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2 Mathematical Foundations

This chapter presents some introductory material on probability and
information theory, while the next chapter presents some essential know-
ledge of linguistics. A thorough knowledge of one or more of the fields of
probability and statistics, information theory, and linguistics is desirable,
and perhaps even necessary, for doing original research in the field of Sta-
tistical NLP. We cannot provide a thorough well-motivated introduction to
each of these three fields within this book, but nevertheless, we attempt
to summarize enough material to allow understanding of everything that
follows in the book. We do however assume knowledge of parsing, ei-
ther from a computer science or computational linguistics perspective.
We also assume a reasonable knowledge of mathematical symbols and
techniques, perhaps roughly to the level of a first year undergraduate
course, including the basics of such topics as: set theory, functions and
relations, summations, polynomials, calculus, vectors and matrices, and
logarithms. Mathematical notations that we use are summarized in the
Table of Notations.

If you are familiar with one of the areas covered in these two chap-
ters, then you should probably just skim the corresponding section. If
you’re not familiar with a topic, we think it is probably best to try to
read through each section, but you will probably need to reread sections
when the techniques in them are put to use. These chapters don’t say
much about applications – they present the preparatory theory for what
follows.
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2.1 Elementary Probability Theory

This section sketches the essentials of probability theory necessary to
understand the rest of this book.

2.1.1 Probability spaces

Probability theory deals with predicting how likely it is that somethingprobability theory

will happen. For example, if one tosses three coins, how likely is it that
they will all come up heads? Although our eventual aim is to look at
language, we begin with some examples with coins and dice, since their
behavior is simpler and more straightforward.

The notion of the likelihood of something is formalized through the
concept of an experiment (or trial) – the process by which an observationexperiment

trial is made. In this technical sense, tossing three coins is an experiment.
All that is crucial is that the experimental protocol is well defined. We
assume a collection of basic outcomes (or sample points) for our experi-basic outcomes

ment, the sample spaceΩ. Sample spaces may either be discrete, having atsample space

discrete most a countably infinite number of basic outcomes, or continuous, hav-
continuous

ing an uncountable number of basic outcomes (for example, measuring a
person’s height). For language applications and in this introduction, we
will mainly deal with discrete sample spaces which only contain a finite
number of basic outcomes. Let an event A be a subset of Ω. For example,event

in the coin experiment, the first coin being a head, and the second and
third coming down tails is one basic outcome, while any result of one
head and two tails is an example of an event. Note also that Ω represents
the certain event, the space of all possible experimental outcomes, and
∅ represents the impossible event. We say that an experimental outcome
must be an event. The foundations of probability theory depend on the
set of events F forming a σ -field – a set with a maximal element Ω andσ -field

arbitrary complements and unions. These requirements are trivially sat-
isfied by making the set of events, the event space, the power set of theevent space

sample space (that is, the set of all subsets of the sample space, often
written 2F ).

Probabilities are numbers between 0 and 1, where 0 indicates impos-
sibility and 1 certainty. A probability function (also known as a prob-probability

function

probability

distribution

ability distribution) distributes a probability mass of 1 throughout the
sample space Ω. Formally, a discrete probability function is any function
P :F → [0,1] such that:
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� P(Ω) = 1

� Countable additivity: For disjoint sets Aj ∈ F (i.e., Aj ∩ Ak = ∅ fordisjoint

j 6= k)

P
( ∞⋃
j=1

Aj
)
=

∞∑
j=1

P(Aj)(2.1)

We call P(A) the probability of the event A. These axioms say that an
event that encompasses, say, three distinct possibilities must have a
probability that is the sum of the probabilities of each possibility, and
that since an experiment must have some basic outcome as its result,
the probability of that is 1. Using basic set theory, we can derive from
these axioms a set of further properties of probability functions; see ex-
ercise 2.1.

A well-founded probability space consists of a sample spaceΩ, a σ -fieldprobability space

of events F , and a probability function P . In Statistical NLP applications,
we always seek to properly define such a probability space for our mod-
els. Otherwise, the numbers we use are merely ad hoc scaling factors, and
there is no mathematical theory to help us. In practice, though, corners
often have been, and continue to be, cut.

Example 1: A fair coin is tossed 3 times. What is the chance of 2 heads?

Solution: The experimental protocol is clear. The sample space is:

Ω = {HHH,HHT,HTH,HTT, THH,THT, TTH,TTT}
Each of the basic outcomes in Ω is equally likely, and thus has probability
1/8. A situation where each basic outcome is equally likely is called a
uniform distribution. In a finite sample space with equiprobable basicuniform

distribution outcomes, P(A) = |A|
|Ω| (where |A| is the number of elements in a set A).

The event of interest is:

A = {HHT,HTH,THH}
So:

P(A) = |A|
|Ω| =

3
8
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A∩ B

Ω

A B

Figure 2.1 A diagram illustrating the calculation of conditional probabil-
ity P(A|B). Once we know that the outcome is in B, the probability of A becomes
P(A∩ B)/P(B).

2.1.2 Conditional probability and independence

Sometimes we have partial knowledge about the outcome of an experi-
ment and that naturally influences what experimental outcomes are pos-
sible. We capture this knowledge through the notion of conditional proba-conditional

probability bility. This is the updated probability of an event given some knowledge.
The probability of an event before we consider our additional knowledge
is called the prior probability of the event, while the new probability thatprior probability

results from using our additional knowledge is referred to as the pos-posterior

probability terior probability of the event. Returning to example 1 (the chance of
getting 2 heads when tossing 3 coins), if the first coin has been tossed
and is a head, then of the 4 remaining possible basic outcomes, 2 result
in 2 heads, and so the probability of getting 2 heads now becomes 1

2 . The
conditional probability of an event A given that an event B has occurred
(P(B) > 0) is:

P(A|B) = P(A∩ B)
P(B)

(2.2)

Even if P(B) = 0 we have that:

P(A∩ B) = P(B)P(A|B) = P(A)P(B|A) [The multiplication rule](2.3)

We can do the conditionalization either way because set intersection is
symmetric (A∩B = B∩A). One can easily visualize this result by looking
at the diagram in figure 2.1.
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The generalization of this rule to multiple events is a central result that
will be used throughout this book, the chain rule:chain rule

P(A1 ∩ . . .∩An) = P(A1)P(A2|A1)P(A3|A1 ∩A2) · · ·P(An| ∩n−1
i=1 Ai)(2.4)

� The chain rule is used in many places in Statistical NLP, such as working
out the properties of Markov models in chapter 9.

Two events A, B are independent of each other if P(A∩B) = P(A)P(B).independence

Unless P(B) = 0 this is equivalent to saying that P(A) = P(A|B) (i.e.,
knowing that B is the case does not affect the probability of A). This
equivalence follows trivially from the chain rule. Otherwise events are
dependent. We can also say that A and B are conditionally independentdependence

conditional

independence

given C when P(A∩ B|C) = P(A|C)P(B|C).

2.1.3 Bayes’ theorem

Bayes’ theorem lets us swap the order of dependence between events.Bayes’ theorem

That is, it lets us calculate P(B|A) in terms of P(A|B). This is useful when
the former quantity is difficult to determine. It is a central tool that we
will use again and again, but it is a trivial consequence of the definition of
conditional probability and the chain rule introduced in equations (2.2)
and (2.3):

P(B|A) = P(B ∩A)
P(A)

= P(A|B)P(B)
P(A)

(2.5)

The righthand side denominator P(A) can be viewed as a normalizingnormalizing

constant constant, something that ensures that we have a probability function. If
we are simply interested in which event out of some set is most likely
given A, we can ignore it. Since the denominator is the same in all cases,
we have that:

arg max
B

P(A|B)P(B)
P(A)

= arg max
B

P(A|B)P(B)(2.6)

However, we can also evaluate the denominator by recalling that:

P(A∩ B) = P(A|B)P(B)
P(A∩ B) = P(A|B)P(B)
So we have:

P(A) = P(A∩ B)+ P(A∩ B) [additivity]

= P(A|B)P(B)+ P(A|B)P(B)
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B and B serve to split the set A into two disjoint parts (one possibly
empty), and so we can evaluate the conditional probability on each, and
then sum, using additivity. More generally, if we have some group of sets
Bi that partition A, that is, if A ⊆ ∪iBi and the Bi are disjoint, then:partition

P(A) =
∑
i
P(A|Bi)P(Bi)(2.7)

This gives us the following equivalent but more elaborated version of
Bayes’ theorem:

Bayes’ theorem: If A ⊆ ∪ni=1Bi , P(A) > 0, and Bi ∩Bj = ∅ for i 6= j then:

P(Bj |A) = P(A|Bj)P(Bj)P(A)
= P(A|Bj)P(Bj)∑n

i=1 P(A|Bi)P(Bi)
(2.8)

Example 2: Suppose one is interested in a rare syntactic construction,
perhaps parasitic gaps, which occurs on average once in 100,000 sen-
tences. Joe Linguist has developed a complicated pattern matcher that
attempts to identify sentences with parasitic gaps. It’s pretty good, but
it’s not perfect: if a sentence has a parasitic gap, it will say so with proba-
bility 0.95, if it doesn’t, it will wrongly say it does with probability 0.005.
Suppose the test says that a sentence contains a parasitic gap. What is
the probability that this is true?

