sides
arc joined, but also the corresponding left-hand
sides.

4 Memory Restrictions

We investigate the climination (pruning) of
edges from the chart in our incremental pars-
ing scheme. After processing a word and before
proceeding to the next word during incremental
parsing, low ranked edges are removed. This is
equivalent to imposing memory restrictions on
the processing system.

The original algorithm keeps one edge in the
chart for cach combination of span (start and
cud position) and non-terminal symbol (for in-
active edges) or right-hand side prefixes of dot-
ted rules (for active edges). With pruning, we
restrict the number of edges allowed per span.
The limitation can be expressed in two ways:

1. Variable beam. Sclect a threshold 0 > 1.
idge e is removed, il its probability is p.,

the best probability for the span is py, and

Pl
Pe < 7)— . (‘1)
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2. Fized beam. Select a maximum number of
edges per span m. An edge e is removed, if
its probability is not in the first m highest
probabilities for edges with the same span.

We performed experiments using both types
of beams. Fixed beams yiclded consistently bet-
ter results than variable beams when plotting
chart size vs. F-score. Therefore, the following
results are reported for fixed beams.

We compare and rank edges covering the
same span only, and we rank active and inactive
cdges scparately. This is in contrast to (Char-
niak ct al., 1998) who rank all edges. They
use normalization in order to account for dif-
ferent spans since in general, edges for longer
spans involve more multiplications of probabil-
itics, yielding lower probabilities. Charniak et
al.’s normalization value is calculated by a dif-
ferent probability model than the inside proba-
bilities of the edges. So, in addition to the nor-
malization for different span lengths, they need
a normalization constant that accounts for the
different probability models.

This investigation is based on a much simpler
ranking formula. We use what can be described
as the unigram probability of a non-terminal
node, i.c., the a priori probability of the cor-
responding non-terminal symbol(s) times the
inside probability. Thus, for an inactive cdge
(4,4, X = «, Br(Xi)), we use the probability

Pri(Xig) = P(X) Plti.. t1]X) (5)

= P(X)-8r(Xi;) (6)

for ranking. This is the probability of the node
and its yield being present in a parse. The
higher this value, the better is this node. fy is
the inside probability for inactive edges as given
in cquation 2, P(X) is the a priori probability
for non-terminal X, (as estimated from the {re-
quency in the training corpus) and Ppy is the
probability of the edge for the non-terminal X
spanning positions i to 7 that is used for rank-
ing.

For an active edge (i,5,X — Y!l...Y%
Ykt Y Ba(Ya g, Yz}Zu)) (the dot is af-
ter the kth symbol of the right-hand side) we
use:

PraYy ... Y ) (7)

— P(Yj e Yk) Pt .. tiq |YI' e Yk)(s)

= Pt YRy payt s YELY (9)

1,01 kK

P(Y'- .Y} can be read off the corpus. It is
the a priori probability that the right-hand side
of a production has the prefix Y ... Y*, which
is estimated by

FY1 YF is prefix)
N

(10)

where N is the total number of productions in
the corpus?, i =iy, j = Jk and B4 is the inside
probability of the prefix.

5 Experiments
5.1 Data

We use sections 2 — 21 of the Wall Street Jour-
nal part of the Penn Trecbank (Marcus et al.,
1993) to generate a trecbank grammar, Traces,
functional tags and other tag extensions that do
not mark syntactic category are removed before
training®. No other modifications arc made. For
testing, we use the 1578 sentences of length 40
or less of section 22. The input to the parser is
the sequence of part-of-speech tags.

5.2 Evaluation

For evaluation, we use the parseval measures
and report labeld F-score (the harmonic mean
of labeled recall and labeled precision). Report-
ing the [-score makes our results comparable to
those of other previous experiments using the
same data scts. As a measure of the amount
of work done by the parser, we report the size
of the chart. The number of active and inac-
tive edges that enter the chart is given for the
exhaustive search, not counting those hypothet-
ical edges that are replaced or rejected because
there is an alternative edge with higher proba-
bility?. For pruned scarch, we give the percent-
age of edges required.

5.3 Fixed Beam

For our experiments, we define the beam by a
maximumn number of edges per span. Beams
for active and inactive edges are set scparately.
The beams run from 2 to 12, and we test all

2Here, we use proper prefixes, i.c., all prefixes not
including the last clement.

3As an example, PP-TMP=3 is replaced by PP.

“The size of the chart is comparable to the “number
of edges popped” as given in (Charniak et al., 1998).
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Results with Original and Parent Encoding
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Figure 1: lsxperimental results for incremental parsing and pruning. The figure shows the percent-
age of edges relative to exhaustive scarch and the IF-score achicved with this chart size. Exhaustive
scarch yiclded 71.21% for the original encoding and 79.28% for the parent encoding. Results in the
grey arcas arce equivalent with a confidence degree of o = 0.99.

121 combinations of these beams for active and
iactive edges. 1sach setting results in o partic-
ular average size of the chart and an F-score,
which are reported in the following scetion.

5.4 Expecrimental Results
The results of our 121 test runs with different
settings for active and inactive beamns are given
in figure 1. The diagram shows chart sizes vs.
labeled IP-scores. 1t sorts chart sizes across dif-
ferent settings of the beams.  If several beam
settings result in cquivalent chart sizes, the di-
agram contains the ouc yielding the highest -
score.

The main finding is that we can reduce the

size of the chart to between 1% and 3% of

the size required for exhanstive scarch without
aflecting the results. Only very small heams
degrade performance®.  The effect oceurs for
both models despite the siimple ranking formula.
This significantly reduces memory requirciments

SGiven the amount of test data (26,322 non-terminal
nodes), results within a range of avound 0.7% are equiv-
alent with a confidence degree of o = 99%.

