
 1

HPSG Grammars in ALE
Colin Matheson

 2

HPSG Grammars in ALE
Colin Matheson

Foreword
This is a course in the development of Head-driven Phrase Structure Grammars in

ALE, the Attribute-Logic Engine. The work was largely funded under the Joint
Information Systems Committee's New Technology Initiative (NTI/39).

The HTML files were produced using latex2html, so a number of compromises
were necessary. Notably, the graphics are a bit messy, and the `examples' style is clunky
too. In particular, the paper discussing ALE in Emacs hasn't survived the translation too
well -- many readers will be able to skip this, although some of the introductory
comments may be useful.

Please note that there are a number of (fairly small) graphics -- some screen
dumps, HPSG-style Attribute-Value Matrices, and so on -- which are necessary. So, if
you normally switch off graphics downloading, don't in this case.

The course was designed for a 10-week term of postgraduate teaching on the
Linguistics MSc at the University of Edinburgh. Each section, apart from the first,
represents a lecture, and the accompanying exercises were partly supervised in practical
sessions.

The material covered includes all the HPSG schemas and most of the central
types and features. There's a section on semantics, and some reasonably advanced
Linguistic topics, such as the analysis of raising and control structures and binding
theory, are discussed. All of the analyses are provided with ALE implementations apart
from the last part which looks at tough constructions and binding. Apart from the future
inclusion of a short section on prepositional phrases, and some exercises for parts 8 and
9, no changes are envisaged. The latter may be added at the beginning of 1997.

The course assumes a knowledge of basic syntactic issues -- in Edinburgh it
follows a 10-week introductory course which is more or less theoretically neutral. An
introductory knowledge of Prolog is probably also an advantage, but I don't think it's
crucial.

Source files can be found in the /sources directory at this URL. All the grammars
are in /grammars, and the LaTeX source files are in /latex, which includes an archived
version. There are compressed and uncompressed PostScript versions in /postscript.

I am greatly indebted to Claire Grover and Suresh Manandhar, whose advanced
course in computational grammars provides much of the background material and most
of the actual analyses included here. The typos and brainos are all mine, though. I must

 3

also thank the students who completed the course on whom a number of options
were tested. Comments on any of the material, or the Web presentation, are very
welcome.

 4

HPSG Grammars in ALE

• Contents
• Interfaces for ALE
• Type Hierarchies and the Subject-Head Schema
• The Head-Complement Schema
• The Specifier-Head Schema
• The Head-Subject-Complement Schema
• The Adjunct-Head Schema
• The Filler-head Schema and the Marking Principle
• Inherited Slash, To-Bind Slash, and Lexical Rules
• Semantics
• Raising and Control
• Weak Unbounded Dependencies and Binding Theory
• Grammar0
• Grammar1
• Grammar2
• Grammar3
• Grammar4
• Grammar5
• Grammar6
• Grammar7
• Grammar8
• Grammar9
• Grammar10
• About this document ...

 5

1 Interfaces for ALE
Introduction

This is the introductory part of a course in developing HPSG grammars in ALE,
the Attribute-Logic Engine. Background reading to the course can be found in the recent
HPSG book (see the HPSG home pages at http://ling.ohio-

state.edu/HPSG/Hpsg.html for more information) and in Carpenter & Penn (1994)
(further details on the ALE home pages at http://macduff.andrew.cmu.edu/ale).

It is assumed here that all the background issues have been been taken care of --
the Prolog and Emacs set-ups, and so on. All the necessary source files and information
can be found at the above URLs. This paper describes two example sessions, one with the
system being run in an Emacs buffer, and another using Olivier Laurens' ALE-Emacs
interface, which is a much better option if it is available. Just about everything which is
true about running the system in a buffer will be true of running it outside Emacs
altogether -- life's a lot simpler, though, when the Emacs facilities (especially with
Laurens' extensions) are available.

We now cover running ALE, loading a simple phrase structure grammar,
inspecting the contents of the grammar, parsing input, and exiting. This is followed by a
look at the example grammar used in the session.

Starting ALE
Assuming everything is set up properly, running the system is just a matter of

typing ale at the Unix prompt:

> ale

ALE Version 2.0.1; 9 Jan 1995
Copyright (C) 1995, Bob Carpenter and Gerald Penn
All rights reserved.

interpreter is inactive

yes
| ?-

However, one way to make life easier is to run everything from inside Emacs, as
the following section shows.

 6

ALE in Emacs
All you have to do is start Emacs:

> Emacs

This will put you in the normal Emacs window:

If you type ESCAPE-X (The escape key followed by X), you will get the command line:

 7

Start a shell here by typing shell followed by RETURN:

You'll now be back in the Emacs window, but with a shell prompt:

 8

You can now start ALE as before, but you have all the facilities of Emacs available. Try
typing ls to confirm the contents of your directory, and then recall the previous
command using ESCAPE-P -- this is a very useful option when working in ALE. You can
move through previous commands using ESCAPE-P and ESCAPE-N, which makes life a lot
simpler. Similarly, the cut-and-paste commands can be very helpful -- the history of your
interaction is retained in the Emacs buffer.

The following sections look at some of the commands for loading and inspecting
grammars. The examples given work perfectly well outside Emacs, of course.

Loading Grammars

Having started ALE, we can load a grammar using the compile_gram command -
- here we are using the grammar in grammar0.pl to illustrate the basic facilities:

| ?- compile_gram(grammar0).
{consulting /import/usersA/colin/Teach/ALE/grammar0.pl...}
{/import/usersA/colin/Teach/ALE/grammar0.pl consulted, 40 msec 1248
bytes}
 .
 .
 .
{compiling /import/usersA/colin/Teach/ALE/.rule.pl...}
{/import/usersA/colin/Teach/ALE/.rule.pl compiled, 100 msec 448 bytes}

yes
| ?-

 9

The .pl filename extension can be omitted, as shown. Various warnings may
appear, indicating for example that the grammar contains no lexical rules. The system
will normally work perfectly well -- the messages are simply for information. However,
more serious problems often occur which are flagged as errors and which usually mean
that compilation has not been completed successfully. In the latter case the grammar will
need to be edited and recompiled.

Inspecting Grammars

Having compiled a grammar, various aspects of the loaded representations can be
checked. For example, we can look at the lexical entries using the lex command. I know
there's a word sandy in the lexicon, so its entry can be inspected as follows:

| ?- lex(sandy).

WORD: sandy
ENTRY:
np

ANOTHER?

Typing y. (the fullstop is necessary with all input) will cause the program to look
for another entry for sandy. If a Prolog variable had been used as an argument in place of
the constant sandy, all the lexical entries would have been listed. The information
following ENTRY: represents the feature structure associated with the lexical item -- in
this case sandy is just entered as an NP.

The rule command can be used in a similar way to inspect the grammar rules. As
with lex, a Prolog variable (a symbol starting with an upper-case letter) can be used in
the argument position to inspect all the entries, so rule(X) produces the following:

RULE: np_vp

MOTHER:

 s

DAUGHTERS/GOALS:

CATEGORY np

CATEGORY vp

ANOTHER?

The grammar only contains one rule, as asking for more would show. We shall
see how to enter and edit the rules and lexical entries soon.

 10

Parsing

Input to the parser must be a Prolog list. So rec[sandy,snored] results in:

STRING:
0 sandy 1 snored 2

CATEGORY:

s

ANOTHER?

The system can obviously recognise the string sandy snored as a sentence. There
may be other parses, of course, hence the ANOTHER prompt. Typing y. will result in a
negative answer and the return of the system prompt.

Exiting

To exit, just type CTRL-X-CTRL-C, which will take you to the command line again
where you will be asked if you want to kill the process and exit. Just type yes and that's
it.

 11

2 Laurens' ALE Interface
Full information on this interface can be found on the ALE home pages at CMU,

as mentioned in the introduction. Having completed the necessary set-up and started the
interface, the user is presented with the following screen (inside Emacs):

This is the main interaction buffer. Many of the options are fairly self-explanatory
-- whole grammars, and parts of grammars (the lexicon, for instance), can be loaded and
compiled. Loaded grammars can be edited, and strings can be tested to see whether or not
they parse. We shall see some of the other options soon -- for the moment, we can load
the grammar grammar0.pl using the S (Compile Signature and Grammar) command:

 12

At this point the path to the appropriate file should be typed into the minibuffer.
The result will be a number of messages indicating that various files are being loaded,
followed by something like the following screen:

 13

We can now switch back into the interaction buffer (CTR-X-b is one option, or
we can use the buffer list in the menubar -- here I've also used CTRL-X-1 to make it the
only buffer on view) and have a look at the grammar using the e(dit) command, which
asks for the name of the file to be edited. The default is the current grammar, so RETURN
will result in the following:

 14

The contents of this file are described below -- the main points are that it can be
edited and saved from this buffer, and then reloaded from the interaction buffer. After
returning to the interaction buffer (using CTRL-X-b or the buffer menu as before), the
grammar can be used to parse a string using the p(arse) command:

 15

Typing sandy snored at the prompt, followed by RETURN, should result in a
message that this string has 1 parse. We can inspect this parse using the d(erivation)
command, which displays information on the rules used to parse the string:

 16

Various options are available for looking further at the details of the parse, but the
main point to note is that the grammar has combined sandy and snored using the np_vp
rule. We can inspect the parts of the parse by placing the cursor on the object we wish to
see and typing e(dge), which will open another window to display the analysis of the
object in question. In the current case the word sandy is simply entered in the lexicon as
an NP, so looking at it will simply result in the following:

 17

When the grammar is complicated, this option is very useful. This window can be
removed using the q(uit) command, and typing q again in the derivation window will
return control to the main interaction window.

You can exit using CTRL-X-c or via the file option in the menubar. Other aspects
of the interface are mentioned in passing in the course itself, for now we shall look
briefly at how to escape from a Prolog error and then at the basic contents of an ALE
grammar, using the file grammar0.pl to illustrate the main points.

Errors
It's more or less inevitable that you will experience Prolog errors on occasion. The

simplest method of escaping is to type CTRL-C (or CTRL-C-CTRL-C from inside Emacs)
which will produce the interruption line:

Prolog interruption (h for help)?

Type a here to abort, and you'll get back to the normal Prolog/ALE prompt:

Prolog interruption (h for help)? a
{Execution aborted}
| ?-

 ALE Grammars
This section looks at some basic aspects of representing grammatical information

in ALE -- much more machinery will be introduced as the course progresses. The
example grammar grammar0.pl accompanies this discussion and contains the very
simple grammar used in the previous session.

The only particularly unusual aspect of grammar0 is probably the type hierarchy,
and this is partly the subject of the first part of the HPSG course. For the moment, it is
enough to know that all the descriptions used in the grammar must be given a type, and in
this case that means the objects s, np, and vp.

The Lexicon

Lexical information in ALE is represented as shown below:

sandy ---> np.
snored ---> vp.

The main thing to note is the character sequence ---> which is used as a rewrite
symbol. The lexicon above is as basic as possible -- typically the description following
the rewrite symbol is a complicated feature structure in HPSG.

 18

In order to have a working grammar, we now only require a method of combining
words into larger structures, and this is done by the grammar rules.

Grammar Rules

Rewrite rules can also be fairly straightforward. The NP-VP rule that we saw in
the interface discussion above is entered as shown below:

np_vp rule
s
===>
cat> np,
cat> vp.

