This excerpt from

Foundations of Statistical Natural Language Processing.
Christopher D. Manning and Hinrich Schiitze.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of thisinformation is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.

CHUNKING

GRAMMAR INDUCTION

Probabilistic Parsing

THE PRACTICE of parsing can be considered as a straightforward im-
plementation of the idea of chunking - recognizing higher level units of
structure that allow us to compress our description of a sentence. One
way to capture the regularity of chunks over different sentences is to
learn a grammar that explains the structure of the chunks one finds. This
is the problem of grammar induction. There has been considerable work
on grammar induction, because it is exploring the empiricist question of
how to learn structure from unannotated textual input, but we will not
cover it here. Suffice it to say that grammar induction techniques are
reasonably well understood for finite state languages, but that induction
is very difficult for context-free or more complex languages of the scale
needed to handle a decent proportion of the complexity of human lan-
guages. It is not hard to induce some form of structure over a corpus
of text. Any algorithm for making chunks - such as recognizing com-
mon subsequences - will produce some form of chunked representation
of sentences, which we might interpret as a phrase structure tree. How-
ever, most often the representations one finds bear little resemblance to
the kind of phrase structure that is normally proposed in linguistics and
NLP.

Now, there is enough argument and disagreement within the field of
syntax that one might find someone who has proposed syntactic struc-
tures similar to the ones that the grammar induction procedure which
you have sweated over happens to produce. This can and has been taken
as evidence for that model of syntactic structure. However, such an ap-
proach has more than a whiff of circularity to it. The structures found
depend on the implicit inductive bias of the learning program. This sug-
gests another tack. We need to get straight what structure we expect our

408

PARSER

12.1

12.1.1

12 Probabilistic Parsing

Kennedy

Figure 12.1 A word lattice (simplified).

model to find before we start building it. This suggests that we should
begin by deciding what we want to do with parsed sentences. There are
various possible goals: using syntactic structure as a first step towards
semantic interpretation, detecting phrasal chunks for indexing in an IR
system, or trying to build a probabilistic parser that outperforms n-gram
models as a language model. For any of these tasks, the overall goal is
to produce a system that can place a provably useful structure over arbi-
trary sentences, that is, to build a parser. For this goal, there is no need
to insist that one begins with a tabula rasa. If one just wants to do a
good job at producing useful syntactic structure, one should use all the
prior information that one has. This is the approach that will be adopted
in this chapter.

The rest of this chapter is divided into two parts. The first introduces
some general concepts, ideas, and approaches of broad general relevance,
which turn up in various places in the statistical parsing literature (and a
couple which should turn up more often than they do). The second then
looks at some actual parsing systems that exploit some of these ideas,
and at how they perform in practice.

Some Concepts

Parsing for disambiguation

There are at least three distinct ways in which one can use probabilities
in a parser:

WORD LATTICE

(12.1)

12.1 Some Concepts 409

= Probabilities for determining the sentence. One possibility is to use
a parser as a language model over a word lattice in order to determine
what sequence of words running along a path through the lattice has
highest probability. In applications such as speech recognizers, the
actual input sentence is uncertain, and there are various hypotheses,
which are normally represented by a word lattice as in figure 12.1.1
The job of the parser here is to be a language model that tries to de-
termine what someone probably said. A recent example of using a
parser in this way is (Chelba and Jelinek 1998).

= Probabilities for speedier parsing. A second goal is to use probabil-
ities to order or prune the search space of a parser. The task here
is to enable the parser to find the best parse more quickly while not
harming the quality of the results being produced. A recent study of
effective methods for achieving this goal is (Caraballo and Charniak
1998).

= Probabilities for choosing between parses. The parser can be used
to choose from among the many parses of the input sentence which
ones are most likely.

In this section, and in this chapter, we will concentrate on the third use of
probabilities over parse trees: using a statistical parser for disambigua-
tion.

Capturing the tree structure of a particular sentence has been seen as
key to the goal of disambiguation - the problem we discussed in chap-
ter 1. For instance, to determine the meaning of the sentence in (12.1),
we need to determine what are the meaningful units and how they relate.
In particular we need to resolve ambiguities such as the ones represented
in whether the correct parse for the sentence is (12.2a) or (12.2b), (12.2¢)
or (12.2d), or even (12.2e).

The post office will hold out discounts and service concessions as incen-
tives.

1. Alternatively, they may be represented by an n-best list, but that has the unfortunate
effect of multiplying out ambiguities in what are often disjoint areas of uncertainty in the
signal.

P:

P:

410 12 Probabilistic Parsing

(12.2) a. S
.

NP Aux VP

The post office will \Y% NP PP

| 7 T ey

hold out NP Conj NP as incentives

discounts and service concessions

b. S
/\
NP Aux VP
The post office will VP Conj VP
S \] T
A% NP and v NP PP
| \
hold out discounts service concessions as incentives
C. S
T
NP Aux VP
| T
The post office will \Y% NP
\ T
hold out NP Conj NP
discounts and N N PP
service concessions as incentives
d. S
/\
NP Aux VP
| -
The post office will V PP PP
hold P NP as incentives
| T
out NP Conj NP

discounts and service concessions

12.1 Some Concepts 411

e. S
/\
NP VP
Y
The post office will hold VP Conj VP

RN \] T

\% NP and \Y NP PP
|~ \

out discounts service concessions as incentives

One might get the impression from computational linguistics books
that such ambiguities are rare and artificial, because most books contain
the same somewhat unnatural-sounding examples (ones about pens and
boxes, or seeing men with telescopes). But that’s just because simple
short examples are practical to use. Such ambiguities are actually ubi-
quitous. To provide some freshness in our example (12.1), we adopted
the following approach: we randomly chose a Wall Street Journal article,
and used the first sentence as the basis for making our point. Finding
ambiguities was not difficult.? If you are still not convinced about the
severity of the disambiguation problem, then you should immediately do
exercise 12.1 before continuing to read this chapter.

What is one to do about all these ambiguities? In classical categorical
approaches, some ambiguities are seen as genuine syntactic ambiguities,
and it is the job of the parser to return structures corresponding to all
of these, but other weird things that one’s parser spits out are seen as
faults of the grammar, and the grammar writer will attempt to refine
the grammar, in order to generate less crazy parses. For instance, the
grammar writer might feel that (12.2d) should be ruled out, because hold
needs an object noun phrase, and enforce that by a subcategorization
frame placed on the verb hold. But actually that would be a mistake,
because then the parser would not be able to handle a sentence such as:
The flood waters reached a height of 8 metres, but the sandbags held.

In contrast, a statistically-minded linguist will not be much interested
in how many parses his parser produces for a sentence. Normally there
is still some categorical base to the grammar and so there is a fixed finite

2. We refrained from actually using the first sentence, since like so many sentences in
newspapers, it was rather long. It would have been difficult to fit trees for a 38 word
sentence on the page. But for reference, here it is: Postmaster General Anthony Frank, in a
speech to a mailers’ convention today, is expected to set a goal of having computer-readable
bar codes on all business mail by 1995, holding out discounts and service concessions as
incentives.

412

12.1.2

TREEBANK

PENN TREEBANK

12 Probabilistic Parsing

number of parses, but statistically-minded linguists can afford to be quite
licentious about what they allow into their grammar, and so they usually
are. What is important is the probability distribution over the parses gen-
erated by the grammar. We want to be able to separate out the few parses
that are likely to be correct from the many that are syntactically possible,
but extremely unlikely. In many cases, we are just interested in “the best
parse,” which is the one deemed to be most likely to be correct. Statistical
parsers generally disambiguate and rate how likely different parses are
as they parse, whereas in conventional parsers, the output trees would
normally be sent to downstream models of semantics and world know-
ledge that would choose between the parses. A statistical parser usually
disambiguates as it goes by using various extended notions of word and
category collocation as a surrogate for semantic and world knowledge.
This implements the idea that the ways in which a word tends to be used
gives us at least some handle on its meaning.

Treebanks

We mentioned earlier that pure grammar induction approaches tend not
to produce the parse trees that people want. A fairly obvious approach
to this problem is to give a learning tool some examples of the kinds
of parse trees that are wanted. A collection of such example parses is
referred to as a treebank. Because of the usefulness of collections of
correctly-parsed sentences for building statistical parsers, a number of
people and groups have produced treebanks, but by far the most widely
used one, reflecting both its size and readily available status, is the Penn
Treebank.

An example of a Penn Treebank tree is shown in figure 12.2. This exam-
ple illustrates most of the major features of trees in the Penn treebank.
Trees are represented in a straightforward (Lisp) notation via bracketing.
The grouping of words into phrases is fairly flat (for example there is no
disambiguation of compound nouns in phrases such as Arizona real es-
tate loans), but the major types of phrases recognized in contemporary
syntax are fairly faithfully represented. The treebank also makes some
attempt to indicate grammatical and semantic functions (the -SBJ and
-LOC tags in the figure, which are used to tag the subject and a locative,
respectively), and makes use of empty nodes to indicate understood sub-
jects and extraction gaps, as in the understood subject of the adverbial
clause in the example, where the empty node is marked as *. In table 12.1,

12.1 Some Concepts 413

((S (NP-SBJ The move)
(VP followed
(NP (NP a round)
(PP of
(NP (NP similar increases)

(PP by
(NP other Tlenders))

(PP against
(NP Arizona real estate Tloans)))))

(S-ADV (NP-SBJ *)
(VP reflecting
(NP (NP a continuing decline)
(PP-LOC 1in
(NP that market))))))

)

Figure 12.2 A Penn Treebank tree.
S Simple clause (sentence) CONJP Multiword conjunction phrases
SBAR S’ clause with complementizer FRAG Fragment
SBARQ Wh-question S’ clause INTJ Interjection
SQ Inverted Yes/No question S’ clause LST List marker
SINV Declarative inverted S’ clause NAC Not A Constituent grouping
ADJP Adjective Phrase NX Nominal constituent inside NP
ADVP Adverbial Phrase PRN Parenthetical
NP Noun Phrase PRT Particle
PP Prepositional Phrase RRC Reduced Relative Clause
QP Quantifier Phrase (inside NP) UCP Unlike Coordinated Phrase
VP Verb Phrase X Unknown or uncertain
WHNP Wh- Noun Phrase WHADJP Wh- Adjective Phrase
WHPP Wh- Prepositional Phrase WHADVP Wh- Adverb Phrase

Table 12.1 Abbreviations for phrasal categories in the Penn Treebank. The
common categories are gathered in the left column. The categorization includes
a number of rare categories for various oddities.

414

CHUNKING

12.1.3

12 Probabilistic Parsing

we summarize the phrasal categories used in the Penn Treebank (which
basically follow the categories discussed in chapter 3).

One oddity, to which we shall return, is that complex noun phrases are
represented by an NP-over-NP structure. An example in figure 12.2 is the
NP starting with similar increases. The lower NP node, often referred to
as the ‘baseNP’ contain just the head noun and preceding material such
as determiners and adjectives, and then a higher NP node (or sometimes
two) contains the lower NP node and following arguments and modifiers.
This structure is wrong by the standards of most contemporary syntac-
tic theories which argue that NP postmodifiers belong with the head un-
der some sort of N’ node, and lower than the determiner (section 3.2.3).
On the other hand, this organization captures rather well the notion of
chunks proposed by Abney (1991), where, impressionistically, the head
noun and prehead modifiers seem to form one chunk, whereas phrasal
postmodifiers are separate chunks. At any rate, some work on parsing
has directly adopted this Penn Treebank structure and treats baseNPs as
a unit in parsing.

Even when using a treebank, there is still an induction problem of
extracting the grammatical knowledge that is implicit in the example
parses. But for many methods, this induction is trivial. For example,
to determine a PCFG from a treebank, we need do nothing more than
count the frequencies of local trees, and then normalize these to give
probabilities.

Many people have argued that it is better to have linguists construct-
ing treebanks than grammars, because it is easier to work out the cor-
rect parse of individual actual sentences than to try to determine (often
largely by intuition) what all possible manifestations of a certain rule
or grammatical construct are. This is probably true in the sense that a
linguist is unlikely to immediately think of all the possibilities for a con-
struction off the top of his head, but at least an implicit grammar must
be assumed in order to be able to treebank. In multiperson treebanking
projects, there has normally been a need to make this grammar explicit.
The treebanking manual for the Penn Treebank runs to over 300 pages.