Solution: Let G be the event of the sentence having a parasitic gap, and
let T be the event of the test being positive. We want to determine:

P(G|T) = P(T |G)P(G)
P(T |G)P(G)+ P(T |G)P(G)

= 0.95× 0.00001
0.95× 0.00001+ 0.005× 0.99999

≈ 0.002

Here we use having the construction or not as the partition in the de-
nominator. Although Joe’s test seems quite reliable, we find that using it
won’t help as much as one might have hoped. On average, only 1 in every
500 sentences that the test identifies will actually contain a parasitic gap.
This poor result comes about because the prior probability of a sentence
containing a parasitic gap is so low.
� Bayes’ theorem is central to the noisy channel model described in sec-
tion 2.2.4.
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First Second die
die 1 2 3 4 5 6
6 7 8 9 10 11 12
5 6 7 8 9 10 11
4 5 6 7 8 9 10
3 4 5 6 7 8 9
2 3 4 5 6 7 8
1 2 3 4 5 6 7
x 2 3 4 5 6 7 8 9 10 11 12

p(X = x) 1
36

1
18

1
12

1
9

5
36

1
6

5
36

1
9

1
12

1
18

1
36

Figure 2.2 A random variable X for the sum of two dice. Entries in the body
of the table show the value of X given the underlying basic outcomes, while the
bottom two rows show the pmf p(x).

2.1.4 Random variables

A random variable is simply a function X:Ω → Rn (commonly with n = 1),random variable

where R is the set of real numbers. Rather than having to work with some
irregular event space which differs with every problem we look at, a ran-
dom variable allows us to talk about the probabilities of numerical values
that are related to the event space. We think of an abstract stochastic pro-stochastic process

cess that generates numbers with a certain probability distribution. (The
word stochastic simply means ‘probabilistic’ or ‘randomly generated,’ but
is especially commonly used when referring to a sequence of results as-
sumed to be generated by some underlying probability distribution.)

A discrete random variable is a function X:Ω → S where S is a count-
able subset of R. If X:Ω → {0,1}, then X is called an indicator randomindicator random

variable variable or a Bernoulli trial.
Bernoulli trial

Example 3: Suppose the events are those that result from tossing two
dice. Then we could define a discrete random variable X that is the sum
of their faces: S = {2, . . . ,12}, as indicated in figure 2.2.

Because a random variable has a numeric range, we can often do math-
ematics more easily by working with the values of a random variable,
rather than directly with events. In particular we can define the probabil-probability mass

function ity mass function (pmf) for a random variable X, which gives the proba-
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bility that the random variable has different numeric values:

pmf p(x) = p(X = x) = P(Ax) where Ax = {ω ∈ Ω : X(ω) = x}(2.9)

We will write pmfs with a lowercase roman letter (even when they are vari-
ables). If a random variable X is distributed according to the pmf p(x),
then we will write X ∼ p(x).

Note that p(x) > 0 at only a countable number of points (to satisfy the
stochastic constraint on probabilities), say {xi : i ∈ N}, while p(x) = 0
elsewhere. For a discrete random variable, we have that:∑
i

p(xi) =
∑
i
P(Axi ) = P(Ω) = 1

Conversely, any function satisfying these constraints can be regarded as
a mass function.
� Random variables are used throughout the introduction to information
theory in section 2.2.

2.1.5 Expectation and variance

The expectation is the mean or average of a random variable.expectation

mean If X is a random variable with a pmf p(x) such that
∑
x |x|p(x) < ∞

then the expectation is:

E(X) =
∑
x
xp(x)(2.10)

Example 4: If rolling one die and Y is the value on its face, then:

E(Y) =
6∑
y=1

xp(y) = 1
6

6∑
y=1

y = 21
6
= 3

1
2

This is the expected average found by totaling up a large number of
throws of the die, and dividing by the number of throws.

If Y ∼ p(y) is a random variable, any function g(Y) defines a new
random variable. If E(g(Y)) is defined, then:

E(g(Y)) =
∑
y
g(y)p(y)(2.11)

For instance, by letting g be a linear function g(Y) = aY + b, we see that
E(g(Y)) = aE(Y)+b. We also have that E(X +Y) = E(X)+E(Y) and if X
and Y are independent, then E(XY) = E(X)E(Y).
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The variance of a random variable is a measure of whether the valuesvariance

of the random variable tend to be consistent over trials or to vary a lot.
One measures it by finding out how much on average the variable’s values
deviate from the variable’s expectation:

Var(X) = E
(
(X − E(X))2)(2.12)

= E(X2)− E2(X)

The commonly used standard deviation of a variable is the square root ofstandard deviation

the variance. When talking about a particular distribution or set of data,
the mean is commonly denoted as µ, the variance as σ2, and the standard
deviation is hence written as σ .

Example 5: What is the expectation and variance for the random vari-
able introduced in example 3, the sum of the numbers on two dice?

Solution: For the expectation, we can use the result in example 4, and
the formula for combining expectations in (or below) equation (2.11):

E(X) = E(Y + Y) = E(Y)+ E(Y) = 3
1
2
+ 3

1
2
= 7

The variance is given by:

Var(X) = E((X − E(X))2) =∑
x

p(x)
(
x− E(X))2 = 5

5
6

Because the results for rolling two dice are concentrated around 7, the
variance of this distribution is less than for an ‘11-sided die,’ which re-
turns a uniform distribution over the numbers 2–12. For such a uniformly
distributed random variable U , we find that Var(U) = 10.
�Calculating expectations is central to Information Theory, as we will
see in section 2.2. Variances are used in section 5.2.

2.1.6 Notation

In these sections, we have distinguished between P as a probability func-
tion and p as the probability mass function of a random variable. How-
ever, the notations P(·) and p(·) do not always refer to the same function.
Any time that we are talking about a different probability space, then we
are talking about a different function. Sometimes we will denote these
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different functions with subscripts on the function to make it clear what
we are talking about, but in general people just write P and rely on con-
text and the names of the variables that are arguments to the function to
disambiguate. It is important to realize that one equation is often refer-
ring to several different probability functions, all ambiguously referred
to as P .

2.1.7 Joint and conditional distributions

Often we define many random variables over a sample space giving us a
joint (or multivariate) probability distribution. The joint probability mass
function for two discrete random variables X, Y is:

p(x, y) = P(X = x, Y = y)
Related to a joint pmf are marginal pmfs, which total up the probabilitymarginal

distribution masses for the values of each variable separately:

pX(x) =
∑
y

p(x, y) pY (y) =
∑
x

p(x, y)

In general the marginal mass functions do not determine the joint mass
function. But if X and Y are independent, then p(x, y) = pX(x)pY (y).
For example, for the probability of getting two sixes from rolling two
dice, since these events are independent, we can compute that:

p(Y = 6, Z = 6) = p(Y = 6)p(Z = 6) = 1
6
× 1

6
= 1

36

There are analogous results for joint distributions and probabilities for
the intersection of events. So we can define a conditional pmf in terms of
the joint distribution:

pX|Y (x|y) =
p(x, y)
pY (y)

for y such that pY (y) > 0

and deduce a chain rule in terms of random variables, for instance:

p(w, x, y, z) = p(w)p(x|w)p(y|w,x)p(z|w,x, y)

2.1.8 Determining P

So far we have just been assuming a probability function P and giving it
the obvious definition for simple examples with coins and dice. But what
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do we do when dealing with language? What do we say about the proba-
bility of a sentence like The cow chewed its cud? In general, for language
events, unlike dice, P is unknown. This means we have to estimate P . Weestimation

do this by looking at evidence about what P must be like based on a sam-
ple of data. The proportion of times a certain outcome occurs is called
the relative frequency of the outcome. If C(u) is the number of timesrelative frequency

an outcome u occurs in N trials then C(u)
N is the relative frequency of u.

The relative frequency is often denoted fu. Empirically, if one performs
a large number of trials, the relative frequency tends to stabilize around
some number. That this number exists provides a basis for letting us
calculate probability estimates.