First of all the rule is named (np_vp), and this is followed by the atom rule
which specifies the type of information for the ALE compiler. We shall see other types of
specification later. The subsequent lines contain the body of the rule; firstly the category
of the mother, then the rule rewrite symbol, and then two lines -- each starting with the
cat> symbol -- which indicate the categories of the daughters. There can be any number
of daughters, and the information in the mother and daughter categories can be complex.
One important point is that the order of the cat> statements is fixed -- the objects can
only be parsed in the order NP-VP.

The cat> symbols are there because rules can contain other statements (`goals' --
much in the same manner as Prolog DCGs) which are flagged differently. The
punctuation, here as always, is extremely important -- note that the mother is not
followed by any punctuation, but that all daughters are followed by commas except the
last, which is completed by a fullstop.

Exercises
These are some simple exercises on running the system and editing grammars.

The aim is to extend the basic grammar in grammar0.pl to include transitive and
ditransitive verbs as well as slightly less basic NPs -- please go ahead with this now
before going on to the first part of the HPSG course proper.

Please always add comments to your files explaining what your grammar does,
and doesn't, do. Lists of example sentences are ideal in assessing how the grammar works
-- so include them in the comments.

1. Start ALE, load the grammar file grammar0.pl, and check that you can parse sandy
snored. Edit the grammar to add new lexical entries as follows:

kim ---> np.
fell ---> vp.

Check that you can parse kim snored, sandy fell, and so on.

 19

2. Extend the grammar to handle transitive verbs by adding a new grammar rule of the
general form VP Verb NP, a new type verb, and a new lexical entry for likes:

likes ---> verb.

Verify that you can parse sandy likes kim.

3. Add a rule of the form NP Det N, new types det and noun, and suitable lexical
entries for the, bone and dog, for example:

the ---> det.

Check that the dog snored parses ok.

4. Extend the grammar with a rule for ditransitive verbs, and a suitable lexical entry for
gave, so that sentences like kim gave the dog the bone can be parsed. Does your grammar
also parse * kim likes the dog the bone and * sandy gave kim? If so, how could these be
blocked?

 20

3 Type Hierarchies and the Subject-Head
Schema

Introduction
This is the first part proper of a course in developing HPSG grammars in ALE.

You should already have read one of the preliminary papers on running ALE, emacs-ale
or emacs-ale-ol, and completed the enclosed exercises.

From now on, we'll be concentrating on building an HPSG grammar which is
more or less compatible with the assumptions in Chapter 9 of the Pollard & Sag book.
We shall start by looking at type hierarchies and at two basic schemas, the subject-head
schema and the head-complement schema. The exercises at the end of this paper
introduce the notion of lists to the grammar, and must be undertaken if these are to be
fully understood.

Before looking at the basic HPSG machinery, next section introduces some
general points about the theory.

HPSG
As mentioned, this course will develop grammars which are broadly in line with

HPSG theory as outlined in chapter 9 of Pollard & Sag. This means that a number of the
feature structures used are incompatible with those in the earlier chapters -- notably, the
SUBCAT feature is replaced by the SUBJ and COMPS features -- however, most of the
earlier discussion is relevant.

We shall develop the grammar as incrementally as possible, building feature
structures to cover new data where necessary, and we shall start with very simple
representations. Unfortunately, these desiderata are occasionally in conflict -- it is
sometimes necessary to work with intermediate representations which are incompatible
with the assumptions in the book. For example, the category information in the theory is
actually only a part of the total syntactic and semantic representation of a sign, and we
shall need to complicate the type hierarchy to take account of this. However, to keep
things simple, we shall start by assuming that signs introduce the category feature directly
and introduce the `correct' analysis later.

The general structure of HPSG theory is that a grammar is a collection of different
types of declaration. These will include a declaration of all the `types' to be used in
descriptions, a list of grammar rules (`schemas'), a lexicon, some general grammatical
principles, and so on. ALE allows most aspects of the theory to be captured fairly
straightforwardly, and in fact one of the main aims of the course is to develop skills in
translating HPSG representations directly into ALE.

 21

Perhaps the most important aspect of the theory in comparison with earlier phrase
structure approaches -- GPSG, for instance -- is that lexical items contain information on
what kind of subject they take, what kind of complements they take, whether or not they
take `specifiers', and so on. Thus most of the work which is done by grammar rules in a
typical PSG is handled by the lexical entries and by a few generalised rules in HPSG.

The following section introduces one of the most important kinds of declaration in
HPSG theory - the type hierarchy.

Type/Inheritance Hierarchies
The standard method of representing grammatical information in modern

computational grammar theories is the Attribute-Value Matrix (AVM). All of the
descriptions used in ALE can be represented as AVMs, with the added restriction that
each representation must have a TYPE. For instance, this is a typical AVM representing
part of the description of the verb likes :

Fig1: AVM Representing Information about a Verb

This object must have a type assigned to it -- the information shown relates to the
category of the word, and so typically this package of features and values would be given
the type `category'.

HPSG assumes a very important role for types -- for example, we can imagine a
hierarchy of clauses as follows:

 22

Here finite subordinate clauses are a sub-type of subordinate clauses, and so on.
Any properties of the general type, 'clause' are assumed to belong to the sub-types, while
the subtypes themselves may differ in the kinds of features which are appropriate, and so
forth. This allows precise and concise linguistic generalisations to be stated, and it also
allows an efficient computational implementation -- a feature exploited by ALE .

We shall begin our HPSG grammar by working through the type hierarchy in the
grammar file (grammar1.pl) which accompanies this part of the course. The type
declaration starts with the following line:

bot sub [sign,cat,head].

The first point to note is that there is a special type bot which is the unique most
general type -- in other words, everything is a sub-type of bot. The grammar defines
three subtypes, each of which plays a central role in HPSG theory. Firstly, a Sign is the
top-level representation of words and phrases, representing their phonology, syntax, and
semantics -- for precise details, consult the Pollard & Sag book and/or the ALE manual,
but it is enough here to know that this type is just a general term covering all the
information representing an object in the theory.

Category information is the general syntactic description of a grammar object --
what complements it takes, and so on. Finally, the Head type contains the basic categorial
information -- whether the object is a noun, verb, adjective, or whatever.

Types can introduce features -- in Fig 1 above, the category information includes
the head, subj, and comps features. SUBJECT and COMPLEMENTS are two of the
three `valency' features assumed in the theory -- the third, SPECIFIER, we shall see soon.
For the moment we shall only use the SUBJECT and HEAD features to characterise
signs:

cat sub []
 intro [head:head,
 subj:head].

Note that there is no full-stop at end of the first line -- it indicates the end of the
whole declaration. Notice also the syntax of the feature-name -- feature-value statements,
all of which are enclosed in square brackets and separated by commas. The feature-value
pairs themselves are separated by colons. Finally, the formatting into multiple indented
lines is simply to make the whole thing easier to read.

Each feature must indicate what type its value is -- in this case, both head and
subj take values of type head, and this also must be declared:

head sub [noun,verb].

All types must be declared, and we can assume for the moment that noun and
verb are `atomic' types with no subtypes or features:

 23

noun sub [].
verb sub [].

Note that we do not have to include noun and verb in the list of subtypes of bot --
the ALE compiler understands the transitive nature of the subtyping relationship. Thus,
head is a subtype of bot and the new types are subtypes of head, so they are
automatically subtypes of bot:

One other feature is introduced in the type hierarchy in grammar1.pl:

sign sub []
 intro [cat:cat].

This states that signs introduce the feature cat with value type cat -- clearly there
is room for confusion here, and it would be possible to use different symbols where
appropriate. However, HPSG often employs this kind of representation, so one may as
well get used to it right from the start.

The most important general points to note are:

• we are working with features and types
• features and types are entirely different notions
• features take types as values
• we can specify `paths' to get to particular values

To illustrate the last point, note that we can use the following path to specify that
some sign represents a noun:

cat:head:noun

To see this kind of thing in action, let us now turn to the lexical entries contained in the
file grammar1.pl.

 24

 Lexical Entries

The lexicon in grammar1.pl contains the following:

sandy ---> cat:head:noun.

snored ---> cat:(head:verb,
 subj:noun).

Looking at the entry for snored first, we can represent the same information using the
following AVM:

The SUBJECT feature in HPSG contains information on what kind of thing is
appropriate as subject of the category in question -- so here we are saying that the subject
of snored must be a noun. The HEAD feature contains the core description of the object,
which in the above examples is simply noun or verb at the moment.

The formatting in the ALE version is once again intended as an aid to the reader,
reflecting as closely as possible the AVM. The syntax of the ALE statements should be
noted carefully. Multiple feature-name -- feature-value statements are contained in round
brackets, and it must be emphasised that the commas between the statements represent
conjunction. Thus the entry for snored says that its head is verb and that its subject is
noun. This must not be confused with the comma which appears in Prolog lists, where it
represents the list separator -- we shall see examples of this soon. As the comma inside
round brackets represents conjunction, the order of the statements does not matter. So we
could have had:

snored ---> cat:(subj:noun,
 head:verb).

The entry for Sandy apparently states only that it has the head feature noun -- the
defining characteristic of a noun. However, this is deceptively simple. Using the lex
command, or the w command in the Emacs interface, we can see what the full
representation of Sandy is:

WORD: sandy
ENTRY:
sign
CAT cat

 25

 HEAD noun
 SUBJ head

The SUBJECT feature has clearly been added with the value head. This is
because the type declaration states that the type `category' has two features:

cat sub []
 intro [head:head,
 subj:head].

This says that all structures of type cat have the features head and subj. If these
features are not given specific values in the entries, then ALE gives them the most
appropriate value as declared in the type hierarchy

We shall see shortly that this kind of underspecification -- although it is often
useful -- can cause problems. For the moment, in order to use the information that snored
takes a noun as a subject to allow the sentence Sandy snored to be parsed, all we now
need is a grammar rule which combines two categories as long as the SUBJECT feature
on the second one matches the category specification on the first. This is the precisely
what the subject-head schema does, as the following section shows.

Schemas
It was noted above that schemas are an important kind of declaration in the

theory. These are effectively the grammar rules -- specifying the output of combining one
or more categories in a particular way. There are currently 6 schemas in all in the theory,
representing generalisations over all the grammar rules which are typically found in
phrase structure grammars. For example, in the preliminary exercise, the following PS
rules are likely to have been used:

S NP VP
VP V
VP V NP
VP V NP NP

HPSG assumes that these can be subsumed by two schemas -- the subject-head
schema in place of the first rule and the head-complement schema for the rest. In the
latter case, the lexical entries for verbs will specify what their complements are, and a
single rule is enough to combine the lexical items with suitable objects.

In grammar grammar1.pl, the following version of the subject-head schema is
implemented:

subject_head rule
(cat:head:verb)
===>
cat> (cat:head:Head),
cat> (cat:subj:Head).

 26

Mostly, the syntax should be familiar from the preliminary exercise, although one
important new aspect is the use of Prolog variables. Symbols which start with upper-case
letters are variables, and variables with the same name must unify -- so the Head variable
on the daughters must have the same value.

