# Statistical Machine Translation Lecture 5 Syntax-Based Models

Philipp Koehn

pkoehn@inf.ed.ac.uk

School of Informatics
University of Edinburgh



Syntax-Based Statistical Machine Translation

#### Phrase-Based Translation Model



- Foreign input is segmented in phrases
  - any sequence of words, not necessarily linguistically motivated
- Each phrase is translated into English
- Phrases are reordered

Philipp Koehn, University of Edinburgh

3

Syntax-Based Statistical Machine Translation

# Search Space for Decoding Too Big



- Explosion of search space
- ⇒ Pruning, Beam Search

#### Outline

• Reminder: Modeling and Decoding

• Why Syntax?

• Yamada and Knight: translating into trees

• Wu: tree-based transfer

• Chiang: hierarchical transfer

• Koehn: clause structure

Other approaches

Philipp Koehn, University of Edinburgh

\_

Syntax-Based Statistical Machine Translation

### **Decoding**



Decoding process builds an English translation left to right,
 by picking foreign phrases to translate into English phrases

Philipp Koehn, University of Edinburgh

Syntax-Based Statistical Machine Translation

### **Word-Based Translation Model**



- Translation process is broken up into small step: word translation, reordering, duplication, insertion
- Decoding can be done similarly to phrase-based decoding

### The Challenge of Syntax



The classical machine translation pyramid

Philipp Koehn, University of Edinburgh

Philipp Koehn, University of Edinburgh

Syntax-Based Statistical Machine Translation

### Syntactic Language Model

- ullet Good syntax tree o good English
- · Allows for long distance constraints



· Left translation preferred by syntactic LM

11

Philipp Koehn, University of Edinburgh

10

Syntax-Based Statistical Machine Translation

Philipp Koehn, University of Edinburgh

# Yamada and Knight [2001]



## **Advantages of Syntax-Based Translation**

- Reordering for syntactic reasons
  - e.g., move German object to end of sentence
- Better explanation for function words
  - e.g., prepositions, determiners
- · Conditioning to syntactically related words
  - translation of verb may depend on subject or object
- Use of syntactic language models

Syntax-Based Statistical Machine Translation

### String to Tree Translation



- Use of English syntax trees [Yamada and Knight, 2001]
  - exploit rich resources on the English side
  - obtained with statistical parser [Collins, 1997]
  - flattened tree to allow more reorderings
  - works well with syntactic language model

Syntax-Based Statistical Machine Translation

# **Reordering Table**

| Original Order | Reordering  | p(reorder original) |
|----------------|-------------|---------------------|
| PRP VB1 VB2    | PRP VB1 VB2 | 0.074               |
| PRP VB1 VB2    | PRP VB2 VB1 | 0.723               |
| PRP VB1 VB2    | VB1 PRP VB2 | 0.061               |
| PRP VB1 VB2    | VB1 VB2 PRP | 0.037               |
| PRP VB1 VB2    | VB2 PRP VB1 | 0.083               |
| PRP VB1 VB2    | VB2 VB1 PRP | 0.021               |
| VB TO          | VB TO       | 0.107               |
| VB TO          | TO VB       | 0.893               |
| TO NN          | TO NN       | 0.251               |
| TO NN          | NN TO       | 0.749               |

ongaku

kiku

**Decoding as Parsing** 

Chart Parsing

PRP he

kare

### **Decoding as Parsing**

Chart Parsing



- Pick Japanese words
- Translate into tree stumps

Philipp Koehn, University of Edinburgh

13

Philipp Koehn, University of Edinburgh

• Pick Japanese words

Translate into tree stumps

ga daisuki desu

Syntax-Based Statistical Machine Translation

### **Decoding as Parsing**



• Adding some more entries...

14

Syntax-Based Statistical Machine Translation

# **Decoding as Parsing**



Combine entries

Philipp Koehn, University of Edinburgh

Philipp Koehn, University of Edinburgh

15

16

Syntax-Based Statistical Machine Translation

# **Decoding as Parsing**



Syntax-Based Statistical Machine Translation

# **Decoding as Parsing**



## **Decoding as Parsing**



· Finished when all foreign words covered

Philipp Koehn, University of Edinburgh

19

20

Syntax-Based Statistical Machine Translation

#### Is the Model Realistic?

- Do English trees match foreign strings?
- Crossings between French-English [Fox, 2002]
  - 0.29-6.27 per sentence, depending on how it is measured
- Can be reduced by
  - flattening tree, as done by [Yamada and Knight, 2001]
  - detecting phrasal translation
  - special treatment for small number of constructions
- Most coherence between dependency structures

