
This excerpt from

Foundations of Statistical Natural Language Processing.
Christopher D. Manning and Hinrich Schütze.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of this information is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.



p

i i

14 Clustering

Clustering algorithms partition a set of objects into groups or
clusters. Figure 14.1 gives an example of a clustering of 22 high-frequencyclusters

words from the Brown corpus. The figure is an example of a dendrogram,dendrogram

a branching diagram where the apparent similarity between nodes at the
bottom is shown by the height of the connection which joins them. Each
node in the tree represents a cluster that was created by merging two
child nodes. For example, in and on form a cluster and so do with and
for. These two subclusters are then merged into one cluster with four ob-
jects. The “height” of the node corresponds to the decreasing similarity
of the two clusters that are being merged (or, equivalently, to the order
in which the merges were executed). The greatest similarity between any
two clusters is the similarity between in and on – corresponding to the
lowest horizontal line in the figure. The least similarity is between be
and the cluster with the 21 other words – corresponding to the highest
horizontal line in the figure.

While the objects in the clustering are all distinct as tokens, normally
objects are described and clustered using a set of features and values (of-
ten known as the data representation model), and multiple objects maydata represen-

tation model have the same representation in this model, so we will define our clus-
tering algorithms to work over bags – objects like sets except that theybags

allow multiple identical items. The goal is to place similar objects in the
same group and to assign dissimilar objects to different groups.

What is the notion of ‘similarity’ between words being used here? First,
the left and right neighbors of tokens of each word in the Brown cor-
pus were tallied. These distributions give a fairly true implementation
of Firth’s idea that one can categorize a word by the words that occur
around it. But now, rather than looking for distinctive collocations, as in
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be not he I it this the his a and but in on with for at from of to as is was

Figure 14.1 A single-link clustering of 22 frequent English words represented
as a dendrogram.

chapter 5, we are capturing and using the whole distributional pattern of
the word. Word similarity was then measured as the degree of overlap in
the distributions of these neighbors for the two words in question. For
example, the similarity between in and on is large because both words oc-
cur with similar left and right neighbors (both are prepositions and tend
to be followed by articles or other words that begin noun phrases, for
instance). The similarity between is and he is small because they share
fewer immediate neighbors due to their different grammatical functions.
Initially, each word formed its own cluster, and then at each step in the
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clustering, the two clusters that are closest to each other are merged into
a new cluster.

There are two main uses for clustering in Statistical NLP. The figure
demonstrates the use of clustering for exploratory data analysis (EDA).exploratory data

analysis Somebody who does not know English would be able to derive a crude
grouping of words into parts of speech from figure 14.1 and this insight
may make subsequent analysis easier. Or we can use the figure to evalu-
ate neighbor overlap as a measure of part-of-speech similarity, assuming
we know what the correct parts of speech are. The clustering makes
apparent both strengths and weaknesses of a neighbor-based represen-
tation. It works well for prepositions (which are all grouped together),
but seems inappropriate for other words such as this and the which are
not grouped together with grammatically similar words.

Exploratory data analysis is an important activity in any pursuit that
deals with quantitative data. Whenever we are faced with a new problem
and want to develop a probabilistic model or just understand the basic
characteristics of the phenomenon, EDA is the first step. It is always a
mistake to not first spend some time getting a feel for what the data at
hand look like. Clustering is a particularly important technique for EDA in
Statistical NLP because there is often no direct pictorial visualization for
linguistic objects. Other fields, in particular those dealing with numeri-
cal or geographic data, often have an obvious visualization, for example,
maps of the incidence of a particular disease in epidemiology. Any tech-
nique that lets one visualize the data better is likely to bring to the fore
new generalizations and to stop one from making wrong assumptions
about the data.

There are other well-known techniques for displaying a set of objects
in a two-dimensional plane (such as pages of books); see section 14.3 for
references. When used for EDA, clustering is thus only one of a number
of techniques that one might employ, but it has the advantage that it can
produce a richer hierarchical structure. It may also be more convenient
to work with since visual displays are more complex. One has to worry
about how to label objects shown on the display, and, in contrast to clus-
tering, cannot give a comprehensive description of the object next to its
visual representation.

The other main use of clustering in NLP is for generalization. We re-generalization

ferred to this as forming bins or equivalence classes in section 6.1. But
there we grouped data points in certain predetermined ways, whereas
here we induce the bins from data.
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As an example, suppose we want to determine the correct preposition
to use with the noun Friday for translating a text from French into En-
glish. Suppose also that we have an English training text that contains
the phrases on Sunday, on Monday, and on Thursday, but not on Friday.
That on is the correct preposition to use with Friday can be inferred as
follows. If we cluster English nouns into groups with similar syntactic
and semantic environments, then the days of the week will end up in
the same cluster. This is because they share environments like “until
day-of-the-week,” “last day-of-the-week,” and “day-of-the-week morning.”
Under the assumption that an environment that is correct for one mem-
ber of the cluster is also correct for the other members of the cluster,
we can infer the correctness of on Friday from the presence of on Sun-
day, on Monday and on Thursday. So clustering is a way of learning.learning

We group objects into clusters and generalize from what we know about
some members of the cluster (like the appropriateness of the preposition
on) to others.

Another way of partitioning objects into groups is classification, whichclassification

is the subject of chapter 16. The difference is that classification is su-
pervised and requires a set of labeled training instances for each group.
Clustering does not require training data and is hence called unsuper-
vised because there is no “teacher” who provides a training set with class
labels. The result of clustering only depends on natural divisions in the
data, for example the different neighbors of prepositions, articles and
pronouns in the above dendrogram, not on any pre-existing categoriza-
tion scheme. Clustering is sometimes called automatic or unsupervised
classification, but we will not use these terms in order to avoid confusion.

There are many different clustering algorithms, but they can be clas-
sified into a few basic types. There are two types of structures pro-
duced by clustering algorithms, hierarchical clusterings and flat or non-hierarchical

flat

non-hierarchical

hierarchical clusterings. Flat clusterings simply consist of a certain num-
ber of clusters and the relation between clusters is often undetermined.
Most algorithms that produce flat clusterings are iterative. They startiterative

with a set of initial clusters and improve them by iterating a reallocation
operation that reassigns objects.

A hierarchical clustering is a hierarchy with the usual interpretation
that each node stands for a subclass of its mother’s node. The leaves of
the tree are the single objects of the clustered set. Each node represents
the cluster that contains all the objects of its descendants. Figure 14.1 is
an example of a hierarchical cluster structure.
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Another important distinction between clustering algorithms is whe-
ther they perform a soft clustering or hard clustering. In a hard assign-soft clustering

hard clustering ment, each object is assigned to one and only one cluster. Soft assign-
ments allow degrees of membership and membership in multiple clus-
ters. In a probabilistic framework, an object xi has a probability distribu-
tion P(·|xi) over clusters cj where P(cj |xi) is the probability that xi is a
member of cj . In a vector space model, degree of membership in multiple
clusters can be formalized as the similarity of a vector to the center of
each cluster. In a vector space, the center of the M points in a cluster c,
otherwise known as the centroid or center of gravity is the point:centroid

center of gravity

~µ = 1
M

∑
~x∈c
~x(14.1)

In other words, each component of the centroid vector ~µ is simply the
average of the values for that component in the M points in c.

In hierarchical clustering, assignment is usually ‘hard.’ In non-hierarch-
ical clustering, both types of assignment are common. Even most soft
assignment models assume that an object is assigned to only one cluster.
The difference from hard clustering is that there is uncertainty about
which cluster is the correct one. There are also true multiple assignment
models, so-called disjunctive clustering models, in which an object candisjunctive

clustering truly belong to several clusters. For example, there may be a mix of
syntactic and semantic categories in word clustering and book would fully
belong to both the semantic “object” and the syntactic “noun” category.
We will not cover disjunctive clustering models here. See (Saund 1994)
for an example of a disjunctive clustering model.

