
Appl. Math. Lett. Vol. 1, No. 1, pp. 25-28, 1988
Printed in the U.S.A. All rights reserved.

0893-9659/88 $3.00 + 0.00
Copyright(c) 1988 Pergamon Journals Ltd

Finding and Applying Perfect Hash Functions

Nick Cercone
School of Computing Science

Simon Fraser University
Bumaby, British Columbia, Canada V5A lS6

1. Introduction and Background
Perfect hash functions, a deterministic refinement of the key-to-address transformation techniques, provide single

probe retrieval of keys from a static table. Given a set of N keys and a hash table of size r = N, a perfect hash function
maps the keys into the hash table with no collisions since the function locates each key at a unique table address. The
loading factor CLFJ of a hash table is the ratio of the number of keys to the table size N/r. A minimal perfect hash
function maps N keys into N contiguous locations for a LF of one.

Perfect hash functions are difficult to find, even when almost minimal solutions are accepted. Knuth [ll
estimates that only one in 10 million functions is a perfect hash function for mapping the 31 most frequently used
English words into 41 addresses. Cichelli [2] devised an algorithm for computing machine independent, minimal
perfect hash functions of the form:

hash value = hash key length + associated value of the key’s first letter + associated value of the keys last letter
Cichelli’s hash function is machine independent because the character code used by a particular machine never

enters into the hash calculation. The algorithm incorporates a two-stage ordering procedure for keys which effectively
reduces the the size of the search for associated values but excessive computation is still required to find hash functions
for sets .of more than 40 keys. Cichelli’s method is also limited since two keys with the same first and last letters and
the same length are not permitted.

Our objective of was to develop faster and more general algorithms for finding perfect hash functions of the
general form of Cichelli. Three procedures for specifying the hash identifier were implemented, including: (1) a
previously defined hash identifier (a la Cichelli); (2) a hash identifier determined by an automatic procedure; and (3) a
hash identifier specified by the user interactively. The algorithms were programmed in APL and Pascal; the
performance and results of each algorithm were evaluated, see Cercone et al. [3] for a complete description of these
algorithms. For this note we only consider the third of these algorithms, algorithm CBK.

Cichelli’s algorithm uses key length and the first and last letters (without regard to letter position) as the hash
identifier. The number of keys which can be distinguished is restricted to P*CH(A’,2) where P is the maximum key
length, CH is the familar choose function, and A’ is the cardinality of the alphabet. Integer assignment values are
found using a simple backtracking process. Cichelli proposes no method of choosing a value of m, the size of the
domain of associated letter values. This is an important parameter of the problem since m is the branching factor of
the backtrack search tree.

Cichelli first arranges the keys in decreasing order of the sum of frequencies of occurrence of the first and last
letters. This sorting implicitly arranges the letters so that letters which occur most frequently are assigned integer
values first. During the second step of the ordering any key whose hash value has already been determined, because its
first and last letters have both occurred in keys previous to the current one is placed next in the list. This double
ordering strategy arranges the static set of keys in such a way that hash value collisions will occur and be resolved as
early as possible during the backtracking process. When collisions occur at the root of the search tree, pruning can
eliminate large subtmes and greatly reduce the cost of finding an acceptable assignment of integers.

In the interactive system [the CBK algorithm] the user specifies a set of letter positions and whether or not to
include the key length in the hash identifier. The program then tests the user’s selection for key discrimination,
inviting the user to try again if any two keys cannot be distinguished. The system takes into account the position of
occurrence of letters and therefore has the greatest possible discriminatory power of the three algorithms we developed.
There is no set of distinct lexical keys which cannot be distinguished by this system. No upper bound is placed on the
size of associated letter values.

2. Performance Comparison: The CBK Algorithm vs. Cichelli’s Algorithm
Cichelli’s algorithm was implemented as a Pascal program; the interactive system was written in APL. All

programs were run on an IBM 4341 computer under the Michigan Terminal System [MTS] time-sharing operating
environment. Both algorithms were tested with some representative keysets, and the execution time, maximum
number of keys which can be processed, and the loading factor of the resulting hash tables were compared.

Analytic comparison of the relative performance of backtracking algorithms is difficult, Knuth [4]. The number
of basic operations of the algorithm and the memory requirements should be considered in algorithm expense. Krause
[5] estimates the number of times basic operations are performed by these algorithms.

25

26 N. CERCONE

Execution time for Cichelli’s algorithm rose rapidly with increasing keyset size; no results were returned within 2
hours for keysets larger than 64 (Table 1). The CBK algorithm found minimal perfect hash functions for keysets of N

I 64 and returned almost minimal solutions for N I 500 (Table 1). [An alternative algorithm we developed earlier
returned perfect minimal hash functions for keysets of up to 200 keys but performed poorly beyond that point].

