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Introduction to Parsing

To parse a string according to a grammar means to reconstruct the production tree (or
trees) that indicate how the given string can be produced from the given grammar. It
is significant in this respect that one of the first publications on parsing (Greibach’s
1963 doctoral thesis [6]), was titled “Inverses of Phrase Structure Generators”, where
a phrase structure generator is to be understood as a system for producing phrases
from a phrase structure (actually context-free) grammar.

Although production of a sentence based on a Type 0 or Type 1 grammar gives
rise to a production graph rather than a production tree, and consequently parsing
yields a parse graph, we shall concentrate on parsing using a Type 2, context-free
grammar, and the resulting parse trees. Occasionally we will touch upon parsing
with Type 0 or Type 1 grammars, as for example in Section 3.2, just to show that it
is a meaningful concept.

3.1 The Parse Tree

There are two important questions on reconstructing the production tree: why do we
need it; and how do we do it.

The requirement to recover the production tree is not natural. After all, a grammar
is a condensed description of a set of strings, i.e., a language, and our input string
either belongs or does not belong to that language; no internal structure or production
path is involved. If we adhere to this formal view, the only meaningful question we
can ask is if a given string can be recognized according to a grammar; any question
as to how would be a sign of senseless, even morbid curiosity. In practice, however,
grammars have semantics attached to them: specific semantics is attached to specific
rules, and in order to determine the semantics of a string we need to find out which
rules were involved in its production and how. In short, recognition is not enough,
and we need to recover the production tree to get the full benefit of the syntactic
approach.
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The recovered production tree is called the parse tree. The fact that it is next
to impossible to attach semantics to specific rules in Type 0 and Type 1 grammars
explains their relative unimportance in parsing, compared to Types 2 and 3.

How we can reconstruct the production tree is the main subject of the rest of this
book.

3.1.1 The Size of a Parse Tree

A parse tree for a string of n tokens consists of n nodes belonging to the terminals,
plus a number of nodes belonging to the non-terminals. Surprisingly, there cannot be
more than CGn nodes belonging to non-terminals in a parse tree with n token nodes,
where CG is a constant that depends on the grammar, provided the grammar has no
loops. This means that the size of any parse tree is linear in the length of the input.

Showing that this is true has to be done in a number of steps. We prove it first
for grammars in which all right-hand sides have length 2; these result in binary trees,
trees in which each node either has two children or is a leaf (a node with no children).
Binary trees have the remarkable property that all binary trees with a given number
of leaves have the same number of nodes, regardless of their shapes. Next we allow
grammars with right-hand sides with lengths > 2, then grammars with unit rules, and
finally grammars with nullable rules.

As we said, an input string of length n consists of n token nodes. When the parse
tree is not there yet, these nodes are parentless leaves. We are now going to build an
arbitrary binary tree to give each of these nodes a parent, labeled with a non-terminal
from the grammar. The first parent node P1 we add lowers the number of parentless
nodes by 2, but now P1 is itself a parentless node; so we now have n + 1 nodes of
which n− 2 + 1 = n− 1 are parentless. The same happens with the second added
parent node P2, regardless of whether one of its children is P1; so now we have n+2
nodes of which n−2 are parentless. After j steps we have n+ j nodes of which n− j
are parentless and after n− 1 steps we have 2n− 1 nodes of which 1 is parentless.
The 1 parentless node is the top node, and the parse tree is complete. So we see
that when all right-hand sides have length 2, the parse tree for an input of length n
contains 2n−1 nodes, which is linear in n.

If some of the right-hand sides have length > 2, fewer parent nodes may be re-
quired to construct the tree. So the total tree size may be smaller than 2n−1, which
is certainly smaller than 2n.

If the grammar contains unit rules — rules of the form A → B — it is no longer
true that adding a parent node reduces the number of parentless nodes: when a par-
entless node B gets a parent A through the rule A → B, it is no longer parentless,
but the node for A now is, and, what is worse, the number of nodes has gone up
by one. And it may be necessary to repeat the process, say with a rule Z → A, etc.
But eventually the chain of unit rules must come to an end, say at P (so we have
P → Q · · ·Z → A → B ), or there would be a loop in the grammar. This means that
P gets a parent node with more than one child node and the number of parentless
nodes is reduced (or P is the top node). So the worst thing the unit rules can do is
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to “lengthen” each node by a constant factor Cu, the maximum length of a unit rule
chain, and so the size of the parse tree is smaller than 2Cun.

If the grammar contains rules of the form A → ε, only a finite number of εs can
be recognized between each pair of adjacent tokens in the input, or there would again
be a loop in the grammar. So the worst thing nullable rules can do is to “lengthen”
the input by a constant factor Cn, the maximum number of εs recognized between
two tokens, and the size of the parse tree is smaller than 2CnCun, which is linear in
n.

If, on the other hand, the grammar is allowed to contain loops, both the above
processes can introduce unbounded stretches of nodes in the parse tree, which can
then reach any size.

3.1.2 Various Kinds of Ambiguity

A sentence from a grammar can easily have more than one production tree, i.e., there
can easily be more than one way to produce the sentence. From a formal point of
view this is a non-issue (a set does not count how many times it contains an el-
ement), but as soon as we are interested in the semantics, the difference becomes
significant. Not surprisingly, a sentence with more than one production tree is called
ambiguous, but we must immediately distinguish between essential ambiguity and
spurious ambiguity. The difference comes from the fact that we are not interested in
the production trees per se, but rather in the semantics they describe. An ambiguous
sentence is spuriously ambiguous if all its production trees describe the same seman-
tics; if some of them differ in their semantics, the ambiguity is essential. The notion
of “ambiguity” can also be defined for grammars: a grammar is essentially ambigu-
ous if it can produce an essentially ambiguous sentence, spuriously ambiguous if
it can produce a spuriously ambiguous sentence (but not an essentially ambiguous
one) and unambiguous if it cannot do either. For testing the possible ambiguity of a
grammar, see Section 9.14.

A simple ambiguous grammar is given in Figure 3.1. Note that rule 2 differs

1. Sums ---> Digit { A0 := A1 }
2. Sum ---> Sum + Sum { A0 := A1 +A3 }
3a. Digit ---> 0 { A0 := 0 }

· · ·
3j. Digit ---> 9 { A0 := 9 }

Fig. 3.1. A simple ambiguous grammar

from that in Figure 2.30. Now 3+5+1 has two production trees (Figure 3.2) but the
semantics is the same in both cases: 9. The ambiguity is spurious. If we change the
+ into a -, however, the ambiguity becomes essential, as seen in Figure 3.3. The
unambiguous grammar in Figure 2.30 remains unambiguous and retains the correct
semantics if + is changed into -.
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Fig. 3.2. Spurious ambiguity: no change in semantics
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Fig. 3.3. Essential ambiguity: the semantics differ

Strangely enough, languages can also be ambiguous: there are (context-free) lan-
guages for which there is no unambiguous grammar. Such languages are inherently
ambiguous. An example is the language L = ambncn ∪ apbpcq. Sentences in L
consist either of a number of as followed by a nested sequence of bs and cs, or of a
nested sequence of as and bs followed by a number of cs. Example sentences are:
abcc, aabbc, and aabbcc; abbc is an example of a non-sentence. L is produced
by the grammar of Figure 3.4.

Ss ---> AB | DC
A ---> a | aA
B ---> bc | bBc
D ---> ab | aDb
C ---> c | cC

Fig. 3.4. Grammar for an inherently ambiguous language

Intuitively, it is reasonably clear why L is inherently ambiguous: any part of the
grammar that produces ambncn cannot avoid producing anbncn, and any part of the
grammar that produces apbpcq cannot avoid producing apbpcp. So whatever we do,
forms with equal numbers of as, bs, and cs will always be produced twice. Formally
proving that there is really no way to get around this is beyond the scope of this book.
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3.1.3 Linearization of the Parse Tree

Often it is inconvenient and unnecessary to construct the actual parse tree: a parser
can produce a list of rule numbers instead, which means that it linearizes the parse
tree. There are three main ways to linearize a tree, prefix, postfix and infix. In prefix
notation, each node is listed by listing its number followed by prefix listings of the
subnodes in left-to-right order; this gives us the leftmost derivation (for the right tree
in Figure 3.2):

leftmost: 2 2 1 3c 1 3e 1 3a

If a parse tree is constructed according to this scheme, it is constructed in pre-order.
In postfix notation, each node is listed by listing in postfix notation all the subnodes
in left-to-right order, followed by the number of the rule in the node itself; this gives
us the rightmost derivation (for the same tree):

rightmost: 3c 1 3e 1 2 3a 1 2

This constructs the parse tree in post-order. In infix notation, each node is listed by
first giving an infix listing between parentheses of the first n subnodes, followed by
the rule number in the node, followed by an infix listing between parentheses of the
remainder of the subnodes; n can be chosen freely and can even differ from rule
to rule, but n = 1 is normal. Infix notation is not common for derivations, but is
occasionally useful. The case with n = 1 is called the left-corner derivation; in our
example we get:

left-corner: (((3c)1) 2 ((3e)1)) 2 ((3a)1)

The infix notation requires parentheses to enable us to reconstruct the production
tree from it. The leftmost and rightmost derivations can do without them, provided
we have the grammar ready to find the number of subnodes for each node.

It is easy to tell if a derivation is leftmost or rightmost: a leftmost derivation
starts with a rule for the start symbol, while a rightmost derivation starts with a rule
that produces terminal symbols only. (If both conditions hold, there is only one rule,
which is both a leftmost and a rightmost derivation.)

The existence of several different derivations should not be confused with am-
biguity. The different derivations are just notational variants for one and the same
production tree. No semantic significance can be attached to their differences.

3.2 Two Ways to Parse a Sentence

The basic connection between a sentence and the grammar it derives from is the
parse tree, which describes how the grammar was used to produce the sentence.
For the reconstruction of this connection we need a parsing technique. When we
consult the extensive literature on parsing techniques, we seem to find dozens of
them, yet there are only two techniques to do parsing; all the rest is technical detail
and embellishment.
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The first method tries to imitate the original production process by rederiving the
sentence from the start symbol. This method is called top-down, because the parse
tree is reconstructed from the top downwards.1

The second method tries to roll back the production process and to reduce the
sentence back to the start symbol. Quite naturally this technique is called bottom-up.