Techniques for how this can be done are a major topic of this book, par-
ticularly covered in chapter 6. Common to most of these techniques is
to estimate P by assuming that some phenomenon in language is accept-
ably modeled by one of the well-known families of distributions (such as
the binomial or normal distribution), which have been widely studied in
statistics. In particular a binomial distribution can sometimes be used
as an acceptable model of linguistic events. We introduce a couple of
families of distributions in the next subsection. This is referred to as a
parametric approach and has a couple of advantages. It means we haveparametric

an explicit probabilistic model of the process by which the data was gen-
erated, and determining a particular probability distribution within the
family only requires the specification of a few parameters, since most of
the nature of the curve is fixed in advance. Since only a few parameters
need to be determined, the amount of training data required is not great,
and one can calculate how much training data is sufficient to make good
probability estimates.

But, some parts of language (such as the distributions of words in
newspaper articles in a particular topic category) are irregular enough
that this approach can run into problems. For example, if we assume
our data is binomially distributed, but in fact the data looks nothing like
a binomial distribution, then our probability estimates might be wildly
wrong.

For such cases, one can use methods that make no assumptions about
the underlying distribution of the data, or will work reasonably well for
a wide variety of different distributions. This is referred to as a non-non-parametric

parametric or distribution-free approach. If we simply empirically esti-distribution-free

mate P by counting a large number of random events (giving us a discrete
distribution, though we might produce a continuous distribution from
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such data by interpolation, assuming only that the estimated probability
density function should be a fairly smooth curve), then this is a non-
parametric method. However, empirical counts often need to be modified
or smoothed to deal with the deficiencies of our limited training data, a
topic discussed in chapter 6. Such smoothing techniques usually assume
a certain underlying distribution, and so we are then back in the world of
parametric methods. The disadvantage of nonparametric methods is that
we give our system less prior information about how the data are gener-
ated, so a great deal of training data is usually needed to compensate for
this.
�Non-parametric methods are used in automatic classification when the
underlying distribution of the data is unknown. One such method, near-
est neighbor classification, is introduced in section 16.4 for text catego-
rization.

2.1.9 Standard distributions

Certain probability mass functions crop up commonly in practice. In
particular, one commonly finds the same basic form of a function, but
just with different constants employed. Statisticians have long studied
these families of functions. They refer to the family of functions as a
distribution and to the numbers that define the different members of thedistribution

family as parameters. Parameters are constants when one is talking aboutparameters

a particular pmf, but variables when one is looking at the family. When
writing out the arguments of a distribution, it is usual to separate the
random variable arguments from the parameters with a semicolon (;). In
this section, we just briefly introduce the idea of distributions with one
example each of a discrete distribution (the binomial distribution), and a
continuous distribution (the normal distribution).

Discrete distributions: The binomial distribution

A binomial distribution results when one has a series of trials with onlybinomial

distribution two outcomes (i.e., Bernoulli trials), each trial being independent from all
the others. Repeatedly tossing a (possibly unfair) coin is the prototypical
example of something with a binomial distribution. Now when looking at
linguistic corpora, it is never the case that the next sentence is truly inde-
pendent of the previous one, so use of a binomial distribution is always
an approximation. Nevertheless, for many purposes, the dependency be-
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tween words falls off fairly quickly and we can assume independence. In
any situation where one is counting whether something is present or ab-
sent, or has a certain property or not, and one is ignoring the possibility
of dependencies between one trial and the next, one is at least implic-
itly using a binomial distribution, so this distribution actually crops up
quite commonly in Statistical NLP applications. Examples include: look-
ing through a corpus to find an estimate of the percent of sentences in
English that have the word the in them or finding out how commonly
a verb is used transitively by looking through a corpus for instances of a
certain verb and noting whether each use is transitive or not.

The family of binomial distributions gives the number r of successes
out of n trials given that the probability of success in any trial is p:

b(r ; n,p) =
(
n
r

)
pr(1− p)n−r where

(
n
r

)
= n!
(n− r)!r ! 0 ≤ r ≤ n(2.13)

The term
(
n
r

)
counts the number of different possibilities for choosing

r objects out of n, not considering the order in which they are chosen.
Examples of some binomial distributions are shown in figure 2.3. The bi-
nomial distribution has an expectation of np and a variance of np(1− p).

Example 6: Let R have as value the number of heads in n tosses of a
(possibly weighted) coin, where the probability of a head is p.

Then we have the binomial distribution:

p(R = r) = b(r ; n,p)

(The proof of this is by counting: each basic outcome with r heads and
n− r tails has probability hr(1− h)n−r , and there are

(
n
r

)
of them.)

� The binomial distribution turns up in various places in the book, such
as when counting n-grams in chapter 6, and for hypothesis testing in
section 8.2.
� The generalization of a binomial trial to the case where each of the tri-
als has more than two basic outcomes is called a multinomial experiment,
and is modeled by the multinomial distribution. A zeroth order n-grammultinomial

distribution model of the type we discuss in chapter 6 is a straightforward example
of a multinomial distribution.
�Another discrete distribution that we discuss and use in this book is the
Poisson distribution (section 15.3.1). Section 5.3 discusses the Bernoulli
distribution, which is simply the special case of the binomial distribution
where there is only one trial. That is, we calculate b(r ; 1, p).
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Figure 2.3 Two examples of binomial distributions: b(r ; 10,0.7) and
b(r ; 10,0.1).

Continuous distributions: The normal distribution

So far we have looked only at discrete probability distributions and
discrete random variables, but many things, such as measurements of
heights and lengths, are best understood as having a continuous domain,
over the real numbers R. In this book, we do not outline the mathematics
of continuous distributions. Suffice it to say that there are generally anal-
ogous results, except with points becoming intervals, and sums becoming
integrals. However, we will occasionally have need to refer to continuous
probability distributions, so we will give one example here: the normal
distribution, which is central to all work in probability and statistics.

For many things in the world, such as the heights or IQs of people,
one gets a distribution that is known in the media as a bell curve, butbell curve

which is referred to in statistics as a normal distribution. Some normalnormal

distribution distribution curves are shown in figure 2.4. The values of the graphed
functions, probability density functions (pdf), do not directly give the
probabilities of the points along the x-axis (indeed, the probability of a
point is always 0 for a continuous distribution). Rather the probability
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Figure 2.4 Example normal distribution curves: n(x; 0,1) and n(x; 1.5,2).

of a result within a certain interval on the x-axis is given by the area
delimited by that region, the x-axis and the function curve.

The normal distribution has two parameters for the mean µ, and the
standard deviation σ , and the curve is given by:

n(x; µ,σ) = 1√
2πσ

e−(x−µ)
2/(2σ 2)(2.14)

The curve where µ = 0 and σ = 1 is referred to as the standard normalstandard normal

distribution distribution. A few figures for areas under this curve are given in the
appendix.

While it is much better to refer to such a curve as a ‘normal distribution’
than as a ‘bell curve,’ if you really want to fit into the Statistical NLP or
pattern recognition communities, you should instead learn to refer to
these functions as Gaussians, and to remark things like, ‘Maybe we couldGaussians

model that using 3 Gaussians’ at appropriate moments.1

1. Carl Friedrich Gauss was the first to use normal curves to model experimental data,
using them to model the errors made by astronomers and surveyors in repeated measure-
ments of the same quantity, but the normal curve was discovered by Abraham de Moivre.
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In much of statistics, the discrete binomial distribution is approxi-
mated by the continuous normal distribution – one can see the basic
similarity in the shapes of the curves by comparing figures 2.3 and 2.4.
Such an approximation is acceptable when both basic outcomes have a
reasonable probability of occurring or the amount of data is very large
(roughly, when np(1 − p) > 5). But, in natural language, events like oc-
currences of the phrase shade tree mechanics are so rare, that even if you
have a huge amount of text, there will be a significant difference between
the appropriate binomial curve and the approximating normal curve, and
so use of normal approximations can be unwise.
�Gaussians are often used in clustering, as discussed in chapter 14. In
particular, here we have only discussed the one-dimensional or univariate
normal distribution, while we present there the generalization to many
dimensions (the multivariate normal distribution).
�Other continuous distributions discussed in this book are the hyper-
bolic distributions discussed in section 1.4.3, and the t distribution used
for hypothesis testing in section 5.3.

2.1.10 Bayesian statistics

So far, we have presented a brief introduction to orthodox frequentistfrequentist

statistics statistics. Not everyone is agreed on the right philosophical foundations
for statistics, and the main rival is a Bayesian approach to statistics. Ac-Bayesian statistics

tually, the Bayesians even argue among themselves, but we are not going
to dwell on the philosophical issues here. We want to just briefly intro-
duce the Bayesian approach because Bayesian methods are very useful in
Statistical NLP, and we will come across them in later chapters.