Nevertheless, it is worth mentioning at the beginning the limitations
that follow from the assumptions of most clustering algorithms. A hard
clustering algorithm has to choose one cluster to which to assign ev-
ery item. This is rather unappealing for many problems in NLP. It is a
commonplace that many words have more than one part of speech. For
instance play can be a noun or a verb, and fast can be an adjective or an
adverb. And many larger units also show mixed behavior. Nominalized
clauses show some verb-like (clausal) behavior and some noun-like (nom-
inalization) behavior. And we suggested in chapter 7 that several senses
of a word were often simultaneously activated. Within a hard clustering
framework, the best we can do in such cases is to define additional clus-
ters corresponding to words that can be either nouns or verbs, and so on.
Soft clustering is therefore somewhat more appropriate for many prob-
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Hierarchical clustering:

� Preferable for detailed data anal-
ysis

� Provides more information than
flat clustering

� No single best algorithm (each of
the algorithms we describe has
been found to be optimal for
some application)

� Less efficient than flat clustering
(for n objects, one minimally has
to compute an n × n matrix of
similarity coefficients, and then
update this matrix as one pro-
ceeds)

Non-hierarchical clustering:

� Preferable if efficiency is a con-
sideration or data sets are very
large

� K-means is the conceptually sim-
plest method and should proba-
bly be used first on a new data
set because its results are often
sufficient

� K-means assumes a simple Eucli-
dean representation space, and
so cannot be used for many data
sets, for example, nominal data
like colors

� In such cases, the EM algorithm
is the method of choice. It can ac-
commodate definition of clusters
and allocation of objects based
on complex probabilistic models.

Table 14.1 A summary of the attributes of different clustering algorithms.

lems in NLP, since a soft clustering algorithm can assign an ambiguous
word like play partly to the cluster of verbs and partly to the cluster of
nouns.

The remainder of the chapter looks in turn at various hierarchical and
non-hierarchical clustering methods, and some of their applications in
NLP. In table 14.1, we briefly characterize some of the features of cluster-
ing algorithms for the reader who is just looking for a quick solution to
an immediate clustering need.

For a discussion of the pros and cons of different clustering algorithms
see Kaufman and Rousseeuw (1990). The main notations that we will use
in this chapter are summarized in table 14.2.

14.1 Hierarchical Clustering

The tree of a hierarchical clustering can be produced either bottom-up,
by starting with the individual objects and grouping the most similar
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Notation Meaning

X = {x1, . . . , xn} the set of n objects to be clustered
C = {c1, . . . , cj , . . . ck} the set of clusters (or cluster hypotheses)
P(X) powerset (set of subsets) of X
sim(·, ·) similarity function
S(·) group average similarity function
m Dimensionality of vector space Rm

Mj Number of points in cluster cj
~s(cj) Vector sum of vectors in cluster cj
N number of word tokens in training corpus
wi,...,j tokens i through j of the training corpus
π(·) function assigning words to clusters
C(w1w2) number of occurrences of string w1w2

C(c1c2) number of occurrences of string w1w2 s.t.
π(w1) = c1, π(w2) = c2

~µj Centroid for cluster cj
Σj Covariance matrix for cluster cj

Table 14.2 Symbols used in the clustering chapter.

ones, or top-down, whereby one starts with all the objects and divides
them into groups so as to maximize within-group similarity. Figure 14.2
describes the bottom-up algorithm, also called agglomerative clustering.agglomerative

clustering Agglomerative clustering is a greedy algorithm that starts with a separate
cluster for each object (3,4). In each step, the two most similar clusters
are determined (8), and merged into a new cluster (9). The algorithm
terminates when one large cluster containing all objects of S has been
formed, which then is the only remaining cluster in C (7).

Let us flag one possibly confusing issue. We have phrased the clus-
tering algorithm in terms of similarity between clusters, and therefore
we join things with maximum similarity (8). Sometimes people think in
terms of distances between clusters, and then you want to join things that
are the minimum distance apart. So it is easy to get confused between
whether you’re taking maximums or minimums. It is straightforward to
produce a similarity measure from a distance measure d, for example by
sim(x, y) = 1/(1+ d(x, y)).

Figure 14.3 describes top-down hierarchical clustering, also called divi-divisive clustering

sive clustering (Jain and Dubes 1988: 57). Like agglomerative clustering
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1 Given: a set X = {x1, . . . xn} of objects
2 a function sim: P(X)×P(X)→ R
3 for i := 1 to n do
4 ci := {xi} end
5 C := {c1, . . . , cn}
6 j := n+ 1
7 while C > 1
8 (cn1 , cn2) := arg max(cu,cv)∈C×C sim(cu, cv)
9 cj = cn1 ∪ cn2

10 C := C\{cn1 , cn2} ∪ {cj}
11 j := j + 1

Figure 14.2 Bottom-up hierarchical clustering.

1 Given: a set X = {x1, . . . xn} of objects
2 a function coh: P(X)→ R
3 a function split: P(X)→ P(X)×P(X)
4 C := {X} (= {c1})
5 j := 1
6 while ∃ci ∈ C s.t. |ci| > 1
7 cu := arg mincv∈C coh(cv)
8 (cj+1, cj+2) = split(cu)
9 C := C\{cu} ∪ {cj+1, cj+2}

10 j := j + 2

Figure 14.3 Top-down hierarchical clustering.

it is a greedy algorithm. Starting from a cluster with all objects (4), each
iteration determines which cluster is least coherent (7) and splits this
cluster (8). Clusters with similar objects are more coherent than clus-
ters with dissimilar objects. For example, a cluster with several identical
members is maximally coherent.

Hierarchical clustering only makes sense if the similarity function is
monotonic:monotonic

(14.2) Monotonicity.
∀c, c′, c′′ ⊆ S : min

(
sim(c, c′), sim(c, c′′)

) ≥ sim(c, c′ ∪ c′′)
In other words, the operation of merging is guaranteed to not increase
similarity. A similarity function that does not obey this condition makes
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Function Definition

single link similarity of two most similar members
complete link similarity of two least similar members
group-average average similarity between members

Table 14.3 Similarity functions used in clustering. Note that for group-average
clustering, we average over all pairs, including pairs from the same cluster. For
single-link and complete-link clustering, we quantify over the subset of pairs
from different clusters.

the hierarchy uninterpretable since dissimilar clusters, which are placed
far apart in the tree, can become similar in subsequent merging so that
‘closeness’ in the tree does not correspond to conceptual similarity any-
more.

Most hierarchical clustering algorithms follow the schemes outlined in
figures 14.2 and 14.3. The following sections discuss specific instances
of these algorithms.

14.1.1 Single-link and complete-link clustering

Table 14.3 shows three similarity functions that are commonly used in in-
formation retrieval (van Rijsbergen 1979: 36ff). Recall that the similarity
function determines which clusters are merged in each step in bottom-up
clustering. In single-link clustering the similarity between two clusters is
the similarity of the two closest objects in the clusters. We search over
all pairs of objects that are from the two different clusters and select the
pair with the greatest similarity.