3.2.1 Top-Down Parsing

Suppose we have the monotonic grammar for the language anbncn from Figure 2.7,
which we repeat here:

Ss ---> aSQ
S ---> abc

bQc ---> bbcc
cQ ---> Qc

and suppose the (input) sentence is aabbcc. First we try the top-down parsing
method. We know that the production tree must start with the start symbol:

S

Now what could the second step be? We have two rules for S: S--->aSQ and S--->abc.
The second rule would require the sentence to start with ab, which it does not. This
leaves us S--->aSQ:

S

a S Q

This gives us a good explanation of the first a in our sentence. Again two rules apply:
S--->aSQ and S--->abc. Some reflection will reveal that the first rule would be a bad
choice here: all production rules of S start with an a, and if we would advance to the
stage aaSQQ, the next step would inevitably lead to aaa..., which contradicts the
input string. The second rule, however, is not without problems either:

S

a S Q

a a b c Q

since now the sentence starts with aabc..., which also contradicts the input sen-
tence. Here, however, there is a way out: cQ--->Qc:

1 Trees grow from their roots downwards in computer science; this is comparable to electrons
having a negative charge in physics.
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S

a S Q

a b c Q

a a b Q c

Now only one rule applies: bQc--->bbcc, and we obtain our input sentence (together
with the parse tree):

S

a S Q

a b c Q

b Q c

a a b b c c

Top-down parsing identifies the production rules (and thus characterizes the parse
tree) in prefix order.

3.2.2 Bottom-Up Parsing

Using the bottom-up technique, we proceed as follows. One production step must
have been the last and its result must still be visible in the string. We recognize
the right-hand side of bQc--->bbcc in aabbcc. This gives us the final step in the
production (and the first in the reduction):

a a b Q c

a a b b c c

Now we recognize the Qc as derived by cQ--->Qc:

a a b c Q

b Q c

a a b b c c

Again we find only one right-hand side: abc:
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a S Q

a b c Q

b Q c

a a b b c c

and also our last reduction step leaves us no choice:

S

a S Q

a b c Q

b Q c

a a b b c c

Bottom-up parsing tends to identify the production rules in postfix order.
It is interesting to note that bottom-up parsing turns the parsing process into a

production process. The above reduction can be viewed as a production with the
reversed grammar:

aSQ ---> S
abc ---> S

bbcc ---> bQc
Qc ---> cQ

augmented with a rule that turns the start symbol into a new terminal symbol:

S ---> !

and a rule which introduces a new start symbol, the original sentence:

Is ---> aabbcc

If, starting from I, we can produce ! we have recognized the input string, and if we
have kept records of what we did, we also have obtained the parse tree.

This duality of production and reduction is used by Deussen [21] as a basis for a
very fundamental approach to formal languages.

3.2.3 Applicability

The above examples show that both the top-down and the bottom-up method will
work under certain circumstances, but also that sometimes quite subtle considera-
tions are involved, of which it is not at all clear how we can teach them to a computer.
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Almost the entire body of parser literature is concerned with formalizing these subtle
considerations, and there has been considerable success.

3.3 Non-Deterministic Automata

Both examples above feature two components: a machine that can make substitu-
tions and record a parse tree, and a control mechanism that decides which moves the
machine should make. The machine is relatively simple since its substitutions are
restricted to those allowed by the grammar, but the control mechanism can be made
arbitrarily complex and may incorporate extensive knowledge of the grammar.

This structure can be discerned in all parsing methods: there is always a substi-
tuting and record-keeping machine, and a guiding control mechanism:

control
mechanism

substituting and
record-keeping

mechanism

The substituting machine is called a non-deterministic automaton or NDA; it is called
“non-deterministic” because it often has several possible moves and the particular
choice is not predetermined, and an “automaton” because it automatically performs
actions in response to stimuli. It manages three components: the input string (actu-
ally a copy of it), the partial parse tree and some internal administration. Every move
of the NDA transfers some information from the input string through the administra-
tion to the partial parse tree. Each of the three components may be modified in the
process:

partial
parse
tree(s)

control input

internal
administration

The great strength of an NDA, and the main source of its usefulness, is that it can
easily be constructed so that it can only make “correct” moves, that is, moves that
keep the system of partially processed input, internal administration and partial parse
tree consistent. This has the consequence that we may move the NDA any way we
choose: it may move in circles, it may even get stuck, but if it ever gives us an answer,
in the form of a finished parse tree, that answer will be correct. It is also essential
that the NDA can make all correct moves, so that it can produce all parsings if the



70 3 Introduction to Parsing

control mechanism is clever enough to guide the NDA there. This property of the
NDA is also easily arranged.

The inherent correctness of the NDA allows great freedom to the control mecha-
nism, the “control” for short. It may be naive or sophisticated, it may be cumbersome
or it may be efficient, it may even be wrong, but it can never cause the NDA to pro-
duce an incorrect parsing; and that is a comforting thought. If it is wrong it may,
however, cause the NDA to miss a correct parsing, to loop infinitely, or to get stuck
in a place where it should not.

3.3.1 Constructing the NDA

The NDA derives directly from the grammar. For a top-down parser its moves consist
essentially of the production rules of the grammar and the internal administration is
initially the start symbol. The control moves the machine until the internal adminis-
tration is equal to the input string; then a parsing has been found. For a bottom-up
parser the moves consist essentially of the reverse of the production rules of the gram-
mar (see Section 3.2.2) and the internal administration is initially the input string.
The control moves the machine until the internal administration is equal to the start
symbol; then a parsing has been found. A left-corner parser works like a top-down
parser in which a carefully chosen set of production rules has been reversed and
which has special moves to undo this reversion when needed.

3.3.2 Constructing the Control Mechanism

Constructing the control of a parser is quite a different affair. Some controls are
independent of the grammar, some consult the grammar regularly, some use large
tables precomputed from the grammar and some even use tables computed from the
input string. We shall see examples of each of these: the “hand control” that was
demonstrated at the beginning of this section comes in the category “consults the
grammar regularly”, backtracking parsers often use a grammar-independent control,
LL and LR parsers use precomputed grammar-derived tables, the CYK parser uses a
table derived from the input string and Earley’s and GLR parsers use several tables
derived from the grammar and the input string.

Constructing the control mechanism, including the tables, from the grammar is
almost always done by a program. Such a program is called a parser generator; it
is fed the grammar and perhaps a description of the terminal symbols and produces
a program which is a parser. The parser often consists of a driver and one or more
tables, in which case it is called table-driven. The tables can be of considerable size
and of extreme complexity.

The tables that derive from the input string must of course be computed by a rou-
tine that is part of the parser. It should be noted that this reflects the traditional setting
in which a large number of different input strings is parsed according to a relatively
static and unchanging grammar. The inverse situation is not at all unthinkable: many
grammars are tried to explain a given input string, for example an observed sequence
of events.
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3.4 Recognition and Parsing for Type 0 to Type 4 Grammars

Parsing a sentence according to a grammar is in principle always possible provided
we know in advance that the string indeed derives from the grammar. If we cannot
think of anything better, we can just run the general production process of Section
2.4.1 on the grammar and sit back and wait until the sentence turns up (and we know
it will). This by itself is not exactly enough: we must extend the production process
a little, so that each sentential form carries its own partial production tree, which
must be updated at the appropriate moments, but it is clear that this can be done with
some programming effort. We may have to wait a little while (say a couple of million
years) for the sentence to show up, but in the end we will surely obtain the parse tree.
All this is of course totally impractical, but it still shows us that at least theoretically
any string can be parsed if we know it is parsable, regardless of the grammar type.

3.4.1 Time Requirements

When parsing strings consisting of more than a few symbols, it is important to have
some idea of the time requirements of the parser, i.e., the dependency of the time
required to finish the parsing on the number of symbols in the input string. Expected
lengths of input range from some tens (sentences in natural languages) to some tens
of thousands (large computer programs); the length of some input strings may even
be virtually infinite (the sequence of buttons pushed on a coffee vending machine
over its life-time). The dependency of the time requirements on the input length is
also called time complexity.

Several characteristic time dependencies can be recognized. A time dependency
is exponential if each following input symbol multiplies the required time by a con-
stant factor, say 2: each additional input symbol doubles the parsing time. Exponen-
tial time dependency is written O(Cn) where C is the constant multiplication factor.
Exponential dependency occurs in the number of grains doubled on each field of the
famous chess board; this way lies bankruptcy.

A time dependency is linear if each following input symbol takes a constant
amount of time to process; doubling the input length doubles the processing time.
This is the kind of behavior we like to see in a parser; the time needed for parsing
is proportional to the time spent on reading the input. So-called real-time parsers
behave even better: they can produce the parse tree within a constant time after the
last input symbol was read; given a fast enough computer they can keep up indefi-
nitely with an input stream of constant speed. Note that this is not necessarily true of
linear-time parsers: they can in principle read the entire input of n symbols and then
take a time proportional to n to produce the parse tree.

Linear time dependency is written O(n). A time dependency is called quadratic
if the processing time is proportional to the square of the input length (written O(n2))
and cubic if it is proportional to the third power (written O(n3)). In general, a depen-
dency that is proportional to any power of n is called polynomial (written O(np)).
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3.4.2 Type 0 and Type 1 Grammars

It is a remarkable result in formal linguistics that the recognition problem for a ar-
bitrary Type 0 grammar is unsolvable. This means that there cannot be an algorithm
that accepts an arbitrary Type 0 grammar and an arbitrary string and tells us in fi-
nite time whether the grammar can produce the string or not. This statement can be
proven, but the proof is very intimidating and, what is worse, it does not provide
any insight into the cause of the phenomenon. It is a proof by contradiction: we can
prove that, if such an algorithm existed, we could construct a second algorithm of
which we can prove that it only terminates if it never terminates. Since this is a log-
ical impossibility and since all other premises that went into the intermediate proof
are logically sound we are forced to conclude that our initial premise, the existence
of a recognizer for Type 0 grammars, is a logical impossibility. Convincing, but not
food for the soul. For the full proof see Hopcroft and Ullman [391, pp. 182-183], or
Révész [394, p. 98].

It is quite possible to construct a recognizer that works for a certain number of
Type 0 grammars, using a certain technique. This technique, however, will not work
for all Type 0 grammars. In fact, however many techniques we collect, there will
always be grammars for which they do not work. In a sense we just cannot make our
recognizer complicated enough.