The rule, like the lexical entry for Sandy, is again deceptively simple -- because of
the type declarations, the rule which ALE is actually using includes other features. Using
the rule(subject_head) command, or the g command in the Emacs interface (followed
by the rule name), we can check what the internal ALE version of the subject-head rule
is:

RULE: subject_head

MOTHER:

 sign
 CAT cat
 HEAD verb
 SUBJ head

DAUGHTERS/GOALS:

CAT sign
 CAT cat
 HEAD [0] head
 SUBJ head

CAT sign
 CAT cat
 HEAD head
 SUBJ [0]

Here it is clear that the mother and the first daughter have subj specifications not
mentioned in the input rule, and also that the second daughter has the head feature in
addition to subj. As with the lexical entry for Sandy, this is because of the type
declaration for cat. In this case, all the features have the value head, which of course
means either of the basic sub-types noun or verb in the current grammar.

So, the full AVM representation of the subject-head schema is:

 27

Note that the mother feature specification (which in some sense represents the
`output' of the rule -- the result of combining the subject and head verb) is specified to be
a verb. This is too specific -- we may want other kinds of category to be combined using
this schema -- but for the moment we shall accept this analysis.

Finally, note that in order to check if a lexical entry fits with a category in a rule,
it is occasionally necessary to have a close look at the underlying ALE structures -- for
example, check that the full representation for Sandy which we saw in section 1.4 above
will unify with the first category in the subject-head rule as printed by the rule command.

Exercises
The grammar in grammar1.pl will parse *snored Sandy, *Sandy Sandy, *Sandy

Sandy Sandy, and so on, the problem being that snored and Sandy are taken to be possible
subjects of Sandy. This exercise aims to get rid of these parses by introducing a new type
list and correctly specifying that nouns take empty lists as subjects, in contrast to verbs.

1. Start ALE, load the grammar file grammar1.pl, and check that you can parse Sandy
snored. Verify that you can also parse *snored Sandy, *Sandy Sandy, and so on, and
make sure you understand what the problem is.

2. Part of the solution to the problem involves the introduction of a new type to the
grammar -- the list type. HPSG makes use of lists in many ways, and one of the basic
assumptions is that features such as SUBJECT and COMPLEMENTS take list of
categories as their values -- so COMPLEMENTS, for instance, might be the list <NP, NP
> in the case of the verb give (as in give John the book), or the list <NP, PP > (as in sold
the book to John). HPSG is arguably over-general in assuming that lists of subjects are
possible -- but no harm is caused by going for the most general statement.

To get lists working in ALE, we must include suitable statements in the type hierarchy.
Firstly, add list to bot:

 28

bot sub [sign,list,cat,head].

Now change the value of the subj feature so that it takes lists instead of head types.

Lists will have two subtypes -- empty lists and non-empty lists, so add this statement too:

list sub [e_list,ne_list].

Non-empty lists are objects which have a head and a tail, both of which we shall
represent using features. We shall assume for the moment that the head of a list can be
any sign, while the tail must be a list. The following should therefore be added to your
grammar:

ne_list sub []
 intro [hd:sign,
 tl:list].

Finally, all we need is the statement that an empty list is a basic type:

e_list sub [].

Reload the grammar with these changes. You should get a complaint that the lexical entry
for snored is now faulty -- can you see why? We shall fix this problem shortly. For the
moment, check the new hierarchy using the show_type command:

| ?- show_type(list).

TYPE: list
SUBTYPES: [e_list,ne_list]
SUPERTYPES: [bot]
IMMEDIATE CONSTRAINT: none
MOST GENERAL SATISFIER:
 list

yes
| ?- show_type(ne_list).

TYPE: ne_list
SUBTYPES: []
SUPERTYPES: [list]
IMMEDIATE CONSTRAINT: none
MOST GENERAL SATISFIER:
 ne_list
 HD sign
 CAT cat
 HEAD head
 SUBJ list
 TL list

Have a close look at these to make sure you understand the results of the queries -- the
`most general satisfier' can be thought of as the type which most precisely describes the

 29

object you have asked about. This is obviously straightforward in the current situation,
but the questions can be more complicated, as we shall see.

3. We can now use lists in the grammar. Firstly, we want to say that nouns don't take
subjects, and so we shall simply add the specification subj:[] to the lexical entry for
Sandy. Do this now and check the result using lex or w:

WORD: sandy
ENTRY:
sign
CAT cat
 HEAD noun
 SUBJ e_list

4. Now we want to correct the lexical entry for snored. The problem is that the entry says
that the value of subj is noun -- something of type head -- while the type declaration
says that the value of subj should be a list. Hence the complaint that the entry is
`unsatisfiable'.

To fix the entry, we shall effectively say that the subject of snored (and of all verbs, at
least in English) is a list containing one element, which is a noun. To do this, we shall use
the Prolog list syntax:

[a,b,c, ...]

As mentioned earlier, the commas here separate items in the list. This unfortunately
contrasts with their use as conjunction markers inside round brackets in ALE
representations and some care is required. In order to pick out the first thing in the
SUBJECT list, we simply refer to it directly:

cat:head:subj:[FirstItem]

This should be a noun in the case of snored, and so the actual lexical entry will be:

snored ---> cat:(head:verb,
 subj:[cat:head:noun]).

Check that everything is ok using lex or w:

WORD: snored
ENTRY:
sign
CAT cat
 HEAD verb
 SUBJ ne_list
 HD sign
 CAT cat
 HEAD noun
 SUBJ list
 TL e_list

 30

4. All we need to do to get the grammar working is alter the subject-head schema to take
account of the fact that the SUBJECT feature is now list-valued. The statement we want
is that the head feature on the subject must match the head feature on the first element of
the head category's SUBJECT list:

subject_head rule
(cat:head:verb)
===>
cat> (cat:head:Head),
cat> (cat:subj:[cat:head:Head]).

Check that the rule is ok using the rule or g command, which should produce the
following for the daughter categories:

DAUGHTERS/GOALS:

CAT sign
 CAT cat
 HEAD [0] head
 SUBJ list

CAT sign
 CAT cat
 HEAD head
 SUBJ ne_list
 HD sign
 CAT cat
 HEAD [0]
 SUBJ list
 TL e_list

Check that the previously problematic *snored Sandy, *Sandy Sandy, and so on, are now
blocked, and that you are able to parse Sandy snored with the following feature structure:

sign
CAT cat
 HEAD verb
 SUBJ list

Note the value of SUBJECT here -- can you see where this might cause problems? (Try
parsing *snored Sandy snored -- are there any other over-generations?)

Solutions
The grammar in grammar2.pl contains solutions to most of the above problems.

 31

4 The Head-Complement Schema
Introduction

This is the second part of a course on HPSG and ALE. Here we shall look initially
at the use of macros to simplify rules and lexical entries. We then investigate a new
schema -- the head-complement rule -- which we shall use in the analysis of sentences
such as Sandy likes Kim.

Macros
So far, we have been using the following lexical entries:

sandy ---> cat:(head:noun,
 subj:[]).

snored ---> cat:(head:verb,
 subj:[cat:head:noun]).

With a large lexicon, having to specify full paths everywhere will clearly become
time-consuming, and the objects will be difficult to read. It would be useful to have a
shorthand method of picking out and referring to particular descriptions, and this is
exactly what macros allow. For instance, we can define an NP macro as follows:

np macro
 cat:(head:noun,
 subj:[]).

Here we name the statement (np), and follow this with the macro keyword which
identifies the statement for the compiler. The body of the statement is just the feature
structure which is associated with the name. In this case we are saying that an NP is a
nominal object which has found a subject -- or, at least, which is not looking for a
subject. We can now use the macro to simplify the lexical entries:

sandy ---> @ np.

snored ---> cat:(head:verb,
 subj:[@ np]).

The use of a macro is obviously signalled by the @ sign. Notice that in the case of
the subject of snored, the new entry has more information than the old one, which simply
specified that the subject should be nominal.

 32

The Head-Complement Schema
So far we can only handle intransitive verbs such as snored. In order to extend the

grammar to include transitive and ditransitive verbs, we need to implement a new schema
which will allow heads to combine with complements. This will allow us to say that a
verb such as likes takes one NP complement while gives can take two (gives Sandy
books, and so on).

HPSG assumes the this information is stored in a second valency feature --
COMPLEMENTS. Like SUBJECT, it is list-valued, and so the ALE type hierarchy will
be extended as follows:

cat sub []
 intro [head:head,
 subj:list,
 comps:list].

We will need to specify values for this feature on everything in the lexicon. In the
case of nouns, we will assume for the moment that all NPs take no complements and
include the specification in the NP macro:

np macro
 cat:(head:noun,
 comps:[],
 subj:[]).

For intransitive verbs such as snored, COMPLEMENTS should be an empty list.
We shall now extend our lexicon with entries for likes and gives, and these have non-
empty comps lists:

snored --->(cat:(head:verb,
 subj:[(@ np)],
 comps:[])).

likes ---> (cat:(head:verb,
 subj:[(@ np)],
 comps:[(@ np)])).

gives ---> (cat:(head:verb,
 subj:[(@ np)],
 comps:[(@ np),(@ np)])).

The head-complement rule should match a list of categories with the value of the
COMPLEMENTS feature on the head daughter, as the following schematic AVM shows:

 33

The comps feature on the head here has the list <Comp1,Comp2, ... > as value --
a list containing any number of items. The rule shows this list being matched against a
suitable sequence of categories to produce an object which is fully satisfied as far as its
complements go (captured by the comps:[] specification on the mother). ALE provides
the cats> symbol to allow this kind of list matching, and the general form of the rule will
be:

head_complement rule
(cat:comps:[])
===>
cat> (cat:comps:Comps),
cats> Comps.

The cats> specification automatically attempts to match a list of categories with
the value of comps on the head. There is a problem with this kind of statement as it
stands, however -- the parser will fall into an infinite loop because the Comps variable
could represent an empty list. In order to avoid this, we can simply add the requirement
that the list of complements should be non-empty:

head_complement rule
(cat:comps:[])
===>
cat> (cat:comps:Comps),
cats> (Comps, ne_list).

Some care should be taken with the descriptions used here and in the subject-head
schema:

subject_head rule
(cat:head:verb)
===>
cat> (cat:head:Head),
cat> (cat:subj:[cat:head:Head]).

Both subj and comps are list-valued, of course. In the subject-head rule, though,
we pick out the first element in the list and match it against the single category introduced
by the cat> symbol. In the head-complement rule, we match the whole list which is the
value of comps with the list of categories introduced by the cats> symbol. Time must be
taken to ensure that what is matching what is fully understood and that the format of the
Prolog list representations are clear. To emphasise this, the following two rules, in
contrast to the head-complement and subject-head rules above, are wrong:

 34

head_complement rule
(cat:comps:[])
===>
cat> (cat:comps:[Comps]),
cats> (Comps, ne_list).

subject_head rule
(cat:head:verb)
===>
cat> [cat:head:Head],
cat> (cat:subj:[cat:head:Head]).

In the head-complement rule, an attempt is being made to match the first element
in the comps list on the head with a list of categories, which will not work. In the subject-
head rule the first element in the subj list on the head is being unified with the first
element in the subject category, which is another mis-match.

Finally, notice that the following version of the head-complement rule will work,
but only one complement will be matched:

head_complement rule
(cat:comps:[])
===>
cat> (cat:comps:[Comps]),
cats> [Comps].

We could parse Kim likes Sandy with this rule, but not Kim gives Sandy books, as
only the first element in the COMPLEMENTS list is being matched against the first
element in the cats> specification.