Bayesian updating

Suppose one takes a coin and tosses it 10 times, and gets 8 heads. Then
from a frequentist point of view, the result is that this coin comes down
heads 8 times out of 10. This is what is called the maximum likelihood es-maximum likelihood

estimate timate, as discussed further in section 6.2.1. However, if one has looked
the coin over, and there doesn’t seem anything wrong with it, one would
be very reluctant to accept this estimate. Rather, one would tend to think
that the coin would come down equally head and tails over the long run,
and getting 8 heads out of 10 is just the kind of thing that happens some-
times given a small sample. In other words one has a prior belief thatprior belief
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influences one’s beliefs even in the face of apparent evidence against it.
Bayesian statistics measure degrees of belief, and are calculated by start-
ing with prior beliefs and updating them in the face of evidence, by use
of Bayes’ theorem.

For example, let µm be the model2 that asserts P(head) = m. Let s be
a particular sequence of observations yielding i heads and j tails. Then,
for any m, 0 ≤m ≤ 1:

P(s|µm) =mi(1−m)j(2.15)

From a frequentist point of view, we wish to find the MLE:

arg max
m

P(s|µm)

To do this, we can differentiate the above polynomial, and find its max-
imum, which fortunately gives the intuitive answer of i

i+j , or 0.8 for the
case of 8 heads and 2 tails.

But now suppose that one wants to quantify one’s belief that the coin
is probably a regular, fair one. One can do that by assuming a prior
probability distribution over how likely it is that different models µm are
true. Since one would want most of the probability mass close to 1

2 , one

might use something like a Gaussian distribution centered on 1
2 , but since

polynomials are the only things we can remember how to differentiate, let
us instead assume that one’s prior belief is modeled by the distribution:

P(µm) = 6m(1−m)(2.16)

This polynomial was chosen because its distribution is centered on 1
2 ,

and, conveniently, the area under the curve between 0 and 1 is 1.
When one sees an observation sequence s one wants to know one’s new

belief in the fairness of the coin. One can calculate this from (2.15) and
(2.16) by Bayes’ theorem:

P(µm|s) = P(s|µm)P(µm)
P(s)

(2.17)

= mi(1−m)j × 6m(1−m)
P(s)

2. By a model we mean whatever theoretical edifices we construct to explain something
in the world. A probabilistic model might comprise the specification of a distribution
and certain parameter values. Thus, we are introducing some notational sloppiness in
equation (2.15), since previously we were conditioning on an event, that is, a subset of the
event space, and now we are conditioning on a model, but we will allow ourselves that
freedom.
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= 6mi+1(1−m)j+1

P(s)
Now P(s) is the prior probability of s. Let us assume for the moment
that it does not depend on µm, and therefore that we can ignore it while
finding the m that maximizes this equation. If we then differentiate the
numerator so as find its maximum, we can determine that for the case of
8 heads and 2 tails:

arg max
m

P(µm|s) = 3
4

Because our prior was weak (the polynomial is a quite flat curve centered
over 1

2 ), we have moved a long way in the direction of believing that the
coin is biased, but the important point is that we haven’t moved all the
way to 0.8. If we had assumed a stronger prior, we would have moved a
smaller distance from 1

2 . (See exercise 2.8.)
But what do we make of the denominator P(s)? Well, since we have

just seen s, one might conclude that this is 1, but that is not what it
means. Rather, it is the marginal probability which is obtained by addingmarginal

probability up all the P(s|µm) weighted by the probability of µm, as we saw earlier in
equation (2.8). For the continuous case, we have the integral:

P(s) =
∫ 1

0
P(s|µm)P(µm)dm(2.18)

=
∫ 1

0
6mi+1(1−m)j+1dm

This just happens to be an instance of the beta integral, another contin-
uous distribution well-studied by statisticians, and so we can look up a
book to find out that:

P(s) = 6(i + 1)!(j + 1)!
(i + j + 3)!

(2.19)

But the important point is that the denominator is just a normalizationnormalization

factor factor , which ensures that what we calculate for P(µm|s) in (2.17) is ac-
tually a probability function.

In the general case where data come in sequentially and we can reason-
ably assume independence between them, we start off with an a priori
probability distribution, and when a new datum comes in, we can update
our beliefs by calculating the maximum of the a posteriori distribution,
what is sometimes referred to as the MAP probability. This then becomes
the new prior, and the process repeats on each new datum. This process
is referred to as Bayesian updating.Bayesian updating
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Bayesian decision theory

But there is another thing that we can do with this new approach: use it
to evaluate which model or family of models better explains some data.
Suppose that we did not actually see the sequence of coin tosses but just
heard the results shouted out over the fence. Now it may be the case, as
we have assumed so far, that the results reported truly reflect the results
of tossing a single, possibly weighted coin. This is the theory µ, which is
a family of models, with a parameter representing the weighting of the
coin. But an alternative theory is that at each step someone is tossing
two fair coins, and calling out “tails” if both of them come down tails,
and heads otherwise. Let us call this new theory ν . According to ν , if s is
a particular observed sequence of i heads and j tails, then:

P(s|ν) =
(

3
4

)i (1
4

)j
(2.20)

Note that one of these theories has a free parameter (the weighting
of the coin m), while the other has no parameters. Let us assume that,
a priori, both of these theories are equally likely, for instance:

P(µ) = P(ν) = 1
2

(2.21)

We can now attempt to work out which theory is more likely given the
data we have seen. We use Bayes’ theorem again, and write down:

P(µ|s) = P(s|µ)P(µ)
P(s)

P(ν|s) = P(s|ν)P(ν)
P(s)

The potentially confusing point here is that we have made a quick
change in our notation. The quantity we are now describing as P(s|µ)
is the quantity that we wrote as just P(s) in (2.19) – since at that time we
were assuming that theory µm was true and we were just trying to deter-
mine m, whereas what we are now writing as P(s) is the prior probability
of s, not knowing whether µ is true or not. With that gotten straight,
we can calculate the likelihood ratio between these two models. The P(s)likelihood ratio

terms in the denominators cancel, and we can work out the rest using
equations (2.19), (2.20), and (2.21):

P(µ|s)
P(ν|s) = P(s|µ)P(µ)

P(s|ν)P(ν)(2.22)

=
6(i+1)!(j+1)!
(i+j+3)!(3
4

)i(1
4

)j
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10 Results Reported 20 Results Reported
Heads Tails Likelihood ratio Heads Tails Likelihood ratio

0 10 4.03× 104 0 20 1.30× 1010

1 9 2444.23 2 18 2.07× 107

2 8 244.42 4 16 1.34× 105

3 7 36.21 6 14 2307.06
4 6 7.54 8 12 87.89
5 5 2.16 10 10 6.89
6 4 0.84 12 8 1.09
7 3 0.45 14 6 0.35
8 2 0.36 16 4 0.25
9 1 0.37 18 2 0.48

10 0 0.68 20 0 3.74

Table 2.1 Likelihood ratios between two theories. The left three columns are
for a sequence s of 10 pieces of data, and the right three columns for a sequence
of 20 pieces of data.

If this ratio is greater than 1, we should prefer µ, and otherwise we should
prefer ν (or commonly people take the log of this ratio and see if that
value is greater than or less than zero).

We can calculate this ratio for different combinations of heads and
tails. Table 2.1 shows likelihood values for sequences of 10 and 20 re-
sults. If there are few heads, then the likelihood ratio is greater than one,
and the possibly weighted coin theory wins, since it is never strongly in-
compatible with any data (because of its free parameter). On the other
hand, if the distribution is roughly what we’d expect according to the two
fair coins theory (a lot more heads than tails) then the likelihood ratio is
smaller than one, and the simpler two fair coins theory wins. As the
quantity of data available becomes greater, the ratio of heads needs to
be nearer 3

4 in order for the two fair coins model to win. If these are the
only two theories under consideration, and we choose the one that wins
in such a likelihood ratio, then we have made what is called the BayesBayes optimal

decision optimal decision.
� If there are more theories, we can compare them all and decide on the
most likely one in the same general manner. An example of this and
more general discussion of Bayesian decision theory can be found in our
discussion of word sense disambiguation in section 7.2.1.
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2.1.11 Exercises

Exercise 2.1 [«]

This exercise indicates the kind of facility with set theory needed for this book,
and summarizes a few useful results in probability theory. Use set theory and
the axioms defining a probability function to show that:

a. P(A∪ B) = P(A)+ P(B)− P(A∩ B) [the addition rule]

b. P(∅) = 0

c. P(A) = 1− P(A)
d. A ⊆ B ⇒ P(A) ≤ P(B)
e. P(B −A) = P(B)− P(A∩ B)
Exercise 2.2 [«]

Assume the following sample space:

Ω = {is-noun,has-plural-s, is-adjective, is-verb}(2.23)

and the function f : 2Ω → [0,1] with the following values:

x f (x)
{ is-noun } 0.45
{ has-plural-s } 0.2
{ is-adjective } 0.25
{ is-verb } 0.3

Can f be extended to all of 2Ω such that it is a well-formed probability distribu-
tion? If not, how would you model these data probabilistically?