Single-link clusterings have clusters with good local coherence since thelocal coherence

similarity function is locally defined. However, clusters can be elongated
or “straggly” as shown in figure 14.6. To see why single-link clustering
produces such elongated clusters, observe first that the best moves in
figure 14.4 are to merge the two top pairs of points and then the two
bottom pairs of points, since the similarities a/b, c/d, e/f , and g/h are
the largest for any pair of objects. This gives us the clusters in figure 14.5.
The next two steps are to first merge the top two clusters, and then the
bottom two clusters, since the pairs b/c and f /g are closer than all others
that are not in the same cluster (e.g., closer than b/f and c/g). After doing
these two merges we get figure 14.6. We end up with two clusters that
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Figure 14.4 A cloud of points in a plane.
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Figure 14.5 Intermediate clustering of the points in figure 14.4.

are locally coherent (meaning that close objects are in the same cluster),
but which can be regarded as being of bad global quality. An example of
bad global quality is that a is much closer to e than to d, yet a and d are
in the same cluster whereas a and e are not.

The tendency of single-link clustering to produce this type of elongated
cluster is sometimes called the chaining effect since we follow a chain ofchaining effect

large similarities without taking into account the global context.
Single-link clustering is closely related to the minimum spanning treeminimum spanning

tree (MST) of a set of points. The MST is the tree that connects all objects with
edges that have the largest similarities. That is, of all trees connecting
the set of objects the sum of the length of the edges of the MST is mini-
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Figure 14.6 Single-link clustering of the points in figure 14.4.
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Figure 14.7 Complete-link clustering of the points in figure 14.4.

mal. A single-link hierarchy can be constructed top-down from an MST by
removing the longest edge in the MST so that two unconnected compo-
nents are created, corresponding to two subclusters. The same operation
is then recursively applied to these two subclusters (which are also MSTs).

Complete-link clustering has a similarity function that focuses on glo-
bal cluster quality (as opposed to locally coherent clusters as in the case
of single-link clustering). The similarity of two clusters is the similarity
of their two most dissimilar members. Complete-link clustering avoids
elongated clusters. For example, in complete-link clustering the two best
merges in figure 14.5 are to merge the two left clusters, and then the
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two right clusters, resulting in the clusters in figure 14.7. Here, the min-
imally similar pair for the left clusters (a/f or b/e) is “tighter” than the
minimally similar pair of the two top clusters (a/d).

So far we have made the assumption that ‘tight’ clusters are better than
‘straggly’ clusters. This reflects an intuition that a cluster is a group of
objects centered around a central point, and so compact clusters are to be
preferred. Such an intuition corresponds to a model like the Gaussian dis-
tribution (section 2.1.9), which gives rise to sphere-like clusters. But this
is only one possible underlying model of what a good cluster is. It is really
a question of our prior knowledge about and model of the data which de-
termines what a good cluster is. For example, the Hawai’ian islands were
produced (and are being produced) by a volcanic process which moves
along a straight line and creates new volcanoes at more or less regular
intervals. Single-link is a very appropriate clustering model here since
local coherence is what counts and elongated clusters are what we would
expect (say, if we wanted to group several chains of volcanic islands).
It is important to remember that the different clustering algorithms that
we discuss will generally produce different results which incorporate the
somewhat ad hoc biases of the different algorithms. Nevertheless, in
most NLP applications, the sphere-shaped clusters of complete-link clus-
tering are preferable to the elongated clusters of single-link clustering.

The disadvantage of complete-link clustering is that it has time com-
plexity O(n3) since there are n merging steps and each step requires
O(n2) comparisons to find the smallest similarity between any two ob-
jects for each cluster pair (where n is the number of objects to be clus-
tered).1 In contrast, single-link clustering has complexity O(n2). Once
the n × n similarity matrix for all objects has been computed, it can be
updated after each merge in O(n): if clusters cu and cv are merged into
cj = cu ∪ cv , then the similarity of the merge with another cluster ck is
simply the maximum of the two individual similarities:

sim(cj , ck) = max(sim(cu, ck), sim(cv , ck))

Each of the n − 1 merges requires at most n constant-time updates.
Both merging and similarity computation thus have complexity O(n2)

1. ‘O(n3)’ is an instance of ‘Big Oh’ notation for algorithmic complexity. We assume that
the reader is familiar with it, or else is willing to skip issues of algorithmic complexity.
It is defined in most books on algorithms, including (Cormen et al. 1990). The notation
describes just the basic dependence of an algorithm on certain parameters, while ignoring
constant factors.
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in single-link clustering, which corresponds to an overall complexity of
O(n2).

Single-link and complete-link clustering can be graph-theoretically in-
terpreted as finding a maximally connected and maximally complete
graph (or clique), respectively, hence the term “complete link” for the
latter. See (Jain and Dubes 1988: 64).

14.1.2 Group-average agglomerative clustering

Group-average agglomerative clustering is a compromise between single-
link and complete-link clustering. Instead of the greatest similarity be-
tween elements of clusters (single-link) or the least similarity (complete
link), the criterion for merges is average similarity. We will see presently
that average similarity can be computed efficiently in some cases so that
the complexity of the algorithm is only O(n2). The group-average strat-
egy is thus an efficient alternative to complete-link clustering while avoid-
ing the elongated and straggly clusters that occur in single-link cluster-
ing.

Some care has to be taken in implementing group-average agglomera-
tive clustering. The complexity of computing average similarity directly
is O(n2). So if the average similarities are computed from scratch each
time a new group is formed, that is, in each of the n merging steps, then
the algorithm would be O(n3). However, if the objects are represented as
length-normalized vectors in an m-dimensional real-valued space and if
the similarity measure is the cosine, defined as in (14.3):cosine

sim(~v, ~w) =
∑m
i=1 vi ×wi√∑m

i=1 vi ×
∑m
i=1wi

= ~x · ~y(14.3)

then there exists an algorithm that computes the average similarity of a
cluster in constant time from the average similarity of its two children.
Given the constant-time for an individual merging operation, the overall
time complexity is O(n2).

We write X for the set of objects to be clustered, each represented by
a m-dimensional vector:

X ⊆ Rm

For a cluster cj ⊆ X, the average similarity S between vectors in cj is
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defined as follows. (The factor |cj |(|cj | − 1) calculates the number of
(non-zero) similarities added up in the double summation.)

S(cj) = 1
|cj|(|cj | − 1)

∑
~x∈cj

∑
~x≠~y∈cj

sim(~x, ~y)(14.4)

Let C be the set of current clusters. In each iteration, we identify the
two clusters cu and cv which maximize S(cu ∪ cv). This corresponds to
step 8 in figure 14.2. A new, smaller, partition C′ is then constructed by
merging cu and cv (step 10 in figure 14.2):

C′ = (C − {cu, cv})∪ {cu ∪ cv}
For cosine as the similarity measure, the inner maximization can be

done in linear time (Cutting et al. 1992: 328). One can compute the av-
erage similarity between the elements of a candidate pair of clusters in
constant time by precomputing for each cluster the sum of its members
~s(cj).

~s(cj) =
∑
~x∈cj

~x

The sum vector ~s(cj) is defined in such a way that: (i) it can be easily
updated after a merge (namely by simply summing the ~s of the clusters
that are being merged), and (ii) the average similarity of a cluster can be
easily computed from them. This is so because the following relationship
between ~s(cj) and S(cj) holds:

~s(cj) · ~s(cj) =
∑
~x∈cj

~x · ~s(cj)(14.5)

=
∑
~x∈cj

∑
~y∈cj

~x · ~y

= |cj |(|cj | − 1)S(cj)+
∑
~x∈cj

~x · ~x

= |cj |(|cj | − 1)S(cj)+ |cj |
Thus, S(cj) = ~s(cj) · ~s(cj)− |cj |

|cj |(|cj | − 1)

Therefore, if ~s(·) is known for two groups ci and cj , then the average
similarity of their union can be computed in constant time as follows:

S(ci ∪ cj) = (~s(ci)+ ~s(cj)) · (~s(ci)+ ~s(cj))(|ci| + |cj|)(|ci| + |cj| − 1)
(14.6)
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Given this result, this approach to group-average agglomerative clus-
tering has complexity O(n2), reflecting the fact that initially all pairwise
similarities have to be computed. The following step that performs n
mergers (each in linear time) has linear complexity, so that overall com-
plexity is quadratic.