Exercises
These exercises introduce macros and the head-complement rule. Sentences such as Kim
likes Sandy and Kim gives Sandy books are parsed. The grammar file grammar2.pl
provides a starting point.

1. Load the file grammar2.pl and make sure you understand the contents. The most
important aspect is the analysis of lists, as described in part 2 of the course. Now
substitute the NP macro discussed in the text for the path descriptions which were
previously used in the lexical entries for Sandy and snored. Check that you can still parse
Sandy snored.

2. The grammar as it stands will parse *snored Sandy snored and *Sandy Sandy snored
with snored and Sandy as the subject of Sandy snored. This is because the result of
parsing Sandy snored is the following feature structure:

sign
CAT cat
 HEAD verb

 35

 SUBJ list

So far, we have said nothing about the SUBJECT feature on the mother, and so the
grammar thinks that Sandy snored can effectively have anything as a subject. The answer
to this is to ensure that the result of combining a subject with a head is a category which
is satisfied as far as this feature is concerned -- so the mother should have the
specification subj:[]. Add this to the subject-head rule and verify that the two ill-formed
sentences mentioned above no longer parse.

3. Add the feature comps to the cat type in the hierarchy as described in the text. Reload
the grammar and use the show_type predicate to check that the cat type has the
appropriate specification:

TYPE: cat
SUBTYPES: []
SUPERTYPES: [bot]
IMMEDIATE CONSTRAINT: none
MOST GENERAL SATISFIER:
 cat
 COMPS list
 HEAD head
 SUBJ list

4. Add the comps feature with appropriate values to your existing lexical entries and
macro. Now add new entries for the transitive verb likes, the ditransitive verb gives, and
the nouns kim and books. Check the entries are ok -- for example (using lex or w):

WORD: likes
ENTRY:
sign
CAT cat
 COMPS ne_list
 HD sign
 CAT cat
 COMPS e_list
 HEAD noun
 SUBJ e_list
 TL e_list
 HEAD verb
 SUBJ ne_list
 HD sign
 CAT cat
 COMPS e_list
 HEAD noun
 SUBJ e_list
 TL e_list

Check that you can parse Kim snored.

 36

5. Implement the head-complement schema as described in the text and check that you
can parse the VPs likes Sandy and gives Sandy books. Notice, however, that if you try to
parse a full sentence, the system wil produce an error of the form:

error: cats> value with sort, list is not a valid list argument1
Parse(s)

(If you get stuck in an temporary error buffer in Emacs trying this, just type CTRL-X-K
and RETURN to kill it.) The problem is actually that underspecification in the specifier-
head rule is confusing the parser and causing the head-complement rule to be called with
incompatible feature structures. At the moment, we are only specifying the subj feature
on the head daughter in the subject-head schema, and we should add a comps value too.
HPSG assumes that subjects are added after all the complements have been found, and so
the rule requires a comps:[] specification on the head:

cat> (cat:(subj:[cat:head:Head],
 comps:[])).

Now sentences such as Kim likes Sandy, and Kim gives Sandy books, should parse --
verify this.

6. Check if your grammar parses *likes snored. If not, does it parse *snored likes Kim
and *likes gives Kim books? It's possible to have two analyses for the last sentence, in
fact. If any of these are accepted by your grammar, identify the problem (or problems)
and think about how you might you fix it.

Solutions
Solutions to most of the above questions can be found in grammar3.pl.

 37

5 The Specifier-Head Schema
Introduction

In this third part of the course on HPSG and ALE we shall look firstly at one of
the general principles of HPSG and at its implementation in ALE. The third valency
feature -- SPECIFIER -- is then introduced, and the specifier-head schema is discussed in
detail. The discussion includes a look at the distinction assumed in the theory between
substantive and functional categories.

Principles and Goals
HPSG assumes that general principles apply to the schemas. One of the most

important of these is the Head Feature Principle (HFP), which is formulated in the HPSG
book as follows (p.34):

Head Feature Principle

The HEAD value of any headed phrases is structure-shared with the HEAD value
of the head daughter.

Pollard & Sag suggest that the effect of this is to guarantee that headed phrases
really are `projections' of their head daughters. The arguments for this are more or less
identical to the reasons put forward in support of X-bar syntax, the basic idea being that
there is a head category in a phrase which effectively characterises the whole object --
hence VPs are verbal because they have a verbal head, NPs are nominal because of the
head noun, and so on.

We have encountered some very practical reasons for having a principle of this
kind -- the schemas which we have implemented allow strings such as *likes gives Kim
books in which gives Kim books is a complement of likes. This is because the head
feature on gives is not being passed to the VP, and the resulting underspecification allows
gives Kim books to be analysed as a nominal.

So, we clearly want to ensure that VPs are specified as being verbal, NPs as
nominal, and so on. This could be done explicitly in the ALE rules, for instance:

head_complement rule
(cat:(head:HeadHead,
 comps:[]))
===>
cat> (cat:head:SubjectHead),
cat> (cat:(head:HeadHead,
 subj:[cat:head:SubjectHead])).

 38

Here we have added a head:HeadHead specification to the categories of the
mother and head daughter, thus ensuring that the lexical head's features are identical with
the mother category's, as suggested by the HFP. However, as the quote from Pollard &
Sag suggests, HPSG assumes that the correspondence should be a universal principle,
applying to every schema that has a head. In order to implement this in ALE we shall use
goal> statements in the schemas in much the same way as Prolog DCGs enforce
restrictions on categories in rules. Thus, in the head-complement schema, we would like
to say simply that the mother category inherits the same head features as the head
daughter. To get this to work, we firstly need some method of identifying the mother and
head categories, and this is done in the same way as the Comps list was introduced in the
cats> specification:

head_complement rule
(Mother, cat:comps:[])
===>
cat> (HeadDtr, cat:comps:Comps),
cats> (Comps, ne_list).

Remember that the commas inside round brackets are conjunctions, which means
that ALE assumes that the initial variables Mother and HeadDtr characterise the whole of
the relevant categories. The descriptions following the comma work as before. Using the
goal feature, we can now impose the HFP on the above schema:

head_complement rule
(Mother, cat:comps:[])
===>
cat> (HeadDtr, cat:comps:Comps),
cats> (Comps, ne_list),
goal> head_feature_principle(Mother,HeadDtr).

Note that the full-stop which was at the end of the cats> line is now a comma, of
course. All that's needed now is a statement of the HFP itself, and this is just the
requirement that the head features match:

head_feature_principle(cat:head:Head, cat:head:Head) if true.

We want this to apply to all schemas, of course, so similar changes must be made
to the subject-head rule. Note also that with the subject-head rule we can identify the
subject daughter using a variable and match this with the whole category which is the
value of the SUBJECT feature on the head:

subject_head rule
(cat:subj:[])
===>
cat> SubjDtr,
cat> (cat:(subj:[SubjDtr],
 comps:[])).

 39

With the HFP added, this version is obviously more concise than the previous one -- and
more accurate too, in that we are matching all of the value of subj with the subject
daughter rather than just the head feature. Note also that we can remove the stipulation
that the mother is verbal -- the HFP will take care of that.

 The Specifier-Head Schema
So far we have looked at the combination of subjects with heads and at the

analysis of heads and complements. HPSG assumes a third `valency' feature in categories
(SPECIFIER) in order to handle some of the facts concerning specifier-head
relationships, and a new schema -- the specifier-head schema -- to implement the
combination.

The specifier-head schema requires a two-way restriction -- specifiers restrict
their heads, and heads restrict their specifiers. Thus, for instance, a specifier like this
selects singular nouns, while at the same time a common noun selects a determiner as a
specifier. HPSG also assumes that complementisers like that and for have properties in
common with determiners, and so the entry for that will specify that it selects sentences,
while at the same time sentences restrict the kind of marking they can take.

So, in addition to the subj and comps features, categories will include the spr
(SPECIFIER) feature to indicate exactly what kind of specifiers they take. Common
nouns, as just mentioned, will take determiners as specifiers, and so the fully specified
lexical entry for book will look like this:

book ---> cat:(head:noun,
 subj:[],
 comps:[],
 spr:[cat:head:det]).

We shall actually implement a new macro to simplify such entries. However, note
that we will need to amend the type definition for head -- it should include det as a sub-
type. However, in HPSG the situation here is slightly more complicated than just having
det as another sub-type of head along with noun and verb. The assumption is that heads
fall into two general types -- substantive and functional. Substantives are things like
nouns and verbs, while functional categories are determiners (this, every),
complementisers (for, whether), and suchlike. Furthermore, the functional types have an
extra feature -- spec (not to be confused with spr) -- which is used to restrict the kinds of
things they specify.

The appropriate part of the type hierarchy will therefore look like this:

head sub [subst,func].

subst sub [noun,verb].

func sub [mark,det]

 40

 intro [spec:sign].

noun sub [].
verb sub [].
det sub [].
mark sub [].

The lexical entry for a determiner such as the will thus include the information
that its spec value is an NBar category -- an NP which has still to find a specifier.

The main thing we need now is a version of the specifier-head schema to ensure
that the appropriate categories match, and this can be represented by the following AVM:

Summary
In this part of the course we saw how HPSG principles such as the HFP can be

implemented in ALE. This involved a look at how variables can be used to identify whole
categories in rules. We then introduced the substantive and functional types and saw how
the specifier-head schema might be implemented. The following exercises cover this
material, and should be attempted now.

Exercises
These exercise fix some problems with the existing grammar and then alter the

type hierarchy to include the new features spr and spec and the substantive and
functional types, with their subtypes. Entries for the and book are described and the
specifier-head schema is implemented.

1. The file grammar3.pl provides a basis for these exercises -- have a look to make sure
you understand everything it contains. Verify that it produces two parses for *likes likes

 41

Kim, one where likes is the subject of likes Kim, and one where likes kim is the
complement of likes. Implement the Head Feature Principle as described in the text to
rule out the second of these analyses.

2. The text suggests that we should identify the subject daughter in the subject-head rule
and unify the whole of the head's SUBJECT feature with this:

cat> (SubjDtr),
cat> (HeadDtr, cat:(subj:[SubjDtr]

Make these changes, and verify that there's still a problem in that *likes likes Sandy will
still parse because the VP likes Sandy is not specifying what its subject should be. Add
variables to the mother and head daughter to pass the subj feature up directly and verify
that *likes likes Sandy no longer parses.

3. The above solution is part of a general problem -- from now on, we should ensure that
all the valency features are fully specified in the rules. Note that this applies to
COMPLEMENTS in the subject-head rule also -- at the moment, the parser will fail if a
string such as *Sandy snored snored is attempted because the mother has no comps
specification. Add a suitable value and verify that the latter string can now be handled --
with no parses, of course.