Exercise 2.3 [«]

Compute the probability of the event ‘A period occurs after a three-letter word
and this period indicates an abbreviation (not an end-of-sentence marker),’ as-
suming the following probabilities.

P(is-abbreviation|three-letter-word) = 0.8(2.24)

P(three-letter-word) = 0.0003(2.25)

Exercise 2.4 [«]

Are X and Y as defined in the following table independently distributed?

x 0 0 1 1
y 0 1 0 1
p(X = x, Y = y) 0.32 0.08 0.48 0.12
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Exercise 2.5 [«]

In example 5, we worked out the expectation of the sum of two dice in terms
of the expectation of rolling one die. Show that one gets the same result if one
calculates the expectation for two dice directly.

Exercise 2.6 [««]

Consider the set of grades you have received for courses taken in the last two
years. Convert them to an appropriate numerical scale. What is the appropriate
distribution for modeling them?

Exercise 2.7 [««]

Find a linguistic phenomenon that the binomial distribution is a good model for.
What is your best estimate for the parameter p?

Exercise 2.8 [««]

For i = 8 and j = 2, confirm that the maximum of equation (2.15) is at 0.8,
and that the maximum of equation (2.17) is 0.75. Suppose our prior belief had
instead been captured by the equation:

P(µm) = 30m2(1−m)2

What then would the MAP probability be after seeing a particular sequence of 8
heads and 2 tails? (Assume the theory µm and a prior belief that the coin is fair.)

2.2 Essential Information Theory

The field of information theory was developed in the 1940s by Claude
Shannon, with the initial exposition reported in (Shannon 1948). Shannon
was interested in the problem of maximizing the amount of information
that you can transmit over an imperfect communication channel such as
a noisy phone line (though actually many of his concerns stemmed from
codebreaking in World War II). For any source of ‘information’ and any
‘communication channel,’ Shannon wanted to be able to determine theo-
retical maxima for (i) data compression – which turns out to be given by
the EntropyH (or more fundamentally, by the Kolmogorov complexity K),
and (ii) the transmission rate – which is given by the Channel Capac-
ity C. Until Shannon, people had assumed that necessarily, if you send
your message at a higher speed, then more errors must occur during the
transmission. But Shannon showed that providing that you transmit the
information in your message at a slower rate than the Channel Capacity,
then you can make the probability of errors in the transmission of your
message as small as you would like.
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2.2.1 Entropy

Let p(x) be the probability mass function of a random variable X, over a
discrete set of symbols (or alphabet) X:alphabet

p(x) = P(X = x), x ∈ X
For example, if we toss two coins and count the number of heads, we
have a random variable: p(0) = 1/4, p(1) = 1/2, p(2) = 1/4.

The entropy (or self-information) is the average uncertainty of a singleentropy

self-information random variable:

Entropy H(p) = H(X) = −
∑
x∈X

p(x) log2 p(x)(2.26)

Entropy measures the amount of information in a random variable. It is
normally measured in bits (hence the log to the base 2), but using any
other base yields only a linear scaling of results. For the rest of this
book, an unadorned log should be read as log to the base 2. Also, for this
definition to make sense, we define 0 log 0 = 0.

Example 7: Suppose you are reporting the result of rolling an 8-sided
die. Then the entropy is:

H(X) = −
8∑
i=1

p(i) log p(i) = −
8∑
i=1

1
8

log
1
8
= − log

1
8
= log 8 = 3 bits

This result is what we would expect. Entropy, the amount of information
in a random variable, can be thought of as the average length of the
message needed to transmit an outcome of that variable. If we wish to
send the result of rolling an eight-sided die, the most efficient way is to
simply encode the result as a 3 digit binary message:

1 2 3 4 5 6 7 8
001 010 011 100 101 110 111 000

The transmission cost of each result is 3 bits, and there is no cleverer way
of encoding the results with a lower average transmission cost. In gen-
eral, an optimal code sends a message of probability p(i) in d− log p(i)e
bits.

The minus sign at the start of the formula for entropy can be moved
inside the logarithm, where it becomes a reciprocal:

H(X) =
∑
x∈X

p(x) log
1

p(x)
(2.27)
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People without any statistics background often think about a formula
like this as a sum of the quantity p(x) log(1/p(x)) for each x. While this
is mathematically impeccable, it is the wrong way to think about such
equations. Rather you should think of

∑
x∈X p(x) . . . as an idiom. It says

to take a weighted average of the rest of the formula (which will be a
function of x), where the weighting depends on the probability of each x.
Technically, this idiom defines an expectation, as we saw earlier. Indeed,

H(X) = E
(

log
1

p(X)

)
(2.28)

Example 8: Simplified Polynesian Simplified Polynesian3 appears to be
just a random sequence of letters, with the letter frequencies as shown:

p t k a i u
1/8 1/4 1/8 1/4 1/8 1/8

Then the per-letter entropy is:

H(P) = −
∑

i∈{p,t,k,a,i,u}
P(i) logP(i)

= −[4× 1
8

log
1
8
+ 2× 1

4
log

1
4

]
= 2

1
2

bits

This is supported by the fact that we can design a code that on average
takes 21

2 bits to transmit a letter:

p t k a i u
100 00 101 01 110 111

Note that this code has been designed so that fewer bits are used to send
more frequent letters, but still so that it can be unambiguously decoded
– if a code starts with a 0 then it is of length two, and if it starts with a 1
it is of length 3. There is much work in information theory on the design
of such codes, but we will not further discuss them here.

One can also think of entropy in terms of the Twenty Questions game.Twenty Questions

If you can ask yes/no questions like ‘Is it a t or an a?’ or ‘Is it a conso-
nant?’ then on average you will need to ask 21

2 questions to identify each
letter with total certainty (assuming that you ask good questions!). In

3. Polynesian languages, such as Hawai’ian, are well known for their small alphabets.
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Figure 2.5 The entropy of a weighted coin. The horizontal axis shows the prob-
ability of a weighted coin to come up heads. The vertical axis shows the entropy
of tossing the corresponding coin once.

other words, entropy can be interpreted as a measure of the size of the
‘search space’ consisting of the possible values of a random variable and
its associated probabilities.

Note that: (i) H(X) ≥ 0, (ii) H(X) = 0 only when the value of X is
determinate, hence providing no new information, and that (iii) entropy
increases with the message length. The information needed to transmit
the results of tossing a possibly weighted coin depends on the probability
p that it comes up heads, and on the number of tosses made. The entropy
for a single toss is shown in figure 2.5. For multiple tosses, since each
is independent, we would just multiply the number in the graph by the
number of tosses.

2.2.2 Joint entropy and conditional entropy

The joint entropy of a pair of discrete random variables X,Y ∼ p(x, y)
is the amount of information needed on average to specify both their
values. It is defined as:

H(X,Y) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(X, Y)(2.29)
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The conditional entropy of a discrete random variable Y given an-
other X, for X,Y ∼ p(x, y), expresses how much extra information you
still need to supply on average to communicate Y given that the other
party knows X:

H(Y |X) =
∑
x∈X

p(x)H(Y |X = x)(2.30)

=
∑
x∈X

p(x)

− ∑
y∈Y

p(y|x) log p(y|x)


= −
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x)

There is also a Chain rule for entropy:

H(X,Y) = H(X)+H(Y |X)(2.31)

H(X1, . . . , Xn) = H(X1)+H(X2|X1)+ . . .+H(Xn|X1, . . . , Xn−1)

The products in the chain rules for probabilities here become sums be-
cause of the log:

H(X,Y) = −Ep(x,y)
(
log p(x, y)

)
= −Ep(x,y)

(
log(p(x)p(y|x)))

= −Ep(x,y)
(
log p(x)+ log p(y|x))

= −Ep(x)
(
log p(x)

)− Ep(x,y)
(
log p(y|x))

= H(X)+H(Y |X)

Example 9: Simplified Polynesian revisited An important scientific
idea is the distinction between a model and reality. Simplified Polyne-
sian isn’t a random variable, but we approximated it (or modeled it) as
one. But now let’s learn a bit more about the language. Further fieldwork
has revealed that Simplified Polynesian has syllable structure. Indeed, it
turns out that all words consist of sequences of CV (consonant-vowel)
syllables. This suggests a better model in terms of two random variables
C for the consonant of a syllable, and V for the vowel, whose joint dis-
tribution P(C,V) and marginal distributions P(C, ·) and P(·, V) are as
follows:
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(2.32) p t k

a 1
16

3
8

1
16

1
2

i 1
16

3
16 0 1

4

u 0 3
16

1
16

1
4

1
8

3
4

1
8

Note that here the marginal probabilities are on a per-syllable basis,
and are therefore double the probabilities of the letters on a per-letter
basis, which would be:

(2.33) p t k a i u
1/16 3/8 1/16 1/4 1/8 1/8

We can work out the entropy of the joint distribution, in more than one
way. Let us use the chain rule:4

H(C) = 2× 1
8
× 3+ 3

4

(
2− log 3

)
= 9

4
− 3

4
log 3 bits ≈ 1.061 bits

H(V |C) =
∑

c=p,t,k
p(C = c)H(V |C = c)

= 1
8
H
(1

2
,
1
2
,0
)
+ 3

4
H
(1

2
,
1
4
,
1
4

)
+ 1

8
H
(1

2
,0,

1
2

)
= 2× 1

8
× 1+ 3

4

[1
2
× 1+ 2× 1

4
× 2

]
= 1

4
+ 3

4
× 3

2

= 11
8

bits = 1.375 bits

H(C,V) = H(C)+H(V |C)
= 9

4
− 3

4
log 3+ 11

8

= 29
8
− 3

4
log 3 ≈ 2.44 bits

4. Within the calculation, we use an informal, but convenient, notation of expressing
a finite-valued distribution as a sequence of probabilities, which we can calculate the
entropy of.
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Note that those 2.44 bits are now the entropy for a whole syllable (which
was 2×21

2 = 5 for the original Simplified Polynesian example). Our better
understanding of the language means that we are now much less uncer-
tain, and hence less surprised by what we see on average than before.

Because the amount of information contained in a message depends on
the length of the message, we normally want to talk in terms of the per-
letter or per-word entropy. For a message of length n, the per-letter/word
entropy, also known as the entropy rate, is:5entropy rate

Hrate = 1
n
H(X1n) = −1

n

∑
x1n

p(x1n) log p(x1n)(2.34)

If we then assume that a language is a stochastic process consisting of
a sequence of tokens L = (Xi), for example a transcription of every word
you utter in your life, or a corpus comprising everything that is sent
down the newswire to your local paper, then we can define the entropy
of a human language L as the entropy rate for that stochastic process:

Hrate(L) = lim
n→∞

1
n
H(X1, X2, . . . , Xn)(2.35)

We take the entropy rate of a language to be the limit of the entropy rate
of a sample of the language as the sample gets longer and longer.

2.2.3 Mutual information

By the chain rule for entropy,

H(X,Y) = H(X)+H(Y |X) = H(Y)+H(X|Y)
Therefore,

H(X)−H(X|Y) = H(Y)−H(Y |X)
This difference is called the mutual information between X and Y. It is themutual

information reduction in uncertainty of one random variable due to knowing about
another, or in other words, the amount of information one random vari-
able contains about another. A diagram illustrating the definition of mu-
tual information and its relationship to entropy is shown in figure 2.6
(adapted from Cover and Thomas (1991: 20)).

5. Commonly throughout this book we use two subscripts on something to indicate a sub-
sequence. So, here, we use Xij to represent the sequence of random variables (Xi, . . . , Xj )
and similarly xij = (xi , . . . , xj ). This notation is slightly unusual, but very convenient
when sequences are a major part of the domain of discourse. So the reader should re-
member this convention and be on the lookout for it.
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I(X; Y)

H(X|Y) H(Y |X)

H(X) H(Y)

H(X,Y)

Figure 2.6 The relationship between mutual information I and entropy H.

Mutual information is a symmetric, non-negative measure of the com-
mon information in the two variables. People thus often think of mutual
information as a measure of dependence between variables. However, it
is actually better to think of it as a measure of independence because:

� It is 0 only when two variables are independent, but

� For two dependent variables, mutual information grows not only with
the degree of dependence, but also according to the entropy of the
variables.

Simple arithmetic gives us the following formulas for mutual informa-
tion I(X; Y):6

I(X; Y) = H(X)−H(X|Y)(2.36)

= H(X)+H(Y)−H(X,Y)
=

∑
x

p(x) log
1

p(x)
+
∑
y

p(y) log
1

p(y)
+
∑
x,y

p(x, y) log p(x, y)

=
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)

Since H(X|X) = 0, note that:

H(X) = H(X)−H(X|X) = I(X; X)

6. Mutual information is conventionally written with a semi-colon separating the two ar-
guments. We are unsure why.
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This illustrates both why entropy is also called self-information, and how
the mutual information between two totally dependent variables is not
constant but depends on their entropy.

We can also derive conditional mutual information and a chain rule:

I(X; Y |Z) = I((X; Y)|Z) = H(X|Z)−H(X|Y ,Z)(2.37)

I(X1n; Y) = I(X1; Y)+ . . .+ I(Xn; Y |X1, . . . , Xn−1)(2.38)

=
n∑
i=1

I(Xi ; Y |X1, . . . , Xi−1)

In this section we have defined the mutual information between two
random variables. Sometimes people talk about the pointwise mutualpointwise mutual

information information between two particular points in those distributions:

I(x, y) = log
p(x, y)

p(x)p(y)

This has sometimes been used as a measure of association between ele-
ments, but there are problems with using this measure, as we will discuss
in section 5.4.
�Mutual information has been used many times in Statistical NLP, such
as for clustering words (section 14.1.3). It also turns up in word sense
disambiguation (section 7.2.2).

2.2.4 The noisy channel model

Using information theory, Shannon modeled the goal of communicating
down a telephone line – or in general across any channel – in the follow-
ing way: The aim is to optimize in terms of throughput and accuracy the
communication of messages in the presence of noise in the channel. It
is assumed that the output of the channel depends probabilistically on
the input. In general, there is a duality between compression, which iscompression

achieved by removing all redundancy, and transmission accuracy, which
is achieved by adding controlled redundancy so that the input can beredundancy

recovered even in the presence of noise. The goal is to encode the mes-
sage in such a way that it occupies minimal space while still containing
enough redundancy to be able to detect and correct errors. On receipt,
the message is then decoded to give what was most likely the original
message. This process is shown in figure 2.7.
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Figure 2.7 The noisy channel model.
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Figure 2.8 A binary symmetric channel. A 1 or a 0 in the input gets flipped on
transmission with probability p.

The central concept that characterizes a channel in information theory
is its capacity. The channel capacity describes the rate at which one cancapacity

transmit information through the channel with an arbitrarily low proba-
bility of being unable to recover the input from the output. For a memory-
less channel, Shannon’s second theorem states that the channel capacity
can be determined in terms of mutual information as follows:

C = max
p(X)

I(X; Y)(2.39)

According to this definition, we reach a channel’s capacity if we man-
age to design an input code X whose distribution maximizes the mutual
information between the input and the output over all possible input
distributions p(X).

As an example, consider the binary symmetric channel in figure 2.8.
Each input symbol is either a 1 or a 0, and noise in the channel causes
each symbol to be flipped in the output with probability p. We find that:

I(X; Y) = H(Y)−H(Y |X)
= H(Y)−H(p)

Therefore,

max
p(X)

I(X; Y) = 1−H(p)
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Noisy Channel
p(o|i) Decoder

I O Î

Figure 2.9 The noisy channel model in linguistics.

This last line follows because the mutual information is maximized by
maximizing the entropy in the codes, which is done by making the input
and hence the output distribution uniform, so their entropy is 1 bit. Since
entropy is non-negative, C ≤ 1. The channel capacity is 1 bit only if the
entropy is zero, that is if p = 0 and the channel reliably transmits a 0 as
0 and a 1 as 1, or if p = 1 and it always flips bits. A completely noisy
binary channel which transmits both 0s and 1s with equal probability as
0s and 1s (i.e., p = 1

2 ) has capacity C = 0, since in this case there is
no mutual information between X and Y . Such a channel is useless for
communication.

It was one of the early triumphs of information theory that Shannon
was able to show two important properties of channels. First, channel
capacity is a well-defined notion. In other words, for each channel there
is a smallest upper bound of I(X; Y) over possible distributions p(X).
Second, in many practical applications it is easy to get close to the opti-
mal channel capacity. We can design a code appropriate for the channel
that will transmit information at a rate that is optimal or very close to op-
timal. The concept of capacity eliminates a good part of the guesswork
that was involved in designing communications systems before Shannon.
One can precisely evaluate how good a code is for a communication line
and design systems with optimal or near-optimal performance.

The noisy channel model is important in Statistical NLP because a sim-
plified version of it was at the heart of the renaissance of quantitative
natural language processing in the 1970s. In the first large quantitative
project after the early quantitative NLP work in the 1950s and 60s, re-
searchers at IBM’s T. J. Watson research center cast both speech recogni-
tion and machine translation as a noisy channel problem.