For Type 1 grammars, the situation is completely different. The seemingly in-
consequential property that Type 1 production rules cannot make a sentential form
shrink allows us to construct a control mechanism for a bottom-up NDA that will at
least work in principle, regardless of the grammar. The internal administration of this
control consists of a set of sentential forms that could have played a role in the pro-
duction of the input sentence; it starts off containing only the input sentence. Each
move of the NDA is a reduction according to the grammar. Now the control applies
all possible moves of the NDA to all sentential forms in the internal administration
in an arbitrary order, and adds each result to the internal administration if it is not
already there. It continues doing so until each move on each sentential form results
in a sentential form that has already been found. Since no move of the NDA can
make a sentential form longer (because all right-hand sides are at least as long as
their left-hand sides) and since there are only a finite number of sentential forms as
long as or shorter than the input string, this must eventually happen. Now we search
the sentential forms in the internal administration for one that consists solely of the
start symbol. If it is there, we have recognized the input string; if it is not, the input
string does not belong to the language of the grammar. And if we still remember,
in some additional administration, how we got this start symbol sentential form, we
have obtained the parsing. All this requires a lot of book-keeping, which we are not
going to discuss, since nobody does it this way anyway.

To summarize the above, we cannot always construct a parser for a Type 0 gram-
mar, but for a Type 1 grammar we always can. The construction of a practical and
reasonably efficient parser for these types of grammars is a very difficult subject
on which slow but steady progress has been made during the last 40 years (see
(Web)Section 18.1.1). It is not a hot research topic, mainly because Type 0 and Type
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1 grammars are well-known to be human-unfriendly and will never see wide appli-
cation. Yet it is not completely devoid of usefulness, since a good parser for Type 0
grammars would probably make a good starting point for a theorem prover.2

The human-unfriendliness consideration does not apply to two-level grammars.
Having a practical parser for two-level grammars would be marvelous, since it
would allow parsing techniques (with all their built-in automation) to be applied in
many more areas than today, especially where context conditions are important. The
present possibilities for two-level grammar parsing are discussed in Section 15.2.3.

All known parsing algorithms for Type 0, Type 1 and unrestricted two-level
grammars have exponential time dependency.

3.4.3 Type 2 Grammars

Fortunately, much better parsing algorithms are known for CF (Type 2) grammars
than for Type 0 and Type 1. Almost all practical parsing is done using CF and FS
grammars, and almost all problems in context-free parsing have been solved. The
cause of this large difference can be found in the locality of the CF production pro-
cess: the evolution of one non-terminal in the sentential form is totally independent
of the evolution of any other non-terminal, and, conversely, during parsing we can
combine partial parse trees regardless of their histories. Neither is true in a context-
sensitive grammar.

Both the top-down and the bottom-up parsing processes are readily applicable to
CF grammars. In the examples below we shall use the simple grammar

Sentences ---> Subject Verb Object
Subject ---> the Noun | a Noun | ProperName
Object ---> the Noun | a Noun | ProperName
Verb ---> bit | chased
Noun ---> cat | dog
ProperName ---> · · ·

3.4.3.1 Top-Down CF Parsing

In top-down CF parsing we start with the start symbol and try to produce the in-
put. The keywords here are predict and match. At any time there is a leftmost non-
terminal A in the sentential form and the parser tries systematically to predict a fitting
alternative for A, as far as compatible with the symbols found in the input at the po-
sition where the result of A should start. This leftmost non-terminal is also called the
goal of the prediction process.

Consider the example of Figure 3.5, where Object is the leftmost non-terminal,
the “goal”. In this situation, the parser will first predict the Noun for Object, but
will immediately reject this alternative since it requires the where the input has
a. Next, it will try a Noun, which is temporarily accepted. The a is matched and

2 A theorem prover is a program that, given a set of axioms and a theorem, proves or dis-
proves the theorem without or with minimal human intervention.
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Input: the cat bit a dog
Sentential form: the cat bit Object
(the internal administration)

Fig. 3.5. Top-down parsing as the imitation of the production process

the new leftmost non-terminal is Noun. This parse will succeed when Noun even-
tually produces dog. The parser will then attempt a third prediction for Object,
ProperName; this alternative is not immediately rejected as the parser cannot see
that ProperName cannot start with a. It will fail at a later stage.

There are two serious problems with this approach. Although it can, in princi-
ple, handle arbitrary CF grammars, it will loop on some grammars if implemented
naively. This can be avoided by using some special techniques, which result in gen-
eral top-down parsers; these are treated in detail in Chapter 6. The second problem is
that the algorithm requires exponential time since any of the predictions may turn out
wrong and may have to be corrected by trial and error. The above example shows that
some efficiency can be gained by preprocessing the grammar: it is advantageous to
know in advance what tokens can start ProperName, to avoid predicting an alter-
native that is doomed in advance. This is true for most non-terminals in the grammar
and this kind of information can be easily computed from the grammar and stored in
a table for use during parsing. For a reasonable set of grammars, linear time depen-
dency can be achieved, as explained in Chapter 8.

3.4.3.2 Bottom-Up CF Parsing

In bottom-up CF parsing we start with the input and try to reduce it to the start
symbol. Here the keywords are shift and reduce. When we are in the middle of the
process, we have in our hands a sentential form reduced from the input. Somewhere
in this sentential form there must be a segment (a substring) that was the result of
the last production step that produced this sentential form. This segment corresponds
to the right-hand side α of a production rule A → α and must now be reduced to A.
The segment and the production rule together are called the handle of the sentential
form, a quite fitting expression; see Figure 3.6. (When the production rule is obvious

Subject chased a dog

a Noun chased a dog
production reduction

handle

Fig. 3.6. Bottom-up parsing as the inversion of the production process

from the way the segment was found, the matching segment alone is often called
the “handle”. We will usually follow this custom, but call the matching segment the
handle segment when we feel that that is clearer.)

The trick is to find the handle. It must be the right-hand side of a rule, so we
start looking for such a right-hand side by shifting symbols from the sentential form
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into the internal administration. When we find a right-hand side we reduce it to its
left-hand side and repeat the process, until only the start symbol is left. We will not
always find the correct handle this way; if we err, we will get stuck further on, will
have to undo some steps, shift in more symbols and try again. In Figure 3.6 we could
have reduced the a Noun to Object, thereby boldly heading for a dead end.

There are essentially the same two problems with this approach as with the top-
down technique. It may loop, and will do so on grammars with ε-rules: it will con-
tinue to find empty productions all over the place. This can be remedied by touching
up the grammar. And it can take exponential time, since the correct identification of
the handle may have to be done by trial and error. Again, doing preprocessing on
the grammar often helps: it is easy to see from the grammar that Subject can be
followed by chased, but Object cannot. So it is unprofitable to reduce a handle
to Object if the next symbol is chased.

3.4.4 Type 3 Grammars

A right-hand side in a regular grammar contains at most one non-terminal, so there
is no difference between leftmost and rightmost derivation. Top-down methods are
much more efficient for right-regular grammars; bottom-up methods work better for
left-regular grammars. When we take the production tree of Figure 2.15 and if we
turn it 45 ◦ counterclockwise, we get the production chain of Figure 3.7. The se-

Sentence List ListTail List ListTail

t , d & h

Fig. 3.7. The production tree of Figure 2.15 as a production chain

quence of non-terminals rolls on to the right, producing terminal symbols as they
go. In parsing, we are given the terminal symbols and are supposed to construct the
sequence of non-terminals. The first one is given, the start symbol (hence the prefer-
ence for top-down). If only one rule for the start symbol starts with the first symbol
of the input we are lucky and know which way to go. Very often, however, there are
many rules starting with the same symbol and then we are in need of more wisdom.
As with Type 2 grammars, we can of course find the correct continuation by trial and
error, but far more efficient methods exist that can handle any regular grammar. Since
they form the basis of some advanced parsing techniques, they are treated separately,
in Chapter 5.

3.4.5 Type 4 Grammars

Finite-choice (FC) grammars do not involve production trees, and membership of a
given input string in the language of the FC grammar can be determined by simple
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look-up. This look-up is generally not considered to be “parsing”, but is still men-
tioned here for two reasons. First, it can benefit from parsing techniques, and second,
it is often required in a parsing environment. Natural languages have some categories
of words that have only a very limited number of members; examples are the pro-
nouns, the prepositions and the conjunctions. It is often important to decide quickly
if a given word belongs to one of these finite-choice categories or will have to be
analysed further. The same applies to reserved words in a programming language.

One approach is to consider the FC grammar as a regular grammar and apply the
techniques of Chapter 5. This is often amazingly efficient.

Another often-used approach is to use a hash table. See any book on algorithms,
for example Cormen et al. [415], or Goodrich and Tamassia [416].

3.5 An Overview of Context-Free Parsing Methods

Among the Chomsky grammar types the context-free (Type 2) grammars occupy the
most prominent position. This has three reasons: 1. CF parsing results in trees, which
allow semantics to be expressed and combined easily; 2. CF languages cover a large
part of the languages one would like to process automatically; 3. efficient CF parsing
is possible – though sometimes with great difficulty. The context-free grammars are
followed immediately by the finite-state grammars in importance. This is because the
world and especially equipment is finite; vending machines, remote controls, virus
detectors, all exhibit finite-state behavior. The rest of the chapters in this book will
therefore be mainly concerned with CF parsing, with the exception of Chapter 5
(finite-state grammars) and Chapter 15 (non-Chomsky systems). We shall now give
an overview of the context-free parsing methods.

The reader of literature about parsing is confronted with a large number of tech-
niques with often unclear interrelationships. Yet all techniques can be placed in a
single framework, according to some simple criteria; they are summarized in Figure
3.11.

We have already seen that a parsing technique is either top-down, reproducing
the input string from the start symbol, or bottom-up, reducing the input to the start
symbol. The next division is that between directional and non-directional parsing
methods.

3.5.1 Directionality

Non-directional methods construct the parse tree while accessing the input in any
order they see fit. This of course requires the entire input to be in memory before
parsing can start. There is a top-down and a bottom-up version. Directional parsers
access the input tokens one by one in order, all the while updating the partial parse
tree(s). There is again a top-down and a bottom-up version.
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3.5.1.1 Non-Directional Methods

The non-directional top-down method is simple and straightforward and has prob-
ably been invented independently by many people. To the best of our knowledge it
was first described by Unger [12] in 1968, but in his article he gives the impression
that the method already existed. The method has not received much attention in the
literature but is more important than one might think, since it is used anonymously in
a number of other parsers. We shall call it Unger’s method; it is described in Section
4.1.