4. Add the feature spr (SPECIFIER) with the value list to the type definition of
categories. Use show_type to check the result:

TYPE: cat
SUBTYPES: []
SUPERTYPES: [bot]
IMMEDIATE CONSTRAINT: none
MOST GENERAL SATISFIER:
 cat
 COMPS list
 HEAD head
 SPR list
 SUBJ list

5. Change the definition of the NP macro to ensure that NPs are fully satisfied for all the
valence features and verify that lexical entries for nouns are correct. For example:

WORD: kim
ENTRY:
sign
CAT cat
 COMPS e_list
 HEAD noun
 SPR e_list
 SUBJ e_list

 42

6. The text describes the HPSG account of substantive and functional types. Implement
the type hierarchy with the new feature spec as discussed and verify the result using
show_type(func), which should produce:

TYPE: func
SUBTYPES: [mark,det]
SUPERTYPES: [head]
IMMEDIATE CONSTRAINT: none
MOST GENERAL SATISFIER:
 func
 SPEC sign
 CAT cat
 COMPS list
 HEAD head
 SPR list
 SUBJ list

7. In the HPSG version of X-Bar theory, X1 categories are those which have an
unsatisfied specifier feature -- N1, for example, will be an NP which is looking for a
determiner as a specifier. Implement a new macro nbar which uses the `anonymous'
variable (underscore) to capture the fact that N1 categories have a non-empty but non-
specific specifier:

nbar macro
 cat:(head:noun,
 subj:[],
 comps:[],
 spr:[_]).

Add a lexical entry for book which uses this macro and `fills in' the specifier information:

book ---> (@ nbar,
 cat:spr:[cat:head:det]).

As always, check the result of adding the new information before proceeding.

8. Add the following lexical entry for the:

the ---> cat:(head:spec:(@ nbar)
 spr:[],
 subj:[],
 comps:[]).

Note that, as discussed in the text, the value of the spec feature is an N-Bar.

Now implement the specifier-head schema using the AVM in the text as a guide and
verify that you can parse the book and sentences such as Kim gave Sandy the book.

Solutions Solutions to all the above can be found in grammar4.pl.

 43

6 The Head-Subject-Complement Schema
Introduction

In this fourth part of the course on HPSG and ALE we look at verbal features and
the analysis of inverted sentences in English (does Kim like books, for instance) using the
head-subject-complement schema.

Verbal Features
HPSG assumes that verbs have a number of features, including vform, inv, and

aux. The use of these is discussed in the next section, and we then look at how the type
system should be amended to take account of the new possibilities.

The VForm, Inv, and Aux Features

The AUXILIARY feature is simply used to distinguish auxiliary and main verbs,
hence we shall state that does is +aux while likes is -aux. As we shall see, ALE does not
allow exactly this formulation, but the practice is identical.

The VFORM feature is used to identify various forms of the verb -- the infinitive,
the past participle, the passive participle, and so on. We shall focus here on just two,
these being the base (bse), and finite (fin) forms. This will allow us to distinguish the
main verb forms in the sentences below:

In 4.1, likes is the finite form, while in 4.2 like is the base form. The HPSG
analysis of verbs assumes that auxiliary verbs such as does take base VPs as their
complements, and this is exactly how we shall use the features fin and bse below.

The inv (INVERTED) feature is used in the analysis of English interrogatives
such as does Kim like Sandy in which it is assumed that the auxiliary verb and the subject
NP are `inverted' -- in order to make this work, we require a new schema, the head-
subject-complement schema. Before looking at this, however, we need to sort out what
the type system should be for the new features.

 44

Verb Feature Types

First of all, we must add suitable features to the type verb -- until now there were
none, of course. The ALE type hierarchy should therefore include the following:

verb sub []
 intro [vform:vform,
 aux:boolean,
 inv:boolean].

So we have three new features which take the values vform and boolean. As
noted above, we shall only identify two values for vform -- fin and bse -- and so this
new type will have the following definition:

vform sub [fin,bse].

The fin and bse types also need to be defined, and these will be basic elements
with no features or subtypes.

The boolean value captures the [+/-] distinction often used in grammars -- as
discussed above, we want to say that a verb like does is +aux, for instance, but ALE does
not allow the use of plus and minus signs in grammars. We can get the required results,
however, by saying that we have the feature boolean with values yes and no -- this will
allow us to say that main verbs have the features aux:no and inv:no, for example. To get
this to work, then, we simply need to state that boolean has the following type definition:

boolean sub [yes,no].

Again, we need to add the basic types yes and no, and note that we also need to
define the types vform and boolean as sub-types of bot.

HPSG Auxiliary Verbs
The analysis of auxiliary verbs in HPSG has a long history, beginning with the

account provided in early GPSG. The general idea is that auxiliaries are subcategorised
for certain kinds of complement VP -- so something like does takes base form
complements while ought takes infinitives, for example. This will allow us to capture the
following data:

 45

Another interesting aspect of the analysis of auxiliaries is the question of how
their subjects are handled. HPSG assumes that in something like Kim does like Sandy
both does and like have the same subject, which is implemented by structure sharing. In
order to get this to work in ALE, we simply need to state that the subject of an auxiliary
like does is the same as the subject of its VP complement, so the lexical entry will be:

does ---> (cat:(head:(verb,
 vform:fin,
 aux:yes),
 comps:[(@ vp,
 cat:(subj:Subj,
 head:vform:bse))],
 subj:Subj)).

The required structure sharing is captured by the variable Subj which represents
the value of both the subject of the auxiliary and the subject of the auxiliary's
complement VP (which is specified in the latter example using a new macro).

Note that values for vform and aux should now be given for all verbs. Note also
that no value is provided for inv on the auxiliary -- so, of course, the type definition will
add the feature with the value boolean, which allows either yes or no. As this feature is
used to determine whether or not a verb can be inverted, this will mean that such verbs
will appear in both inverted and uninverted structures. All main verbs, however, must get
the specification inv:no in order to block sentences such as *likes Kim Sandy being
accepted by the head-subject-complement schema, which we shall now investigate.

The Head-Subject-Complement Schema
As noted above, this schema is used in the analysis of English inverted sentences,

and it can also be used to handle languages which have verb-subject-object order --
Welsh being a good example. A direct translation from Welsh of the sentence Kim likes
Sandy, for instance, would be likes Kim Sandy, in which Kim is the subject and Sandy the
object. HPSG assumes that a new schema, with at least three daughters, is required to
handle such data.

Effectively, as the name suggests, the head-subject-complement schema is a
combination of the subject-head schema and the head-complement schema, but in
English the inv feature adds a new element. A simple AVM for this schema is:

 46

The inv feature will be used to distinguish the auxiliary verbs which can be
inverted from verbs which can't -- so we will allow does Kim like Sandy but rule out
*likes Kim Sandy.

Summary
The verbal features VFORM, AUXILIARY, and INVERTED in HPSG theory

were discussed and we looked at the distinction between auxiliary and main verbs. We
then saw how the head-subject-complement schema is designed to handle inverted
sentences in English as well as SVO languages.

Exercises
Here we begin by implementing new detp and s macros. The latter is used in the

lexical entry for believes in the analysis of embedded sentences. We then work through
the various changes that are required to provide an analysis of inverted English sentences
such does Kim like Sandy. These include the definition of the vform, aux, and inv
features and their inclusion in the existing verb entries, the addition of base form verb
entries and auxiliary verbs, and the implementation of the head-subject-complement
schema.

1. Look at the grammar file grammar4.pl and make sure you understand everything it
contains. Write a new detp macro which mirrors the NP version and use it in the lexical
entry for single nouns, which should now have the specification spr:[@ detp]. Verify
that you can still parse Sandy likes the book.

2. Implement an s (sentence) macro which we can use in the lexical entry for a verb such
as believes as in Kim believes Sandy likes the book. Now add a suitable lexical entry for
believes and check that the latter sentence parses.

3. Add the features vform, aux, and inv to the type hierarchy as discussed in the text and
check the results using show_type, which should, for instance, give you:

 47

| ?- show_type(vform).

TYPE: vform
SUBTYPES: [fin,bse]
SUPERTYPES: [bot]
IMMEDIATE CONSTRAINT: none
MOST GENERAL SATISFIER:
 vform

| ?- show_type(boolean).

TYPE: boolean
SUBTYPES: [yes,no]
SUPERTYPES: [bot]
IMMEDIATE CONSTRAINT: none
MOST GENERAL SATISFIER:
 boolean

Remember you need to add the new types to bot and also to define the new basic types
used.

4. We want auxiliary verbs to take VPs as complements, so it will be useful to have a VP
macro. A VP in HPSG can be defined as something which is verbal, which has a satisfied
complements list, and which is still looking for a subject. Add a suitable macro which
captures this description.

5. Add lexical entries for the auxiliaries does and can as discussed in the text and use the
lex or w command to check the results. For example:

WORD: can
ENTRY:
sign
CAT cat
 COMPS ne_list
 HD sign
 CAT cat
 COMPS e_list
 HEAD verb
 AUX boolean
 INV boolean
 VFORM bse
 SPR list
 SUBJ [0] ne_list
 HD bot
 TL e_list
 TL e_list
 HEAD verb
 AUX yes
 INV boolean
 VFORM fin
 SPR list
 SUBJ [0]

 48

6. The auxiliaries does and can take base (bse) forms of main verbs as complements, as
the lexical entry for does in the text suggests. The next step is therefore to add entries for
the main verbs (snore, like, give, and believe) with appropriate values for the vform, aux,
and inv features. Remember to add the features to the existing finite forms too. Verify
that you can parse Kim does like Sandy and Kim can give Sandy the book.

7. Implement the head-subject-complement schema as suggested by the AVM in the text
and check that you can parse does Kim like Sandy while blocking *likes Kim Sandy. The
general form of the schema will be:

head_subject_complement rule
Mother
===>
cat> HeadDtr
cat> SubjDtr
cats> (Comps, ne_list)

The HFP should apply here too, of course.

Solutions
The grammar in grammar5.pl includes solutions to all the above problems. Note

that it also includes some Prolog code which is necessary for the next set of exercises and
which produces an error message when the file is loaded due to some of the features not
being defined. You can ignore the error for now.

 49

7 The Adjunct-Head Schema
Introduction

This fifth part of the course on HPSG and ALE is mainly concerned with the
formulation of the adjunct-head schema. It is now necessary, however, to revise the
information content of signs, and so we begin with some discussion of the general form
of HPSG feature structures.

Modifiers
HPSG assumes that another schema is required to handle the combination of

modifiers (adjuncts) with heads -- this will account for a wide range of data, including the
following:

The idea is that modifiers are subcategorised for certain types of object -- so
adjectives state that they modify nouns, and so on. In order to implement this, the theory
employs two more head features -- MODIFIER (mod) and PREDICATIVE (prd) -- the
values of mod are the kinds of thing that the adjunct modifies, while prd is another
boolean feature which determines whether or not an adjunct is appropriate in so-called
predicative contexts (such as the book is red, where the adjunct follows the copula verb
be).

The new features are appropriate for the substantive categories -- nouns, verbs,
and so on, and so ALE includes them in the type system as follows:

subst sub [noun,verb,adj]
 intro [prd:boolean,
 mod:mod_synsem].

Note that we have added the substantive subtype adj, and that the feature prd --
like aux and inv -- takes the boolean type as its value. The use of mod_synsem as the
value of mod requires explanation, though, and as this means ultimately that we must
revise the general architecture of signs, the next section looks at this question before we
go on to discuss adjuncts.

 50

HPSG Signs
At the moment, all the information in the signs we have been using is contained in

the cat structure, and as we shall shortly need to look beyond this, it will be useful to
make some changes. Taking something of the type verb for an example, the current
representation is as below:

HPSG actually assumes that all of this information is just part of the whole syntax
and semantics of a sign, and furthermore, it is part of the `local' information associated
with the object. For the moment, it is enough to know that the `non-local' part of signs --
which we shall introduce in the next part of the course -- deals with long-distance
dependency information, while the local information is concerned with the category
specification, and so on -- the feature structures we have been dealing with, in fact.