Hash Key Set CicheUi CBK

31 Most Frequent English Words
33 Basic Keywords
34 ASCII Control Codes
36 Pascal Reserved Words
40 Pascal Predefined IDS
42 Algol-W Reserved Words
64 Most Frequent English Words
76 Pascal Reserved + Predefined Ids
100 Most FrequentEnglish Words
200 Most Frequent English Words
500 Most Frequent English Words

T=290 LF=O.97 T=1763 LF=l.O
N/A T=O.669 LF=l.O
T=1833 LF=l.O T=1993 LF=l.O
T=579 LF=l.O T=2609 LF= 1.0
T=36O641 LF=l.O T=3060 LF=l.O
N/A T=O.616 LF=l.O
T>>l hour T=2933 LF=l.O
no results T=3414 LF=O.98
no results T=5 190 LF=O.96
no results T=8986 LF=O.70
no results T=33505 LF=O.61

Table 1. Comparison of time n] (in milliseconds) and loading factor [LF] on some representative key sets.

To summa&, the two major problems with Cichelli’s algorithm are: (i) the loading factors of the solutions
produced degenerate quickly for keysets of more than 40 keys; and (ii) the mechanism used for distinguishing keys is
not adequate for many problem sets. Our refinements led to the development of the substantially different CBK
algorithm and addressed these problems directly with moderate success with respect to problem (i) and total success
with problem (ii). The CBK Algorithm outperforms Cichelli’s (and all others reported to date, see [3] for a synopsis of
other approaches) and shows promise for further development. This algorithm does require additional storage to
maintain separate associated value tables for each letter position selected.

3. An Example Interactive Terminal Session
The record of a terminal session illustrating the CBK algorithm fmding a minimal perfect hash function for the

‘76 Pascal identifiers is illustrated below. The listing is annotated with comments enclosed in () brackets.

#RUN ‘APL PARzD
If EXECUTlON BEGINS C&38:45
>)LOAD PERFECT 300000
> saved 12:59:CXl 06726785

MINIMAL, BACKTRACKING, 3 LETTER POSITIONS - 76 PASCAL KEYWORDS 8 IDENTIFIERS
> HASH { preorden data for associaled value ca/cu/afiorr~
> WORDS TO BE HASHED ab
> LETTERS TO BE USED: 1 2 4

{ a8 is a variable containing the Pascal IDS)
1 ior assignment of assoo;ated values]

> IS BLANK TO BE A CHARACTER (Y/N): N { or use last l&v of word if ippropikfe]
> IS LENGTH TO BE PART OF FUNCTION (Y/N): Y
> ORDER BY PRODUCT OR MINIMUM (P/M): P

CPU SECONDS USED IN HASH IS 1.707
{ product ol letter Frequencies or like Cichelli’s 1

>
> THE DATA IN CORRECTED PREORDER FORM:
> round eoln downto do record reset repeal read readln rewrite real for to text set trunc true pred page case ord or write wrkeln ardan
> put false cos cnnst not procedure fundion succ file sin nil then chr char while goto get end and in integer mod eof label in boolean sqr
> sqrt pack packed maxim begin array until unpack output dispose of it abs div exp new odd var else type with input program otherwise
> BASH I invokinc the second-orderina oarf I
>
>
>
>
>
>

>
>
>
>
>
>
>

LOADING FACTOR 0.5 TO 1 RANGE: 1
” .zr ,

NUMBER OF ALLOWABLE BACKTRACKS: 10
BASHING STARTED AT 1985 7 12 14 12 52 470 TIME DURATION WAS 0 0 0 0 0 11 914
CPU SECONDS USED IN BASH IS 1.551 NUMBER OF TIMES THROUGH BASH MAIN LOOP IS 78
TERMINATION AFTER BACKTRACK 3 LETTERS USED 12 4 OFFSET USED 0
LETTER VALUES

‘A’ 3 13 35 ‘l? 0 1 2 ‘I
‘B’3529 0 ‘F 8 12 44 ‘K
‘c’ 2 0 13 ‘G’ 32 0 57 ‘L
‘D 054 5 ‘l-l’ 0 29 46 ‘M

HASfi TABLE
2Do 3T0 4 EOLN

10 RUID 11 REWRITE 12 READLN

8 21 16 ‘N’ 12 31 0 ‘R’ 0 11 3 ‘V 50 0 37
0 036 ‘0’ 6 0 0 ‘S 3 0 25 w 1 0 51

2964 8 ‘P 0 035 ‘r 166 9 ‘x’ 0 27 0
3800 ‘(r 0 43 0 IT 4 11 30 ‘Y 0 64 0

5 ROUND 6 DOWNTO 7 RECORD 8 RESET 9 REPEAT
13 REAL 14 FOR 15 TEXT 16 SET 17 TRUNC
21 CASE 220R 23 PUT 24 NOT 25 ORD > 18TRUE 19 PAGE 20 PRED