The non-directional bottom-up method has also been discovered independently
by a number of people, among whom Cocke (in Hays [3, Sect. 17.3.1]), Younger
[10], and Kasami [13]; an earlier description is by Sakai [5]. It is named CYK
(or sometimes CKY) after the three best-known inventors. It has received consid-
erable attention since its naive implementation is much more efficient than that of
Unger’s method. The efficiency of both methods can be improved, however, arriving
at roughly the same performance; see Sheil [20]. The CYK method is described in
Section 4.2.

Non-directional methods usually first construct a data structure which summa-
rizes the grammatical structure of the input sentence. Parse trees can then be derived
from this data structure in a second stage.

3.5.1.2 Directional Methods

The directional methods process the input symbol by symbol, from left to right. (It
is also possible to parse from right to left, using a mirror image of the grammar;
this is occasionally useful.) This has the advantage that parsing can start, and indeed
progress, considerably before the last symbol of the input is seen. The directional
methods are all based explicitly or implicitly on the parsing automaton described in
Section 3.4.3, where the top-down method performs predictions and matches and the
bottom-up method performs shifts and reduces.

Directional methods can usually construct the (partial) parse tree as they proceed
through the input string, unless the grammar is ambiguous and some postprocessing
may be required.

3.5.2 Search Techniques

A third way to classify parsing techniques concerns the search technique used to
guide the (non-deterministic!) parsing automaton through all its possibilities to find
one or all parsings.

There are in general two methods for solving problems in which there are several
alternatives in well-determined points: depth-first search, and breadth-first search.

• In depth-first search we concentrate on one half-solved problem. If the problem
bifurcates at a given point P, we store one alternative for later processing and
keep concentrating on the other alternative. If this alternative turns out to be a
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failure (or even a success, but we want all solutions), we roll back our actions to
point P and continue with the stored alternative. This is called backtracking.

• In breadth-first search we keep a set of half-solved problems. From this set we
compute a new set of (better) half-solved problems by examining each old half-
solved problem; for each alternative, we create a copy in the new set. Eventually,
the set will come to contain all solutions.

Depth-first search has the advantage that it requires an amount of memory that is
proportional to the size of the problem, unlike breadth-first search, which may re-
quire exponential memory. Breadth-first search has the advantage that it will find
the simplest solution first. Both methods require in principle exponential time. If we
want more efficiency (and exponential requirements are virtually unacceptable), we
need some means to restrict the search. See any book on algorithms, for example
Sedgewick [417] or Goodrich and Tamassia [416], for more information on search
techniques.

These search techniques are not at all restricted to parsing and can be used in
a wide array of contexts. A traditional one is that of finding an exit from a maze.
Figure 3.8(a) shows a simple maze with one entrance and two exits. Figure 3.8(b)
depicts the path a depth-first search will take; this is the only option for the human
maze-walker: he cannot duplicate himself and the maze. Dead ends make the depth-
first search backtrack to the most recent untried alternative. If the searcher will also
backtrack at each exit, he will find all exits. Figure 3.8(c) shows which rooms are

(a) (b) (c)
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Fig. 3.8. A simple maze with depth-first and breadth-first visits

examined in each stage of the breadth-first search. Dead ends (in stage 3) cause the
search branches in question to be discarded. Breadth-first search will find the shortest
way to an exit (the shortest solution) first. If it continues until there are no branches
left, it will find all exits (all solutions).

3.5.3 General Directional Methods

The idea that parsing is the reconstruction of the production process is especially
clear when using a directional method. It is summarized in the following two sound
bites.
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A directional top-down (left-to-right) CF parser identifies leftmost produc-
tions in production order.

and

A directional bottom-up (left-to-right) CF parser identifies rightmost pro-
ductions in reverse production order.

We will use the very simple grammar

Ss ---> P Q R
P ---> p
Q ---> q
R ---> r

to demonstrate this. The grammar produces only one string, pqr.
The leftmost production process for pqr proceeds as follows:

|S
1 |P Q R
2 p |Q R
3 p q |R
4 p q r |

where the | indicates how far the production process has proceeded. The top-down
analysis mimics this process by first identifying the rule that produced the p, P--->p,
then the one for q, etc.:

|S
S--->PQR

⇒
(1)

|PQR
P--->p

⇒
(2)

p|QR
Q--->q

⇒
(3)

pq|R
R--->r

⇒
(4)

pqr|

The rightmost production process for pqr proceeds as follows:

S|
1 P Q R|
2 P Q| r
3 P| q r
4 | p q r

where the | again indicates how far the production process has proceeded. The
bottom-up analysis rolls back this process. To do this, it must first identify the rule
in production step 4, P--->p and use it as a reduction, then step 3, Q--->q, etc. Fortu-
nately the parser can easily do this, because the rightmost production process makes
the boundary between the unprocessed and the processed part of the sentential form
creep to the left, so the last production brings it to the left end of the result, as we see
above. The parsing process can then start picking it up there:

|pqr
P--->p

⇒
(4)

P|qr
Q--->q

⇒
(3)

PQ|r
R--->r

⇒
(2)

pqr|
S--->pqr

⇒
(4)

S|

This double reversal is inherent in directional bottom-up parsing.
The connection between parse trees under construction and sentential forms is

shown in Figure 3.9, where the dotted lines indicate the sentential forms. On the left
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S

P Q R

p q r

a

S

P Q R

p q r

b

P

p q r

c

Fig. 3.9. Sentential forms in full parse tree (a), during top-down (b), and during bottom-up
(c)

we have the complete parse tree; the corresponding sentential form is the string of
terminals. The middle diagram shows the partial parse tree in a top-down parser after
the p has been processed. The sentential form corresponding to this situation is pQR.
It resulted from the two productions S⇒ PQR⇒ pQR, which gave rise to the partial
parse tree. The diagram on the right shows the partial parse tree after the p has been
processed in a bottom-up parser. The corresponding sentential form is Pqr, resulting
from pqr ⇐ Pqr; the single reduction gave rise to a partial parse tree of only one
node.

Combining depth-first or breadth-first with top-down or bottom-up gives four
classes of parsing techniques. The top-down techniques are treated in Chapter 6. The
depth-first top-down technique allows a very simple implementation called recursive
descent; this technique, which is explained in Section 6.6, is very suitable for writing
parsers by hand. Since depth-first search is built into the Prolog language, recursive
descent parsers for a large number of grammars can be formulated very elegantly in
that language, using a formalism called “Definite Clause Grammars” (Section 6.7).
The applicability of this technique can be extended to cover all grammars by using a
device called “cancellation” (Section 6.8).

The bottom-up techniques are treated in Chapter 7. The combination of breadth-
first and bottom-up leads to the class of Earley parsers, which have among them
some very effective and popular parsers for general CF grammars (Section 7.2).
A formally similar but implementationwise quite different approach leads to “chart
parsing” (Section 7.3).

Sudkamp [397, Chapter 4] gives a full formal explanation of [breadth-
first | depth-first][top-down | bottom-up] context-free parsing.

3.5.4 Linear Methods

Most of the general search methods indicated in the previous section have exponen-
tial time dependency in the worst case: each additional symbol in the input multiplies
the parsing time by a constant factor. Such methods are unusable except for very
small input length, where 20 symbols is about the maximum. Even the best variants
of the above methods require cubic time in the worst case: for 10 tokens they perform
1000 actions, for 100 tokens 1 000 000 actions and for 10 000 tokens (a fair-sized
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computer program file) 1012 actions, which even at 10 nanoseconds per action will
already take almost 3 hours. It is clear that for real speed we should like to have a
linear-time general parsing method. Unfortunately no such method has been discov-
ered to date, and although there is no proof that such a method could not exist, there
are strong indications that that is the case; see Section 3.10 for details. Compare
this to the situation around unrestricted phrase structure parsing, where it has been
proved that no algorithm for it can exist (see Section 3.4.2).

So, in the meantime, and probably forever, we shall have to drop one of the two
adjectives from our goal, a linear-time general parser. We can have a general parser,
which will need cubic time at best, or we can have a linear-time parser, which will
not be able to handle all CF grammars, but not both. Fortunately there are linear-
time parsing methods (in particular LR parsing) that can handle very large classes of
grammars but still, a grammar that is designed without regard for a parsing method
and just describes the intended language in the most natural way has a small chance
of allowing linear parsing automatically. In practice, grammars are often first de-
signed for naturalness and then adjusted by hand to conform to the requirements
of an existing parsing method. Such an adjustment is usually relatively simple, de-
pending on the parsing method chosen. In short, making a linear-time parser for an
arbitrary given grammar is 10% hard work; the other 90% can be done by computer.

We can achieve linear parsing time by restricting the number of possible moves
of our non-deterministic parsing automaton to one in each situation. Since the moves
of such an automaton involve no choice, it is called a “deterministic automaton”.

The moves of a deterministic automaton are determined unambiguously by the
input stream (we can speak of a stream now, since the automaton operates from left
to right). A consequence of this is that a deterministic automaton can give only one
parsing for a sentence. This is all right if the grammar is unambiguous, but if it is
not, the act of making the automaton deterministic has pinned us down to one specific
parsing. We shall say more about this in Sections 8.2.5.3 and 9.9.

All that remains is to explain how a deterministic control mechanism for a parsing
automaton can be derived from a grammar. Since there is no single good solution to
the problem, it is not surprising that quite a number of sub-optimal solutions have
been found. From a very global point of view they all use the same technique: they
analyse the grammar in depth to bring to the surface information that can be used
to identify dead ends. These are then closed. If the method, applied to a grammar,
closes enough dead ends so that no choices remain, the method succeeds for that
grammar and gives us a linear-time parser. Otherwise it fails and we either have to
look for a different method or adapt our grammar to the method.

A (limited) analogy with the maze problem can perhaps make this clearer. If we
are allowed to do preprocessing on the maze (unlikely but instructive) the follow-
ing method will often make our search through it deterministic. We assume that the
maze consists of a grid of square rooms, as shown in Figure 3.10(a). Depth-first
search would find a passage through the maze in 13 moves (Figure 3.10(b)). Now we
preprocess the maze as follows: if there is a room with three walls, add the fourth
wall, and continue with this process until no rooms with three walls are left. If all
rooms now have either two or four walls, there are no choices left and our method
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(a) (b) (c)

Fig. 3.10. A single-exit maze made deterministic by preprocessing

has succeeded; see Figure 3.10(c), where the passage now takes 5 moves, with no
searching involved. We see how this method brings information about dead ends to
the surface, to help restrict the choice.