Doing linguistics via the noisy channel model, we do not get to con-
trol the encoding phase. We simply want to decode the output to give
the most likely input, and so we work with the channel shown in fig-
ure 2.9. Many problems in NLP can be construed as an attempt to de-
termine the most likely input given a certain output. We can determine
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Application Input Output p(i) p(o|i)
Machine L1 word L2 word p(L1) in a translation
Translation sequences sequences language model model

Optical Character actual text text with prob of model of
Recognition (OCR) mistakes language text OCR errors

Part Of Speech POS tag English prob of p(w |t)
(POS) tagging sequences words POS sequences

Speech word speech prob of word acoustic
recognition sequences signal sequences model

Table 2.2 Statistical NLP problems as decoding problems.

this as follows, by using Bayes’ theorem, and then noting that the output
probability is a constant:

Î = arg max
i

p(i|o) = arg max
i

p(i)p(o|i)
p(o)

= arg max
i

p(i)p(o|i)(2.40)

Here we have two probability distributions to consider: p(i) is the lan-language model

guage model, the distribution of sequences of ‘words’ in the input lan-
guage, and p(o|i) is the channel probability.channel

probability As an example, suppose we want to translate a text from English to
French. The noisy channel model for translation assumes that the true
text is in French, but that, unfortunately, when it was transmitted to us,
it went through a noisy communication channel and came out as English.
So the word cow we see in the text was really vache, garbled by the noisy
channel to cow. All we need to do in order to translate is to recover the
original French – or to decode the English to get the French.7decode

The validity of the noisy channel model for translation is still giving
rise to many a heated debate among NLP researchers, but there is no
doubt that it is an elegant mathematical framework that has inspired a
significant amount of important research. We will discuss the model in
more detail in chapter 13. Other problems in Statistical NLP can also be
seen as instantiations of the decoding problem. A selection is shown in
table 2.2.

7. The French reader may be sympathetic with the view that English is really a form of
garbled French that makes the language of clarté unnecessarily ambiguous!
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2.2.5 Relative entropy or Kullback-Leibler divergence

For two probability mass functions, p(x), q(x) their relative entropy isrelative entropy

given by:

D(p‖q) =
∑
x∈X

p(x) log
p(x)
q(x)

(2.41)

where again we define 0 log 0
q = 0 and otherwise p log p

0 = ∞. The relative
entropy, also known as the Kullback-Leibler divergence, is a measure ofKullback-Leibler

divergence how different two probability distributions (over the same event space)
are. Expressed as an expectation, we have:

D(p‖q) = Ep

(
log

p(X)
q(X)

)
(2.42)

Thus, the KL divergence between p and q is the average number of bits
that are wasted by encoding events from a distribution p with a code
based on a not-quite-right distribution q.

This quantity is always non-negative, and D(p‖q) = 0 iff p = q. For
these reasons, some authors use the name ‘KL distance,’ but note that
relative entropy is not a metric (in the sense in which the term is used
in mathematics): it is not symmetric in p and q (see exercise 2.12), and
it does not satisfy the triangle inequality.8 Hence we will use the nametriangle inequality

‘KL divergence,’ but nevertheless, informally, people often think about
the relative entropy as the ‘distance’ between two probability distribu-
tions: it gives us a measure of how close two pmfs are.

Mutual information is actually just a measure of how far a joint distri-
bution is from independence:

I(X; Y) = D(p(x, y)‖p(x)p(y))(2.43)

We can also derive conditional relative entropy and a chain rule for
relative entropy (Cover and Thomas 1991: 23):

D
(
p(y|x)‖q(y|x)) =∑

x
p(x)

∑
y

p(y|x) log
p(y|x)
q(y|x)(2.44)

D
(
p(x, y)‖q(x, y)

) = D(p(x)‖q(x)
)+D(p(y|x)‖q(y|x))(2.45)

8. The triangle inequality is that for any three points x, y, z:

d(x, y) ≤ d(x, z) + d(z, y)
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�KL divergence is used for measuring selectional preferences in sec-
tion 8.4.

2.2.6 The relation to language: Cross entropy

So far we have examined the notion of entropy, and seen roughly how it
is a guide to determining efficient codes for sending messages, but how
does this relate to understanding language? The secret to this is to return
to the idea that entropy is a measure of our uncertainty. The more we
know about something, the lower the entropy will be because we are less
surprised by the outcome of a trial.

We can illustrate this with the examples used above. Consider again
Simplified Polynesian from examples 8 and 9. This language has 6 let-
ters. The simplest code is to use 3 bits for each letter of the language.
This is equivalent to assuming that a good model of the language (where
our ‘model’ is simply a probability distribution) is a uniform model. How-
ever, we noticed that not all the letters occurred equally often, and, noting
these frequencies, produced a zeroth order model of the language. This
had a lower entropy of 2.5 bits per letter (and we showed how this obser-
vation could be used to produce a more efficient code for transmitting the
language). Thereafter, we noticed the syllable structure of the language,
and developed an even better model that incorporated that syllable struc-
ture into it. The resulting model had an even lower entropy of 1.22 bits
per letter. The essential point here is that if a model captures more of the
structure of a language, then the entropy of the model should be lower.
In other words, we can use entropy as a measure of the quality of our
models.

Alternately, we can think of entropy as a matter of how surprised we
will be. Suppose that we are trying to predict the next word in a Sim-
plified Polynesian text. That is, we are examining P(w |h), where w is
the next word and h is the history of words seen so far. A measure of
our surprise on seeing the next word can be derived in terms of the con-surprise

ditional probability assigned to w by our model m of the distribution of
Simplified Polynesian words. Surprise can be measured by what we might
term the pointwise entropy H(w |h) = − log2 m(w |h). If the predictor ispointwise entropy

certain that word w follows a given history h and it is correct, then the in-
formation supplied to the predictor on seeing w is − log2 1 = 0. In other
words, the predictor does not experience any surprise at all. On the other
hand, if the model thinks that w cannot follow h, then m(w |h) = 0 and
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so the information supplied to the predictor is infinite (− log2 0 = ∞). In
this case our model is infinitely surprised, which is normally a very bad
thing. Usually our models will predict a probability between these two
extremes for each event and so the model will gain some information, or
alternatively, be somewhat surprised, when it sees the next word, and the
goal is to keep that level of surprise as low as possible. Summing over the
surprise of the predictor at each word gives an expression for our total
surprise:

Htotal = −
n∑
j=1

log2 m(wj |w1, w2, . . . , wj−1)

= − log2 m(w1, w2, . . . , wn)

The second line above follows from the chain rule. Normally, we would
want to normalize this measure by the length of the text so our notion
of surprise is not dependent on the size of the text. This normalized
measure gives the average surprise of the predictor per word.

So far this discussion has been rather informal, but we can formalize
it through the notion of relative entropy. Suppose that we have some
empirical phenomenon, in Statistical NLP usually utterances in a certain
language. Assuming some mapping to numbers, we can represent it via
a random variable X. Then we assume that there is some probability
distribution over the utterances – for instance, you hear Thank you much
more often than On you. So we take X ∼ p(x).

Now, unfortunately we do not know what p(·) is for empirical phenom-
ena. But by looking at instances, for example by looking at a corpus of
utterances, we can estimate roughly what p seems to be like. In other
words, we can produce a model m of the real distribution, based on our
best estimates. In making this model, what we want to do is to mini-
mize D(p‖m) – to have as accurate a probabilistic model as possible.
Unfortunately, we normally cannot calculate this relative entropy – again,
because we do not know what p is. However, there is a related quantity,
the cross entropy, which we fortunately can get a handle on.

The cross entropy between a random variable X with true probabilitycross entropy

distribution p(x) and another pmf q (normally a model of p) is given by:

H(X,q) = H(X)+D(p‖q)(2.46)

= −
∑
x

p(x) log q(x)
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= Ep

(
log

1
q(x)

)
(2.47)

(Proof of this is left to the reader as exercise 2.13.)
Just as we defined the entropy of a language in section 2.2.2, we can

define the cross entropy of a language L = (Xi) ∼ p(x) according to a
model m by:

H(L,m) = − lim
n→∞

1
n

∑
x1n

p(x1n) log m(x1n)(2.48)

We do not seem to be making much progress, because it still seems that
we cannot calculate this quantity without knowing p. But if we make
certain assumptions that the language is ‘nice,’ then the cross entropy
for the language can be calculated as:

H(L,m) = − lim
n→∞

1
n

log m(x1n)(2.49)

Using this second form, we can calculate the cross entropy based only
on knowing our probability model and having a large body of utterances
available. That is, we do not actually attempt to calculate the limit, but
approximate it by calculating for a sufficiently large n:

H(L,m) ≈ −1
n

log m(x1n)(2.50)

This measure is just the figure for our average surprise. Our goal will
be to try to minimize this number. Because H(X) is fixed (if unknown),
this is equivalent to minimizing the relative entropy, which is a measure
of how much our probability distribution departs from actual language
use. The only additional requirement is that the text that we use to test
the model must be an independent test set, and not part of the training
corpus that we used to estimate the parameters of the model. Cross
entropy is inversely related to the average probability a model assigns to
words in test data. Lower model cross entropy normally leads to better
performance in applications, but it need not do so if it is just a matter of
improving the magnitude of probability estimates, but not their relative
ordering. (See section 6.2.3 for more practical details on calculating the
cross entropy of models.)