Parsing models vs. language models

The idea of parsing is to be able to take a sentence s and to work out
parse trees for it according to some grammar G. In probabilistic parsing,
we would like to place a ranking on possible parses showing how likely

PARSING MODEL

(12.3)

(12.4)

LANGUAGE MODEL

(12.5)

(12.6)

12.1 Some Concepts 415

each one is, or maybe to just return the most likely parse of a sentence.
Thinking like this, the most natural thing to do is to define a probabilistic
parsing model, which evaluates the probability of trees t for a sentence s
by finding:

P(t|s,G) where ZP(tIs,G)=1
t

Given a probabilistic parsing model, the job of a parser is to find the most
probable parse of a sentence {:

t = argmaxP(t|s,G)
t

This is normally straightforward, but sometimes for practical reasons
various sorts of heuristic or sampling parsers are used, methods which
in most cases find the most probable parse, but sometimes don't.

One can directly estimate a parsing model, and people have done this,
but they are a little odd in that one is using probabilities conditioned
on a particular sentence. In general, we need to base our probability
estimates on some more general class of data. The more usual approach
is to start off by defining a language model, which assigns a probability
to all trees generated by the grammar. Then we can examine the joint
probability P(t,s|G). Given that the sentence is determined by the tree
(and recoverable from its leaf nodes), this is just P(t|G), if yield(t) =
s, and O otherwise. Under such a model, P(t|G) is the probability of a
particular parse of a particular sentence according to the grammar G.
Below we suppress the conditioning of the probability according to the
grammar, and just write P(t) for this quantity.

In a language model, probabilities are for the entire language £, so we
have that:

> P()=1

{t: yield(t)eL}

We can find the overall probability of a sentence as:

> P(s,t)
t
> P

{t: yield(t)=s}

P(s)

416

(12.7)

12.1.4

PRIMING

12 Probabilistic Parsing

This means that it is straightforward to make a parsing model out of a
language model. We simply divide the probability of a tree in the lan-
guage model by the above quantity. The best parse is given by:

P(t,s)
P(s)

So a language model can always be used as a parsing model for the pur-
pose of choosing between parses. But a language model can also be used
for other purposes (for example, as a speech recognition language model,
or for estimating the entropy of a language).

On the other hand, there is not a way to convert an arbitrary parsing
model into a language model. Nevertheless, noticing some of the biases
of PCFG parsing models that we discussed in chapter 11, a strand of work
at IBM explored the idea that it might be better to build parsing models
directly rather than defining them indirectly via a language model (Je-
linek et al. 1994; Magerman 1995), and directly defined parsing models
have also been used by others (Collins 1996). However, in this work,
although the overall probabilities calculated are conditioned on a partic-
ular sentence, the atomic probabilities that the probability of a parse is
decomposed into are not dependent on the individual sentence, but are
still estimated from the whole training corpus. Moreover, when Collins
(1997) refined his initial model (Collins 1996) so that parsing probabilities
were defined via an explicit language model, this significantly increased
the performance of his parser. So, while language models are not neces-
sarily to be preferred to parsing models, they appear to provide a better
foundation for modeling.

f= argmax P (t|s) = argmax =argmaxP(t,s)
t t t

Weakening the independence assumptions of PCFGs
Context and independence assumptions

It is widely accepted in studies of language understanding that humans
make wide use of the context of an utterance to disambiguate language
as they listen. This use of context assumes many forms, for example the
context where we are listening (to TV or in a bar), who we are listening
to, and also the immediate prior context of the conversation. The prior
discourse context will influence our interpretation of later sentences (this
is the effect known as priming in the psychological literature). People will
find semantically intuitive readings for sentences in preference to weird
ones. Furthermore, much recent work shows that these many sources of

LEXICALIZATION

12.1 Some Concepts 417

information are incorporated in real time while people parse sentences.?
In our previous PCFG model, we were effectively making an independence
assumption that none of these factors were relevant to the probability of
a parse tree. But, in fact, all of these sources of evidence are relevant to
and might be usable for disambiguating probabilistic parses. Even if we
are not directly modeling the discourse context or its meaning, we can
approximate these by using notions of collocation to help in more local
semantic disambiguation, and the prior text as an indication of discourse
context (for instance, we might detect the genre of the text, or its topic).
To build a better statistical parser than a PCFG, we want to be able to
incorporate at least some of these sources of information.

Lexicalization

There are two somewhat separable weaknesses that stem from the in-
dependence assumptions of PCFGs. The most often remarked on one is
their lack of lexicalization. In a PCFG, the chance of a VP expanding as a
verb followed by two noun phrases is independent of the choice of verb
involved. This is ridiculous, as this possibility is much more likely with
ditransitive verbs like hand or tell, than with other verbs. Table 12.2
uses data from the Penn Treebank to show how the probabilities of vari-
ous common subcategorization frames differ depending on the verb that
heads the VP.# This suggests that somehow we want to include more in-
formation about what the actual words in the sentence are when making
decisions about the structure of the parse tree.

In other places as well, the need for lexicalization is obvious. A clear
case is the issue of choosing phrasal attachment positions. As discussed
at length in chapter 8, it is clear that the lexical content of phrases almost
always provides enough information to decide the correct attachment
site, whereas the syntactic category of the phrase normally provides very
little information. One of the ways in which standard PCFGs are much

3. This last statement is not uncontroversial. Work in psycholinguistics that is influenced
by a Chomskyan approach to language has long tried to argue that people construct syn-
tactic parses first, and then choose between them in a disambiguation phase (e.g., Frazier
1978). But a variety of recent work (e.g., Tanenhaus and Trueswell 1995, Pearlmutter and
MacDonald 1992) has argued against this and suggested that semantic and contextual
information does get incorporated immediately during sentence understanding.

4. One can’t help but suspect that some of the very low but non-zero entries might reveal
errors in the treebank, but note that because functional tags are being ignored, an NP can
appear after an intransitive verb if it is a temporal NP like last week.

418 12 Probabilistic Parsing

Verb
Local tree come take think want
VP -V 9.5% 2.6% 4.6% 5.7%
VP - V NP 1.1% 32.1% 0.2% 13.9%
VP -V PP 34.5% 3.1% 7.1% 0.3%
VP — V SBAR 6.6% 0.3% 73.0% 0.2%
VP -V S 2.2% 1.3% 4.8% 70.8%
VP -V NP S 0.1% 5.7% 0.0% 0.3%

VP -V PRT NP 03% 58% 0.0% 0.0%
VP — V PRT PP 6.1% 1.5% 0.2% 0.0%

Table 12.2 Frequency of common subcategorization frames (local trees ex-
panding VP) for selected verbs. The data show that the rule used to expand
VP is highly dependent on the lexical identity of the verb. The counts ignore
distinctions in verbal form tags. Phrase names are as in table 12.1, and tags are
Penn Treebank tags (tables 4.5 and 4.6).

worse than n-gram models is that they totally fail to capture the lexical
dependencies between words. We want to get this back, while maintain-
ing a richer model than the purely linear word-level n-gram models. The
most straightforward and common way to lexicalize a CFG is by having
each phrasal node be marked by its head word, so that the tree in (12.8a)
will be lexicalized as the tree in (12.8b).

(12.8) a. S b. Swalked
/\ /\
NP VP NPSue VPwalked
\ T \ T
NNP VBD PP NNPSue VBDwaIked PPlnto
\ \ N \ \ T
Sue walked P NP Sue walked Pinto NPgtore
N \ N
H’ltO DT NN U’ltO DTthe NNstore
\ \ \ \
the store the store

Central to this model of lexicalization is the idea that the strong lexi-
cal dependencies are between heads and their dependents, for example
between a head noun and a modifying adjective, or between a verb and

(12.9)

(12.10)

12.1 Some Concepts 419

a noun phrase object, where the noun phrase object can in turn be ap-
proximated by its head noun. This is normally true and hence this is an
effective strategy, but it is worth pointing out that there are some depen-
dencies between pairs of non-heads. For example, for the object NP in
(12.9):

I got [Np the easier problem [of the two] [to solve]].

both the posthead modifiers of the two and to solve are dependents of the
prehead modifier easier. Their appearance is only weakly conditioned
by the head of the NP problem. Here are two other examples of this
sort, where the head is in bold, and the words involved in the nonhead
dependency are in italics:

a. Her approach was more quickly understood than mine.
b. He lives in what must be the farthest suburb from the university.

See also exercise 8.16.

Probabilities dependent on structural context

However, PCFGs are also deficient on purely structural grounds. Inherent
to the idea of a PCFG is that probabilities are context-free: for instance,
that the probability of a noun phrase expanding in a certain way is inde-
pendent of where the NP is in the tree. Even if we in some way lexical-
ize PCFGs to remove the other deficiency, this assumption of structural
context-freeness remains. But this grammatical assumption is actually
quite wrong. For example, table 12.3 shows how the probabilities of ex-
panding an NP node in the Penn Treebank differ wildly between subject
position and object position. Pronouns, proper names and definite NPs
appear more commonly in subject position while NPs containing post-
head modifiers and bare nouns occur more commonly in object position.
This reflects the fact that the subject normally expresses the sentence-
internal topic. As another example, table 12.4 compares the expansions
for the first and second object NPs of ditransitive verbs. The disprefer-
ence for pronouns to be second objects is well-known, and the preference
for ‘NP SBAR’ expansions as second objects reflects the well-known ten-
dency for heavy elements to appear at the end of the clause, but it would
take a more thorough corpus study to understand some of the other ef-
fects. For instance, it is not immediately clear to us why bare plural

420

12 Probabilistic Parsing

Expansion % as Subj % as Obj
NP — PRP 13.7% 2.1%
NP — NNP 3.5% 0.9%
NP — DT NN 5.6% 4.6%
NP — NN 1.4% 2.8%
NP — NP SBAR 0.5% 2.6%
NP — NP PP 5.6% 14.1%

Table 12.3 Selected common expansions of NP as Subject vs. Object, ordered
by log odds ratio. The data show that the rule used to expand NP is highly
dependent on its parent node(s), which corresponds to either a subject or an
object.

Expansion % as 1st Obj % as 2nd Obj
NP — NNS 7.5% 0.2%
NP — PRP 13.4% 0.9%
NP — NP PP 12.2% 14.4%
NP — DT NN 10.4% 13.3%
NP — NNP 4.5% 5.9%
NP — NN 3.9% 9.2%
NP — JJ NN 1.1% 10.4%
NP — NP SBAR 0.3% 5.1%

Table 12.4 Selected common expansions of NP as first and second object inside
VP. The data are another example of the importance of structural context for
nonterminal expansions.

nouns are so infrequent in the second object position. But at any rate,
the context-dependent nature of the distribution is again manifest.

The upshot of these observations is that we should be able to build
a much better probabilistic parser than one based on a PCFG by better
taking into account lexical and structural context. The challenge (as so
often) is to find factors that give us a lot of extra discrimination while
not defeating us with a multiplicity of parameters that lead to sparse
data problems. The systems in the second half of this chapter present a
number of approaches along these lines.

12.1.5

12.1 Some Concepts 421

@ S (b) S
NP VP NP VP
N VP N VP
astronomers VP astronomers VP
astronomers V NP astronomers V NP
astronomers saw NP astronomers V N
astronomers saw N astronomers V telescopes
astronomers saw telescopes astronomers saw telescopes

Figure 12.3 Two CFG derivations of the same tree.

Tree probabilities and derivational probabilities

In the PCFG framework, one can work out the probability of a tree by just
multiplying the probabilities of each local subtree of the tree, where the
probability of a local subtree is given by the rule that produced it. The
tree can be thought of as a compact record of a branching process where
one is making a choice at each node, conditioned solely on the label of the
node. As we saw in chapter 3, within generative models of syntax,” one
generates sentences from a grammar, classically by starting with a start
symbol, and performing a derivation which is a sequence of top-down
rewrites until one has a phrase marker all of whose leaf nodes are termi-
nals (that is, words). For example, figure 12.3 (a) shows the derivation of
a sentence using the grammar of table 11.2, where at each stage one non-
terminal symbol gets rewritten according to the grammar. A straightfor-
ward way to make rewrite systems probabilistic is to define probability
distributions over each choice point in the derivation. For instance, at
the last step, we chose to rewrite the final N as telescopes, but could have
chosen something else, in accord with the grammar. The linear steps of
a derivational process map directly onto a standard stochastic process,
where the states are productions of the grammar. Since the generative
grammar can generate all sentences of the language, a derivational model
is inherently a language model.