It should be pointed out that the above analogy is a limited one. It is concerned
with only one object, the maze, which is preprocessed. In parsing we are concerned
with two objects, the grammar, which is static and can be preprocessed, and the input,
which varies. (But see Problem 3.6 for a way to extend the analogy.)

Returning to the parsing automaton, we can state the fact that it is deterministic
more precisely: a parsing automaton is deterministic with look-ahead k if its control
mechanism can, given the internal administration and the next k symbols of the input,
decide unambiguously what to do next — to either match or predict and what to
predict in the top-down case, and to either shift or reduce and how to reduce in the
bottom-up case.

It stands to reason that a deterministic automaton creates a linear-time parser,
but this is not completely obvious. The parser may know in finite time what to do
in each step, but many steps may have to be executed for a given input token. More
specifically, some deterministic techniques can require k steps for a given position
k, which suggests that quadratic behavior is possible (see Problem 3.5). But each
parsing step either creates a node (predict and reduce) or consumes an input token
(match and shift). Both actions can only be performed O(n) times where n is the
length of the input: the first because the size of the parse tree is only O(n) and the
second because there are only n input tokens. So however the actions of the various
tasks are distributed, their total cannot exceed O(n).

Like grammar types, deterministic parsing methods are indicated by initials, like
LL, LALR, etc. If a method X uses a look-ahead of k symbols it is called X(k). All
deterministic methods require some form of grammar preprocessing to derive the
parsing automaton, plus a parsing algorithm or driver to process the input using that
automaton.

3.5.5 Deterministic Top-Down and Bottom-Up Methods

There is only one deterministic top-down method; it is called LL. The first L stands
for Left-to-right, the second for “identifying the Leftmost production”, as directional
top-down parsers do. LL parsing is treated in Chapter 8. LL parsing, especially LL(1)
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is very popular. LL(1) parsers are often generated by a parser generator but a simple
variant can, with some effort, be written by hand, using recursive-descent techniques;
see Section 8.2.6. Occasionally, the LL(1) method is used starting from the last token
of the input backwards; it is then called RR(1).

There are quite a variety of deterministic bottom-up methods, the most powerful
being called LR, where again the L stands for Left-to-right, and the R stands for
“identifying the Rightmost production”. Linear bottom-up methods are treated in
Chapter 9. Their parsers are invariably generated by a parser generator: the control
mechanism of such a parser is so complicated that it is not humanly possible to
construct it by hand. Some of the deterministic bottom-up methods are very popular
and are perhaps used even more widely than the LL(1) method.

LR(1) parsing is more powerful than LL(1) parsing, but also more difficult to
understand and less convenient. The other methods cannot be compared easily to the
LL(1) method. See Chapter 17.1 for a comparison of practical parsing methods. The
LR(1) method can also be applied backwards and is then called RL(1).

Both methods use look-ahead to determine which actions to take. Usually this
look-ahead is restricted to one token (LL(1), LR(1), etc.) or a few tokens at most,
but it is occasionally helpful to allow unbounded look-ahead. This requires differ-
ent parsing techniques, which results in a subdivision of the class of deterministic
parsers; see Figure 3.11.

The great difference in variety between top-down and bottom-up methods is eas-
ily understood when we look more closely at the choices the corresponding parsers
face. A top-down parser has by nature little choice: if a terminal symbol is predicted,
it has no choice and can only ascertain that a match is present; only if a non-terminal
is predicted does it have a choice in the production of that non-terminal. A bottom-
up parser can always shift the next input symbol, even if a reduction is also possible
(and it often has to do so). If, in addition, a reduction is possible, it may have a choice
between a number of right-hand sides. In general it has more choice than a top-down
parser and more powerful methods are needed to make it deterministic.

3.5.6 Non-Canonical Methods

For many practical grammars the above methods still do not yield a linear-time de-
terministic parser. One course of action that is often taken is to modify the grammar
slightly so as to fit it to the chosen method. But this is unfortunate because the re-
sulting parser then yields parse trees that do not correspond to the original grammar,
and patching up is needed afterwards. Another alternative is to design a parser so
it postpones the decisions it cannot take for lack of information and continue pars-
ing “at half power” until the information becomes available. Such parsers are called
non-canonical because they identify the nodes in the parse trees in non-standard,
“non-canonical” order. Needless to say this requires treading carefully, and some of
the most powerful, clever, and complicated deterministic parsing algorithms come in
this category. They are treated in Chapter 10.
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3.5.7 Generalized Linear Methods

When our attempt to construct a deterministic control mechanism fails and leaves
us with a non-deterministic but almost deterministic one, we need not despair yet:
we can fall back on breadth-first search to solve the remnants of non-determinism at
run-time. The better our original method was, the less non-determinism will be left,
the less often breadth-first search will be needed, and the more efficient our parser
will be. Such parsers are called “generalized parsers”; generalized parsers have been
designed for most of the deterministic methods, both top-down and bottom-up. They
are described in Chapter 11. Generalized LR (or GLR) (Tomita [162]) is one of the
best general CF parsers available today.

Of course, by reintroducing breadth-first search we are taking chances. The gram-
mar and the input could conspire so that the non-determinism gets hit by each input
symbol and our parser will again have exponential time dependency. In practice,
however, they never do so and such parsers are very useful.

3.5.8 Conclusion

Figure 3.11 summarizes parsing techniques as they are treated in this book. Nijholt
[154] paints a more abstract view of the parsing landscape, based on left-corner pars-
ing. See Deussen [22] for an even more abstracted overview. An early systematic
survey was given by Griffiths and Petrick [9].

3.6 The “Strength” of a Parsing Technique

Formally a parsing technique T1 is stronger (more powerful) than a parsing tech-
nique T2 if T1 can handle all grammars T2 can handle but not the other way around.
Informally one calls one parsing technique stronger than another if to the speaker
it appears to handle a larger set of grammars. Formally this is of course nonsense,
since all parsing techniques can handle infinite sets of grammars, and the notion of
“larger” is moot. Also, a user grammar designed without explicit aim at a particular
parsing technique has an almost zero chance of being amenable to any existing tech-
nique anyway. What counts from a user point of view is the effort required to modify
the “average” practical grammar so it can be handled by method T , and to undo the
damage this modification causes to the parse tree. The strength (power) of parsing
technique T is inversely proportional to that effort.

Almost invariably a strong parser is more complicated and takes more effort to
write than a weak one. But since a parser or parser generator (see Section 17.2) needs
to be written only once and then can be used as often as needed, a strong parser saves
effort in the long run.

Although the notion of a “strong” parser is intuitively clear, confusion can arise
when it is applied to the combination of parser and grammar. The stronger the parser
is, the fewer restrictions the grammars need to obey and the “weaker” they can af-
ford to be. Usually methods are named after the grammar and it is here where the
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Fig. 3.11. An overview of context-free parsing techniques

confusion starts. A “strong LL(1) grammar” is more restricted than an “LL(1) gram-
mar”; one can also say that it is more strongly LL(1). The parser for such grammars
is simpler than one for (full) LL(1) grammars, and is — can afford to be — weaker.
So actually a strong-LL(1) parser is weaker than an LL(1) parser. We have tried to
consistently use the hyphen between “strong” and “LL(1)” to show that “strong” ap-
plies to “LL(1)” and not to “parser”, but not all publications follow that convention,
and the reader must be aware. The reverse occurs with “weak-precedence parsers”
which are stronger than “precedence parsers” (although in that case there are other
differences as well).

3.7 Representations of Parse Trees

The purpose of parsing is to obtain one or more parse trees, but many parsing tech-
niques do not tell you in advance if there will be zero, one, several or even infinitely
many parse trees, so it is a little difficult to prepare for the incoming answers. There
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are two things we want to avoid: being under-prepared and miss parse trees, and
being over-prepared and pre-allocate an excessive amount of memory. Not much
published research has gone into this problem, but the techniques encountered in the
literature can be grouped into two models: the producer-consumer model and the
data structure model.

3.7.1 Parse Trees in the Producer-Consumer Model

In the producer-consumer model the parser is the producer and the program using
the parse trees is the consumer. As in all producer-consumer situations in computer
science, the immediate question is, which is the main program and which is the
subroutine.

The most esthetically pleasing answer is to have them both as equal partners,
which can be done using coroutines. Coroutines are explained in some books on
principles of programming languages and programming techniques, for example Ad-
vanced Programming Language Design by R.A. Finkel (Addison-Wesley). There are
also good explanations on the Internet.

In the coroutine model, the request for a new parse tree by the user and the offer
of a parse tree by the parser are paired up automatically by the coroutine mechanism.
The problem with coroutines is that they must be built into the programming lan-
guage, and no major programming language features them. So coroutines are not a
practical solution to parse tree representation.

The coroutine’s modern manifestation, the thread, in which the pairing up is done
by the operating system or by a light-weight version of it inside the program, is avail-
able in some major languages, but introduces the notion of parallelism which is not
inherently present in parsing. The UNIX pipe has similar communication properties
but is even more alien to the parsing problem.

Usually the parser is the main program and the consumer is the subroutine. Each
time the parser has finished constructing a parse tree, it calls the consumer routine
with a pointer to the tree as a parameter. The consumer can then decide what to do
with this tree: reject it, accept it, store it for future comparison, etc. In this setup the
parser can just happily produce trees, but the consumer will probably have to save
state data between being called, to be able to choose between parse trees. This is the
usual setup in compiler design, where there is only one parse tree and the user state
saving is less of a problem.

It is also possible to have the user as the main program, but this places a heavy
burden on the parser, which is now forced to keep all state data of its half-finished
parsing process when delivering a parse tree. Since data on the stack cannot be saved
as state data (except by draconian means) this setup is feasible only with parsing
methods that do not use a stack.

With any of these setups the user still has two problems in the general case. First,
when the parser produces more than one parse tree the user receives them as separate
trees and may have to do considerable comparison to find the differences on which to
base further decisions. Second, if the grammar is infinitely ambiguous and the parser
produces infinitely many parse trees, the process does not terminate.
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So the producer-consumer model is satisfactory for unambiguous grammars, but
is problematic for the general case.