Philipp Koehn, University of Edinburgh

Philipp Koehn, University of Edinburgh

21

Syntax-Based Statistical Machine Translation

# **Syntax Trees**



English binary tree

### Yamada and Knight: Training

- Parsing of the English side
  - using Collins statistical parser
- EM training
  - translation model is used to map training sentence pairs
  - EM training finds low-perplexity model
  - → unity of training and decoding as in IBM models

Philipp Koehn, University of Edinburgh

Syntax-Based Statistical Machine Translation

### **Inversion Transduction Grammars**

- Generation of both English and foreign trees [Wu, 1997]
- Rules (binary and unary)
  - $-A \to A_1 A_2 ||A_1 A_2||$
  - $A \rightarrow A_1 A_2 || A_2 A_1$
  - $-A \rightarrow e \| f$
  - $-A \rightarrow e \| *$
  - $-A \rightarrow * || f$
- ⇒ Common binary tree required
  - limits the complexity of reorderings

Syntax-Based Statistical Machine Translation

# Syntax Trees (2)



Spanish binary tree

### Syntax Trees (3)



· Combined tree with reordering of Spanish

Philipp Koehn, University of Edinburgh

25

Philipp Koehn, University of Edinburgh

Syntax-Based Statistical Machine Translation

### Chiang: Hierarchical Phrase Model

- Chiang [ACL, 2005] (best paper award!)
  - context free bi-grammar
  - one non-terminal symbol
  - right hand side of rule may include non-terminals and terminals
- Competitive with phrase-based models in 2005 DARPA/NIST evaluation

Philipp Koehn, University of Edinburgh

27

Syntax-Based Statistical Machine Translation

# Learning Hierarchical Rules



#### **Inversion Transduction Grammars**

- Decoding by parsing (as before)
- Variations
  - may use real syntax on either side or both
  - may use multi-word units at leaf nodes
- Reordering constraints of ITG used in phrase-based systems

Syntax-Based Statistical Machine Translation

26

# Types of Rules

- Word translation
  - $X \rightarrow$  maison  $\parallel$  house
- Phrasal translation
  - X → daba una bofetada | slap
- Mixed non-terminal / terminal
  - $X \rightarrow X$  bleue  $\parallel$  blue X
  - $\ \, X \rightarrow ne \, X \, pas \, \| \, not \, X$
  - X  $\rightarrow$  X1 X2  $\parallel$  X2 of X1
- Technical rules
  - $S \rightarrow S X \parallel S X$
  - $\ S \to X \parallel X$

Philipp Koehn, University of Edinburgh

28

### Syntax-Based Statistical Machine Translation

# Learning Hierarchical Rules



#### Details

- Too many rules
  - ightarrow filtering of rules necessary
- Efficient parse decoding possible
  - hypothesis stack for each span of foreign words
  - only one non-terminal  $\rightarrow$  hypotheses comparable
  - length limit for spans that do not start at beginning

Philipp Koehn, University of Edinburgh

31

Philipp Koehn, University of Edinburgh

32

Syntax-Based Statistical Machine Translation

### Clause Level Restructuring

- Why clause structure?
  - languages differ vastly in their clause structure (English: SVO, Arabic: VSO, German: fairly free order; a lot details differ: position of adverbs, sub clauses, etc.)
  - large-scale restructuring is a problem for phrase models
- Restructuring
  - reordering of constituents (main focus)
  - add/drop/change of function words
- ACL 2005 paper [Collins, Koehn, Kucerova]

Philipp Koehn, University of Edinburgh

33

Philipp Koehn, University of Edinburgh

34

Syntax-Based Statistical Machine Translation

# Reordering When Translating

```
PPER-SB
              Ich
     VAFIN-HD
              werde
Ihnen
                                          will
     PPER-DA
                                          VOII
     NP-OA
               ART-OA
               ADJ-NK
                       entsprechenden
                                           corresponding
               NN-NK
                        Anmerkungen
                                           comments
     VVFIN
               aushaendigen
                                          pass on
S-MO KOUS-CP
               damit
                                          so that
     PPER-SB
               Sie
                                          you
     PDS-OA
               das
                                          that
     ADJD-MO
               eventuell
                                          perhaps
     PP-MO
               APRD-MO
                        bei
               ART-DA
                         der
                                           the
               NN-NK
                         Abstimmung
     VVINF
               uebernehmen
                                          include
ġ.
```

- Reordering when translating into English
  - tree is flattened
  - clause level constituents line up