The general architecture of signs is thus a little more complicated than we have
been assuming, as shown below:

All of the objects we have been using are in the CATEGORY feature's value -- we have
just added some more structure around it. The CONTENT feature will hold the semantic
information, the LOCAL and NON-LOCAL features will deal with the basic category

 51

information and the long-distance dependency material, and everything is contained in
the SYNSEM feature.

Adjuncts in ALE
Based on the above, we should now alter the HPSG grammar we are developing

to make it compatible with the theory and to take account of adjuncts. The following
sections therefore look at the type hierarchy, the lexical entries, and finally the adjunct-
head schema.

Adjunct Type Definitions

Looking again at the question of adjuncts like red, it was noted above that the
MODIFIER feature will be used to restrict the kinds of thing that a sign can modify. Most
verb forms, for instance, cannot be used as modifiers (*the like book cf. the red book,
and so forth), while adjectives modify nouns, adverbs verbs, and suchlike, and we
therefore want to capture the fact that the values of mod are anything -- including nothing.
HPSG therefore invents a type -- mod_synsem -- which effectively covers `anything and
nothing' in this sense.

Following the above reasoning, in the HPSG book the type system is described as
follows:

bot [... mod_synsem ...].

mod_synsem sub [synsem,none].

synsem sub []
 intro [loc:loc,
 nonloc:nonloc].

The synsem type will introduces the local and non-local features, as suggested
above. However, there is an added complication here in the ALE implementation. You
will remember that the categories in the schemas must appear in the order in which they
are entered -- so in our subject-head schema, for instance, the subject must precede the
head. The trouble is that in English, and many other languages, adjuncts appear both
before and after the objects they modify -- compare the red book, with the adjective
before the noun, with the man in the corner, in which the prepositional phrase follows the
noun. We will therefore have to use two rules to handle the adjunct-head schema -- one
for adjunct-head and one for head-adjunct.

This leaves the problem of how to restrict modifiers to one or other schema -- we
don't want to allow *the book red -- and we shall assume the solution to this proposed by
Suresh Manandhar. His answer is to have two subtypes of synsem -- pre_mod_synsem
and post_mod_synsem -- which are subsequently used in the schemas and lexical entries
to ensure the necessary restrictions.

 52

The type system which we shall implement will therefore be identical to the
theory except that synsem will have the two new subtypes, both themselves defined as
basic types:

synsem sub [pre_mod_synsem,post_mod_synsem].
intro [loc:loc,
 nonloc:nonloc].

If we assume for present purposes that nonloc and cont are defined as basic
types, and change the definition of sign to ensure that it introduces the feature SYNSEM
instead of CATEGORY, then this covers everything necessary to get the higher-level
types and features working. We do also need to alter the definition of the substantive
type, of course, as described above.

Notice that we will also have to change all the lexical entries we have been using,
and it makes sense to alter the macros too. As an example, here is the existing form of the
NP macro:

np macro
 cat:(head:noun,
 comps:[],
 subj:[],
 spr:[]).

This will become:

np macro
 loc:cat:(head:noun,
 comps:[],
 subj:[],
 spr:[]).

The assumption in the macros, then, is that they describe the LOCAL information.
As we shall see shortly, this will involve an important alteration to the rules, but for the
moment it should be noted that the lexical entries for NPs must include the SYNSEM
feature in order to specify the full path properly. So, the existing entry for Kim:

kim ---> @ np.

Becomes:

kim ---> (synsem:(@ np,
 loc:cat:head:mod:none)).

Note that we have not included a mod:none element in the definition of an NP -- it
is arguable that we do want NPs to be used as modifiers on occasion (wine gums, bottle
opener), and hence the feature is assumed here to be specified directly on each nominal
entry.

 53

Lexical Entries for Adjuncts

The lexical entries are fairly straightforward. We simple want to identify the kinds
of things an adjunct can modify in much the same way as we used the spec feature to
determine the kinds of things that a specifier specifies. An adjective like red, then, will
look like this:

red ---> (synsem:loc:cat:(head:(adj,
 mod:(pre_mod_synsem,
 @ nbar)),
 spr:[],
 subj:[],
 comps:[])).

The main thing to notice is that we have stated, not only that the adjective
modifies NBars, but also that it is of the pre-modifier type. This will ensure that we can
parse red book but not *book red.

It will be necessary, of course, to add the specification mod:none to every lexical
entry that we do not want to consider as a modifier -- everything else in the lexicon, in
fact.

Adjunct-Head Rules in ALE

We are now almost ready to implement the schema(s). However, we are going to
have a problem with matching the new structure of signs with the current values of the
valency features. To make this clear, look at the lexical entry for snored, which should
now have the following general form:

snored --->
 synsem:loc:cat:(head:(verb,
 vform:fin,
 aux:no,
 inv:no),
 subj:[@ np],
 comps:[])).

The subject-head schema, for example, will try to match the subj specification
against the category of the lexical entry for Kim in order to parse Kim snored, and it will
fail. This is because the subject specification is given as an NP, which we have now
defined as shown in the macro above to be an object of type synsem. However, the
lexical entry for nouns -- as with all words, in fact -- ensures that they are of type sign,
and so the current rule will not be able to parse anything due to the type mismatches.

This is actually part of the general theory of HPSG -- objects are subcategorised
for syntax and semantics information, not for whole signs. To get this to work, it would
of course be possible in most circumstances to include the necessary path specifications
in the rules. However, there would still be a problem in matching lists of objects (the

 54

value of comps, for example), and so it is normally assumed that this should be done by a
DEFINITE CONSTRAINT which effectively mediates between signs and synsem values.
The grammar file grammar5.pl, which contains answers to the last set of exercises,
includes the necessary piece of Prolog code:

sign_to_synsem(synsem:Synsem,Synsem) if true.

list_sign_to_synsem([],[]) if true.

list_sign_to_synsem([H|T],[S|R]) if
 sign_to_synsem(H,S),
 list_sign_to_synsem(T,R).

It is not necessary to understand this -- although it's good practice to make an
attempt at it. The basic sign_to_synsem predicate is very simple, and the other just
applies this to everything in a list. The main thing is that we can now use these predicates
as goals in the ALE rules in order to ensure that the necessary matches are effected. Thus,
for example, we will need to add goals to all the rules in the way that they are included in
the new head-subject-complement schema below:

head_subject_complement rule
(Mother, synsem:loc:cat:(spr:[],
 subj:[],
 comps:[]))
===>
cat> (HeadDtr, synsem:loc:cat:(head:inv:yes,
 subj:[SubjSynsem],
 comps:CompSynsems)),
goal> (list_sign_to_synsem(CompDtrs,CompSynsems)),
cat> (SubjDtr),
goal> (sign_to_synsem(SubjDtr,SubjSynsem)),
cats> (CompDtrs,ne_list),
goal> (head_feature_principle(Mother,HeadDtr)).

This is just as before, except that the value of subj on the head, for instance, is
converted using sign_to_synsem and then matched with the subject daughter. One
important point is that the order in which the grammar compiler encounters the predicates
and variables is important -- the variables should not appear before they are used in a
goal, so moving the sign_to_synsem statement above the category specification for the
subject daughter will not work. On the other hand, it occasionally causes problems if
goals which are more complicated than simple path specifications follow all appearances
of the variables too, and so the safest assumption is often that such goals should appear
`between' variables, as with the list_sign_to_synsem in the latter rule. In general, one
of the solutions to try if problems are encountered with goals is to re-order the statements.

Finally, then, we can look at the adjunct-head and head-adjunct schemas. The
following is an AVM for the adjunct-head schema:

 55

The other schema will be identical, of course, except for the order of the
categories and the use of post_mod_synsem in the value of mod. Some points to note are
that it's assumed that the head daughter has `consumed' all its complements before it's
modified, and that the other valency features are just passed on. Thus, for instance, we
are assuming that sentences such as Kim definitely likes Sandy and Kim likes Sandy
definitely are ok, while *Kim likes definitely Sandy is not -- in the latter case the adverb
would need to be modifying the verb before it had found its complement.

Summary
This part of the course looked at the analysis of modifiers in current HPSG. We

saw that this involves a complication in the type system that we have been using, and we
also saw that we will actually need two ALE rules to cover the single HPSG schema. As
a result modifiers often have to be restricted to one or other schema, and we saw how one
solution to this is via the type hierarchy. Finally, the form of the head-adjunct schema
itself was discussed.

Exercises
These exercises introduce all the amendments to the type hierarchy suggested in

the text. This is quite a difficult thing to get right, and you may find that a look ahead to
the grammar in grammar6.pl is useful on occasion. Once the type system is working,
though, you should still try to get the schemas working as described in the text without
looking at the answer!

1. The file grammar5.pl should be used as a basis for these exercises -- make sure you
understand everything it contains. Note that it includes the sign_to_synsem definitions
mentioned in the text, and that these will produce an error message until all the features
mentioned in the text are defined. The error can be ignored for the moment.

 56

Alter the type hierarchy as described in the text to include the new types mod_synsem,
pre_mod_synsem, post_mod_synsem, synsem, loc, nonloc, and cont. Load the
grammar (you will probably get complaints about some of the lexical entries -- ignore
them for now) and check that show_type(sign) produces the following result:

TYPE: sign
SUBTYPES: []
SUPERTYPES: [bot]
IMMEDIATE CONSTRAINT: none
MOST GENERAL SATISFIER:
 sign
 SYNSEM synsem
 LOC loc
 CAT cat
 COMPS list
 HEAD head
 SPR list
 SUBJ list
 CONT cont
 NONLOC nonloc

2. Alter the definition of the subst type as described in the handout, adding the adj type
and the features prd and mod with appropriate values. Check the results using
show_type(subst):

TYPE: subst
SUBTYPES: [noun,verb,adj]
SUPERTYPES: [head]
IMMEDIATE CONSTRAINT: none
MOST GENERAL SATISFIER:
 subst
 MOD mod_synsem
 PRD boolean

You will also have to alter the definition of the spec feature in the type hierarchy -- it
should now take the synsem type as value. Note in general that, while working with the
type system, it is often necessary to exit the system completely and reload in order to
keep things straight. You may experience some inexplicable problems if you don't do
this.

3. Change the lexical entries and macro definitions as suggested in the text to take
account of the new features and type hierarchy. Verify the entry for snored using lex or
w:

WORD: snored
ENTRY:
sign
SYNSEM synsem
 LOC loc
 CAT cat
 COMPS e_list
 HEAD verb

 57

 AUX no
 INV no
 MOD none
 PRD boolean
 VFORM fin
 SPR list
 SUBJ ne_list
 HD synsem
 LOC loc
 CAT cat
 COMPS e_list
 HEAD noun
 MOD mod_synsem
 PRD boolean
 SPR e_list
 SUBJ e_list
 CONT cont
 NONLOC nonloc
 TL e_list
 CONT cont
 NONLOC nonloc

4. Add the lexical entry for red as described in the handout and check the result:

WORD: red
ENTRY:
sign
SYNSEM synsem
 LOC loc
 CAT cat
 COMPS e_list
 HEAD adj
 MOD pre_mod_synsem
 LOC loc
 CAT cat
 COMPS e_list
 HEAD noun
 MOD mod_synsem
 PRD boolean
 SPR ne_list
 HD bot
 TL e_list
 SUBJ e_list
 CONT cont
 NONLOC nonloc
 PRD boolean
 SPR e_list
 SUBJ e_list
 CONT cont
 NONLOC nonloc

5. Alter all the existing schemas to take account of the new structure of signs, adding the
goals sign_to_synsem and list_sign_to_synsem as described in the handout. Note
that the definition of the required definite constraint is already in the file grammar5.pl.