This form of group-average agglomerative clustering is efficient enough
to deal with a large number of features (corresponding to the dimensions
of the vector space) and a large number of objects. Unfortunately, the
constant time computation for merging two groups (by making use of
the quantities ~s(cj)) depends on the properties of vector spaces. There is
no general algorithm for group-average clustering that would be efficient
independent of the representation of the objects that are to be clustered.

14.1.3 An application: Improving a language model

Now that we have introduced some of the best known hierarchical clus-
tering algorithms, it is time to look at an example of how clustering can
be used for an application. The application is building a better languagelanguage model

model. Recall that language models are useful in speech recognition
and machine translation for choosing among several candidate hypothe-
ses. For example, a speech recognizer may find that President Kennedy
and precedent Kennedy are equally likely to have produced the acous-
tic observations. However, a language model can tell us what are a pri-
ori likely phrases of English. Here it tell us that President Kennedy is
much more likely than precedent Kennedy, and so we conclude that Pres-
ident Kennedy is probably what was actually said. This reasoning can
be formalized by the equation for the noisy channel model, which we
introduced in section 2.2.4. It says that we should choose the hypothe-
sisH that maximizes the product of the probability given by the language
model, P(H), and the conditional probability of observing the speech
signal D (or the foreign language text in machine translation) given the
hypothesis, P(D|H).

Ĥ = arg max
H

P(H|D) = arg max
H

P(D|H)P(H)
P(D)

= arg max
H

P(D|H)P(H)

Clustering can play an important role in improving the language model
(the computation of P(H)) by way of generalization. As we saw in chap-
ter 6, there are many rare events for which we do not have enough train-
ing data for accurate probabilistic modeling. If we mediate probabilistic
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inference through clusters, for which we have more evidence in the train-
ing set, then our predictions for rare events are likely to be more accurate.
This approach was taken by Brown et al. (1992c). We first describe the
formalization of the language model and then the clustering algorithm.

The language model

The language model under discussion is a bigram model that makes a
first order Markov assumption that a word depends only on the previous
word. The criterion that we optimize is a decrease in cross entropy or,cross entropy

equivalently, perplexity (section 2.2.8), the amount by which the languageperplexity

model reduces the uncertainty about the next word. Our aim is to find
a function π that assigns words to clusters which decreases perplexity
compared to a simple word bigram model.

We first approximate the cross entropy of the corpus L = w1 . . . wN
for the cluster assignment function π by making the Markov assumption
that a word’s occurrence only depends on its predecessor:

H(L,π) = − 1
N

logP(w1,...,N)(14.7)

≈ −1
N − 1

log
N∏
i=2

P(wi|wi−1)(14.8)

≈ −1
N − 1

∑
w1w2

C(w1w2) logP(w2|w1)(14.9)

Now we make the basic assumption of cluster-based generalization that
the occurrence of a word from cluster c2 only depends on the cluster c1
of the preceding word:2

H(L,π) ≈ −1
N − 1

∑
w1w2

C(w1w2) logP(c2|c1)P(w2|c2)(14.10)

Formula (14.10) can be simplified as follows:

H(L,π) ≈ −
 ∑
w1w2

C(w1w2)
N − 1

[logP(w2|c2)+ logP(c2)](14.11)

2. One can observe that this equation is very similar to the probabilistic models used in
tagging, which we discuss in chapter 10, except that we induce the word classes from
corpus evidence instead of taking them from our linguistic knowledge about parts of
speech.



p

i i

14.1 Hierarchical Clustering 511

+
∑
w1w2

C(w1w2)
N − 1

[logP(c2|c1)− logP(c2)]


= −

∑
w2

∑
w1 C(w1w2)
N − 1

logP(w2|c2)P(c2)(14.12)

+
∑
c1c2

C(c1c2)
N − 1

log
P(c2|c1)
P(c2)


≈ −

∑
w
P(w) logP(w)+

∑
c1c2
P(c1c2) log

P(c1c2)
P(c1)P(c2)

(14.13)

= H(w)− I(c1; c2)(14.14)

In (14.13) we rely on the approximations
∑
w1 C(w1w2)
N−1 ≈ P(w2) and

C(c1c2)
N−1 ≈ P(c1c2), which hold for large n. In addition, P(w2|c2)P(c2) =
P(w2c2) = P(w2) holds since π(w2) = c2.

Equation (14.14) shows that we can minimize the cross entropy by
choosing the cluster assignment function π such that the mutual infor-
mation between adjacent clusters I(c1; c2) is maximized. Thus we should
get the optimal language model by choosing clusters that maximize this
mutual information measure.

Clustering

The clustering algorithm is bottom-up with the following merge criterion
which maximizes the mutual information between adjacent classes:

MI-loss(ci, cj) =
∑

ck∈C\{ci ,cj}
I(ck; ci)+ I(ck; cj)− I(ck; ci ∪ cj)(14.15)

In each step, we select the two clusters whose merge causes the smallest
loss in mutual information. In the description of bottom-up clustering in
figure 14.2, this would correspond to the following selection criterion for
the pair of clusters that is to be merged next:

(cn1 , cn2) := arg min
(ci ,cj )∈C×C

MI-loss(ci, cj)

The clustering is stopped when a pre-determined number k of clusters
has been reached (k = 1000 in (Brown et al. 1992c)). Several shortcuts are
necessary to make the computation of the MI-loss function and the clus-
tering of a large vocabulary efficient. In addition, the greedy algorithm
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(“do the merge with the smallest MI-loss”) does not guarantee an optimal
clustering result. The clusters can be (and were) improved by moving in-
dividual words between clusters. The interested reader can look up the
specifics of the algorithm in (Brown et al. 1992c).

Here are three of the 1000 clusters found by Brown et al. (1992c):

� plan, letter, request, memo, case, question, charge, statement, draft

� day, year, week, month, quarter, half

� evaluation, assessment, analysis, understanding, opinion, conversa-
tion, discussion

We observe that these clusters are characterized by both syntactic and
semantic properties, for example, nouns that refer to time periods.

The perplexity for the cluster-based language model was 277 compared
to a perplexity of 244 for a word-based model (Brown et al. 1992c: 476),
so no direct improvement was achieved by clustering. However, a linear
interpolation (see section 6.3.1) between the word-based and the cluster-
based model had a perplexity of 236, which is an improvement over the
word-based model (Brown et al. 1992c: 476). This example demonstrates
the utility of clustering for the purpose of generalization.

We conclude our discussion by pointing out that clustering and cluster-
based inference are integrated here. The criterion we optimize on in
clustering, the minimization of H(L,π) = H(w)−I(c1; c2), is at the same
time a measure of the quality of the language model, the ultimate goal of
the clustering. Other researchers first induce clusters and then use these
clusters for generalization in a second, independent step. An integrated
approach to clustering and cluster-based inference is preferable because
it guarantees that the induced clusters are optimal for the particular type
of generalization that we intend to use the clustering for.