(given as size of the chart) and increases parsing
spead.

Iixhaustive  scarch  yiclds an  I-Score  of
71.21% when using the original Penn Treebank
cncoding.  Ouly around 1% the edges are re-
quired to yicld equivalent results with incremen-
tal processing and pruning after cach word is
added to the chart. This result is, awong other
sebtings, obtained by a fixed heam of 2 for in-
active edges and 3 for active edges®

Tor the parent encoding, exhaustive scarch
yields an F-Score of 79.28%. Ounly between 2
and 3% of the edges are required to yield an
cquivalent result with incremental processing
and pruning. As an example, the point at size
= 3.0% l-score = 79.1% is generated by the
beam setting of 12 for inactive and 9 for active
edges. The parent encoding yields around 8%
higher 1%-scores but it also imposes a higher ab-
solute and relative memory load on the process.
The higher degree of parallelism in the inactive

SUsing variable beams, we would need 1.95% of the
chart entries to achieve an equivalent F-score.
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chart stems from the parent hypothesis in cach
node. In terms of pure node categories, the av-
crage number of parallel nodes at this point is
3.57.

Exhaustive scarch for the base encoding needs
in average 140,000 edges per sentence, for the
parcent encoding 200,000 edges; equivalent re-
sults for the base encoding can be achieved with
around 1% of these edges, equivalent results for
the parent encoding need between 2 and 3%.

The lower number of edges significantly in-
creases parsing speed. Using exhaustive scarch
for the base modecl, the parser processes 3.0 to-
kens per sccond (measured on a Pentium IT1
500; no serious efforts of optimization have gone
into the parser). With a chart size of 1%, speed
is 630 tokens/sccond. This is a factor of 210
without decreasing accuracy. Speed for the par-
ent model is 0.5 tokens/sccond (exhaustive) and
111 tokens/seconds (3.0% chart size), yiclding
an improvement by factor 220.

6 Related Work

Probably mostly related to the work reported
herc arce (Charniak et al., 1998) and (Roark and
Johnson, 1999). DBoth report on significantly
improved parsing cfficiency by sclecting only a
subset of edges for processing. There are three
main differences to owr approach. Onc is that
they use a ranking for best-first search while
we immediately prune hypotheses. They need
to store a large number edges because it is not
known in advance how many of the edges will be
used until a parse is found. The second differ-
ence is that we proceed strictly incrementally
without look-ahead. (Charniak et al., 1998)
use a non-incremental procedure, (Roark and
Johnson, 1999) usc a look-ahcad of one word.
Thirdly, we use a much simpler ranking formula.

Additionally, (Charniak ct al., 1998) and
(Roark and Johnson, 1999) do not use the
original Penntree encoding for the context-free
structures. DBefore training and parsing, they
change/remove some of the productions and in-
troduce new part-of-speech tags for auxiliaries.
The exact eflect of these modifications is un-
known, and it is unclear if these affect compa-

“For the active chart, paralellism cannot be given for
different nodes types since active edges are introduced
for right-hand side prefixes, collapsing all possible left-
hand sides.
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rability to our resulis.

The heavy restrictions in our method (imme-
diate pruning, no look-ahcad, very simple rank-
ing formula) have consequences on the accuracy.
Using right context and sorting instcad of prun-
ing yiclds roughly 2% higher results (compared
to our base encoding®). But our work shows
that even with these massive restrictions, the
chart size can be reduced to 1% without a de-
crease in accuracy when compared to exhaustive
scarch.,

7 Conclusions

A central challenge in computational psycholin-
guistics is to cxplain how it is that people are
so accurate and robust in processing language.
Given the substantial psycholinguistic evidence
for statistical cognitive mechanisms, our objecc-
tive in this paper was to asscss the plausibility
of using wide-coverage probabilistic parsers to
model human linguistic performance. In par-
ticular, we sct out to investigate the cffects of
imposing incremental processing and significant
memory limitations on such parsers.

The central finding of our experiments is that
incremental parsing with massive (97% - 99%)
pruning of the scarch space docs not impair
the accuracy of stochastic context-free parsers.
This basic finding was robust across different
settings of the beams and for the original Penn
Treebank encoding as well as the parent encod-
ing. We did however, observe significantly re-
duced memory and time requirements when us-
ing combined active/inactive edge filtering. To
owr knowledge, this is the first investigation on
trec-bank grammars that systematically varies
the beaimn for pruning.

Our aim in this paper is not to challenge
state-of-the-art parsing accuracy results. TIor
our cxperiments we used a purely context-free
stochastic parser combined with a very sim-
ple pruning scheme based on simple “unigram”
probabilities, and no use of right context. We
do, however suggest that our result should ap-
ply to richer, more sophistacted probabilistic

8Comparison of results is not straight-forward since
(Roark and Johnson, 1999) report accuracies only for
those sentences for which a parse tree was generated (be-
tween 93 and 98% of the sentences), while our parser
(except for very small beams) gencrates parses for vir-
tually all sentences, hence we report accuracies for all
sentences.



modcls, e.g. when adding word statistics to the
model (Charniak, 1997).

We therefore conclude that wide-coverage,
probabilistic parsers do not suffer impaired ac-
curacy when subject to strict cognitive memory
limitations and incremental processing. oo
thermore, parse times arve substantially reduced.
This suggests that it may be fruitful to pursuc
the use of these models within computational
psycholinguistics, where il is necessary o ox-

slain not only the relatively rarve 'pathologics’ of
) Yy 4

the human parser, but also its more frequently
observed accuracy and robustness.
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