Finding perfect hash functions 27

26 WRITE 27 SIN 28 WRITELN 29 ARCTAN 30 COS 31 succ 32 CONST 33 PROCEDURE
34 THEN 35 FILE 36 GOT0 37 CHR 38 CHAR 39 END 40 FUNCTION 41 IN
42AND 43 WHILE 44 NIL 45 GET 46 MOD 47 EOF 48 INTEGER 49 LABEL
5OBOOLEAN 51 FALSE 52 SOR 53 PACK 54 ARRAY 55 PACKED 56 UNTIL 57 BEGIN
58 OUTPUT 59 SQRT 6OABS 61 DIV 62 LN 63 DISPOSE 64 OF 65EXP
661F 67 NEW 68 ODD 69 VAR 70 ELSE 71 TYPE 72 WITH 73 MAXINT
74 INPUT 75 PROGRAM 76 UNPACK 77 OTHERWISE

Applications of Perfect Hash Functions - Natural Language Lexicon Design
Retrieval methods usually assume equal likelihood of retrieval for each data item (Knuth [l]). Cichelli [2] pointed

out the utility of perfect hash functions for use in compilers. It is well documented in the literature of lexicography
(Carroll et al. [6]) that this is not the case for the English language (or, presumably, for any natural language). We
propose to make use of information about the frequency of occurrence of English words and a judicious mix of
common search and hash encoding techniques to provide an efficient organisational strategy for a natural language
lexicon.

One approach which utilises the CBK Algorithm is illustrated in below. Satisfactory experimental results have
shown that 500 words can be placed in a non- colliding hash table in under 20 seconds. Nevertheless the LF is only
about .67 which we feel is unsatisfactory; increasing the LF results in a substantial increase in computation. When
more than one hash fun&on is used, an offset can be manipulated to start the next group of 500 words in the sparse

part of the table occuppied by the previous group of 500 words, typically resulting in a’loss of about only 10% of
storage space. In this example the lexicon is divided into group of 500 lexical items (more or less) and the CBK
Algorithm is applied successively, manipulating the OFFSET to interleave the 500-word pieces to effectively increase
the LF to an acceptable level. Our experimental results fitted the fiit 500 word chunk into a table of size 750; the first
offset was set to 550. the index where the application of algorithm CBK to the second 500 work lexical chunk began
to place items. The first 1000 words thus fit into a space of 1340 spaces. We continue this process until we have the
dictionary we desire or we exhaust our computer memory. This technique effectively makes use of unused spaces from
previous applications of algorithm CBK. This technique is illustrated below using 100 word chunks (because of space
limitations) which are non-minimally hashed.

> HASH ..-..
>
>
>
>
>
>
>
>
>
>
>
>

Interleaved Lexicon - 500 Most Frequently Used English Words (MFEW).
I weorders data for associated value calculation 1

WORDS TO BE HASHED: cl
LEllERS TO BE USED: 1 2 L
IS BLANK TO BE A CHARACTER (Y/N): N
IS LENGTH TO BE PART OF FUNCTION (Y/N): Y

) ‘cl is a vat&/e containing the 1st 100 MFEW) .
{ for assignment of associated values 1
{ or use last letter of word if appfqriate)

THAN CONFLICTS WITH THEN
WOULD YOU LIKE TO TRY A DIFFERENT ROUTE:
LETTERS TO BE USED: 1 2 3 4
IS BLANK TO BE A CHARACTER (Y/N): N
IS LENGTH TO BE PART OF FUNCTION (YIN): Y
ORDER BY PRODUCT OR MINIMUM (P/M): P
CPU SECONDS USED IN HASH IS 2.518
THE DATA IN CORRECTED PREORDER FORM:

THERE CONFLICTS WITH THESE
Y

{ for assignment of associated values]
(or use last leftef of word if zq+qfiate]

{product of /efter frequencies or /i&e Cichelli’s]

> the then these when she we they there me he were her more bs been them than that what war was has some men man tnls Inerr nls time
> him made say may for first shall would come can could must our one on i in an any or are well will only but out into from who to SO not no its