14.1.4 Top-down clustering

Hierarchical top down clustering as described in figure 14.3 starts out
with one cluster that contains all objects. The algorithm then selects the
least coherent cluster in each iteration and splits it. The functions we
introduced in table 14.3 for selecting the best pair of clusters to merge
in bottom-up clustering can also serve as measures of cluster coherence
in top-down clustering. According to the single-link measure, the coher-
ence of a cluster is the smallest similarity in the minimum spanning tree
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for the cluster; according to the complete-link measure, the coherence
is the smallest similarity between any two objects in the cluster; and ac-
cording to the group-average measure, coherence is the average similarity
between objects in the cluster. All three measures can be used to select
the least coherent cluster in each iteration of top-down clustering.

Splitting a cluster is also a clustering task, the task of finding two sub-
clusters of the cluster. Any clustering algorithm can be used for the
splitting operation, including the bottom-up algorithms described above
and non-hierarchical clustering. Perhaps because of this recursive need
for a second clustering algorithm, top-down clustering is less often used
than bottom-up clustering.

However, there are tasks for which top-down clustering is the more nat-
ural choice. An example is the clustering of probability distributions us-
ing the Kullback-Leibler (KL) divergence. Recall that KL divergence whichKullback-Leibler

divergence we introduced in section 2.2.5 is defined as follows:

D(p‖q) =
∑
x∈X

p(x) log
p(x)
q(x)

(14.16)

This “dissimilarity” measure is not defined for p(x) > 0 and q(x) = 0. In
cases where individual objects have probability distributions with many
zeros, one cannot compute the matrix of similarity coefficients for all
objects that is required for bottom-up clustering.

An example of such a constellation is the approach to distributional
clustering of nouns proposed by (Pereira et al. 1993). Object nouns are
represented as probability distributions over verbs, where qn(v) is esti-
mated as the relative frequency that, given the object noun n, the verb v
is its predicate. So for example, for the noun apple and the verb eat, we
will have qn(v) = 0.2 if one fifth of all occurrences of apple as an object
noun are with the verb eat. Any given noun only occurs with a limited
number of verbs, so we have the above-mentioned problem with singu-
larities in computing KL divergence here, which prevents us from using
bottom-up clustering.

To address this problem, distributional noun clustering instead per-distributional

noun clustering forms top-down clustering. Cluster centroids are computed as (weighted
and normalized) sums of the probability distributions of the member
nouns. This leads to cluster centroid distributions with few zeros that
have a defined KL divergence with all their members. See Pereira et al.
(1993) for a complete description of the algorithm.
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14.2 Non-Hierarchical Clustering

Non-hierarchical algorithms often start out with a partition based on ran-
domly selected seeds (one seed per cluster), and then refine this initial
partition. Most non-hierarchical algorithms employ several passes of re-reallocating

allocating objects to the currently best cluster whereas hierarchical algo-
rithms need only one pass. However, reallocation of objects from one
cluster to another can improve hierarchical clusterings too. We saw an
example in section 14.1.3, where after each merge objects were moved
around to improve global mutual information.

If the non-hierarchical algorithm has multiple passes, then the ques-
tion arises when to stop. This can be determined based on a measure
of goodness or cluster quality. We have already seen candidates of such
a measure, for example, group-average similarity and mutual informa-
tion between adjacent clusters. Probably the most important stopping
criterion is the likelihood of the data given the clustering model which
we will introduce below. Whichever measure we choose, we simply con-
tinue clustering as long as the measure of goodness improves enough in
each iteration. We stop when the curve of improvement flattens or when
goodness starts decreasing.

The measure of goodness can address another problem: how to deter-
mine the right number of clusters. In some cases, we may have some
prior knowledge about the right number of clusters (for example, the
right number of parts of speech in part-of-speech clustering). If this is
not the case, we can cluster the data into n clusters for different values
of n. Often the goodness measure improves with n. For example, the
more clusters the higher the maximum mutual information that can be
attained for a given data set. However, if the data naturally fall into a
certain number k of clusters, then one can often observe a substantial
increase in goodness in the transition from k−1 to k clusters and a small
increase in the transition from k to k+1. In order to automatically deter-
mine the number of clusters, we can look for a k with this property and
then settle on the resulting k clusters.

A more principled approach to finding an optimal number of clusters
is the Minimum Description Length (MDL) approach in the AUTOCLASSMinimum

Description Length

AUTOCLASS

system (Cheeseman et al. 1988). The basic idea is that the measure of
goodness captures both how well the objects fit into the clusters (which
is what the other measures we have seen do) and how many clusters there
are. A high number of clusters will be penalized, leading to a lower good-
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ness value. In the framework of MDL, both the clusters and the objects
are specified by code words whose length is measured in bits. The more
clusters there are, the fewer bits are necessary to encode the objects. In
order to encode an object, we only encode the difference between it and
the cluster it belongs to. If there are more clusters, the clusters describe
objects better, and we need fewer bits to describe the difference between
objects and clusters. However, more clusters obviously take more bits
to encode. Since the cost function captures the length of the code for
both data and clusters, minimizing this function (which maximizes the
goodness of the clustering) will determine both the number of clusters
and how to assign objects to clusters.3

It may appear that it is an advantage of hierarchical clustering that the
number of clusters need not be determined. But the full cluster hierarchy
of a set of objects does not define a particular clustering since the tree
can be cut in many different ways. For a usable set of clusters in hier-
archical clustering one often needs to determine a desirable number of
clusters or, alternatively, a value of the similarity measure at which links
of the tree are cut. So there is not really a difference between hierarchical
and non-hierarchical clustering in this respect. For some non-hierarchical
clustering algorithms, an advantage is their speed.

We cover two non-hierarchical clustering algorithms in this section, K-
means and the EM algorithm. K-means clustering is probably the simplest
clustering algorithm and, despite its limitations, it works sufficiently well
in many applications. The EM algorithm is a general template for a family
of algorithms. We describe its incarnation as a clustering algorithm first
and then relate it to the various instantiations that have been used in
Statistical NLP, some of which like the inside-outside algorithm and the
forward-backward algorithm are more fully treated in other chapters of
this book.

14.2.1 K-means

K-means is a hard clustering algorithm that defines clusters by the cen-K-means

ter of mass of their members. We need a set of initial cluster centers in
the beginning. Then we go through several iterations of assigning each
object to the cluster whose center is closest. After all objects have been
assigned, we recompute the center of each cluster as the centroid or meanrecomputation

3. AUTOCLASS can be downloaded from the internet. See the website.
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1 Given: a set X = {~x1, . . . , ~xn} ⊆ Rm
2 a distance measure d : Rm ×Rm → R
3 a function for computing the mean µ : P(R)→ Rm

4 Select k initial centers ~f1, . . . , ~fk
5 while stopping criterion is not true do
6 for all clusters cj do

7 cj = {~xi | ∀~fl d(~xi, ~fj) ≤ d(~xi, ~fl)}
8 end

9 for all means ~fj do

10 ~fj = µ(cj)
11 end
12 end

Figure 14.8 The K-means clustering algorithm.

~µ of its members (see figure 14.8), that is ~µ = (1/|cj |)
∑
~x∈cj ~x. The dis-

tance function is Euclidean distance.
A variant of K-means is to use the L1 norm instead (section 8.5.2):

L1(~x, ~y) =
∑
l
|xl − yl|

This norm is less sensitive to outliers. K-means clustering in Euclidean
space often creates singleton clusters for outliers. Clustering in L1 space
will pay less attention to outliers so that there is higher likelihood of
getting a clustering that partitions objects into clusters of similar size.
The L1 norm is often used in conjunction with medoids as cluster centers.medoids

The difference between medoids and centroids is that a medoid is one of
the objects in the cluster – a prototypical class member. A centroid, the
average of a cluster’s members, is in most cases not identical to any of
the objects.