Thus a way to work out a probability for a parse tree is in terms of
the probability of derivations of it. Now in general a given parse tree
can have multiple derivations. For instance, the tree in (12.11) has not

5. In the original sense of Chomsky (1957); in more recent work Chomsky has suggested
that ‘generative’ means nothing more than ‘formal’ (Chomsky 1995: 162).

422

(12.11)

(12.12)

CANONICAL
DERIVATION

(12.13)

12 Probabilistic Parsing

only the derivation in figure 12.3 (a), but also others, such as the one in
figure 12.3 (b), where the second NP is rewritten before the V.

S

/\
NP VP

‘ /\
N \% NP

astronomers saw N

telescopes

So, in general, to estimate the probability of a tree, we have to calculate:

P(t) = > P(d)
{d: d is a derivation of t}

However, in many cases, such as the PCFG case, this extra complication
is unnecessary. It is fairly obvious to see (though rather more difficult
to prove) that the choice of derivational order in the PCFG case makes
no difference to the final probabilities.® Regardless of what probability
distribution we assume over the choice of which node to rewrite next in a
derivation, the final probability for a tree is otherwise the same. Thus we
can simplify things by finding a way of choosing a unique derivation for
each tree, which we will refer to as a canonical derivation. For instance,
the leftmost derivation shown in figure 12.3 (a), where at each step we
expand the leftmost non-terminal can be used as a canonical derivation.
When this is possible, we can say:

P(t) = P(d) where d is the canonical derivation of t

Whether this simplification is possible depends on the nature of the prob-
abilistic conditioning in the model. It is possible in the PCFG case because
probabilities depend only on the parent node, and so it doesn’t matter if
other nodes have been rewritten yet or not. If more context is used,
or there are alternative ways to generate the same pieces of structure,
then the probability of a tree might well depend on the derivation. See
sections 12.2.1 and 12.2.2.7

6. The proof depends on using the kind of derivation to tree mapping developed in
(Hopcroft and Ullman 1979).
7. Even in such cases, one might choose to approximate tree probabilities by estimating

(12.14)

HISTORY-BASED
GRAMMARS

(12.15)

12.1.6

12.1 Some Concepts 423

Let us write oy 4 «y, for an individual rewriting step r; rewriting the
string oy as «,. To calculate the probability of a derivation, we use the
chain rule, and assign a probability to each step in the derivation, con-
ditioned by preceding steps. For a standard rewrite grammar, this looks
like this:

m
Pd)=PS>o1 20>, Bam=s) = [[Prilr,...ri1)

i=1
We can think of the conditioning terms above, that is, the rewrite rules
already applied, as the history of the parse, which we will refer to as h;.
So hj = (r1,...,ri—1). This is what led to the notion of history-based
grammars (HBGs) explored initially at IBM. Since we can never model the
entire history, normally what we have to do is form equivalence classes
of the history via an equivalencing function 7t and estimate the above as:

m
P(d) = [[P(rilmt(h))

i=1
This framework includes PCFGs as a special case. The equivalencing func-
tion for PCFGs simply returns the leftmost non-terminal remaining in the
phrase marker. So, 1 (h;) = 1 (h;) iff leftmostyr () = leftmostyr(«;).

There’s more than one way to do it

The way we augmented a CFG with probabilities in chapter 11 seems so
natural that one might think that this is the only, or at least the only
sensible, way to do it. The use of the term PCFG - probabilistic context-
free grammar - tends to give credence to this view. Hence it is impor-
tant to realize that this is untrue. Unlike the case of categorical context
free languages, where so many different possibilities and parsing meth-
ods converge on strongly or weakly equivalent results, with probabilistic
grammars, different ways of doing things normally lead to different prob-
abilistic grammars. What is important from the probabilistic viewpoint
is what the probabilities of different things are conditioned on (or look-
ing from the other direction, what independence assumptions are made).
While probabilistic grammars are sometimes equivalent - for example

them according to the probabilities of a canonical derivation, but this could be expected
to have a detrimental effect on performance.

424

TOP-DOWN PARSING

LEFT CORNER PARSER

12 Probabilistic Parsing

an HMM working from left-to-right gives the same results as one work-
ing from right-to-left, if the conditioning fundamentally changes, then
there will be a different probabilistic grammar, even if it has the same
categorical base. As an example of this, we will consider here another
way of building a probabilistic grammar with a CFG basis, Probabilistic
Left-Corner Grammars (PLCGS).

Probabilistic left-corner grammars

If we think in parsing terms, a PCFG corresponds to a probabilistic version
of top-down parsing. This is because at each stage we are trying to predict
the child nodes given knowledge only of the parent node. Other parsing
methods suggest different models of probabilistic conditioning. Usually,
such conditioning is a mixture of top-down and bottom-up information.
One such possibility is suggested by a left-corner parsing strategy.

Left corner parsers (Rosenkrantz and Lewis 1970; Demers 1977) work
by a combination of bottom-up and top-down processing. One begins
with a goal category (the root of what is currently being constructed),
and then looks at the left corner of the string (i.e., one shifts the next
terminal). If the left corner is the same category as the goal category,
then one can stop. Otherwise, one projects a possible local tree from
the left corner, by looking for a rule in the grammar which has the left
corner category as the first thing on its right hand side. The remaining
children of this projected local tree then become goal categories and one
recursively does left corner parsing of each. When this local tree is fin-
ished, one again recursively does left-corner parsing with the subtree as
the left corner, and the same goal category as we started with. To make
this description more precise, pseudocode for a simple left corner recog-
nizer is shown in figure 12.4.8 This particular parser assumes that lexical
material is introduced on the right-hand side of a rule, e.g., as N — house,
and that the top of the stack is to the left when written horizontally.
The parser works in terms of a stack of found and sought constituents,
the latter being represented on the stack as categories with a bar over
them. We use « to represent a single terminal or non-terminal (or the
empty string, if we wish to accommodate empty categories in the gram-
mar), and y to stand for a (possibly empty) sequence of terminals and

8. The presentation here borrows from an unpublished manuscript of Mark Johnson and
Ed Stabler, 1993.

12.1 Some Concepts 425

1 comment: Initialization

2 Place the predicted start symbol S on top of the stack

3 comment: Parser

4 while (an action is possible) do one of the following

5 actions

6 [Shift] Put the next input symbol on top of the stack
7 [Attach] If &« is on top of the stack, remove both

8 [Project] If « is on top of the stack and A — « y, replace x by YA
9 endactions

10 end

11 comment: Termination

12 if empty(input) A empty(stack)

13 then

14 exit success
15 else

16 exit failure
17 fi

Figure 12.4 An LC stack parser.

SHIFTING non-terminals. The parser has three operations, shifting, projecting, and
PROJECTING grtgching. We will put probability distributions over these operations.
ATTACHING When to shift is deterministic: If the thing on top of the stack is a sought

category C, then one must shift, and one can never successfully shift
at other times. But there will be a probability distribution over what is
shifted. At other times we must decide whether to attach or project. The
only interesting choice here is deciding whether to attach in cases where
the left corner category and the goal category are the same. Otherwise
we must project. Finally we need probabilities for projecting a certain
local tree given the left corner (Ic) and the goal category (gc). Under this
model, we might have probabilities for this last operation like this:

P(SBAR — IN S|lc =IN,gc =S) = 0.25
P(PP — IN NP|lc =IN,gc =9S) 0.55

To produce a language model that reflects the operation of a left corner
parser, we can regard each step of the parsing operation as a step in a
derivation. In other words, we can generate trees using left corner proba-
bilities. Then, just as in the last section, we can express the probability of

426

(12.16)

12 Probabilistic Parsing

a parse tree in terms of the probabilities of left corner derivations of that
parse tree. Under left corner generation, each parse tree has a unique
derivation and so we have:

Py (t) = Pic(d) where d is the LC derivation of t

And the left corner probability of a sentence can then be calculated in the
usual way:

Pi(s)= > Prl)
{t: yield(t)=s}

The probability of a derivation can be expressed as a product in terms
of the probabilities of each of the individual operations in the derivation.
Suppose that (Cq,...,Cy) is the sequence of operations in the LC parse
derivation d of t. Then, by the chain rule, we have:

m
P(t) =P(d) = [[P(CilC1,...,Ciz1)
i=1

In practice, we cannot condition the probability of each parse decision
on the entire history. The simplest left-corner model, which is all that we
will develop here, assumes that the probability of each parse decision is
largely independent of the parse history, and just depends on the state
of the parser. In particular, we will assume that it depends simply on the
left corner and top goal categories of the parse stack.

Each elementary operation of a left corner parser is either a shift, an
attach or a left corner projection. Under the independence assumptions
mentioned above, the probability of a shift will simply be the probability
of a certain left corner child (Ic) being shifted given the current goal cat-
egory (gc), which we will model by Pgpnip. When to shift is deterministic.
If a goal (i.e., barred) category is on top of the stack (and hence there is
no left corner category), then one must shift. Otherwise one cannot. If
one is not shifting, one must choose to attach or project, which we model
by P Attaching only has a non-zero probability if the left corner and
the goal category are the same, but we define it for all pairs. If we do
not attach, we project a constituent based on the left corner with prob-
ability Pproj. Thus the probability of each elementary operation C; can
be expressed in terms of probability distributions Pgpift, Parr, and Pproj as
follows:

Pgise(Iclgc) if top is gc

P(Ci = shiftlc) = { 0 otherwise

(12.17)

(12.18)

(12.19)

(12.20)
(12.21)

12.1 Some Concepts 427

P(C; = attach)

Py (Ic,gc) if top is not gc
0 otherwise
(1 = Pae(Ic, gc)) Pproj(A — yllc,gc)
if top is not gc
0 otherwise

P(Ci =projA — y)

Where these operations obey the following constraints:

Zlc Psnipe(Iclge) = 1
If Ic #+ gc, Pae(lc,gc) = O
Z{Aay: y=lc .} Pproj(A — yllc,gc) = 1

From the above we note that the probabilities of the choice of different
shifts and projections sum to one, and hence, since other probabilities
are complements of each other, the probabilities of the actions available
for each elementary operation sum to one. There are also no dead ends
in a derivation, because unless A is a possible left corner constituent of
gc, Pproj(A — yllc,gc) = 0. Thus we have shown that these probabilities
define a language model.? That is, >’ Pic(s|G) = 1.

Manning and Carpenter (1997) present some initial exploration of this
form of PLCGs. While the independence assumptions used above are still
quite drastic, one nevertheless gets a slightly richer probabilistic model
than a PCFG, because elementary left-corner parsing actions are condi-
tioned by the goal category, rather than simply being the probability of a
local tree. For instance, the probability of a certain expansion of NP can
be different in subject position and object position, because the goal cat-
egory is different. So the distributional differences shown in table 12.3
can be captured.!® Manning and Carpenter (1997) show how, because of
this, a PLCG significantly outperforms a basic PCFG.

Other ways of doing it

Left-corner parsing is a particularly interesting case: left-corner parsers
work incrementally from left-to-right, combine top-down and bottom-up
prediction, and hold pride of place in the family of Generalized Left Cor-
ner Parsing models discussed in exercise 12.6. Nevertheless it is not the

9. Subject to showing that the probability mass accumulates in finite trees, the issue
discussed in chapter 11.
10. However, one might note that those in table 12.4 will not be captured.

428

12.1.7

DEPENDENCY
GRAMMAR

(12.22)

12 Probabilistic Parsing

only other possibility for making probabilistic parsers based on CFG pars-
ing algorithms, and indeed other approaches were investigated earlier.

Working with bottom-up shift-reduce parsers is another obvious pos-
sibility. In particular, a thread of work has looked at making probabilis-
tic versions of the Generalized LR parsing approach of Tomita (1991).
Briscoe and Carroll (1993) did the initial work in this area, but their
model is probabilistically improper in that the LR parse tables guide a
unification-based parser, and unification failures cause parse failures that
are not captured by the probability distributions. A solidly probabilistic
LR parser is described in (Inui et al. 1997).

Phrase structure grammars and dependency grammars

The dominant tradition within modern linguistics and NLP has been to
use phrase structure trees to describe the structure of sentences. But an
alternative, and much older, tradition is to describe linguistic structure in
terms of dependencies between words. Such a framework is referred to as
a dependency grammar. In a dependency grammar, one word is the head
of a sentence, and all other words are either a dependent of that word,
or else dependent on some other word which connects to the headword
through a sequence of dependencies. Dependencies are usually shown as
curved arrows, as for example in (12.22).