> it al should before is as your you said had any my by how now of if us a over upon with little do up all two have like such very about
> every great other which people
>BlND 0 { invoking the secund ordering part - nonbackfraddng }
> BINDING STARTED AT 1985 7 30 14 34 36 450 TIME DURATION WAS 0 0 0 0 0 2 438
> CPU SECONDS USED IN BASH IS 1.377 NUMBER OF TIMES THROUGH BASH MAIN LOOP, IS 75
4 at this stage the first of the five tables given below appeared, subsequent invocations of the ‘HASH’ and ‘BIND n* fundions resulted in
> the other 4 tables given successively. Note that three different hash functions were utilised to constructthis single table of 500 MFEW)
> LETTERS USED 12 3 4 LETTERS USED 12 3 4 LEllERS USED 12 3 4 LETTERS USED 13 L LETTERS USED 12 4 L
> OFFSET IS 0 OFFSET IS 95 OFFSET IS 195 OFFSET IS 295 OFFSET IS 390
> LETTER VALUES LElTERVALUES LElTERVALUES LETTER VALUES LETTER VALUES
>‘A’ 4 61454 ‘A’ 20 0 4 26 ‘A’ 26 120 0 ‘A’ 16 4856 ‘A’ 222013 47
>‘B’ 928 0 0 ‘B’ 7 0 6 0 ‘B’ 4 040 0 ‘B 1583 0 ‘B’l600 0

>‘R 0% 3 5 ‘P 0:ooo ‘R’682\1236 ‘Q’ 55:o 0 ‘Q’ 14 ‘0 0 0

> HASHTABLE
> 3THE 4 THEN

(&e~;~E~EIsf-IW rwF/k been aya;+s~)
8WE 9 THEY 10 THERE

> 1lME 12 HE 13WERE . . . 99 OTHER 100 WHICH 132 FROM 133 PEOPLE
LOADING FACTOR IS: 100/133 = .752
>

28 N. CERCONE

> HASH TABLE
> . . 99 OTHER

gegLk 2nd- 100 MFEW have been anaiysd and added}
101 MONEY 102 POWER . . . 131 YEARS 132 FROM

> 133PEOPLE 134 FOUND 135MAKE . . . 199 THOUGHT 203 AWAY 209 SINCE 227 DID
>LOADING FACTOR IS: 2OOR27 = 881

: HASH TABLE
199 THOUGHT

; iiMEANS 230 MORNING

{atier c3, the 3rd- lOO,WkV have bee+m&d and added)
200 SET

299 NECESSARY 300 THEMSELVES’ ’
227 DID 228 SEEN

. . . 317 KNOWN 323 OFF
>LOADING FACTOR IS: 3001323 = .929

t HASH TABLE {aider c4, the 4th- 100 MFEW have been analysed and added)
> 299 NECESSARY 300 THEMSELVES 301 SEEMS 302 SEEMED 323 OFF 324 CAUSE
> 325 FLOUR . . . 395 SUBJECT 396 BEGINNING 397 YESTERDAY’ 405 VIEW 407 ASK 408 KEEP
> 418 DIFFERENT 420 REAL
>LOADING FACTOR IS: 400/420 = .952

: HASH TABLE {anw ~5, the WI-100 MFEW have been analysed and added)
395 SUBJECT

t 5liiLECTRlC 526 GUNS
3jj BEGINNING . . 421 COMES 498 IMPORTANT 504 UNLESS
552 KNOWLEDGE

>LOADING FACTOR IS: 5001552 = ,906
> TOTAL TIME IS: 5 HASHS - 11.913 SECONDS 5 BINDS - 6.789 SECONDS TOTAL - 18.702 SECONDS

Since large lexicons typically require secondary storage media a major concern is to minimise retrievals from
secondary storage. The CBK algorithm can include the 732 most frequently used English words, which make up 75%
of running text. in a single almost-minimal hash table, giving one-probe retrieval in 75% of the cases. A second hash
function could map the remaining approximately 50,000 words into 50 subsets of about 1000 words each. This second
hash function could be based on the ordinal positions of letters in the alphabet rather than on the machine character
code in order to preserve machine independence. The 50 subsets of 1000 words each could be stored separately in
secondary memory. For each subset an almost-minimal perfect hash function could be computed, storing the associated
values in the same secondary memory location as the lexical information itself. If the key we are searching for is not
in the table of most-frequent words, then a hash would be performed to select the proper second-level table from a
secondary storage medium; this table would then be searched using its own perfect hash function. This organisation
would allow us to retrieve any key with three hash calculations and one probe of secondary memory,

References
Ill

PI
[31

[41

[51

El

Knuth, D. (1973) The Art of Computer Programming 3: Sorting and Searching, Addison Wesley,
Reading, Mass.
Cichelli, R. (1980) Minimal Perfect Hash Functions Made Simple, CACM 23, 17-19.
Cercone, N., Krause, M., and Boates, J. (1982) Minimal and Almost Minimal Perfect Hash Functions Search,
Computers and Mathematics 9(l), 215-232.
Knuth, D. (1975) Estimating the Efficiency of Backtrack Programs, Mathematics of Computation 29,
121-136.
Krause, M. (1982) Perfect Hash Function Search, M.Sc. Thesis, Computing Science Department, Simon
Fraser University, Bumaby, British Columbia.
Carroll, J., Davies, P., and Richman, B. (1971) The American Heritage Word Frequency Book,
American Heritage Publishing Company, Inc., New York.