The time complexity of K-means is O(n) since both steps of the itera-
tion are O(n) and only a constant number of iterations is computed.

Figure 14.9 shows an example of one iteration of the K-means algo-
rithm. First, objects are assigned to the cluster whose mean is closest.
Then the means are recomputed. In this case, any further iterations will
not change the clustering since an assignment to the closest center does
not change the cluster membership of any object, which in turn means
that no center will be changed in the recomputation step. But this is
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Figure 14.9 One iteration of the K-means algorithm. The first step assigns
objects to the closest cluster mean. Cluster means are shown as circles. The
second step recomputes cluster means as the center of mass of the set of objects
that are members of the cluster.

not the case in general. Usually several iterations are required before the
algorithm converges.

One implementation problem that the description in figure 14.8 does
not address is how to break ties in cases where there are several centers
with the same distance from an object. In such cases, one can either
assign objects randomly to one of the candidate clusters (which has the
disadvantage that the algorithm may not converge) or perturb objects
slightly so that their new positions do not give rise to ties.

Here is an example of how to use K-means clustering. Consider these
twenty words from the New York Times corpus in chapter 5.

Barbara, Edward, Gov, Mary, NFL, Reds, Scott, Sox, ballot, finance,
inning, payments, polls, profit, quarterback, researchers, science,
score, scored, seats
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Cluster Members

1 ballot (0.28), polls (0.28), Gov (0.30), seats (0.32)
2 profit (0.21), finance (0.21), payments (0.22)
3 NFL (0.36), Reds (0.28), Sox (0.31), inning (0.33),

quarterback (0.30), scored (0.30), score (0.33)
4 researchers (0.23), science (0.23)
5 Scott (0.28), Mary (0.27), Barbara (0.27), Edward (0.29)

Table 14.4 An example of K-means clustering. Twenty words represented as
vectors of co-occurrence counts were clustered into 5 clusters using K-means.
The distance from the cluster centroid is given after each word.

Table 14.4 shows the result of clustering these words using K-means with
k = 5. We used the data representation from chapter 8 that is also the
basis of table 8.8 on page 302. The first four clusters correspond to the
topics ‘government,’ ‘finance,’ ‘sports,’ and ‘research,’ respectively. The
last cluster contains names. The benefit of clustering is obvious here.
The clustered display of the words makes it easier to understand what
types of words occur in the sample and what their relationships are.

Initial cluster centers for K-means are usually picked at random. It de-
pends on the structure of the set of objects to be clustered whether the
choice of initial centers is important or not. Many sets are well-behaved
and most initializations will result in clusterings of about the same qual-
ity.

For ill-behaved sets, one can compute good cluster centers by first run-
ning a hierarchical clustering algorithm on a subset of the objects. This
is the basic idea of the Buckshot algorithm. Buckshot first applies group-Buckshot

average agglomerative clustering (GAAC) to a random sample of the data
that has size square root of the complete set. GAAC has quadratic time
complexity, but since (

√
n)2 = n, applying GAAC to this sample results

in overall linear complexity of the algorithm. The K-means reassignment
step is also linear, so that the overall complexity is O(n).

14.2.2 The EM algorithm

One way to introduce the EM algorithm is as a ‘soft’ version of K-means
clustering. Figure 14.10 shows an example. As before, we start with a
set of random cluster centers, c1 and c2. In K-means clustering we would
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Figure 14.10 An example of using the EM algorithm for soft clustering.

arrive at the final centers shown on the right side in one iteration. The
EM algorithm instead does a soft assignment, which, for example, makes
the lower right point mostly a member of c2, but also partly a member
of c1. As a result, both cluster centers move towards the centroid of all
three objects in the first iteration. Only after the second iteration do we
reach the stable final state.

An alternative way of thinking of the EM algorithm is as a way of es-
timating the values of the hidden parameters of a model. We have seen
some data X, and can estimate P(X|p(Θ)), the probability of the data
according to some model p with parameters Θ. But how do we find the
model which maximizes the likelihood of the data? This point will be a
maximum in the parameter space, and therefore we know that the prob-
ability surface will be flat there. So for each model parameter θi , we want
to set ∂

∂θi logP(. . .) = 0 and solve for the θi . Unfortunately this (in gen-
eral) gives a non-linear set of equations for which no analytical methods
of solution are known. But we can hope to find the maximum using the
EM algorithm.

In this section, we will first introduce the EM algorithm for the estima-
tion of Gaussian mixtures, the soft clustering algorithm that figure 14.10
is an example of. Then we will describe the EM algorithm in its most
general form and relate the general form to specific instances like the
inside-outside algorithm and the forward-backward algorithm.
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EM for Gaussian mixtures

In applying EM to clustering, we view clustering as estimating a mixture
of probability distributions. The idea is that the observed data are gener-
ated by several underlying causes. Each cause contributes independently
to the generation process, but we only see the final mixture – without in-
formation about which cause contributed what. We formalize this notion
by representing the data as a pair. There is the observable data X = {~xi},observable

where each ~xi = (xi1, . . . , xim)T is simply the vector that corresponds to
the ith data point. And then there is the unobservable data Z = {~zi},unobservable

where within each ~zi = zi1, . . . , zik, the component zij is 1 if object i is
a member of cluster j (that is, it is assumed to be generated by that
underlying cause) and 0 otherwise.

We can cluster with the EM algorithm if we know the type of distribu-
tion of the individual clusters (or causes). When estimating a Gaussian
mixture, we make the assumption that each cluster is a Gaussian. The EM
algorithm then determines the most likely estimates for the parameters
of the distributions (in our case, the mean and variance of each Gaussian),
and the prior probability (or relative prominence or weight) of the indi-
vidual causes. So in sum, we are supposing that the data to be clustered
consists of n m-dimensional objects X = {~x1 . . . ~xn} ⊆ Rm generated by k
Gaussians n1 . . .nk.

Once the mixture has been estimated we can view the result as a clus-
tering by interpreting each cause as a cluster. For each object ~xi , we can
compute the probability P(ωj |~xi) that cluster j generated i. An object
can belong to several clusters, with varying degrees of confidence.

Multivariate normal distributions. The (multivariate) m-dimensional
Gaussian family is parameterized by a mean or center ~µj and an m ×mGaussian

invertible positive definite symmetric matrix, the covariance matrix Σj .covariance matrix

The probability density function for a Gaussian is given by:

nj(~x; ~mj,Σj) = 1√
(2π)m|Σj|

exp
[
−1

2
(~x− ~µj)TΣ−1

j (~x− ~µj)
]

(14.17)

Since we are assuming that the data is generated by k Gaussians, we
wish to find the maximum likelihood model of the form:

k∑
j=1

πjn(~x; ~µj,Σj)(14.18)
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Main P(wi|cj) = nj(~xi ; µjΣj)
cluster Word 1 2 3 4 5
1 ballot 0.63 0.12 0.04 0.09 0.11
1 polls 0.58 0.11 0.06 0.10 0.14
1 Gov 0.58 0.12 0.03 0.10 0.17
1 seats 0.55 0.14 0.08 0.08 0.15
2 profit 0.11 0.59 0.02 0.14 0.15
2 finance 0.15 0.55 0.01 0.13 0.16
2 payments 0.12 0.66 0.01 0.09 0.11
3 NFL 0.13 0.05 0.58 0.09 0.16
3 Reds 0.05 0.01 0.86 0.02 0.06
3 Sox 0.05 0.01 0.86 0.02 0.06
3 inning 0.03 0.01 0.93 0.01 0.02
3 quarterback 0.06 0.02 0.82 0.03 0.07
3 score 0.12 0.04 0.65 0.06 0.13
3 scored 0.08 0.03 0.79 0.03 0.07
4 researchers 0.08 0.12 0.02 0.68 0.10
4 science 0.12 0.12 0.03 0.54 0.19
5 Scott 0.12 0.12 0.11 0.11 0.54
5 Mary 0.10 0.10 0.05 0.15 0.59
5 Barbara 0.15 0.11 0.04 0.12 0.57
5 Edward 0.16 0.18 0.02 0.12 0.51

Table 14.5 An example of a Gaussian mixture. The five cluster centroids from
table 14.4 are the means ~µj of the five clusters. A uniform diagonal covari-
ance matrix Σ = 0.05 · I and uniform priors πj = 0.2 were used. The posterior
probabilities P(wi|cj) can be interpreted as cluster membership probabilities.