The old man ate the rice slowly

Thinking in terms of dependencies is useful in Statistical NLP, but one
also wants to understand the relationship between phrase structure and
dependency models. In his work on disambiguating compound noun
structures (see page 286), Lauer (1995a; 1995b) argues that a dependency
model is better than an adjacency model. Suppose we want to disam-
biguate a compound noun such as phrase structure model. Previous work
had considered the two possible tree structures for this compound noun,
as shown in (12.23) and had tried to choose between them according to
whether corpus evidence showed a tighter collocational bond between
phrase- structure or between structure— model.

(12.23)

(12.24)

(12.25)

12.1 Some Concepts 429

a . b. -
/\ /\
. model phrase .
/\ /\
phrase structure structure model

Lauer argues that instead one should examine the ambiguity in terms of
dependency structures, as in (12.24), and there it is clear that the dif-
ference between them is whether phrase is a dependent of structure or
whether it is a dependent of model. He tests this model against the ad-
jacency model and shows that the dependency model outperforms the
adjacency model.

a. phrase structure model b. phrase structure model

Now Lauer is right to point out that the earlier work had been flawed,
and could maintain that it is easier to see what is going on in a depen-
dency model. But this result does not show a fundamental advantage
of dependency grammars over phrase structure grammars. The prob-
lem with the adjacency model was that in the trees, repeated annotated
as (12.25), the model was only considering the nodes N¥ and NV, and
ignoring the nodes N* and NY.

a. NX b. NU
/\ /\
NY model phrase NY
/\ /\
phrase structure structure model

If one corrects the adjacency model so that one also considers the nodes
N* and N4, and does the obvious lexicalization of the phrase structure
tree, so that N is annotated with structure and NY with model (since En-
glish noun compounds are right-headed), then one can easily see that the
two models become equivalent. Under a lexicalized PCFG type model, we
find that P(NX) = P(N"), and so the way to decide between the possibil-
ities is by comparing P(N”) vs. P(N%). But this is exactly equivalent to
comparing the bond between phrase — structure and phrase — model.
There are in fact isomorphisms between various kinds of dependency
grammars and corresponding types of phrase structure grammars. A de-
pendency grammar using undirected arcs is equivalent to a phrase struc-
ture grammar where every rule introduces at least one terminal node. For

430 12 Probabilistic Parsing

(a) VP (b) () VP (d) VP
V. NP PP PP V(P) N(P) P(P) P(P) V NP PP V PP PP

Figure 12.5 Decomposing a local tree into dependencies.

the more usual case of directed arcs, the equivalence is with 1-bar level
X' grammars. That is, for each terminal t in the grammar, there is a non-
terminal ¢, and the only rules in the grammar are of the formt — o« t B
where & and B are (possibly empty) sequences of non-terminals (cf. sec-
tion 3.2.3). Another common option in dependency grammars is for the
dependencies to be labeled. This in turn is equivalent to not only labeling

neap one child of each local subtree as the head (as was implicitly achieved
by the X-bar scheme), but labeling every child node with a relationship.
Providing the probabilistic conditioning is the same, these results carry
over to the probabilistic versions of both kinds of grammars.!!

Nevertheless, dependency grammars have their uses in probabilistic
parsing, and, indeed, have become increasingly popular. There appear to
be two key advantages. We argued before that lexical information is key
to resolving most parsing ambiguities. Because dependency grammars
work directly in terms of dependencies between words, disambiguation
decisions are being made directly in terms of these word dependencies.
There is no need to build a large superstructure (that is, a phrase struc-
ture tree) over a sentence, and there is no need to make disambiguation
decisions high up in that structure, well away from the words of the sen-
tence. In particular, there is no need to worry about questions of how
to lexicalize a phrase structure tree, because there simply is no structure
that is divorced from the words of the sentence. Indeed, a dependency
grammarian would argue that much of the superstructure of a phrase
structure tree is otiose: it is not really needed for constructing an under-
standing of sentences.

The second advantage of thinking in terms of dependencies is that de-
pendencies give one a way of decomposing phrase structure rules, and
estimates of their probabilities. A problem with inducing parsers from
the Penn Treebank is that, because the trees are very flat, there are lots

11. Note that there is thus no way to represent within dependency grammars the two
or even three level X' schemata that have been widely used in modern phrase structure
approaches.

12.1.8

12.1 Some Concepts 431

of rare kinds of flat trees with many children. And in unseen data, one
will encounter yet other such trees that one has never seen before. This
is problematic for a PCFG which tries to estimate the probability of a local
subtree all at once. Note then how a dependency grammar decomposes
this, by estimating the probability of each head-dependent relationship
separately. If we have never seen the local tree in figure 12.5 (a) before,
then in a PCFG model we would at best back off to some default ‘un-
seen tree’ probability. But if we decompose the tree into dependencies,
as in (b), then providing we had seen other trees like (c) and (d) before,
then we would expect to be able to give quite a reasonable estimate for
the probability of the tree in (a). This seems much more promising than
simply backing off to an ‘unseen tree’ probability, but note that we are
making a further important independence assumption. For example, here
we might be presuming that the probability of a PP attaching to a VP (that
is, a preposition depending on a verb in dependency grammar terms) is
independent of how many NPs there are in the VP (that is, how many
noun dependents the verb has). It turns out that assuming complete in-
dependence of dependencies does not work very well, and we also need
some system to account for the relative ordering of dependencies. To
solve these problems, practical systems adopt various methods of allow-
ing some conditioning between dependencies (as described below).

Evaluation

An important question is how to evaluate the success of a statistical
parser. If we are developing a language model (not just a parsing model),
then one possibility is to measure the cross entropy of the model with re-
spect to held out data. This would be impeccable if our goal had merely
been to find some form of structure in the data that allowed us to predict
the data better. But we suggested earlier that we wanted to build proba-
bilistic parsers that found particular parse trees that we had in mind, and
so, while perhaps of some use as an evaluation metric, ending up doing
evaluation by means of measuring cross entropy is rather inconsistent
with our stated objective. Cross entropy or perplexity measures only the
probabilistic weak equivalence of models, and not the tree structure that
we regard as important for other tasks. In particular, probabilistically
weakly equivalent grammars have the same cross entropy, but if they are
not strongly equivalent, we may greatly prefer one or the other for our
task.

432

OBJECTIVE CRITERION

TREE ACCURACY
EXACT MATCH

PARSEVAL MEASURES

PRECISION

12 Probabilistic Parsing

Why are we interested in particular parse trees for sentences? People
are rarely interested in syntactic analysis for its own sake. Presumably
our ultimate goal is to build a system for information extraction, question
answering, translation, or whatever. In principle a better way to evaluate
parsers is to embed them in such a larger system and to investigate the
differences that the various parsers make in such a task-based evalua-
tion. These are the kind of differences that someone outside the parsing
community might actually care about.

However, often a desire for simplicity and modularization means that
it would be convenient to have measures on which a parser can be sim-
ply and easily evaluated, and which one might expect to lead to better
performance on tasks. If we have good reason to believe that a certain
style of parse tree is useful for further tasks, then it seems that what we
could do is compare the parses found by the program with the results of
hand-parsing of sentences, which we regard as a gold standard. But how
should we evaluate our parsing attempts, or in other words, what is the
objective criterion that we are trying to maximize? The strictest criterion
is to award the parser 1 point if it gets the parse tree completely right,
and 0 points if it makes any kind of mistake. This is the tree accuracy
or exact match criterion. It is the toughest standard, but in many ways
it is a sensible one to use. In part this is because most standard parsing
methods, such as the Viterbi algorithm for PCFGs try to maximize this
quantity. So, since it is generally sensible for one’s objective criterion
to match what one’s parser is maximizing, in a way using this criterion
makes sense. However, clearly, in this line of reasoning, we are putting
the cart before the horse. But for many potential tasks, partly right parses
are not much use, and so it is a reasonable objective criterion. For exam-
ple, things will not work very well in a database query system if one gets
the scope of operators wrong, and it does not help much that the system
got part of the parse tree right.

On the other hand, parser designers, like students, appreciate getting
part-credit for mostly right parses, and for some purposes partially right
parses can be useful. At any rate, the measures that have most commonly
been used for parser evaluation are the PARSEVAL measures, which origi-
nate in an attempt to compare the performance of non-statistical parsers.
These measures evaluate the component pieces of a parse. An example
of a parsed tree, a gold standard tree, and the results on the PARSEVAL
measures as they have usually been applied in Statistical NLP work is
shown in figure 12.6. Three basic measures are proposed: precision is

12.1 Some Concepts 433

(a) ROOT
[
S
NP VP NP .
e - [[
NNS NNS VBD VP NN L11
[[[- [
o Sales | executives » were VBG NP PP yesterday 19
[T o
3 examining DT NNS IN NP

[[[—
4 the s figures g with J] NN
[[
7 great g care g

(b) ROOT
[
S
-
NP VP
e - [
NNS NNS VBD VP .11
[[[-
o Sales 1 executives » were VBG NP
[-
3 examining NP PP
/\ /\
DT NNS IN NP
[[[7
4 the 5 figures ¢ with NN NN NN

[[[
7 great g care g yesterday 10

(c) Brackets in gold standard tree (a.):
S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), NP-(4:6), PP-(6-9), NP-(7,9), *NP-(9:10)
(d) Brackets in candidate parse (b.):
S-(0:11), NP-(0:2), VP-(2:10), VP-(3:10), NP-(4:10), NP-(4:6), PP-(6-10), NP-(7,10)
(e) Precision: 3/8 =37.5% Crossing Brackets: 0
Recall: 3/8 =37.5% Crossing Accuracy: 100%
Labeled Precision: 3/8 =37.5% Tagging Accuracy: 10/11 = 90.9%
Labeled Recall: 3/8=37.5%

Figure 12.6 An example of the PARSEVAL measures. The PARSEVAL measures
are easily calculated by extracting the ranges which are spanned by non-terminal
nodes, as indicated in (c) and (d) and then calculating the intersection, either
including or not including labels while doing so. The matching brackets are
shown in bold. The ROOT node is ignored in all calculations, and the preterminal
nodes are used only for the tagging accuracy calculation. The starred unary
node would be excluded in calculations according to the original standard, but
is included here.

434

RECALL

CROSSING BRACKETS

12 Probabilistic Parsing

By ()
B ()
By ()
By ()
w1 w2 w3 Wy Ws We wr Wwg

Figure 12.7 The idea of crossing brackets. Bracket B; crosses both brackets
B, and B4. All the other brackets are consistent. The guiding intuition is that
crossing brackets cannot be combined into a single tree structure.

how many brackets in the parse match those in the correct tree, recall
measures how many of the brackets in the correct tree are in the parse,
and crossing brackets gives the average of how many constituents in one
tree cross over constituent boundaries in the other tree. A picture to help
understand crossing brackets is in figure 12.7. Errors of this sort have of-
ten been seen as particularly dire. Rather than giving crossing brackets
per tree (independent of tree size) an alternative is to report the non-
crossing accuracy, the measure of the percentage of brackets that are not
crossing brackets. The original PARSEVAL measures (because they were
designed for implementations of various incompatible syntactic theories)
ignored node labels, unary branching nodes, and performed various other
(ad hoc) tree normalizations. However, if a parser is trying to duplicate
parses being performed by hand, then it is reasonable to include node
labels, and this is normally done, giving measures of labeled precision
and recall. It is also reasonable to include unary nodes, except that the
unary ROOT and preterminal nodes are not included.!2

The PARSEVAL measures are not very discriminating. As we will see

12. The Penn Treebank gives all trees an unlabeled top node, here called ROOT. This
is useful so that one can have rules rewriting the ROOT as the actual top node of the
sentence, whether S or NP or whatever. (A surprising number of ‘sentences’ in newswire
text are actually just noun phrases.) Including this node, and the preterminal nodes would
inflate the precision and recall figures, as they are unary nodes which one could not get
wrong. Including preterminal labels in the labeled measures is more defensible, but would
mean that one’s ability to do part of speech tagging is rolled into the performance of the
parser, whereas some people feel it is best reported separately. Chains of unary nodes
present some problems for these measures: the measures fail to capture the dominance
ordering of the nodes, and, if multiple nodes have the same category, care must be taken
in the calculation of recall. Finally we note that most evaluations of Statistical NLP parsers
on the Penn Treebank have used their own ad-hoc normalizations, principally discounting
sentence-internal punctuation and the distinction between the categories ADVP and PRT.