 58

Note further that you'll need to change the definition of the HFP also as it will require the
new path specifications too:

head_feature_principle(synsem:loc:cat:head:Head,
 synsem:loc:cat:head:Head) if true.

It's a very good idea to do all of this in small stages -- change the head-subject-
complement schema, for instance, and if the lexical entries for does, Kim, and snore are
all correct, then does Kim snore should work. And so on. And remember that it's often
necessary to exit the system and recompile everything when basic changes such as those
necessary are being made.

6. Add the adjunct-head and head-adjunct schemas as described in handout 5 and check
that you can parse red book and Kim likes the red book but not book red.

7. Assuming that adverbs are of type adj but with different mod values, add a lexical
entry for definitely and check that you can parse Kim definitely likes Sandy but not *the
definitely book. Note that Kim likes Sandy definitely should be ok too, while *Kim likes
definitely Sandy should not parse.

Solutions
Solutions to all the above questions can be found in grammar6.pl. The file also

contains some Prolog code which will be used in the next exercise and which currently
causes error messages when the file is loaded.

 59

8 The Filler-head Schema and the
Marking Principle

Introduction
This sixth part of the course on HPSG and ALE introduces the HPSG analysis of

long-distance dependencies, looking here at topicalised sentences such as the book Sandy
believes Kim likes. The account presented here is a combination of GPSG and early
HPSG -- the next part of the course will look at the current HPSG treatment. We also
look at an implementation of the HPSG Marking Principle and (briefly) at the Specifier
Principle.

The Slash Feature
One of the most important aspects of GPSG initially was the suggestion that long-

distance dependencies could be handled without transformations, the argument being that
structure-sharing could account for most of the facts. In order to implement this, the
feature SLASH was introduced, its values being, for example, the `missing' object in the
sentence beans I like. SLASH values are passed around structures until they can be
`bound' by suitable objects -- in beans I like, the missing complement of like in the VP is
represented by a SLASH value which is then matched against the topicalised NP beans,
as we shall see.

In the ALE grammar that we have been developing, there is a `placeholder'
feature nonlocal which we shall now use to handle the long-distance dependencies. For
the moment, we shall assume simply that the value of this feature is just the feature
SLASH itself. We shall further assume that SLASH takes list of synsem objects as its
values, and so we shall alter the type hierarchy to include the following:

nonloc sub []
 intro [slash:list].

In the HPSG book, a tree similar to the following is used to illustrate the use of SLASH
(p.160) -- note that the path specification required in the ALE grammar to get to the
SLASH value will just be synsem:nonloc:slash:

 60

There are three immediately important aspects to this tree, dealing with the top,
the middle, and the bottom. At the bottom of the tree, something must be done to handle
the missing object itself -- in the above example, the object of likes is effectively an
empty NP. Secondly, the information about the missing object must be passed up the tree,
and finally, at the top, we shall need a new schema to combine a `filler' (Kim in this
example) with the head -- which in this case is a sentence with a missing object NP.

We shall deal with these phenomena here by introducing `trace' (the empty NP),
by adding the NON-LOCAL FEATURE PRINCIPLE, and by implementing the filler-
head schema.

Empty NPs

There has been a long debate about the best way to represent `missing' elements
in syntactic structure, and we now need something to represent `an NP which is missing
an NP' -- in current terms something represented by the feature structure NP[Slash NP].
In the early chapters of the HPSG book, it is assumed that there is an empty NP (`trace')
in the lexicon which accounts for this. A slightly simplified version of trace can be
represented as follows:

 61

This is something which has no phonology (of course), and which simply says
that its LOCAL and SLASH features are identical. So, when combined with a verb such
as likes, which will instantiate its required object NP features, the result will be a SLASH
value which represents the object of the verb.

Now, while it is possible to imagine an entry in an ALE lexicon which has no
phonology, it is not possible to include something like the lexical entries we have been
using which has no orthography. In order to include trace in our lexicon, therefore, we
shall assume that it is represented as `e' (for `empty'), and hence we will have:

e ---> synsem

In addition to the features in the AVM representation above, all that is required
are values (all empty lists, of course) for the valency features, and also a mod:none
specification. With everything else in place, we should now be able to parse sentences
such as Kim likes e.

It should be noted that ALE actually provides a method of representing empty
categories without having any orthographic representation. However, the latest versions
of HPSG assume that there are no such things as empty categories, as we shall see in the
next part of the course, so the simplest approach in the present circumstances is to use the
special lexical entry e as a stop-gap.

The Non-Local Feature Principle (NLFP)

As noted above, we now need some method of passing SLASH values around the
trees. It might seem at first that SLASH should be a head feature -- the head feature
principle will automatically pass values from head daughter to mother, of course.
However, closer inspection of the tree above shows that the SLASH value does not
always come from the head daughter -- in fact, right at foot of the tree, the value must
originate as a complement of likes.

Also, it is now generally accepted that more than one daughter can have a SLASH
value, both of which must be passed up to the mother category. It is for these reasons that
HPSG assumes that the value of SLASH is actually a set of objects. The initial version of
the NLFP in Pollard & Sag therefore states that:

NonLocal Feature Principle (p.162)

 62

The value of each nonlocal feature on a phrasal sign is the union of the values on
the daughters.

To simplify matters a little here, we shall assume that we are dealing with lists
rather than sets -- the next part of the course introduces sets to the grammar. So, what we
need is something which will gather all the values for SLASH on daughters and pass the
result up to the mother category -- the grammar in grammar6.pl includes the necessary
code. We can then add another goal to the schemas which enforces the principle --
however, this is a little more awkward than the situation with, for instance, the head
feature principle, and so grammar6.pl also includes all the necessary goals statements.
For instance, the subject-head rule is now:

subject_head rule
(Mother, synsem:loc:cat:(spr:Spr,
 subj:[],
 comps:[]))
===>
cat> (SubjDtr),
goal> (sign_to_synsem(SubjDtr,SubjSynsem)),
cat> (HeadDtr, synsem:loc:cat:(spr:Spr,
 subj:[SubjSynsem],
 comps:[])),
goal> (head_feature_principle(Mother,HeadDtr)),
goal> (nonlocal_feature_principle(HeadDtr,[SubjDtr],Mother)).

It is not necessary to understand exactly how the principle is implemented --
however, it is important to realise that any SLASH values on the subject and head
daughters will be combined and passed on to the mother.

The Filler-Head Schema

All we need now is a schema which will combine a topicalised NP like Kim with
a sentence such as Sandy likes e. This is not particularly difficult:

 63

One point to note is that there is an explicit slash:[] specification on the mother
-- this is at odds with the suggestion made above that more than one gap is possible. In
the following part of the course we shall implement the NLFP more faithfully; for the
moment we shall just allow a single gap. Assuming that all lexical entries apart from
trace have the specification slash:[], everything should be in place to get sentences
such as the book Kim believes Sandy likes e to parse.

 The Marking Principle
One area of the theory which we have been ignoring is the treatment of `marking'.

The grammar in grammar6.pl, which represents the answers to all the exercises set so
far, will parse strings such as:

In 6.1 the determiner is accepted as a specifier for the sentence Kim snored, and in
6.2 the sentence Kim likes Sandy is taking an NP as a specifier. The reason for this is that
we have said nothing so far about what the specifier requirement is in sentences, and we
shall now investigate the HPSG analysis of this.

The theory of HPSG assumes that, in addition to parts-of-speech such as noun,
verb, and adjective, there is a class of `markers'. These are typically the complementisers,
such as that, for, whether, and so on, and we have already included the type mark as a
subtype of func:

 64

func sub [mark,det]
 intro [spec:synsem].

Complementisers, and things like conjunctions, are entered in the lexicon with
this type. Like determiners, that they have the feature spec, which means they will be
handled by the specifier-head rule, and also that they should identify the kinds of things
they specify in the same way as determiners select nouns. At the same time, verbs (for
instance) will identify the kinds of things they take as specifiers, and together these
statements will rule out sentences such as 6.1 and 6.2 above.

The theory therefore implements another feature, MARKING, which determines
how a particular category is `marked' -- a sentence with a complementiser, such as that
Kim likes Sandy, will have the specification marking:that, and this will allow verbs
which are sensitive to particular complementisers to select complements of the right
form. We shall therefore be able to deal with contrasts such as:

The default value of the feature will be that categories are unmarked unless the
specifier-head rule has operated to add a particular marking value. To get this to work in
ALE, we need to add the marking feature, and a new type, to the type declarations:

bot sub [... marking ...].

cat sub []
 intro [head:head,
 subj:list,
 comps:list,
 spr:list,
 marking:marking].

marking sub [marked, unmarked].

marked sub [comp,conj].

comp sub [that,for].

that sub [].
for sub [].
conj sub [].
unmarked sub [].

Note the inclusion of conj for completeness. The lexical entry for that will look
like this:

 65

that --->
 (synsem:(loc:(cat:(head:(mark,
 spec:(@ s,
 loc:cat:(head:vform:(fin;bse),
 marking:unmarked))),
 spr:[],
 subj:[],
 comps:[],
 marking:that)),
 nonloc:slash:[])).

Points to note are the specification that the sentence which this complementiser
specifies should be unmarked (we don't want to allow *that that Kim snored), the fact
that mark in the head value distinguishes that from determiners, and the value that on
the marking feature. Notice also that this means that we will have to include the
specification marking:unmarked on everything in the lexicon which is not a marker, and
remember also that verbs should include a value for the SPECIFIER feature which
identifies a particular complementiser type. The entry for likes, for instance, should now
be:

likes ---> (synsem:(loc:cat:(head:(verb,
 mod:none,
 vform:fin,
 aux:no,
 inv:no),
 subj:[@ np],
 comps:[@ np],
 spr:[@ comp],
 marking:unmarked),
 nonloc:slash:[])).

Note that this includes a reference to the macro comp, which will be the
description of a complementiser. This will be something which is a marker and whose
marking is comp:

comp macro
 loc:cat:(head:mark,
 marking:comp).

Note that the entry for that included the specification (fin;bse) -- the semi-
colon denotes disjunction, so this will actually produce two lexical entries for that.

The specifier-head rule must be altered to take account of the marking value, and
we shall implement this as yet another goal:

specifier_head rule
Mother
===>
cat> SpecDtr,
cat> HeadDtr,
goal> (head_feature_principle(Mother,HeadDtr)),
goal> (nonlocal_feature_principle(HeadDtr,[SpecDtr],Mother)),

 66

goal> (marking_principle(Mother,SpecDtr)).

We now need a version of the marking principle, and this is just the following
statement:

marking_principle(synsem:loc:cat:marking:Mark,
 synsem:loc:cat:marking:Mark)
 if true.