3.7.2 Parse Trees in the Data Structure Model

In the data structure model the parser constructs a single data structure which repre-
sents all parse trees simultaneously. Surprisingly, this can be done even for infinitely
ambiguous grammars; and what is more, it can be done in a space whose size is at
most proportional to the third power of the length of the input string. One says that
the data structure has cubic space dependency.

There are two such representations: parse forests and parse-forest grammars. Al-
though the two are fundamentally the same, they are very different conceptually and
practically, and it is useful to treat them as separate entities.

3.7.3 Parse Forests

Since a forest is just a collection of trees, the naive form of a parse forest consists
of a single node from which all trees in the parse forest are directly reachable. The
two parse trees from Figure 3.2 then combine into the parse forest from Figure 3.12,
where the numbers in the nodes refer to rule numbers in the grammar of Figure 3.1.

2

1 2

1 1

3c 3e 3a

3 + 5 + 1

2

2 1

1 1

3c 3e 3a

3 + 5 + 1

Fig. 3.12. Naive parse forest from the trees in Figure 3.2

When we look at this drawing, we notice two things: the meaning of the dashed
arrows differs from that of the drawn arrows; and the resulting tree contains a lot of
duplicate subtrees. One also wonders what the label in the empty top node should be.

The meaning of the dashed arrow is “or-or”: the empty top node points to either
the left node marked 2 or to the right node, whereas the drawn arrows mean “and-
and”: the left node marked 2 consists of a node marked Sum and a node marked + and
a node marked Sum. More in particular, the empty top node, which should be labeled
Sum points to two applications of rule 2, each of which produces Sum + Sum;
the leftmost Sum points to an application of rule 1, the second Sum points to an
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Fig. 3.13. The naive parse forest as an AND-OR tree

application of rule 2, etc. The whole AND-OR tree is presented in Figure 3.13, where
we see an alteration of nodes labeled with non-terminals, the OR-nodes and nodes
labeled with rule numbers, the AND-nodes. An OR-node for a non-terminal A has the
rule numbers of the alternatives for A as children; an AND-node for a rule number
has the components of the right-hand side of the rule as children.

3.7.3.1 Combining Duplicate Subtrees

We are now in a position to combine all the duplicate subtrees in the forest. We do
this by having only one copy of a node labeled with a non-terminal A and spanning
a given substring of the input. If A produces that substring in more than one way,
more than one or-arrow will emanate from the OR-node labeled A, each pointing to
an AND-node labeled with a rule number. In this way the AND-OR tree turns into a
directed acyclic graph, a dag, which by rights should be called a parse dag, although
the term “parse forest” is much more usual. The result of our example is shown in
Figure 3.14.

It is important to note that two OR-nodes (which represent right-hand sides of
rules) can only be combined if all members of the one node are the same as the
corresponding members of the other node. It would not do to combine the two nodes
marked 2 in Figure 3.14 right under the top; although they both read Sum+Sum, the
Sums and even the +s are not the same. If they were combined, the parse forest would
represent more parse trees than correspond with the input; see Problem 3.8.

It is possible to do the combining of duplicate subtrees during parsing rather
than afterwards, when all trees have been generated. This is of course more efficient,
and has the additional advantage that it allows infinitely ambiguous parsings to be
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Fig. 3.14. The parse trees of Figure 3.2 as a parse forest

represented in a finite data structure. The resulting parse forest then contains loops
(cycles), and is actually a parse graph.

Figure 3.15 summarizes the situation for the various Chomsky grammar types in
relation to ambiguity. Note that finite-state and context-sensitive grammars cannot

Most complicated data structure
Grammar type unambiguous ambiguous infinitely ambiguous

PS dag dag graph
CS dag dag —
CF tree dag graph
FS list dag —

Fig. 3.15. The data structures obtained when parsing with the Chomsky grammar types

be infinitely ambiguous because they cannot contain nullable rules. See Figure 2.16
for a similar summary of production data structures.

3.7.3.2 Retrieving Parse Trees from a Parse Forest

The receiver of a parse forest has several options. For example, a sequence of parse
trees can be generated from it, or, perhaps more likely, the data structure can be
pruned to eliminate parse trees on various grounds.
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Generating parse trees from the parse forest is basically simple: each combination
of choices for the or-or arrows is a parse tree. The implementation could be top-down
and will be sketched here briefly. We do a depth-first visit of the graph, and for each
OR-node we turn one of the outgoing dashed arrows into a solid arrow; we record
each of these choices in a backtrack chain. When we have finished our depth-first
visit we have fixed one parse tree. When we are done with this tree, we examine the
most recent choice point, as provided by the last element of the backtrack chain, and
make a different choice there, if available; otherwise we backtrack one step more,
etc. When we have exhausted the entire backtrack chain we know we have generated
all parse trees. One actualization of a parse tree is shown in Figure 3.16.
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Fig. 3.16. A tree identified in the parse forest of Figure 3.14

It is usually more profitable to first prune the parse forest. How this is done
depends on the pruning criteria, but the general technique is as follows. Information
is attached to each node in the parse forest, in a way similar to that in attribute
grammars (see Section 2.11.1). Whenever the information in a node is contradictory
to the criteria for that type of node, the node is removed from the parse forest. This
will often make other nodes inaccessible from the top, and these can then be removed
as well.

Useful pruning of the parse forest of Figure 3.14 could be based on the fact
that the + operator is left-associative, which means that a+b+c should be parsed as
((a+b)+c) rather than as (a+(b+c)). The criterion would then be that for each
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node that has a + operator, its right operand cannot be a non-terminal that has a node
with a + operator. We see that the top-left node marked 2 in Figure 3.14 violates
this criterion: it has a + operator (in position 2) and a right operand which is a non-
terminal (Sum) which has a node which has a node (2) which has a + operator (in
position 4). So this node can be removed, and so can two further nodes. Again the
parse tree from Figure 3.16 remains.

The above criterion is a (very) special case of an operator-precedence criterion
for arithmetic expressions; see Problem 3.10 for a more general one.

3.7.4 Parse-Forest Grammars

Representing the result of parsing as a grammar may seem weird, far-fetched and
even somewhat disappointing; after all, should one start with a grammar and a string
and do all the work of parsing, just to end up with another grammar? We will, how-
ever, see that parse-forest grammars have quite a number of advantages. But none of
these advantages is immediately obvious, which is probably why parse-forest gram-
mars were not described in the literature until the late 1980s, when they were intro-
duced by Lang [210, 220, 31], and by Billot and Lang [164]. The term “parse-forest
grammar” seems to be used first by van Noord [221].

Figure 3.17 presents the parse trees of Figure 3.2 as a parse-forest grammar, and
it is interesting to see how it does that. For every non-terminal A in the original

Sums ---> Sum_1_5
Sum_1_5 ---> Sum_1_1 + Sum_3_3
Sum_1_5 ---> Sum_1_3 + Sum_5_1
Sum_1_3 ---> Sum_1_1 + Sum_3_1
Sum_3_3 ---> Sum_3_1 + Sum_5_1
Sum_1_1 ---> Digit_1_1

Digit_1_1 ---> 3
Sum_3_1 ---> Digit_3_1

Digit_3_1 ---> 5
Sum_5_1 ---> Digit_5_1

Digit_5_1 ---> 1

Fig. 3.17. The parse trees of Figure 3.2 as a parse-forest grammar

grammar that produces an input segment of length l starting at position i, there is
a non-terminal A_i_l in the parse-forest grammar, with rules that show how A_i_l
produces that segment. For example, the existence of Sum_1_5 in the parse-tree
grammar shows that Sum produces the whole input string (starting at position 1,
with length 5); the fact that there is more than one rule for Sum_1_5 shows that the
parsing was ambiguous; and the two rules show the two possible ways Sum_1_5
produces the whole input string. When we use this grammar to generate strings, it
generates just the input sentence 3+5+1, but is generates it twice, in accordance with
the ambiguity.
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We write A_i_l rather than Ai,l because A_i_l represents the name of a grammar
symbol, not a subscripted element of an entity A: there is no table or matrix A. Nor is
there any relationship between A_i_l and say A_i_m: each A_i_l is a separate name
of a grammar symbol.

Now for the advantages. First, parse-forest grammars implement in a graphical
way the concept, already expressed less directly in the previous section, that there
should be exactly one entity that describes how a given non-terminal produces a
given substring of the input.

Second, it is mathematically beautiful: parsing a string can now be viewed as a
function which maps a grammar onto a more specific grammar or an error value.
Rather than three concepts — grammars, input strings, and parse forests — we now
need only two: grammars and input strings. More practically, all software used in
handling the original grammar is also available for application to the parse-forest
grammar.

Third, parse-forest grammars are easy to clean up after pruning, using the al-
gorithms from Section 2.9.5. For example, applying the disambiguation criterion
used in the previous section to the rules of the grammar in Figure 3.17 identifies the
first rule for Sum_1_5 as being in violation. Removing this rule and applying the
grammar clean-up algorithm yields the unambiguous grammar of Figure 3.18, which
corresponds to the tree in Figure 3.16.

Sums ---> Sum_1_5
Sum_1_5 ---> Sum_1_3 + Sum_5_1
Sum_1_3 ---> Sum_1_1 + Sum_3_1
Sum_1_1 ---> Digit_1_1

Digit_1_1 ---> 3
Sum_3_1 ---> Digit_3_1

Digit_3_1 ---> 5
Sum_5_1 ---> Digit_5_1

Digit_5_1 ---> 1

Fig. 3.18. The disambiguated and cleaned-up parse-forest grammar for Figure 3.2

Fourth, representing infinitely ambiguous parsings is trivial: the parse-forest
grammar just produces infinitely many (identical) strings. And producing infinitely
many strings is exactly what grammars normally do.

And last but probably not least, it fits in very well with the interpretation of
parsing as intersection, an emerging and promising approach, further discussed in
Chapter 13.

Now it could be argued that parse forests and parse-forest grammars are actually
the same and that the pointers in the first have just been replaced by names in the
second, but that would not be fair. Names are more powerful than pointers, since a
pointer can point only to one object, whereas a name can identify several objects,
through overloading or non-determinism: names are multi-way pointers. More in
particular, the name Sum_1_5 in Figure 3.17 identifies two rules, thus playing the
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role of the top OR-node in Figure 3.14. We see that in parse-forest grammars we
get the AND-OR tree mechanism free of charge, since it is built into the production
mechanism of grammars.