### Syntax-Aided Phrase-Based MT [Koehn]

- Approach:
  - stick with phrase-based system
  - special treatment for special syntactic problems
- Noun Phrase Translation
- Clause Level Restructuring

Syntax-Based Statistical Machine Translation

#### Clause Structure

```
PPER-SB Ich
         werde will
PPER-DA Ihnen
VAFIN-HD
VP-OC
                                                                  MATN
         NP-OA
                  ART-OA
ADJ-NK
                                the
                                                                  CLAUSE
                          entsprechenden
                                            corresponding
                          Anmerkungen con
digen pass on
         VVFIN
                  KOUS-CP damit
                                  so that
                         SIIR-
                                                                 ORDINATE
                                                                 CLAUSE
                                                 ung vote
                          VVINF
```

- Syntax tree from German parser
  - statistical parser by Amit Dubay, trained on TIGER treebank

Syntax-Based Statistical Machine Translation

# Clause Level Reordering

Philipp Koehn, University of Edinburgh

```
PPER-SB
              Ich
     VAFIN-HD werde
                                             will
                                             you
               Ihnen
                                          - 4
                       die
                                             the
     NP-OA
               ART-OA
                                          - 5
               ADJ-NK
                       entsprechenden
                                              corresponding
               NN-NK
                       Anmerkungen
                                              comments
                                             pass on
     VVFIN
               aushaendigen
S-MO KOUS-CP
              damit
     PPER-SB
              Sie
                                             you
     PDS-OA
                                             that
               das
     ADJD-MO
               eventuel1
                                             perhaps
               APRD-MO
     PP-MO
               ART-DA
                        der
                                              the
               NN-NK
                        Abstimmung
                                              vote
     VVINF
                                           5
                                             include
               uebernehmen
                                             can
     VMFIN
               koennen
```

- Clause level reordering is a well defined task
  - label German constituents with their English order
  - done this for 300 sentences, two annotators, high agreement

36

#### Syntax-Based Statistical Machine Translation

### Systematic Reordering German → English

- Many types of reorderings are systematic
  - move verb group together
  - subject verb object
  - move negation in front of verb

#### ⇒ Write rules by hand

- apply rules to test and training data
- train standard phrase-based SMT system

| System            | BLEU  |
|-------------------|-------|
| baseline system   | 25.2% |
| with manual rules | 26.8% |

Philipp Koehn, University of Edinburgh

37

Syntax-Based Statistical Machine Translation

### Other Syntax-Based Approaches

- ISI: extending work of Yamada/Knight
  - more complex rules
  - performance approaching phrase-based
- Prague: Translation via dependency structures
  - parallel Czech-English dependency treebank
  - tecto-grammatical translation model [EACL 2003]
- U.Alberta/Microsoft: treelet translation
  - translating from English into foreign languages
  - using dependency parser in English
  - project dependency tree into foreign language for training
  - map parts of the dependency tree ("treelets") into foreign languages

Philipp Koehn, University of Edinburgh

39

Syntax-Based Statistical Machine Translation

# Syntax: Does it help?

- Not yet
  - best systems still phrase-based, treat words as tokens
- Well, maybe...
  - work on reordering German
  - automatically trained tree transfer systems promising
- Why not yet?
  - if real syntax, we need good parsers are they good enough?
  - syntactic annotations add a level of complexity
  - ightarrow difficult to handle, slow to train and decode
  - few researchers good at statistical modeling and understand syntactic theories

#### **Improved Translations**

• we must also this criticism should be taken seriously .

→ we must also take this criticism seriously

- i am with him that it is necessary, the institutional balance by means of a political revaluation of both the commission and the council to maintain.
- i agree with him in this, that it is necessary to maintain the institutional balance by means of a political revaluation of both the commission and the council.
- thirdly, we believe that the principle of differentiation of negotiations note.
- $\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$  thirdly , we maintain the principle of differentiation of negotiations .
- perhaps it would be a constructive dialog between the government and opposition parties, social representative a positive impetus in the right direction
- perhaps a constructive dialog between government and opposition parties and social representative could give a positive impetus in the right direction.

Philipp Koehn, University of Edinburgh

38

Syntax-Based Statistical Machine Translation

### Other Syntax-Based Approaches (2)

- Reranking phrase-based SMT output with syntactic features
  - create n-best list with phrase-based system
  - POS tag and parse candidate translations
  - rerank with syntactic features
  - see [Koehn, 2003] and JHU Workshop [Och et al., 2003]
- JHU Summer workshop 2005
  - final presentations this week
  - tools for syntax-based SMT

Philipp Koehn, University of Edinburgh

40