(12.26)

12.1 Some Concepts 435

below, Charniak (1996) shows that according to these measures, one can
do surprisingly well on parsing the Penn Treebank by inducing a vanilla
PCFG which ignores all lexical content. This somewhat surprising result
seems to reflect that in many respects the PARSEVAL measures are quite
easy ones to do well on, particularly for the kind of tree structures as-
sumed by the Penn Treebank. Firstly, it is important to note that they
are measuring success at the level of individual decisions - and normally
what makes NLP hard is that you have to make many consecutive deci-
sions correctly to succeed. The overall success rate is then the n' power
of the individual decision success rate - a number that easily becomes
small.

But beyond this, there are a number of features particular to the struc-
ture of the Penn Treebank that make these measures particularly easy.
Success on crossing brackets is helped by the fact that Penn Treebank
trees are quite flat. To the extent that sentences have very few brackets
in them, the number of crossing brackets is likely to be small. Identi-
fying troublesome brackets that would lower precision and recall mea-
sures is also avoided. For example, recall that there is no disambiguation
of compound noun structures within the Penn Treebank, which gives a
completely flat structure to a noun compound (and any other prehead
modifiers) as shown below (note that the first example also illustrates
the rather questionable Penn Treebank practice of tagging hyphenated
non-final portions of noun compounds as adjectives!).

[Np a/DT stock-index/JJ arbitrage/NN sell/NN program/NN]
[NP a/DT joint/JJ venture/NN advertising/NN agency,/NN]

Another case where peculiarities of the Penn Treebank help is the non-
standard adjunction structures given to post noun-head modifiers, of the
general form (NP (NP the man) (PP in (NP the moon))). As we discussed
in section 8.3, a frequent parsing ambiguity is whether PPs attach to a
preceding NP or VP - or even to a higher preceding node - and this is
a situation where lexical or contextual information is more important
than structural factors. Note now that the use of the above adjunction
structure reduces the penalty for making this decision wrongly. For the
different tree brackettings for Penn Treebank style structures and the
type of N’ structure more commonly assumed in linguistics, as shown in
figure 12.8, the errors assessed for different attachments are as shown in
table 12.5. The forgivingness of the Penn Treebank scheme is manifest.

436

12 Probabilistic Parsing

Penn VP attach (VP saw (NP the man) (PP with (NP a telescope)))

Penn NP attach (VP saw (NP (NP the man) (PP with (NP a telescope))))
Another VP attach (VP saw (NP the (N man)) (PP with (NP a (N" telescope)))))
Another NP attach (VP saw (NP the (N" man (PP with (NP a (N’ telescope))))))

Figure 12.8 Penn trees versus other trees.

Error Errors assessed

Prec. Rec. C(CBs
Penn VP instead of NP 0 1 0
NP instead of VP 1 0 0
Another VP instead of NP 2 2 1
NP instead of VP 2 2 1

Table 12.5 Precision and recall evaluation results for PP attachment errors for
different styles of phrase structure.

One can get the attachment wrong and not have any crossing brackets,
and the errors in precision and recall are minimal.!3

On the other hand, there is at least one respect in which the PARSEVAL
measures seem too harsh. If there is a constituent that attaches very
high (in a complex right-branching sentence), but the parser by mistake
attaches it very low, then every node in the right-branching complex will
be wrong, seriously damaging both precision and recall, whereas arguably
only a single mistake was made by the parser. This is what happened to
give the very bad results in figure 12.6. While there are two attachment
errors in the candidate parse, the one that causes enormous damage in
the results is attaching yesterday low rather than high (the parser which
generated this example unfortunately didn’t know about temporal nouns,
to its great detriment).

This all suggests that these measures are imperfect, and one might
wonder whether something else should be introduced to replace them.
One idea would be to look at dependencies, and to measure how many
of the dependencies in the sentence are right or wrong. However, the
difficulty in doing this is that dependency information is not shown in

13. This comparison assumes that one is including unary brackets. The general contrast
remains even if one does not do so, but the badness of the non-Penn case is slightly
reduced.

12.1.9

12.1 Some Concepts 437

the Penn Treebank. While one can fairly successfully induce dependency
relationships from the phrase structure trees given, there is no real gold
standard available.

Returning to the idea of evaluating a parser with respect to a task, the
correct approach is to examine whether success on the PARSEVAL mea-
sures is indicative of success on real tasks. Many small parsing mistakes
might not affect tasks of semantic interpretation. This is suggested by
results of (Bonnema 1996; Bonnema et al. 1997). For instance, in one ex-
periment, the percentage of correct semantic interpretations was 88%,
even though the tree accuracy of the parser was only 62%. The cor-
relation between the PARSEVAL measures and task-based performance
is briefly investigated by Hermjakob and Mooney (1997) with respect to
their task of English to German translation. In general they find a quite
good correlation between the PARSEVAL measures and generating accept-
able translations. Labeled precision has by far the best correlation with
a semantically adequate translation (0.78), whereas the correlation with
the weaker measure of crossing brackets is much more modest (0.54).
Whether there are other evaluation criteria that correlate better with suc-
cess on final tasks, and whether different criteria better predict perfor-
mance on different kinds of final tasks remain open questions. However,
at the moment, people generally feel that these measures are adequate
for the purpose of comparing parsers.

Equivalent models

When comparing two probabilistic grammars, it is easy to think that they
are different because they are using different surface trappings, but what
is essential is to work out what information is being used to condition
the prediction of what. Providing the answers to that question are the
same, then the probabilistic models are equivalent.

In particular, often there are three different ways of thinking about
things: in terms of remembering more of the derivational history, look-
ing at a bigger context in a phrase structure tree, or by enriching the
vocabulary of the tree in deterministic ways.

Let us take a simple example. Johnson (1998) demonstrates the utility
of using the grandparent node (G) as additional contextual information
when rewriting a parent non-terminal (?) in a PCFG. For instance, con-
sider the tree in (12.27).

438

(12.27)

12 Probabilistic Parsing

/\
NP, VP

N
V NP>

When expanding the NP non-terminals in (12.27), for NP, we would be us-
ing P(NP - «|? = NP, G = S), while for NP, we would use P(NP — «|P =
NP, G = VP). This model can also capture the differences in the proba-
bility distributions for subject and object NPs shown in table 12.3 (while
again failing to capture the distributional differences shown in table 12.4).
Including information about the grandparent is surprisingly effective.
Johnson shows that this simple model actually outperforms the proba-
bilistic left-corner model presented earlier, and that in general it appears
to be the most valuable simple enrichment of a PCFG model, short of
lexicalization, and the concomitant need to handle sparse data that that
introduces.

But the point that we wish to make here is that one can think of this
model in three different ways: as using more of the derivational history,
as using more of the parse tree context, or as enriching the category
labels. The first way to think of it is in derivational terms, as in a history-
based grammar. There we would be saying that we are doing a finer
equivalence classing of derivational histories. For two derivational histo-
ries to be equivalent, not only would they have to have the same leftmost
non-terminal remaining in the phrase marker, but both of these would
have to have resulted from rewriting the same category. That is:

leftmostnT () = leftmostyr(«),) = N* &

"(h):"(h)lff{ INYINY = ... NX...€ hANY = ... N* ...el

If two non-terminals were in different equivalence classes, they would be
able to (and usually would) have different probabilities for rewriting.
But, instead of doing this, we could think of this new model simply
in terms of the probability of tree structures, but suggest that rather
than working out the probability of a local subtree just by looking at the
nodes that comprise the subtree, we could also look at more surrounding
context. One can get into trouble if one tries to look at the surrounding
context in all directions at once, because then one can no longer produce
a well-founded probabilistic model or parsing method - there has to be a
certain directionality in the use of context. But if one is thinking of the
tree being built top-down, then one can certainly include as much context

12.1.10

TABLEAU

VITERBI ALGORITHM

12.1 Some Concepts 439

from higher up in the tree as one wishes. Building equivalence classes
of sequences of derivational steps is equivalent to building equivalence
classes of partial trees. Just including the identity of the grandparent
node is a particularly simple example of enriching context in this way.

Or thirdly, one can do what Johnson actually did and just use a generic
PCFG parser, but enrich the vocabulary of the tree labels to encode this ex-
tra contextual information. Johnson simply relabeled every non-terminal
with a composite label that recorded both the node’s original label and
its parent’s label (for instance, NP; in (12.27) was relabeled as NP-S). Two
nodes in the new trees had the same label if and only if both they and
their parents had the same label in the original trees. Johnson could then
use a standard PCFG parser over these new trees to simulate the effect of
using extra contextual information in the original trees. All three of these
methods produce equivalent probabilistic models. But the third method
seems a particularly good one to remember, since it is frequently easier
to write a quick program to produce transformed trees than to write a
new probabilistic parser.

Building parsers: Search methods

For certain classes of probabilistic grammars, there are efficient algo-
rithms that can find the highest probability parse in polynomial time. The
way such algorithms work is by maintaining some form of tableau that
stores steps in a parse derivation as they are calculated in a bottom-up
fashion. The tableau is organized in such a way that if two subderiva-
tions are placed into one cell of the tableau, we know that both of them
will be able to be extended in the same ways into larger subderivations
and complete derivations. In such derivations, the lower probability one
of the two will always lead to lower probability complete derivations, and
so it may be discarded. Such algorithms are in general known as Viterbi
algorithms, and we have seen a couple of examples in earlier chapters.
When using more complex statistical grammar formalisms, such algo-
rithms may not be available. This can be for two reasons. There may not
be (known) tabular parsing methods for these formalisms. But secondly,
the above discussion assumed that by caching derivation probabilities
one could efficiently find parse probabilities. Viterbi algorithms are a
means of finding the highest probability derivation of a tree. They only
allow us to find the highest probability parse for a tree if we can define
a unique canonical derivation for each parse tree (as discussed earlier).

440

UNIFORM-COST
SEARCH

12 Probabilistic Parsing

If there is not a one-to-one relationship between derivations and parses,
then an efficient polynomial time algorithm for finding the highest prob-
ability tree may not exist. We will see an example below in section 12.2.1.

For such models, “the decoding problem” of finding the best parse be-
comes exponential. We nevertheless need some efficient way of moving
through a large search space. If we think of a parsing problem as a search
problem in this way, we can use any of the general search methods that
have been developed within AL. But we will start with the original and
best-known algorithm for doing this within the Statistical NLP commu-
nity, the stack decoding algorithm.

The stack decoding algorithm

The stack decoding algorithm was initially developed by Jelinek (1969) for
the purpose of decoding information transmissions across noisy chan-
nels. However, it is a method for exploring any tree-structured search
space, such as commonly occurs in Statistical NLP algorithms. For ex-
ample, a derivational parsing model gives a tree-structured search space,
since we start with various choices for the first step of the derivation,
and each of those will lead to a (normally different) range of choices for
the second step of the derivation. It is an example of what in Al is known
as a uniform-cost search algorithm: one where one always expands the
least-cost leaf node first.

The stack decoding algorithm can be described via a priority queue
object, an ordered list of items with operations of pushing an item and
popping the highest-ranked item. Priority queues can be efficiently imple-
mented using a heap data structure.!* One starts with a priority queue
that contains one item - the initial state of the parser. Then one goes
into a loop where at each step one takes the highest probability item off
the top of the priority queue, and extends it by advancing it from an n
step derivation to an n + 1 step derivation (in general there will be multi-
ple ways of doing this). These longer derivations are placed back on the
priority queue ordered by probability. This process repeats until there
is a complete derivation on top of the priority queue. If one assumes an
infinite priority queue, then this algorithm is guaranteed to find the high-
est probability parse, because a higher probability partial derivation will
always be extended before a lower probability one. That is, it is complete

14. This is described in many books on algorithms, such as (Cormen et al. 1990).

BEAM SEARCH

BEST-FIRST SEARCH

12.1 Some Concepts 441

(guaranteed to find a solution if there is one) and optimal (guaranteed to
find the best solution when there are several). If, as is common, a lim-
ited priority queue size is assumed, then one is not guaranteed to find
the best parse, but the method is an effective heuristic for usually find-
ing the best parse. The term beam search is used to describe systems
which only keep and extend the best partial results. A beam may either
be fixed size, or keep all results whose goodness is within a factor « of
the goodness of the best item in the beam.