In this model, we need to assume a prior or weight πj for each Gaussian,
so that the integral of the combined Gaussians over the whole space is 1.

Table 14.5 gives an example of a Gaussian mixture, using the centroids
from the K-means clustering in table 14.4 as cluster centroids ~µj (this is a
common way of initializing EM for Gaussian mixtures). For each word, the
cluster from table 14.4 is still the dominating cluster. For example, ballot
has a higher membership probability in cluster 1 (its cluster from the K-
means clustering) than in other clusters. But each word also has some
non-zero membership in all other clusters. This is useful for assessing
the strength of association between a word and a topic. Comparing two
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members of the ‘sports’ cluster, inning and score, we can see that inning
is strongly associated with ‘sports’ (p = 0.93) whereas score has some
affinity with other clusters as well (e.g., p = 0.12 with the ‘government’
cluster). This is a good example of the utility of soft clustering.

We now develop the EM algorithm for estimating the parameters of a
Gaussian mixture. Let us write θj = (~µj ,Σj , πj). Then, for the parameters
of the model, we end up with Θ = (θ1, . . . , θk)T . The log likelihood of the
data X given the parameters Θ is:

l(X|Θ) = log
n∏
i=1

P(~xi) = log
n∏
i=1

k∑
j=1

πjnj(~xi ; ~µj,Σj)(14.19)

=
n∑
i=1

log
k∑
j=1

πjnj(~xi ; ~µj,Σj)

The set of parameters Θ with the maximum likelihood gives us the best
model of the data (assuming that it was generated by a mixture of k
Gaussians). So our goal is to find parameters Θ that maximize the log
likelihood given in the equation above. Here, we have to fiddle with all
the parameters so as to try to make the likelihood of each data point
a maximum, while still observing various constraints on the values of
the parameters (so that the area under the pdf remains 1, for instance).
This is a nasty problem in constrained optimization. We cannot calculate
the maximum directly since it involves the log of a sum. Instead, we
approximate the solution by iteration using the EM algorithm.

The EM algorithm is an iterative solution to the following circular state-
ments:

Estimate: If we knew the value of Θ we could compute the expected val-
ues of the hidden structure of the model.

Maximize: If we knew the expected values of the hidden structure of the
model, then we could compute the maximum likelihood value of Θ.

We break the circularity by beginning with a guess for Θ and iterating
back and forth between an expectation step and a maximization step,expectation step

maximization step hence the name EM algorithm. In the expectation step, we compute ex-
pected values for the hidden variables zij which can be interpreted as
cluster membership probabilities. Given the current parameters, we com-
pute how likely it is that an object belongs to any of the clusters. The
maximization step computes the most likely parameters of the model
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given the cluster membership probabilities. This procedure improves our
estimates of the parameters so that the parameters of a cluster better re-
flect the properties of objects with high probability of membership in
it.

A key property of the EM algorithm is monotonicity: With each iteration
of E and M steps, the likelihood of the model given the data increases.
This guarantees that each iteration produces model parameters that are
more likely given the data we see. However, while the algorithm will
eventually move to a local maximum, it will often not find the globally
best solution. This is an important difference from least-squares methods
like SVD (covered in chapter 15), which are guaranteed to find the global
optimum.

In what follows we describe the EM algorithm for estimating a Gaussian
mixture. We follow here the discussion in (Dempster et al. 1977), (Mitchell
1997: ch. 6), and (Ghahramani 1994). See also (Duda and Hart 1973: 193).

To begin, we initialize all the parameters. Here, it would be appropriate
to initialize the covariance matrices Σj of each Gaussian as an identity
matrix, each of the weights πj as 1

k , and the k means ~µj are each chosen
to be a random perturbation away from a data point randomly selected
from X.

The E-step is the computation of parameters hij . hij is the expectation
of the hidden variable zij which is 1 if nj generated ~xi and 0 otherwise.

hij = E(zij |~xi ; Θ) = P(~xi|nj ; Θ)∑k
l=1 P(~xi|nl ; Θ)

(14.20)

The M-step is to recompute the parameters Θ (mean, variance, and
prior for each Gaussian) as maximum likelihood estimates given expected
values hij :

~µ′j =
∑n
i=1 hij~xi∑n
i=1 hij

(14.21)

Σ′j =
∑n
i=1 hij(~xi − ~µ′j)(~xi − ~µ′j)T∑n

i=1 hij
(14.22)

These are the maximum-likelihood estimates for the mean and variance
of a Gaussian (Duda and Hart 1973: 23).

The weights of the Gaussians are recomputed as:

π ′j =
∑n
i=1 hij∑k

j=1

∑n
i=1 hij

=
∑n
i=1 hij
n

(14.23)
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Once means, variances, and priors have been recomputed, we repeat,
by performing the next iteration of the E and M steps. We keep iterating
as long as the log likelihood keeps improving significantly at each step.

EM and its applications in Statistical NLP

This description of the EM algorithm has been for clustering and Gaus-
sian mixtures, but the reader should be able to recognize other applica-
tions of EM as instantiations of the same general scheme, for example,
the forward-backward algorithm and the inside-outside algorithm, which
we covered in earlier chapters. Here is the most general formulation of
EM (Dempster et al. 1977: 6).

Define a function Q as follows:

Q(Θ|Θk) = E(l(X,Z)|Θ)|X,Θk)
Here, the z are the hidden variables (the vectors zi1, . . . , ziM above), the x
are the observed data (the vectors ~xi above). Θ are the parameters of the
model, the mean, variances and priors in the case of Gaussian mixtures.
l((x, z)|Θ) is (the log of) the joint probability distribution of observable
and unobservable data given the parameters Θ.

Then the E and M step take the following form:

� E-step: Compute Q(Θ|Θk).
� M-step: Choose Θk+1 to be a value of Θ that maximizes Q(Θ|Θk).
For the Gaussian mixture case, computing Q corresponds to computing
the hij , the expected values of the hidden variable z. The M step chooses
the parameters Θ that maximize Q(Θ|Θk).

This general formulation of EM is not literally an algorithm. We are
not told how to compute the M-step in general. (There are cases where
it cannot be computed.) However, for a large class of problems there
exist such algorithms, for example, for all distributions of the exponential
family, of which the Gaussian distribution is an example. The remainder
of this section briefly discusses how certain other algorithms covered in
this book are instances of the EM algorithm.

Baum-Welch reestimation. In the Baum-Welch or forward-backward al-
gorithm (see section 9.3.3), the E step computes (i) for each state i, the
expected number of transitions from i in the observed data; (ii) for each
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pair (i, j) of states, the expected number of transitions from state i to
state j . The unobservable data here are the unobservable state transi-
tions. In the E step, we compute expected values for these unobservables
given the current parameters of the model.

The M step computes new maximum likelihood estimates of the param-
eters given the expected values for the unobservables. For Baum-Welch,
these parameters are the initial state probabilities πi , the state transition
probabilities aij and the symbol emission probabilities bijk.