3.8 When are we done Parsing?

Since non-directional parsers process the entire input at once and summarize it into
a single data structure, from which parse trees can then be extracted, the question of
when the parsing is done does not really arise. The first stage is done when the data
structure is finished; extracting the parse trees is done when they are exhausted or
the user is satisfied.

In principle, a directional parser is finished when it is in an accepting state and
the entire input has been consumed. But this is a double criterion, and sometimes
one of these conditions implies the other; also other considerations often play a role.
As a result, for directional parsers the question has a complex answer, depending on
a number of factors:

• Is the parser at the end of the input? That is, has it processed completely the last
token of the input?

• Is the parser in an accepting state?
• Can the parser continue, i.e, is there a next token and can the parser process it?
• Is the parser used to produce a parse tree or is just recognition enough? In the first

case several situations can arise; in the second case we just get a yes/no answer.
• If we want parsings, do we want them all or is one parsing enough?
• Does the parser have to accept the entire input or is it used to isolate a prefix of

the input that conforms to the grammar? (A string x is a prefix of a string y if y
begins with x.)

The answers to the question whether we have finished the parsing are combined in
the following table, where EOI stands for “end of input” and the yes/no answer for
recognition is supplied between parentheses.

at end of can in an accepting state?
input? continue? yes no

yes yes prefix identified /
continue

continue

yes no OK (yes) premature EOI (no)

no yes prefix identified /
continue

continue

no no
prefix identified & trailing
text (no)

error in input (no)

Some answers are intuitively reasonable: if the parser can continue in a non-
accepting state, it should do so; if the parser cannot continue in a non-accepting
state, there was an error in the input; and if the parser is in an accepting state at the
end of the input and cannot continue, parsing was successful. But others are more
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complicated: if the parser is in an accepting state, we have isolated a prefix, even if
the parser could continue and/or is at EOI. If that is what we want we can stop, but
usually we want to continue if we can: with the grammar S--->a|ab and the input ab
we could stop after the a and declare the a a prefix, but it is very likely we want to
continue and get the whole ab parsed. This could be true even if we are at EOI: with
the grammar S--->a|aB where B produces ε and the input a we need to continue
and parse the B, if we want to obtain all parsings. And if the parser cannot, we have
recognized a string in the language with what error messages usually call “trailing
garbage”.

Note that “premature EOI” (the input is a prefix of a string in the language) is
the dual of “prefix isolated” (a prefix of the input is a string in the language). If we
are looking for a prefix we usually want the longest possible prefix. This can be im-
plemented by recording the most recent position P in which a prefix was recognized
and continuing parsing until we get stuck, at the end of the input or at an error. P is
then the end of the longest prefix.

Many directional parsers use look-ahead, which means that there must always be
enough tokens for the look-ahead, even at the end of the input. This is implemented
by introducing an end-of-input token, for example # or any other token that does
not occur elsewhere in the grammar. For a parser that uses k tokens of look-ahead, k
copies of # are appended to the input string; the look-ahead mechanism of the parser
is modified accordingly; see for example Section 9.6. The only accepting state is then
the state in which the first # is about to be accepted, and it always indicates that the
parsing is finished.

This simplifies the situation and the above table considerably since now the
parser cannot be in an accepting state when not at the end of the input. This elim-
inates the two prefix answers from the table above. We can then superimpose the
top half of the table on the bottom half, after which the leftmost column becomes
redundant. This results in the following table:

can in an accepting state?
continue? yes no

yes — continue
no OK (yes) error in input /

premature EOI
(no)

where we leave the check to distinguish between “error in input” and “premature
EOI” to the error reporting mechanism.

Since there is no clear-cut general criterion for termination in directional parsers,
each parser comes with its own stopping criterion, a somewhat undesirable state
of affairs. In this book we will use end-of-input markers whenever it is helpful for
termination, and, of course, for parsers that use look-ahead.
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3.9 Transitive Closure

Many algorithms in parsing (and in other branches of computer science) have the
property that they start with some initial information and then continue to draw con-
clusions from it based on some inference rules until no more conclusions can be
drawn. We have seen two examples already, with their inference rules, in Sections
2.9.5.1 and 2.9.5.2. These inference rules were quite different, and in general infer-
ence rules can be arbitrarily complex. To get a clear look at the algorithm for drawing
conclusions, the closure algorithm, we shall now consider one of the simplest possi-
ble inference rules: transitivity. Such rules have the form

if A⊗B and B⊗C then A⊗C

where ⊗ is any operator that obeys the rule. The most obvious one is =, but <, ≤
and many others also do. But note that, for example, = (not equal) does not.

As an example we shall consider the computation of the “left-corner set” of a
non-terminal. A non-terminal B is in the left-corner set of a non-terminal A if there
is a derivation A *→B · · · ; it is sometimes useful to know this, because among other
things it means that A can begin with anything B can begin with.

Given the grammar

Ss ---> S T
S ---> A a
T ---> A t
A ---> B b
B ---> C c
C ---> x

how can we find out that C is in the left-corner set of S? The rules S--->ST and S--->Aa
in the grammar tell us immediately that S and A are in the left-corner set of S. We
write this as S∠S and A∠S, where ∠ symbolizes the left corner. It also tells us A∠T,
B∠A, and C∠B. This is our initial information (Figure 3.19(a)).

S∠S S∠S ✔ B∠S ✔ C∠S ✔

A∠S A∠S ✔ C∠S
A∠T A∠S ✔ C∠T
B∠A B∠S C∠S ✔

C∠B B∠T C∠T ✔

B∠S ✔

B∠T ✔

C∠A
C∠A ✔

(a) (b) (c) (d)

Fig. 3.19. The results of the naive transitive closure algorithm

Now it is easy to see that if A is in the left-corner set of B and B is in the left-
corner set of C, then A is also in the left-corner of C. In a formula:
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A∠B ∧ B∠C ⇒ A∠C

This is our inference rule, and we will use it for drawing new conclusions, or “in-
ferences”, by pairwise combining known facts to produce more known facts. The
transitive closure is then obtained by applying the inference rules until no more new
facts are produced. The facts are also called “relations” in the transitive-closure con-
text, although formally ∠ is the (binary) relation, and A∠B and B∠C are “instances”
of that relation.

Going through the list in Figure 3.19(a) we first combine S∠S and S∠S. This
yields S∠S, which is rather disappointing since we knew that already; it is in Figure
3.19(b), marked with a ✔ to show that it is not new. The combination (S∠S, A∠S)
yields A∠S, but we already knew that too. No other facts combine with S∠S, so we
continue with A∠S, which yields A∠S and B∠S; the first is old, the second our first
new discovery. Then (A∠T, B∠A) yields B∠T, etc., and the rest of the results of the
first round can be seen in Figure 3.19(b).

The second round combines the three new facts with the old and new ones. The
first new discovery is C∠S from A∠S and C∠A (c); C∠T follows.

The third round combines the two new facts in (c) with those in (a), (b), and (c),
but finds no new facts; so the algorithm terminates with 10 facts.

Note that we have already implemented an optimization in this naive algorithm:
the basic algorithm would start the second and subsequent rounds by pairing up all
known facts with all known facts, rather than just the new ones.

It is often useful to represent the facts or relations in a graph, in which they are
arcs. The initial situation is shown in Figure 3.20(a), the final one in (b). The numbers
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1

1

1

2

2

(b)

Fig. 3.20. The left-corner relation as a graph

next to the arrows indicate the rounds in which they were added.
The efficiency of the closure algorithm of course depends greatly on the inference

rule it uses, but the case for the transitive rule has been studied extensively. There are
three main ways to do transitive closure: naive, traditional, and advanced; we will
discuss each of them briefly. The naive algorithm, sketched above, is usually quite
efficient in normal cases but may require a large number of rounds to converge in
exceptional cases on very large graphs. Also it recomputes old results several times,
as we see in Figure 3.19: of the 15 results 10 were old. But given the size of “normal”
grammars, the naive algorithm is satisfactory in almost all situations in parsing.
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The traditional method to do transitive closure is to use Warshall’s algorithm
[409]. It has the advantage that it is very simple to implement and that the time it
requires depends only on the number of nodes N in the graph and not on the number
of arcs, but it has the disadvantage that it always requires O(N3) time. It always loses
in any comparison to any other closure algorithm.

The advanced algorithms avoid the inefficiencies of the naive algorithm: 1. cy-
cles in the graph are contracted as “strongly connected components”; 2. the arcs are
combined in an order which avoids duplicate conclusions and allows sets of arcs to
be copied rather than recomputed; 3. efficient data representations are used. For ex-
ample, an advanced algorithm would first compute all outgoing arcs at A and then
copy them to T rather than recomputing them for T. The first advanced transitive clo-
sure algorithm was described by Tarjan [334]. They are covered extensively in many
other publications; see Nuutila [412] and the Internet. They require time proportional
to the number of conclusions they draw.

Advanced transitive closure algorithms are very useful in large applications
(databases, etc.) but their place in parsing is doubtful. Some authors recommend
their use in LALR parser generators but the grammars used would have to be very
large for the algorithmic complexity to pay off.

The advantage of emphasizing the closure nature of algorithms is that one can
concentrate on the inference rules and take the underlying closure algorithm for
granted; this can be a great help in designing algorithms. Most algorithms in parsing
are, however, simple enough as to not require decomposition into inference rules and
closure for their explanation. We will therefore use inference rules only where they
are helpful in understanding (Section 9.7.1.3) and where they are part of the culture
(Section 7.3, chart parsing). For the rest we will present the algorithms in narrative
form, and point out in passing that they are transitive-closure algorithms.

3.10 The Relation between Parsing and Boolean Matrix
Multiplication

There is a remarkable and somewhat mysterious relationship between parsing and
Boolean matrix multiplication, in that it is possible to turn one into the other and
vice versa, with a lot of ifs and buts. This has interesting implications.