In the simplest version of the method, as described above, when one
takes the highest probability item off the heap, one finds all the possible
ways to extend it from an n step derivation to an n + 1 step derivation, by
seeing which next parsing steps are appropriate, and pushing the result-
ing n+1 step derivations back onto the heap. But Jelinek (1969) describes
an optimization (which he attributes to John Cocke), where instead of do-
ing that, one only applies the highest probability next step, and therefore
pushes only the highest probability n + 1 step derivation onto the stack,
together with continuation information which can serve to point to the
state at step n and the other extensions that were possible. Thereafter, if
this state is popped from the stack, one not only determines and pushes
on the highest probability n+ 2 step derivation, but one retrieves the con-
tinuation, applies the second highest probability rule, and pushes on the
second highest probability n + 1 step derivation (perhaps with its own
continuation). This method of working with continuations is in practice
very effective at reducing the beam size needed for effective parsing using
the stack decoding algorithm.

A* search

Uniform-cost search can be rather inefficient, because it will expand
all partial derivations (in a breadth-first-like manner) a certain distance,
rather than directly considering whether they are likely to lead to a high
probability complete derivation. There exist also best-first search algo-
rithms which do the opposite, and judge which derivation to expand
based on how near to a complete solution it is. But really what we want
to do is find a method that combines both of these and so tries to expand
the derivation that looks like it will lead to the highest probability parse,
based on both the derivational steps already taken and the work still left
to do. Working out the probability of the steps already taken is easy. The
tricky part is working out the probability of the work still to do. It turns

442

A* SEARCH

OPTIMALLY EFFICIENT

12.1.11

12 Probabilistic Parsing

out, though, that the right thing to do is to choose an optimistic estimate,
meaning that the probability estimate for the steps still to be taken is al-
ways equal to or higher than the actual cost will turn out to be. If we can
do that, it can be shown that the resulting search algorithm is still com-
plete and optimal. Search methods that work in this way are called A*
search algorithms. A* search algorithms are much more efficient because
they direct the parser towards the partial derivations that look nearest to
leading to a complete derivation. Indeed, A* search is optimally efficient
meaning that no other optimal algorithm can be guaranteed to explore
less of the search space.

Other methods

We have merely scratched the surface of the literature on search meth-
ods. More information can be found in most Al textbooks, for example
(Russell and Norvig 1995: ch. 3-4).

We might end this subsection by noting that in cases where the Viterbi
algorithm is inapplicable, one also usually gives up ‘efficient’ training:
one cannot use the EM algorithm any more either. But one can do other
things. One approach which has been explored at IBM is growing a deci-
sion tree to maximize the likelihood of a treebank (see below).

Use of the geometric mean

Any standard probabilistic approach ends up multiplying a large num-
ber of probabilities. This sequence of multiplications is justified by the
chain rule, but most usually, large assumptions of conditional indepen-
dence are made to make the models usable. Since these independence
assumptions are often quite unjustifiable, large errors may accumulate.
In particular, failing to model dependencies tends to mean that the esti-
mated probability of a tree becomes far too low. Two other problems are
sparse data where probability estimates for infrequent unseen constructs
may also be far too low, and defective models like PCFGs that are wrongly
biased to give short sentences higher probabilities than long sentences.
As aresult of this, sentences with bigger trees, or longer derivational his-
tories tend to be penalized in existing statistical parsers. To handle this,
it has sometimes been suggested (Magerman and Marcus 1991; Carroll
1994) that one should rather calculate the geometric mean (or equiva-
lently the average log probability) of the various derivational steps. Such

12.2

12.2.1

12.2 Some Approaches 443

a move takes one out of the world of probabilistic approaches (however
crude the assumptions) and into the world of ad hoc scoring functions
for parsers. This approach can sometimes prove quite effective in prac-
tice, but it is treating the symptoms not the cause of the problem. For the
goal of speeding up chart parsing, Caraballo and Charniak (1998) show
that using the geometric mean of the probability of the rules making up
a constituent works much better than simply using the probability of the
constituent for rating which edges to focus on extending - this is both
because the PCFG model is strongly biased to give higher probabilities
to smaller trees, and because this measure ignores the probability of the
rest of the tree. But they go on to show that one can do much better still
by developing better probabilistic metrics of goodness.

Some Approaches

In the remainder of this chapter, we examine ways that some of the ideas
presented above have been combined into statistical parsers. The pre-
sentations are quite brief, but give an overview of some of the methods
that are being used and the current state of the art.

Non-lexicalized treebank grammars

A basic division in probabilistic parsers is between lexicalized parsers
which deal with words, and those that operate over word categories. We
will first describe non-lexicalized parsers. For a non-lexicalized parser,
the input ‘sentence’ to parse is really just a list of word category tags,
the preterminals of a normal parse tree. This obviously gives one much
less information to go on than a sentence with real words, and in the
second half we will discuss higher-performing lexicalized parsers. How-
ever, apart from general theoretical interest, the nice thing about non-
lexicalized parsers is that the small terminal alphabet makes them easy
to build. One doesn’t have to worry too much about either computational
efficiency or issues of smoothing sparse data.

PCFG estimation from a treebank: Charniak (1996)

Charniak (1996) addresses the important empirical question of how well
a parser can do if it ignores lexical information. He takes the Penn Tree-
bank, uses the part of speech and phrasal categories it uses (ignoring

444

12 Probabilistic Parsing

functional tags), induces a maximum likelihood PCFG from the trees by
using the relative frequency of local trees as the estimates for rules in
the obvious way, makes no attempt to do any smoothing or collapsing of
rules, and sets out to try to parse unseen sentences.!”

The result was that this grammar performed surprisingly well. Its per-
formance in terms of precision, recall, and crossing brackets is not far
below that of the best lexicalized parsers (see table 12.6). It is inter-
esting to consider why this is. This result is surprising because such a
parser will always choose the same resolution of an attachment ambigu-
ity when confronted with the same structural context - and hence must
often be wrong (cf. section 8.3. We feel that part of the answer is that
these scoring measures are undiscerning on Penn Treebank trees, as we
discussed in section 12.1.8. But it perhaps also suggests that while inter-
esting parsing decisions, such as classic attachment ambiguities, clearly
require semantic or lexical information, perhaps the majority of parsing
decisions are mundane, and can be handled quite well by an unlexical-
ized PCFG. The precision, recall, and crossing brackets measures record
average performance, and one can fare quite well on average with just a
PCFG.

The other interesting point is that this result was achieved without
any smoothing of the induced grammar, despite the fact that the Penn
Treebank is well-known for its flat many-branching constituents, many
of which are individually rare. As Charniak shows, the grammar in-
duced from the Penn Treebank ends up placing almost no categorical
constraints on what part of speech can occur next in a sentence, so one
can parse any sentence. While it is certainly true that some rare local
trees appear in the test set that were unseen during training, it is un-
likely that they would ever occur in the highest probability parse, even
if smoothing were done. Thus, under these circumstances, just using
maximum likelihood estimates does no harm.

Partially unsupervised learning: Pereira and Schabes (1992)

We have discussed how the parameter estimation space for realistic-sized
PCFGs is so big that the EM algorithm unaided tends to be of fairly little
use, because it always gets stuck in a local maximum. One way to try to

15. We simplify slightly. Charniak did do a couple of things: recoding auxiliary verbs via
an AUX tag, and incorporating a ‘right-branching correction,” so as to get the parser to
prefer right branching structures.

12.2 Some Approaches 445

encourage the probabilities into a good region of the parameter space is
proposed by Pereira and Schabes (1992) and Schabes et al. (1993). They
begin with a Chomsky normal form grammar with 15 non-terminals over
an alphabet of 45 part of speech tags as terminals, and train it not on raw
sentences but on treebank sentences, where they ignore the non-terminal
labels, but use the treebank bracketing. They employ a variant of the
Inside-Outside algorithm constrained so as to only consider parses that
do not cross Penn-Treebank nodes. Their parser always parses into bi-
nary constituents, but it can learn from any style of bracketing, which the
parser regards as a partial bracketing of the sentence. We will not present
here their modified versions of the Inside-Outside algorithm equations,
but the basic idea is to reduce to zero the contribution to the reestima-
tion equations of any proposed constituent which is not consistent with
the treebank bracketing. Since bracketing decreases the number of rule
split points to be considered, a bracketed training corpus also speeds up
the Inside-Outside algorithm.

On a small test corpus, Pereira and Schabes (1992) show the efficacy of
the basic method. Interestingly, both the grammars trained on unbrack-
eted and bracketed training material converge on a very similar cross-
entropy, but they differ hugely on how well their bracketings correspond
to the desired bracketings present in the treebank. When the input was
unbracketed, only 37% of the brackets the parser put on test sentences
were correct, but when it had been trained on bracketed sentences, 90%
of the brackets placed on test sentences were correct. Moreover, while
EM training on the unbracketed data was successful in decreasing the
cross-entropy, it was ineffective at improving the bracketing accuracy of
the parser over the accuracy of the model resulting from random ini-
tialization of the parameters. This result underlines the discussion at
the beginning of the chapter: current learning methods are effective at
finding models with low entropy, but they are insufficient to learn syn-
tactic structure from raw text. Only by chance will the inferred grammar
agree with the usual judgements of sentence structure. At the present
time, it is an open question whether the normally assumed hierarchical
structure of language is underdetermined by the raw data, or whether the
evidence for it is simply too subtle to be discovered by current induction
techniques.

Schabes et al. (1993) test the same method on a larger corpus including
longer sentences with similar results. They make use of one additional
interesting idea, which is to impose a uniform right branching binary

446

(12.28)

(12.29)

12 Probabilistic Parsing

structure on all flat n-ary branching local trees of the Penn Treebank in
the training data so as to maximize the speed-up to the Inside-Outside
algorithm that comes from bracketing being present.

Parsing directly from trees: Data-Oriented Parsing

An interesting alternative to the grammar-based models that we have
considered so far is to work out statistics directly on pieces of trees in a
treebank, where the treebank is assumed to represent the body of parses
that one has previously explored. Rather than deriving a grammar from
the treebank, we let the parsing process use whichever fragments of trees
appear to be useful. This has the apparent advantage that idiom chunks
like to take advantage of will be used where they are present, whereas
such chunks are not straightforwardly captured in PCFG-style models.
Such an approach has been explored within the Data-Oriented Parsing
(DOP) framework of Rens Bod and Remko Scha (Sima’an et al. 1994; Bod
1995, 1996, 1998). In this section, we will look at the DOP1 model.
Suppose we have a corpus of two sentences, as in (12.28):

a. S b. S
/\ /\
NP VP NP VP
\ PN \ N
Sue V NP Kay \Y NP
\ \ \ \
saw Jo heard Jim

Then, to parse a new sentence like Sue heard Jim, we could do it by
putting together tree fragments that we have already seen. For example
we can compose these two tree fragments:

a. S b. VP
PN PN
NP VP \Y% NP
\ \ \
Sue heard Jim

We can work out the probability of each tree fragment in the corpus,
given that one is expanding a certain node, and, assuming independence,
we can multiply these probabilities together (for instance, there are 8

(12.30)

MONTE CARLO
SIMULATION

(12.31)

12.2 Some Approaches 447

fragments with VP as the parent node - fragments must include either all
or none of the children of a node - among which (12.29b) occurs once, so
its probability is 1/8). But that is only one derivation of this parse tree.
In general there are many. Here is another one from our corpus, this time
involving the composition of three tree fragments:

a. S b. V c. NP
N \ \
NP VP heard Jim
VN
Sue V NP

Since there are multiple fundamentally distinct derivations of a single
tree in this DOP model, here we have an example of a grammar where the
highest probability parse cannot be found efficiently by a Viterbi algo-
rithm (Sima’an 1996) - see exercise 12.8. Parsing has therefore been done
using Monte Carlo simulation methods. This is a technique whereby the
probability of an event is estimated by taking random samples. One ran-
domly produces a large number of derivations and uses these to estimate
the most probable parse. With alarge enough sample, these estimates can
be made as accurate as desired, but the parsing process becomes slow.

The DOP approach is in some ways similar to the memory-based learn-
ing (MBL) approach (Zavrel and Daelemans 1997) in doing prediction di-
rectly from a corpus, but differs in that whereas the MBL approach pre-
dicts based on a few similar exemplars, the DOP model uses statistics
over the entire corpus.