Inside-outside algorithm. The unobservable data in this algorithm (see
section 11.3.4) are whether a particular rule Nj → ζ is used to generate a
particular subsequence wpq of words or not. The E step computes expec-
tations over these data, corresponding to the expected number of times
that a particular rule will be used. We use the symbols ui(p, q, j, r , s)
and vi(p, q, j) for these expectations in section 11.3.4. (The difference
between the ui and the vi is that the ui are for rules that produce nonter-
minals and the vi are for rules that produce preterminals. The subscript
i refers to sentence i in the training set.)

The M step then computes maximum-likelihood estimates of the pa-
rameters based on the fi and gi . The parameters here are the rule proba-
bilities and maximum-likelihood simply consists of summing and renor-
malizing the fi or gi for a particular nonterminal.

Unsupervised word sense disambiguation. The unsupervised word
sense disambiguation algorithm in section 7.4 is a clustering algorithm
very similar to EM estimation of Gaussian mixtures, except that the prob-
ability model is different. The E step again computes expectations of
hidden binary variables zij that record cluster memberships, but the
probabilities are computed based on the Bayesian independence model
described in that section, not a Gaussian mixture. The probability that
a cluster (or sense, which is what we interpret each cluster as) gener-
ates a particular word is then recomputed in the M step as a maximum-
likelihood estimate given the expectation values.

K-means. K-means can be interpreted as a special case of estimating a
Gaussian mixture with EM. To see this, assume that we only recompute
the mean of each Gaussian in each iteration of the algorithm. Priors and
variances are fixed. If we fix the variances to be very small, then the shape
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of the Gaussian will be that of a sharp peak that falls off steeply from the
center. As a result, if we look at the probability P(nj|~xi) of the ‘best’
cluster j and the probability P(nj′ |~xi) of the next best cluster j′, then the
first will be much larger than the second.

This means that based on the posterior probabilities computed in the
E step, each object will be a member of one cluster with probability very
close to 1.0. In other words, we have an assignment that is a hard assign-
ment for the purpose of recomputing the means since the contributions
of objects with a very small membership probability will have a negligible
influence on the computation of the means.

So an EM estimation of a Gaussian mixture with fixed small variances
is very similar to K-means. However, there is a difference for ties. Even in
the case of small variances, tied objects will have equal probabilities of
membership for two clusters. In contrast, K-means makes a hard choice
for ties.

Summary. The EM algorithm is very useful, and is currently very popu-
lar, but it is sensible to also be aware of its deficiencies. On the down-side,
the algorithm is very sensitive to the initialization of the parameters, and
unless parameters are initialized well, the algorithm usually gets stuck
in one of the many local maxima that exist in the space. One possibility
that is sometimes used is to use the results of another clustering algo-
rithm to initialize the parameters for the EM algorithm. For instance, the
K-means algorithm is an effective way of finding initial estimates for the
cluster centers for EM of Gaussian mixtures. The rate of convergence of
the EM algorithm can also be very slow. While reestimation via the EM
algorithm is guaranteed to improve (or at least to not have a detrimen-
tal effect on) the likelihood of the data according to the model, it is also
important to remember that it isn’t guaranteed to improve other things
that aren’t actually in the model, such as the ability of a system to assign
part of speech tags according to some external set of rules. Here there is
a mismatch between what the EM algorithm is maximizing and the objec-
tive function on which the performance of the system is being evaluated,
and, not surprisingly, in such circumstances the EM algorithm might have
deleterious effects. Finally, it is perhaps worth pointing out that the EM
algorithm is only really called for when there isn’t a more straightforward
way of solving the constrained optimization problem at hand. In simple
cases where there is an algebraic solution or the solution can be found
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by a simple iterative equation solver such as Newton’s method, then one
may as well do that.

14.3 Further Reading

General introductions to clustering are (Kaufman and Rousseeuw 1990)
and (Jain and Dubes 1988). Overviews of work on clustering in informa-
tion retrieval can be found in (van Rijsbergen 1979), (Rasmussen 1992)
and (Willett 1988).

Algorithms for constructing minimum spanning trees can be found inminimum spanning

tree (Cormen et al. 1990: ch. 24). For the general case, these algorithms run in
O(n logn) where n is the number of nodes in the graph.

To the extent that clustering is used for data analysis and compre-
hension, it is closely related to visualization techniques that project a
high-dimensional space onto (usually) two or three dimensions. Three
commonly used techniques are principal component analysis (PCA) (seeprincipal

component analysis (Biber et al. 1998) for its application to corpora), Multi-Dimensional
Scaling (MDS) (Kruskal 1964a,b) and Kohonen maps or Self-Organizing
Maps (SOM) (Kohonen 1997). These spatial representations of a multi-
dimensional space are alternatives to the dendrogram in figure 14.1.

Clustering can also be viewed as a form of category induction in cog-
nitive modeling. Many researchers have attempted to induce syntactic
categories by clustering corpus-derived word representations (Brill et al.
1990; Finch 1993). We used the clustering method proposed by Schütze
(1995) for figure 14.1. Waterman (1995) attempts to find clusters of se-
mantically related words based on syntactic evidence.

An early influential paper in which object nouns are clustered on the
basis of verbs in a way similar to (Pereira et al. 1993) is (Hindle 1990). Li
and Abe (1998) develop a symmetric model of verb-object pair clustering
in which clusters generate both nouns and verbs. A pure verb cluster-
ing approach is adopted by Basili et al. (1996). An example of adjective
clustering can be found in (Hatzivassiloglou and McKeown 1993).

The efficiency of clustering algorithms is becoming more important as
text collections and NLP data sets increase in size. The Buckshot algo-
rithm was proposed by Cutting et al. (1992). Even more efficient constant-
time algorithms (based on precomputation of a cluster hierarchy) are de-
scribed by Cutting et al. (1993) and Silverstein and Pedersen (1997).
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14.4 Exercises

Exercise 14.1 [««]

Retrieve the word space data from the website and do a single-link, complete-
link, and group-average clustering of a subset.

Exercise 14.2 [«]

Construct an example data set for which the K-means algorithm takes more than
one iteration to converge.

Exercise 14.3 [«]

Create a data set with 10 points in a plane where each point is a distance of 1
or less from the origin. Place an eleventh point (the outlier) in turn at distance
(a) 2, (b) 4, (c) 8, and (d) 16 from the origin. For each of these cases run K-means
clustering with two clusters (i) in Euclidean space and (ii) in L1 space. (Pick the
initial two centers from the 10 points near the origin.) Do the two distance
measures give different results? What are the implications for data sets with
outliers?

Exercise 14.4 [««]

Since the EM algorithm only finds a local minimum, different starting conditions
will lead to different clusterings. Run the EM algorithm 10 times with different
initial seeds on the 1000 most frequent words from the website and analyze
the differences. Compute the percentage of pairs of words that are in the same
cluster in all 10 clusterings, in 9 clusterings, etc.

Exercise 14.5 [«]

Discuss the trade-off between time and the quality of clustering that needs to be
made when choosing one of the three agglomerative algorithms or K-means.

Exercise 14.6 [«]

The model proposed by Brown et al. (1992c) is optimal in that it finds clusters
that improve the evaluation measure directly. But it actually did not improve the
measure in their experiment, or only after linear interpolation. What are possible
reasons?

Exercise 14.7 [«]

Show that K-means converges if there are no ties. Compute as a goodness mea-
sure of the clustering the sum squared error that is incurred when each object is
replaced by its cluster’s center. Then show that this goodness measure decreases
(or stays the same) in both the reassignment and the recomputation steps.
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