A Boolean matrix is a matrix in which all entries are either 0 or 1. If the indexes of
a matrix T represent towns, the element Ti, j could, for example, indicate the existence
of a direct railroad connection from town i to town j. Such a matrix can be multiplied
by another Boolean matrix Uj,k, which could, for example, indicate the existence of
a direct bus connection from town j to town k. The result Vi,k (the product of T and
U) is a Boolean matrix which indicates if there is a connection from town i to town
k by first using a train and then a bus. This immediately shows how Vi,k must be
computed: it should have a 1 if there is a j for which both Ti, j and Uj,k hold a 1, and
a 0 otherwise. In a formula:

Vi,k = (Ti,1 ∧U1,k)∨ (Ti,2 ∧U2,k)∨·· ·∨ (Ti,n ∧Un,k)
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where ∧ is the Boolean AND, ∨ is the Boolean OR, and n is the size of the matrices.
This means that O(n) actions are required for each entry in V , of which there are n2;
so the time dependency of this algorithm is O(n3).

Figure 3.21 shows an example; the boxed row T2,∗ combines with the boxed
column U∗,2 to produce the boxed entry V2,2. Boolean matrix multiplication is not

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 0 0 0

1 0 0 0 0

T
0 0 1 0 0

0 0 0 1 0

1 0 0 0 0

0 0 0 0 0

0 1 0 0 0

U

×

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

V

=

Fig. 3.21. Boolean matrix multiplication

commutative: it is quite possible that there is a train-bus connection but no bus-train
connection from one town to another, so T ×U will in general not be equal to U ×T .
Note also that this differs from transitive closure: in transitive closure a single relation
is followed an unbounded number of times, whereas in Boolean matrix multiplication
first one relation is followed and then a second.

The above is a trivial application of Boolean matrix multiplication (BMM), but
BMM is very important in many branches of mathematics and industry, and there is
a complete science on how to perform it efficiently.3 Decades of concentrated effort
have resulted in a series of increasingly more efficient and complicated algorithms.
V. Strassen4 was the first to break the O(n3) barrier with an O(n2.81···) algorithm, and
the present record stands at O(n2.376···); it dates from 1987. It is clear that at least
O(n2) actions are required, but it is unlikely that that efficiency can be achieved.

More important from our viewpoint is the fact that in 1975 Valiant [18] showed
how a CF parsing problem can be converted into a BMM problem. In particular,
if you can multiply two Boolean matrices of size n× n in O(nk) actions, you can
parse a string of length n in O(nk)+ O(n2) actions, where the O(n2) is the cost of
the conversion. So we can do general CF parsing in O(n2.376···), which is indeed
better than the cubic time dependency of the CYK algorithm. But the actions of
both Valiant’s algorithm and the fast BMM are extremely complicated and time-
consuming, so this approach would only be better for inputs of millions of symbols
or more. On top of that it requires all these symbols to be in memory, as it is a non-
directional method, and the size of the data structures it uses is O(n2), which means
that it can only be run profitably on a machine with terabytes of main memory. In
short, its significance is theoretical only.

3 For a survey see V. Strassen, “Algebraic complexity theory”, in Handbook of Theoretical
Computer Science, vol. A, Jan van Leeuwen, Ed. Elsevier Science Publishers, Amsterdam,
The Netherlands, pp. 633-672, 1990.

4 V. Strassen, “Gaussian elimination is not optimal”, Numerische Mathematik, 13:354-356,
1969.
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In 2002 Lee [39] showed how a BMM problem can be converted into a CF pars-
ing problem. More in particular, if you can do general CF parsing of a string of
length n in O(n3−δ) actions, you can multiply two Boolean matrices of size n× n
in O(n3−δ/3) actions. There is again a conversion cost of O(n2), but since δ can be
at most 2 (in which unlikely case parsing could be done in O(n)), O(n3−δ/3) is at

least O(n2 1
3 ), which dominates the O(n2); note that for δ = 0 the usual O(n3) bounds

for both problems result. The computational efforts involved in Lee’s conversion are
much smaller than those in Valiant’s technique, so a really fast general CF parsing
algorithm would likely supply a fast practical BMM algorithm. Such a fast general
CF parsing algorithm would have to be non-BMM-dependent and have a time com-
plexity better than O(n3); unfortunately no such algorithm is known.

General CF parsing and Boolean matrix multiplication have in common that the
efficiencies of the best algorithms for them are unknown. Figure 3.22 summarizes
the possibilities. The horizontal axis plots the efficiency of the best possible general
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n0

n1
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Valiant
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Fig. 3.22. Map of the best parser versus best BMM terrain

CF parsing algorithm; the vertical axis plots the efficiency of the best possible BMM
algorithm. A position in the graph represents a combination of these values. Since
these values are unknown, we do not know which point in the graph corresponds to
reality, but we can exclude several areas.

The grey areas are excluded on the grounds of existing algorithms. For example,
the grey area on the right of the vertical line at n3 is excluded because we have the
CYK algorithm, which does general CF parsing in O(n3); so the pair (best parser,
best BMM) cannot have a first component which is larger than O(n3). Likewise the
area left of the vertical line at n1 represents parsing algorithms that work in less than
O(n), which is impossible since the parser must touch each token. BMM requires
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at least O(n2) actions, but an algorithm for O(n2.376···) is available; this yields two
horizontal forbidden areas.

The shading marks the areas that are excluded by the Valiant and Lee conversion
algorithms. Valiant’s result excludes the horizontally shaded area on the right; Lee’s
result excludes the vertically shaded area at the top. The combination of the efficien-
cies of the true best parsing and BMM algorithms can only be situated in the white
unshaded area in the middle.

Extensive research on the BMM problem has not yielded a usable algorithm that
is substantially better than O(n3); since BMM can be converted to parsing this could
explain why the admittedly less extensive research on general CF parsing has not
yielded a better than O(n3) algorithm, except through BMM. On the other hand Fig-
ure 3.22 shows that it is still possible for general CF parsing to be linear (O(n1)) and
BMM to be worse than O(n2).

Rytter [34] has linked general CF parsing to a specific form of shortest-path
computation in a lattice, with comparable implications.

Greibach [389] describes the “hardest context-free language”, a language such
that if we can parse it in time O(nx), we can parse any CF language in time O(nx).
Needless to say, it’s hard to parse. The paper implicitly uses a parsing technique
which has received little attention; see Problem 3.7.

3.11 Conclusion

Grammars allow sentences to be produced through a well-defined process, and the
details of this process determines the structure of the sentence. Parsing recovers this
structure either by imitating the production process (top-down parsing) or by rolling
it back (bottom-up parsing). The real work goes into gathering information to guide
the structure recovery process efficiently.

There is a completely different and — surprisingly — grammarless way to do
CF parsing, “data-oriented parsing”, which is outside the scope of this book. See
Bod [348] and the Internet.

Problems

Problem 3.1: Suppose all terminal symbols in a given grammar are different. Is
that grammar unambiguous?

Problem 3.2: Write a program that, given a grammar G and a number n, com-
putes the number of different parse trees with n leaves (terminals) G allows.

Problem 3.3: If you are familiar with an existing parser (generator), identify its
parser components, as described on page 69.

Problem 3.4: The maze preprocessing algorithm in Section 3.5.4 eliminates all
rooms with three walls; rules with two or four walls are acceptable in a deterministic
maze. What about rooms with zero or one wall? How do they affect the algorithm
and the result? Is it possible/useful to eliminate them too?
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Problem 3.5: Construct an example in which a deterministic bottom-up parser
will have to perform k actions at position k, for a certain k.

Problem 3.6: Project: There are several possible paths through the maze in
Figure 3.10(b), so a maze defines a set of paths. It is easy to see that these paths
form a regular set. This equates a maze to a regular grammar. Develop this analogy,
for example: 1. Derive the regular grammar from some description of the maze. 2.
How does the subset algorithm (Section 5.3.1) transform the maze? 3. Is it possible
to generate a set of mazes so that together they define a given CF set?

Problem 3.7: Project: Study the “translate and cross out matching parentheses”
parsing method of Greibach [389].

Problem 3.8: Show that a version of Figure 3.14 in which the nodes marked 2
near the top are combined represents parse trees that are not supported by the input.

Problem 3.9: Implement the backtracking algorithm sketched in Section 3.7.3.
Problem 3.10: Assume arithmetic expressions are parsed with the highly am-

biguous grammar

Exprs ---> Number
Expr ---> Expr Operator Expr | ( Expr )

Operator ---> + | - | × | / | ↑
with an appropriate definition of Number. Design a criterion that will help prune the
resulting parse forest to obtain the parse tree that obeys the usual precedences for the
operators. For example, 4 + 5× 6 + 8 should come out as ((4 +(5× 6))+ 8). Take
into account that the first four operators are left-associative, but the exponentiation
operator ↑ is right-associative: 6/6/6 is ((6/6)/6) but 6 ↑ 6 ↑ 6 is (6 ↑ (6 ↑ 6)).

Problem 3.11: Research project: Some parsing problems involve extremely
large CF grammar, with millions of rules. Such a grammar is generated by program
and results from incorporating finite context conditions into the grammar. It is usu-
ally very redundant, containing many very similar rules, and very ambiguous. Many
general CF parsers are quadratic in the size of the grammar, which for ten million
rules brings in a factor of 1014. Can parsing techniques be designed that work well
on such grammars? (See also Problem 4.5.)

Problem 3.12: Extensible Project: 1. A string S is balanced for a token pair
(t1, t2) if #t1 = #t2 for S and #t1 ≥ #t2 for all prefixes of S, where #t is the number of
occurrences of t in S or a prefix of it. A token pair (t1, t2) is a parentheses pair for
a grammar G if all strings in L(G) are balanced for (t1, t2). Design an algorithm to
check if a token pair (t1, t2) is a parentheses pair for a given grammar G: a) under the
simplifying but reasonable assumption that parentheses pairs occur together in the
right hand side of a rule (for example, as in F--->(E)), and b) in the general case.

2. A token t1 in position i in a string matches a token t2 in a position j if the string
segment i+1 · · · j−1 between them is balanced for (t1, t2). A parentheses pair (t1, t2)
is compatible with a parentheses pair (u1,u2) if every segment between a t1 and its
matching t2 in every string in L(G) is balanced for (u1,u2). Show that if (t1, t2) is
compatible with (u1,u2), (u1,u2) is compatible with (t1, t2).

3. Design an algorithm to find a largest set of compatible parentheses pairs for a
given grammar.
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4. Use the set of parentheses pairs to structure sentences in L(G) in linear time.
5. Derive information from G about the segments of strings in L(G) that are not

structured in that process, for example regular expressions.
6. Devise further techniques to exploit the parentheses skeleton of CF languages.