The DOP model provides a different way of thinking, but it is important
to realize that it is not that different to what we have been doing with
PCFGs. After all, rather than writing grammar rules like S — NP VP and
VP — V NP, we could instead write tree fragments:

S VP
N N
NP VP V NP

And the probabilities that we estimate for grammar rules from a tree-
bank are exactly the same as would be assigned based on their relative
frequency in the treebank on the DOP model.

The difference between PCFGs and what we have here is that rather
than only having local trees of depth 1, we can have bigger tree frag-

448

PROBABILISTIC TREE
SUBSTITUTION
GRAMMAR

12.2.2

12 Probabilistic Parsing

ments. The model can be formalized as a Probabilistic Tree Substitution
Grammar (PTSG), which has five components just like the definition of
a PCFG in chapter 11. However, rather than a set of rules, we have a set
of tree fragments of arbitrary depth whose top and interior nodes are
nonterminals and whose leaf nodes are terminals or nonterminals, and
the probability function assigns probabilities to these fragments. PTSGs
are thus a generalization of PCFGs, and are stochastically more powerful,
because one can give particular probabilities to fragments - or just whole
parses - which cannot be generated as a multiplication of rule probabil-
ities in a PCFG. Bod (1995) shows that by starting with a PCFG model of
depth 1 fragments and then progressively allowing in larger fragments
parsing accuracy does increase significantly (this mirrors the result of
Johnson (1998) on the utility of context from higher nodes in the tree).
So the DOP model provides another way to build probabilistic models
that use more conditioning context.

Lexicalized models using derivational histories
History-based grammars (HBGs)

Probabilistic methods based on the history of the derivation, and in-
cluding a rich supply of lexical and other information, were first ex-
plored in large scale experiments at IBM, and are reported in (Black et al.
1993). This work exploited a one-to-one correspondence between left-
most derivations and parse trees, to avoid summing over possible deriva-
tions. The general idea was that all prior parse decisions could influence
following parse decisions in the derivation, however, in the 1993 model,
the only conditioning features considered were those on a path from the
node currently being expanded to the root of the derivation, along with
what number child of the parent a node is (from left to right).1® Black
et al. (1993) used decision trees to decide which features in the deriva-
tional history were important in determining the expansion of the current
node. We will cover decision trees in section 16.1, but they can be thought
of just as a tool that divides up the history into highly predictive equiva-
lence classes.

16. Simply using a feature of being the n'" child of the parent seems linguistically some-
what unpromising, since who knows what material may be in the other children, but this
gives some handle on the varying distribution shown in table 12.4.

12.2 Some Approaches 449

Unlike most other work, this work used a custom treebank, produced
by the University of Lancaster. In the 1993 experiments, they restricted
themselves to sentences completely covered by the most frequent 3000
words in the corpus (which effectively avoids many sparse data issues).
Black et al. began with an existing hand-built broad-coverage feature-
based unification grammar. This was converted into a PCFG by making
equivalence classes out of certain labels (by ignoring or grouping certain
features and feature-value pairs). This PCFG was then reestimated using
a version of the Inside-Outside algorithm that prevents bracket crossing,
as in the work of Pereira and Schabes (1992) discussed above.

Black et al. lexicalize their grammar so that phrasal nodes inherit two
words, a lexical head H;, and a secondary head H,. The lexical head
is the familiar syntactic head of the phrase, while the secondary head
is another word that is deemed useful (for instance, in a prepositional
phrase, the lexical head is the preposition, while the secondary head is
the head of the complement noun phrase). Further, they define a set of
about 50 each of syntactic and semantic categories, {Syn,} and {Semy},
to be used to classify non-terminal nodes. In the HBG parser, these two
features, the two lexical heads, and the rule R to be applied at a node are
predicted based on the same features of the parent node, and the index I
expressing what number child of the parent node is being expanded. That
is, we wish to calculate:

P(Syn’Sem;R;HlyHZ|Synpysemp|anlpmHlp;HZp)

This joint probability is decomposed via the chain rule and each of the
features is estimated individually using decision trees.

The idea guiding the IBM work was that rather than having a lin-
guist tinker with a grammar to improve parsing preferences, the linguist
should instead just produce a parser that is capable of parsing all sen-
tences. One then gets a statistical parser to learn from the information in
a treebank so that it can predict the correct parse by conditioning parsing
steps on the derivation history. The HBG parser was tested on sentences
of 7-17 words, by comparing its performance to the existing unification-
based parser. The unification-based parser chose the correct parse for
sentences about 60% of the time, while the HBG parser found the correct
parse about 75% of the time, so the statistical parser was successful in
producing a 37% reduction in error over the best disambiguation rules
that the IBM linguist had produced by hand.

450

(12.32)

12 Probabilistic Parsing

SPATTER

The HBG work was based on a language model, but work at IBM then
started experimenting with building a parsing model directly. The early
work reported in Jelinek et al. (1994) was developed as the SPATTER
model in Magerman (1994, 1995), which we briefly review here.

SPATTER also works by determining probabilities over derivations, but
it works in a bottom-up fashion, by starting with the words and build-
ing structure over them. Decision tree models are again used to pick
out features of the derivational history that are predictive for a certain
parsing decision. SPATTER began the trend of decomposing local phrase
structure trees into individual parsing decisions, but rather than using a
variant of dependency grammar, as in most other work, it used a some-
what odd technique of predicting which way the branch above a node
pointed.

In SPATTER, a parse tree is encoded in terms of words, part of speech
tags, non-terminal labels, and extensions, which encode the tree shape.
Tagging was done as part of the parsing process. Since the grammar is
fully lexicalized, the word and tag of the head child is always carried up
to non-terminal nodes. If we start with some words and want to predict
the subtree they form, things look something like this:

right up left

brown | dog
[brown|

A node predicts an extension which expresses the type of the line above it
connecting it to the parent node. There are five extensions: for subtrees
with two or more branches, right is assigned to the leftmost child, left
is assigned to the rightmost child, and up is assigned to any children in
between, while unary is assigned to an ‘only child’ and root is assigned
to the root node of the tree. (Note that right and left are thus switched!)

These features, including the POS tags of the words, are predicted by
decision-tree models. For one node, features are predicted in terms of
features of surrounding and lower nodes, where these features have al-
ready been determined. The models use the following questions (where
X is one of the four features mentioned above):

12.2.3

(12.33)

12.2 Some Approaches 451

m What is the X at the {current node/node {1/2} to the {left/right}}?

m What is the X at the current node’s {first/second} {left/right}-most
child?

» How many children does the node have?
m What is the span of the node in words?

m [For tags:] What are the two previous POS tags?

The parser was allowed to explore different derivation sequences, so
it could start working where the best predictive information was avail-
able (although in practice possible derivational orders were greatly con-
strained). The probability of a parse was found by summing over deriva-
tions.

Some features of SPATTER, such as the extensions feature, were rather
weird, and overall the result was a large and complex system that re-
quired a great deal of computer power to train and run (the decision tree
training and smoothing algorithms were particularly computationally in-
tensive). But there was no doubting its success. SPATTER showed that
one could automatically induce from treebank data a successful statisti-
cal parser which clearly outperformed any existing hand-crafted parser
in its ability to handle naturally occurring text.

Dependency-based models
Collins (1996)

More recently Collins (1996; 1997) has produced probabilistic parsing
models from treebank data that are simpler, more intuitive, and more
quickly computable than those explored in the preceding subsection, but
which perform as well or better.

Collins (1996) introduces a lexicalized generally Dependency Grammar-
like framework, except that baseNP units in the Penn Treebank are
treated as chunks (using chunks in parsing in this way is reminiscent
of the approach of Abney (1991)). The original model was again a parsing
model. A sentence was represented as a bag of its baseNPs and other
words (B) with dependencies (D) between them:

[The woman] in [the next row] yawned.

452

(12.34)

12 Probabilistic Parsing

Then:
P(t|s) =P(B,D|s) = P(B|s) xP(D]|s,B)

Tagging was an independent process, and was performed by the max-
imum entropy tagger of Ratnaparkhi (1996). The probability estimate
for baseNPs uses the idea of Church (1988) for identifying NPs (see sec-
tion 10.6.2). Each gap G; between words is classified as either the start or
end of an NP, between two NPs or none of the above. Then the probability
of a baseNP f of length m starting at w,, is given in terms of the predicted
gap features as:

u+m

PBls) = [] P(Gilwi-1,ticy, Wi, ti, ci)

i=u+1

where c; represents whether there is a ‘comma’ between the words or not.
Deleted interpolation is used to smooth this probability.

For the dependency model, Collins replaced each baseNP with its head
word and removed punctuation to give a reduced sentence. But punc-
tuation is used to guide parsing. Part of what is clever about Collins’
approach is that he works directly with the phrase structures of the Penn
Treebank, but derives a notation for dependencies automatically from
them. Dependencies are named based on the head and two child con-
stituents. So if one has a subtree as in (12.34), the dependency between
the PP and verb is labeled VBD_VP_PP.

VP
A
VBD Pp

i,

lived in a shoe

In other words, the dependency names are derived from purely categorial
labels, but end up capturing much of the functional information that one
would like to use in a parser. Nevertheless, the system does still have
a few limitations - for instance, these dependency labels do not capture
the difference between the two objects of a ditransitive verb.

Each dependency is assumed to be independent - a somewhat unre-
alistic assumption. Then, each word w,, apart from the main predicate
of the sentence will be dependent on some head h,,, via a dependency

12.2 Some Approaches 453

relationship Ry, n,, . Thus D can be written as a set of dependencies
{d(wj, hWi’RWhhwi)}, and we have that:

n
P(DIS,B) = [| P(d(W), hw,, Rw;n,,))
J=1 ‘
Collins calculates the probability that two word-tag pairs (wj,t;) and
(wj, tj) appear in the same reduced sentence with relationship R within
the Penn treebank in the obvious way. He counts up how common one
relationship is compared to the space of all relationships:

C(R,{wj, t;), (W}, t;))
C{wy, i), {wj, t;))

ERI{wi, t1), {wj, ;) =

And then he normalizes this quantity to give a probability.

This model was then complicated by adding conditioning based on the
‘distance’ over which the dependency stretched, where distance was eval-
uated by an ad hoc function that included not only the distance, but
direction, whether there was an intervening verb, and how many inter-
vening commas there were.

The parser used a beam search with various pruning heuristics for
efficiency. The whole system can be trained in 15 minutes, and runs
quickly, performing well even when a quite small beam is used. Collins’
parser slightly outperforms SPATTER, but the main advance seems to be
in building a much simpler and faster system that performs basically as
well. Collins also evaluates his system both using and not using lexi-
cal information and suggests that lexical information gives about a 10%
improvement on labeled precision and recall. The odd thing about this
result is that the unlexicalized version ends up performing rather worse
than Charniak’s PCFG parser. One might hypothesize that while splitting
up local subtrees into independent dependencies is useful for avoiding
data sparseness when dealing with a lexicalized model, it nevertheless
means that one doesn’t capture some (statistical) dependencies which
are being profitably used in the basic PCFG model.

A lexicalized dependency-based language model

Collins (1997) redevelops the work of Collins (1996) as a generative lan-
guage model (whereas the original had been a probabilistically deficient
parsing model). He builds a sequence of progressively more complex

454

12.2.4

12 Probabilistic Parsing

models, at each stage getting somewhat improved performance. The gen-
eral approach of the language model is to start with a parent node and a
head and then to model the successive generation of dependents on both
the left and right side of the head. In the first model, the probability of
each dependent is basically independent of other dependents (it depends
on the parent and head nodes’ category, the head lexical item, and a fi-
nal composite feature that is a function of distance, intervening words,
and punctuation). Dependents continue to be generated until a special
pseudo-nonterminal STOP is generated.

Collins then tries to build more complex models that do capture some
of the (statistical) dependencies between different dependents of a head.
What is of particular interest is that the models start bringing in a
lot of traditional linguistics. The second model makes use of the ar-
gument/adjunct distinction and models the subcategorization frames
of heads. A subcategorization frame is predicted for each head, and
the generation of dependents is additionally conditioned on the bag of
subcategorized arguments predicted that have not yet been generated.
A problem caused by trying to model subcategorization is that various
subcategorized arguments may not be overtly present in their normal
place, due to processes like the implicit object alternation (section 8.4)
or Wh-movement. In the final model Collins attempts to incorporate Wh-
movement into the probabilistic model, through the use of traces and
coindexed fillers (which are present in the Penn treebank). While the
second model performs considerably better than the first, this final com-
plication is not shown to give significantly better performance).