But what justifies going from equation (2.48) to equation (2.49)? The
formula for language cross entropy has an expectation embedded within
it:

H(L,m) = lim
n→∞

1
n
E
(

log
1

m(X1n)

)
(2.51)
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Recall that the expectation is a weighted average over all possible se-
quences. But in the above formula we are using a limit and looking at
longer and longer sequences of language use. Intuitively, the idea is then
that if we have seen a huge amount of the language, what we have seen
is ‘typical.’ We no longer need to average over all samples of the lan-
guage; the value for the entropy rate given by this particular sample will
be roughly right.

The formal version of this is to say that if we assume that L = (Xi) is
a stationary ergodic process, then we can prove the above result. This is
a consequence of the Shannon-McMillan-Breiman theorem, also known as
the Asymptotic Equipartition Property:

Theorem: If Hrate is the entropy rate of a finite-valued stationary er-
godic process (Xn), then:

−1
n

log p(X1, . . . , Xn)→ H, with probability 1

We will not prove this theorem; see Cover and Thomas (1991: ch. 3, 15).
An ergodic process is one that, roughly, cannot get into different sub-ergodic

states that it will not escape from. An example of a non-ergodic process
is one that in the beginning chooses one of two states: one in which it
generates 0 forever, one in which it generates 1 forever. If a process is
not ergodic, then even looking at one very long sequence will not neces-
sarily tell us what its typical behavior is (for example, what is likely to
happen when it gets restarted).

A stationary process is one that does not change over time. This isstationary

clearly wrong for language: new expressions regularly enter the language
while others die out. And so, it is not exactly correct to use this result
to allow the calculation of a value for cross entropy for language applica-
tions. Nevertheless, for a snapshot of text from a certain period (such as
one year’s newswire), we can assume that the language is near enough to
unchanging, and so this is an acceptable approximation to truth. At any
rate, this is the method regularly used.

2.2.7 The entropy of English

As noted above, English in general is not a stationary ergodic process. But
we can nevertheless model it with various stochastic approximations. In
particular, we can model English with what are known as n-gram modelsn-gram models
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or Markov chains. These models, which we discuss in detail in chapters 6Markov chains

and 9, are ones where we assume a limited memory. We assume that the
probability of the next word depends only on the previous k words in the
input. This gives a kth order Markov approximation:Markov assumption

P(Xn = xn|Xn−1 = xn−1, . . . , X1 = x1) =
P(Xn = xn|Xn−1 = xn−1, . . . , Xn−k = xn−k)

If we are working on a character basis, for example, we are trying to guess
what the next character in a text will be given the preceding k characters.
Because of the redundancy of English, this is normally fairly easy. For
instance, a generation of students have proved this by being able to make
do with photocopies of articles that are missing the last character or two
of every line.

By adding up counts of letters, letter digraphs (that is, sequences of two
letters), and so on in English, one can produce upper bounds for the en-
tropy of English.9 We assume some such simplified model of English and
compute its cross entropy against a text and this gives us an upper bound
for the true entropy of English – since D(p‖m) ≥ 0, H(X,m) ≥ H(X).
Shannon did this, assuming that English consisted of just 27 symbols
(the 26 letters of the alphabet and space – he ignored case distinctions
and punctuation). The estimates he derived were:

(2.52) Model Cross entropy (bits)

zeroth order 4.76 (uniform model, so log 27)
first order 4.03
second order 2.8
Shannon’s experiment 1.3 (1.34) (Cover and Thomas 1991: 140)

The first three lines show that as the order of the model increases, that is,
as information about the frequencies of letters (first order) and digraphs
(second order) is used, our model of English improves and the calculated
cross entropy drops. Shannon wanted a tighter upper bound on the en-
tropy of English, and derived one by human experiments – finding out
how good at guessing the next letter in a text a human being was. This
gave a much lower entropy bound for English. (A later experiment with

9. More strictly, one produces an estimate for the text on which the counts are based, and
these counts are good for ‘English’ only to the extent that the text used is representative
of English as a whole. Working at the character level, this is not too severe a problem, but
it becomes quite important when working at the word level, as discussed in chapter 4.



pa

i i

78 2 Mathematical Foundations

more subjects on the same text that Shannon used produced the figure
in parentheses, 1.34.)

Of course, the real entropy of English must be lower still: there are
doubtless patterns in people’s speech that humans do not pick up on
(although maybe not that many!). But at present, the statistical language
models that we can construct are much worse than human beings, and
so the current goal is to produce models that are as good as English
speakers at knowing which English utterances sound normal or common
and which sound abnormal or marked.
�We return to n-gram models in chapter 6.

2.2.8 Perplexity

In the speech recognition community, people tend to refer to perplexityperplexity

rather than cross entropy. The relationship between the two is simple:

perplexity(x1n,m) = 2H(x1n,m)(2.53)

= m(x1n)−
1
n(2.54)

We suspect that speech recognition people prefer to report the larger
non-logarithmic numbers given by perplexity mainly because it is much
easier to impress funding bodies by saying that “we’ve managed to re-
duce perplexity from 950 to only 540” than by saying that “we’ve reduced
cross entropy from 9.9 to 9.1 bits.” However, perplexity does also have
an intuitive reading: a perplexity of k means that you are as surprised
on average as you would have been if you had had to guess between
k equiprobable choices at each step.

2.2.9 Exercises

Exercise 2.9 [«]

Take a (short) piece of text and compute the relative frequencies of the letters
in the text. Assume these are the true probabilities. What is the entropy of this
distribution?

Exercise 2.10 [«]

Take another piece of text and compute a second probability distribution over
letters by the same method. What is the KL divergence between the two distribu-
tions? (You will need to ‘smooth’ the second distribution and replace any zero
with a small quantity ε.)
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Exercise 2.11 [«]

Cast the problem of word sense disambiguation as a noisy channel model, in
analogy to the examples in table 2.2. Word sense disambiguation is the problem
of determining which sense of an ambiguous word is used (e.g., ‘industrial plant’
vs. ‘living plant’ for plant) and will be covered in chapter 7.

Exercise 2.12 [«]

Show that the KL divergence is not symmetric by finding an example of two
distributions p and q for which D(p‖q) ≠ D(q‖p).

Exercise 2.13 [«]

Prove the equality shown in the first two lines of (2.46).

Exercise 2.14 [«]

We arrived at the simplified way of computing cross entropy in equation (2.49)
under the premise that the process we are dealing with is ergodic and station-
ary. List some characteristics of natural languages that show that these two
properties are only approximately true of English.

Exercise 2.15 [««]

Reproduce Shannon’s experiment. Write a program that shows you a text one
letter at a time. Run it on a text you have not seen. Can you confirm Shannon’s
estimate of the entropy of English?

Exercise 2.16 [««]

Repeat the last exercise for one text that is ‘easy’ (e.g., a newsgroup posting) and
one text that is ‘hard’ (e.g., a scientific article from a field you don’t know well).
Do you get different estimates? If the estimates are different, what difficulties
does the experiment raise for interpreting the different estimates of the entropy
of English?

2.3 Further Reading

Aho et al. (1986: ch. 4) cover parsing in computer science, and Allen
(1995: ch. 3) covers parsing in computational linguistics. Most of the
mathematics we use is covered in Part I of (Cormen et al. 1990), but not
vector spaces and matrices, for which one should consult an introduction
to linear algebra such as (Strang 1988).

Many books give good introductions to basic probability theory. A few
good ones, listed in approximate order of increasing difficulty are (Moore
and McCabe 1989; Freedman et al. 1998; Siegel and Castellan 1988; De-
Groot 1975). Krenn and Samuelsson (1997) is particularly recommended
as a much more thorough introduction to statistics aimed at a Statistical



p

i i

80 2 Mathematical Foundations

NLP audience. Unfortunately most introduction to statistics textbooks
follow a very fixed syllabus which is dominated by hypothesis testing as
applied in experimental sciences such as biology and psychology. Of-
ten these concerns are rather distant from the issues of most relevance
to Statistical NLP, and it can be helpful to also look at books covering
quantitative methods for machine learning, such as (Mitchell 1997).

The coverage of information theory here barely scratches the surface
of that field. Cover and Thomas (1991) provide a thorough introduction.

Brown et al. (1992b) present an estimate of 1.75 bits per character for
the entropy of English based on predicting the next word, trained on an
enormous corpus of English text.
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