Discussion

Some overall parsing performance figures for some roughly comparable
systems are shown in table 12.6.17 At the time of writing, Collins’ results
are the best for a broad coverage statistical parser. It remains an open
research problem to see whether one can weld useful elements of the IBM
work (such as using held out data to estimate model parameters, the use

17. All these systems were trained on the Penn Treebank, and tested on an unseen test
set of sentences of 2-40 words, also from the Penn Treebank. However, various details of
the treatment of punctuation, choosing to ignore certain non-terminal distinctions, etc.,
nevertheless mean that the results are usually not exactly comparable. The results for
SPATTER are the results Collins (1996) gives for running SPATTER on the same test set as
his own parsers, and differ slightly from the results reported in (Magerman 1995).

12.2 Some Approaches 455

Sentences of < 40 words
% LR %LP CB %0 CBs

Charniak (1996) PCFG 804 788 n/a n/a
Magerman (1995) SPATTER 84.6 84.9 1.26 56.6
Collins (1996) best 85.8 86.3 1.14 59.9
Charniak (1997a) best 87.5 874 1.00 62.1
Collins (1997) best 88.1 88.6 0.91 66.5

Table 12.6 Comparison of some statistical parsing systems. LR = labeled recall,
LP = labeled precision, CB = crossing brackets, n/a means that a result is not
given (Charniak (1996) gives a result of 87.7% for non-crossing accuracy).

of decision trees, and more sophisticated deleted estimation techniques)
with the key ideas of Collins’ work to produce even better parsers. Addi-
tionally, we note that there are several other systems with almost as good
performance, which use quite different parsing techniques, and so there
still seems plenty of room for further investigation of other techniques.
For instance, Charniak (1997a) uses probability estimates for conven-
tional grammar rules (suitably lexicalized). The rule by which to expand
a node is predicted based on the the node’s category, its parent’s cate-
gory, and its lexical head. The head of each child is then predicted based
on the child’s category and the parent node’s category and lexical head.
Charniak provides a particularly insightful analysis of the differences in
the conditioning used in several recent state-of-the-art statistical parsers
and of what are probably the main determinants of better and worse
performance.

Just as in tagging, the availability of rich lexical resources (principally,
the Penn treebank) and the use of statistical techniques brought new lev-
els of parsing performance. However, we note that recent incremental
progress, while significant, has been reasonably modest. As Charniak
(1997a: 601) points out:

This seems to suggest that if our goal is to get, say, 95% average
labeled precision and recall, further incremental improvements on
this basic scheme may not get us there.

Qualitative breakthroughs may well require semantically richer lexical re-
sources and probabilistic models.

456

12.3

PARSEVAL MEASURES

DEPENDENCY
GRAMMAR

12 Probabilistic Parsing

Further Reading

A variety of work on grammar induction can be found in the biennial
proceedings of the International Colloquium on Grammar Inference (Car-
rasco and Oncina 1994; Miclet and de la Higuera 1996; Honavar and
Slutzki 1998).

The current generation of work on probabilistic parsing of unrestricted
text emerged within the DARPA Speech and Natural Language community.
Commonly cited early papers include (Chitrao and Grishman 1990) and
(Magerman and Marcus 1991). In particular, Magerman and Marcus make
early reference to the varying structural properties of NPs in different
positions.

Another thread of early work on statistical parsing occurred at the Uni-
versity of Lancaster. Atwell (1987) and Garside and Leech (1987) describe
a constituent boundary finder that is similar to the NP finding of (Church
1988). A PCFG trained on a small treebank is then used to choose between
possible constituents. Some discussion of the possibilities of using sim-
ulated annealing also appears. They suggest that their system could find
an “acceptable” parse about 50% of the time.

Another important arena of work on statistical parsing is work within
the pattern recognition community, an area pioneered by King-Sun Fu.
See in particular (Fu 1974).

An approachable introduction to statistical parsing including part-of-
speech tagging appears in (Charniak 1997b). The design of the Penn Tree-
bank is discussed in (Marcus et al. 1993) and (Marcus et al. 1994). It is
available from the Linguistic Data Consortium.

The original PARSEVAL measures can be found in (Black et al. 1991) or
(Harrison et al. 1991). A study of various parsing evaluation metrics, their
relationships, and appropriate parsing algorithms for different objective
functions can be found in (Goodman 1996).

The ideas of dependency grammar stretch back into the work of me-
dieval Arab grammarians, but received a clear formal statement in the
work of Tesniére (1959). Perhaps the earliest work on probabilistic de-
pendency grammars was the Probabilistic Link Grammar model of Laf-
ferty et al. (1992). Except for one particular quirky property where a word
can be bi-linked in both directions, link grammar can be thought of as a
notational variant of dependency grammar. Other work on dependency-
based statistical parsers includes Carroll and Charniak (1992).

We have discussed only a few papers from the current flurry of work

TREE-ADJOINING
GRAMMARS

TRANSFORMATION-
BASED
LEARNING

SPEECH RECOGNITION

SEMANTIC PARSING

12.3 Further Reading 457

on statistical parsing. Systems with very similar performance to (Collins
1997), but very different grammar models, are presented by Charniak
(1997a) and Ratnaparkhi (1997a). See also (Eisner 1996) for another re-
cent approach to dependency-based statistical parsers, quite similar to
(Collins 1997).

Most of the work here represents probabilistic parsing with a context-
free base. There has been some work on probabilistic versions of more
powerful grammatical frameworks. Probabilistic TAGs (Tree-Adjoining
Grammars) are discussed by Resnik (1992) and Schabes (1992). Early
work on probabilistic versions of unification grammars like Head-driven
Phrase Structure Grammar (Pollard and Sag 1994) and Lexical-Functional
Grammar (Kaplan and Bresnan 1982), such as (Brew 1995), used improper
distributions, because the dependencies within the unification grammar
were not properly accounted for. A firmer footing for such work is pro-
vided in the work of Abney (1997). See also (Smith and Cleary 1997). Bod
et al. (1996) and Bod and Kaplan (1998) explore a DOP approach to LFG.

Transformation-based learning has also been applied to parsing and
grammar induction (Brill 1993a,c; Brill and Resnik 1994). See chapter 10
for a general introduction to the transformation-based learning approach.

Hermjakob and Mooney (1997) apply a non-probabilistic parser based
on machine learning techniques (decision lists) to the problem of tree-
bank parsing, and achieve quite good results. The main take-home mes-
sage for future Statistical NLP research in their work is the value they
get from features for semantic classes, whereas most existing Statistical
NLP work has tended to overemphasize syntactic features (for the obvi-
ous reason that they are what is most easily obtained from the currently
available treebanks).

Chelba and Jelinek (1998) provide the first clear demonstration of a
probabilistic parser outperforming a trigram model as a language model
for speech recognition. They use a lexicalized binarized grammar (essen-
tially equivalent to a dependency grammar) and predict words based on
the two previous heads not yet contained in a bigger constituent.

Most of the exposition in this chapter has treated parsing as an end
in itself. Partly because parsers do not perform well enough yet, parsing
has rarely been applied to higher-level tasks like speech recognition and
language understanding. However, there is growing interest in semantic
parsing, an approach that attempts to build a meaning representation of
a sentence from its syntactic parse in a process that integrates syntactic
and semantic processing. See (Ng and Zelle 1997) for a recent overview

458

12.4

(12.35)

(12.36)

12 Probabilistic Parsing

article. A system that is statistically trained to process sentences all the
way from words to discourse representations for an airline reservation
application is described by Miller et al. (1996).

Exercises

Exercise 12.1 [*]
The second sentence in the Wall Street Journal article referred to at the start of
the chapter is:

The agency sees widespread use of the codes as a way of handling the rapidly
growing mail volume and controlling labor costs.

Find at least five well-formed syntactic structures for this sentence. If you cannot
do this exercise, you should proceed to exercise 12.2.
Exercise 12.2 [**]

Write a context-free grammar parser, which takes a grammar of rewrite rules,
and uses it to find all the parses of a sentence. Use this parser and the grammar
in (12.36) to parse the sentence in exercise 12.1. (The format of this grammar is
verbose and ugly because it does not use the abbreviatory conventions, such as
optionality, commonly used for phrase structure grammars. On the other hand,
it is particularly easy to write a parser that handles grammars in this form.) How
many parses do you get? (The answer you should get is 83.)

S — NP VP

VP — { VBZ NP | VBZ NP PP | VBZ NP PP PP }

VPG — VBG NP

. NP - { NP CC NP | DT NBAR | NBAR }

NBAR — { AP NBAR | NBAR PP | VPG | N | NN}

PP — P NP

AP - {A|RBA}

N — { agency, use, codes, way, mail, volume, labor, costs}

DT — { the, a}

j. V — sees

F @m0 oo

—-

k. A — { widespread, growing }

. P—{of as}

m. VBG — { handling, controlling }
n. RB — rapidly

o. CC — and

12.4 Exercises 459

While writing the parser, leave provision for attaching probabilities to rules, so
that you will be able to use the parser for experiments of the sort discussed later
in the chapter.

Exercise 12.3 [*]

In chapter 11, we suggested that PCFGs have a bad bias towards using nontermi-
nals with few expansions. Suppose that one has as a training corpus the treebank
given below, where ‘nx’ indicates how many times a certain tree appears in the
training corpus. What PCFG would one get from the treebank (using MLE as dis-
cussed in the text)? What is the most likely parse of the string ‘a a’ using that
grammar. Is this a reasonable result? Was the problem of bias stated correctly
in chapter 11? Discuss.

S S S S S
N\ AN N\ N N\
10xB B, 95xA A, 325xA A, 8xAA 428xAA
I Il I I Il
aa aa fg fa gf
Exercise 12.4 [% %]

Can one combine a leftmost derivation of a CFG with an n-gram model to produce
a probabilistically sound language model that uses phrase structure? If so, what
kinds of independence assumptions does one have to make? (If the approach
you work out seems interesting, you could try implementing it!)

Exercise 12.5 [*]

While a PLCG can have different probabilities for a certain expansion of NP in
subject position and object position, we noted in a footnote that a PLCG could
not capture the different distributions of NPs as first and second objects of a
verb that were shown in table 12.4. Explain why this is so.

Exercise 12.6 [%]

As shown by Demers (1977), left-corner parsers, top-down parsers and bottom-
up parsers can all be fit within a large family of Generalized Left-Corner Parsers
whose behavior depends on how much of the input they have looked at before
undertaking various actions. This suggests other possible probabilistic models
implementing other points in this space. Are there other particularly useful
points in this space? What are appropriate probabilistic models for them?

Exercise 12.7 [*]

In section 12.2.1 we pointed out that a non-lexicalized parser will always choose
the same attachment in the same structural configuration. However, thinking
about the issue of PP attachment discussed in section 8.3, that does not quite
mean that it must always choose noun attachments or always choose verb at-
tachments for PPs. Why not? Investigate in a corpus whether there is any utility
in being able to distinguish the cases that a PCFG can distinguish.

460

(12.37)

12 Probabilistic Parsing

Exercise 12.8 [*]

The aim of this exercise is to appreciate why one cannot build a Viterbi algorithm
for DOP parsing. For PCFG parsing, if we have built the two constituents/partial
derivations shown in (12.37a) and (12.37b), and P(N') in (12.37a) > P(N!) in
(12.37b), then we can discard (12.37b) because any bigger tree built using
(12.37b) will have a lower probability than a tree which is otherwise identical
but substitutes (12.37a). But we cannot do this in the DOP model. Why not?
Hint: Suppose that the tree fragment (12.37¢) is in the corpus.

a. Nt b. Nt C. Nh
PN /N SN
NI ¢ d a Nk NI N9
/N /\ VAN
a b b c d a Nk
Exercise 12.9 [% %]

Build, train, and test your own statistical parser using the Penn treebank. Your
results are more likely to be useful to others if you chose some clear hypothesis
to explore.

This excerpt from

Foundations of Statistical Natural Language Processing.
Christopher D. Manning and Hinrich Schiitze.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of thisinformation is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.

	Foundations of Statistical Natural Language Processing: Chap12 - Probabilistic Parsing
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54

	Copyright notice