Together, these statements will ensure that the required marking feature is added
to categories by the specifier-head rule -- notice, however, that in addition to this we must
add the principle to all the other rules to ensure that the value for marking gets passed to
the mother. In every other case, the value comes from the head daughter, and so we need
the following goal on the rest of the rules:

goal> (marking_principle(Mother,HeadDtr)).

With these changes in place, the grammar should allow Kim believes that Sandy
likes the book and rule out *the Kim snored, and so on.

The Spec Principle
When we introduced the specifier-head schema, we explicitly stated in the rule

that the value of spec on the specifier daughter should match the head daughter:

cat> (SpecDtr,cat:(subj:[],
 spr:[],
 comps:[],
 head:spec:HeadDtr)),
cat> (HeadDtr,

HPSG actually assumes that the `Spec Principle' should handle this:

Spec Principle (p.51)

If a nonhead daughter in a headed structure bears a SPEC value, it is token-
identical to the SYNSEM value of the head daughter.

The grammar in grammar6.pl contains a suitable version of the principle -- all
that is necessary is that a goal should be added to the specifier-head schema as follows:

goal> (spec_principle(SpecDtr,HeadDtr))

The head:spec:HeadDtr specification should now be removed from the
specifier-head rule.

 67

Arguments in Macros
It is often useful to have macros which include variables -- for instance, rather

than specify the full path to a marking value, it would be useful on occasion to be able to
say marking:that, or whatever, without having to include
synsem:loc:cat:marking:X. ALE allows this quite simply:

marking(Marking) macro
 loc:cat:marking:Marking

As an example of the use of this kind of macro, we want to restrict adverbs such
as definitely so they only modify unmarked VPs, and so the lexical entry would be:

definitely --->
 synsem:(loc:cat:(head:(adj,
 prd:no,
 mod:(@ vp,
 @ marking(unmarked))),
 spr:[],
 subj:[],
 comps:[],
 marking:unmarked),
 @ noslash).

The argument of the macro just appears inside round brackets, as shown.

Summary
Here we looked at a simple account of non-local dependencies using the feature

SLASH in much the same manner as GPSG. We also introduced the MARKING feature
which is used to characterise constructions precisely in a variety of situations. Finally, we
looked briefly at the Spec Principle.

Exercises
These exercises introduce the HPSG analysis of long-distance dependencies using

SLASH. The Marking Principle and the Spec Principle are then implemented.

1. The file grammar6.pl contains answers to the last set of exercises as well as some
Prolog code which implements the NLFP and the Spec Principle as discussed in the text.
Have a look to check that the contents makes sense -- you don't have to understand
exactly what the Prolog is doing, but you should understand what the principles are. You
should get a complaint about slash not being declared if the grammar is loaded as it
stands -- this first exercise fixes that.

 68

Add the slash feature to nonloc and construct a lexical entry for trace as suggested in
the handout. Now ensure that you can parse likes e. Note that the value of SLASH on the
result is just list.

2. All the necessary non-local feature principle statements and definitions are already in
grammar6.pl. The goals are currently commented out, so remove the percent signs from
the rules. Note that you will need to add AdjDtr variables to the relevant daughters in the
adjunct rules to identify the categories in question.

We now need to say that all lexical entries -- apart from the empty category -- have the
specification nonloc:slash:[]. As we shall alter this to handle sets in the next part of
the course, the best idea is to use another macro here:

noslash macro
 nonloc:slash:[].

Implement this and add the specification @ noslash to all the lexical entries (apart from
trace, of course). Check that you can parse likes e again -- this time with a value for slash
as below:

 NONLOC nonloc
 SLASH ne_list
 HD loc
 CAT cat
 COMPS e_list
 HEAD noun
 MOD none
 PRD boolean
 SPR e_list
 SUBJ e_list
 CONT cont
 TL e_list

3. Now add the filler-head schema as described in the text, remembering that the NLFP
should not be applied to this schema yet. You should now be able to parse Kim Sandy
likes e and books Sandy believes Kim likes e.

4. Add the feature marking and the type marking to the type declaration as described in
the handout. Check that everything is ok using show_type(marking) and so on:

| ?- show_type(marking).

TYPE: marking
SUBTYPES: [marked,unmarked]
SUPERTYPES: [bot]
IMMEDIATE CONSTRAINT: none
MOST GENERAL SATISFIER:
 marking

 69

5. Add a lexical entry for that as described in the handout and check the result -- you
should get two structures, one of which is:

sign
SYNSEM synsem
 LOC loc
 CAT cat
 COMPS e_list
 HEAD mark
 SPEC synsem
 LOC loc
 CAT cat
 COMPS e_list
 HEAD verb
 AUX boolean
 INV boolean
 MOD mod_synsem
 PRD boolean
 VFORM bse
 MARKING unmarked
 SPR list
 SUBJ e_list
 CONT cont
 NONLOC nonloc
 SLASH list
 MARKING that
 SPR e_list
 SUBJ e_list
 CONT cont
 NONLOC nonloc
 SLASH e_list

You should also now be able to parse that Kim likes Sandy, but there will be multiple
results -- we need to specify for verbs what the marking is on its specifier.

6. Add a comp macro as described in the handout and include it in all the verb entries
along with the marking:unmarked specification as shown in the lexical entry for likes.
Check that your entry is valid using lex again -- MARKING comp should appear in the SPR
structure, and MARKING unmarked in the local category information.

7. Now we need to add the Spec Principle, so add the goal to the specifier-head rule as
discussed in the text. Now implement the marking principle as described in the handout
and add the goal to all the rules -- remember that the specifier-head schema is different
from the others. Check that you can parse Kim believes that Sandy snored, and so on,
with the right result. You should also get cases where a sentence has been topicalised --
so that Kim snored Sandy believes e should be ok too.

 70

9 Inherited Slash, To-Bind Slash, and
Lexical Rules

Introduction
This is the seventh part of the course on HPSG and ALE. Here we look at the

HPSG analysis of long-distance dependencies as laid out in Chapter 9 of Pollard & Sag.
This involves two new features, INHERITED and TOBIND -- both of which take
SLASH as values -- and also involves a discussion of the use of lexical rules in the
current theory.

Set-Valued Slash
The simple implementation of Slash that we have been using so far does not

generalise easily over all the schemas -- in the grammar file grammar6.pl, the NonLocal
Feature Principle applies to all the schemas except the filler-head rule, and the argument
is that it should apply universally. At the moment we stipulate that the mother in the
filler-head schema has the specification slash:[], which of course rules out multiple
non-local dependencies of this kind. It has been argued that this is too restrictive, and that
in fact many languages require SLASH to represent more than one category. It may even
be that sentences such as the following would require multiple-valued SLASH in English:

Here we seem to have `gaps' after waste and teaching, and the analysis of, for
instance, the structure containing the inverted auxiliary verb should and its complements
would require the representation of two missing NPs. On the assumption that the verb
spend takes an NP and a non-finite VP as complements (spend time watching the news),
we could assign the following structure to the sentence in 7.1:

 71

Not only is it argued that SLASH must be able to represent multiple categories,
but it is also suggested that the value should be a set, and not a list -- as shown by the
curly brackets around the NPs in the above structure. The reason for this is simply that
the order in which the gaps meet their fillers must be allowed to vary. Sets, being
unordered lists, provide the necessary flexibility. Thus, for instance, we shall be able to
cope with examples such as:

If the value of SLASH on the XP node which represents the two gaps were a list,
then the example in Fig 2 could not be handled -- we could only ever match the filler
against the first item in the list. With sets, as shown, there is no problem.

In order to allow this, we shall therefore add sets to the grammar. To do this in
ALE, in which of course the basic data structures are Prolog lists, it's necessary to employ

 72

 Prolog code which treats lists as sets -- you don't need to understand exactly how
this is done, but it is a good idea to follow the reasoning.

In the type hierarchy, we shall represent sets as types which have two features --
an element, which is a syntactic object, and a set of elements. This is almost exactly the
same representation as lists:

set sub [e_set,ne_set].

ne_set sub []
 intro [elt:loc,
 elts:set].

Note that we are assuming that the only sets we shall be interested in are sets of
local values. SLASH will now take sets as values, and in order to refer to a particular
item in one of these sets, all we need to do is pick out an element using the
slash:elt:Element path.

Inherited and To-Bind Features
Here we shall approach the implementation of the NonLocal Feature Principle as

suggested in the book and quoted in the last handout:

NonLocal Feature Principle (p.162)

The value of each nonlocal feature on a phrasal sign is the union of the values on
the daughters.

We can now handle the `union' part of this as we can have sets as values.
However, to get the principle to work generally across all the schemas, HPSG assumes
that the NONLOCAL feature actually introduces two intermediate features, both of
which take SLASH as values. These are called the feat and TOBIND features, and the
idea is that the INHERITED value on the mother is the accumulation of all the
INHERITED values on the daughters, minus the tobind values on the daughters. This
implementation will allow a single statement to apply to all the schemas -- in practice, in
every case but the filler-head schema, we shall simply accumulate the inherited:slash
values, but the filler-head schema will introduce a tobind:slash value which will
effectively be deleted from the set to be passed on. The relevant parts of new rule, then,
look like this:

filler_head rule
(Mother, synsem
===>
cat> (FillerDtr,synsem:loc:Slash),
cat> (HeadDtr,synsem:(loc
 nonloc:(inherited:slash:elt:Slash,
 tobind:slash:elt:Slash))),
goal> (head_feature_principle(Mother,HeadDtr)),

 73

goal> (nonlocal_feature_principle(Mother,HeadDtr,[FillerDtr])),
goal> (marking_principle(Mother,HeadDtr)).

The filler's local values must match the inherited and tobind value on the head,
and the NLFP will ensure that the mother's value for inherited:slash represents the
head daughter's value minus the filler.

This is clearly rather involved, and as mentioned above it's not necessary to
understand the code which implements the NLFP. However, the analysis in grammar7.pl
is generally faithful to the account in Chapter 9 of Pollard & Sag, and it is worthwhile
making sure that the theoretical side of the exposition is clear.

One final point to make here is that the HPSG book assumes another two features
in the value of INHERITED and TOBIND -- QUE and REL. The first is used in the
analysis of interrogatives, although the book does not actually discuss these, and the
second appears in relative clauses, which we shall ignore here.

Lexical Rules
Current HPSG uses lexical rules a great deal. At their simplest, `lexical

redundancy rules' are used to reduce the number of lexical entries. Thus, for instance, it is
normal practice to assume that verbs should be represented just by the base form in the
lexicon, and that the other forms should be generated using lexical rules. Applying this to
our grammar, the following ALE lexical rule will generate the 3rd person singular forms
of verbs:

pres_3s lex_rule
 (synsem:(loc:cat:(head:(verb,
 vform:bse,
 aux:no,
 mod:Mod,
 inv:Inv),
 spr:Spr,
 subj:Subj,
 comps:Comps,
 marking:Marking),
 nonloc:(inherited:slash:e_set,
 tobind:slash:e_set)))
 **>
 (synsem:(loc:cat:(head:(verb,
 vform:fin,
 aux:no,
 mod:Mod,
 inv:Inv),
 spr:Spr,
 subj:Subj,
 comps:Comps,
 marking:Marking),
 nonloc:(inherited:slash:e_set,
 tobind:slash:e_set)))
 morphs

 74

 (X,y) becomes (X,i,e,s),
 X becomes (X,s).

The input feature structure represents the base form of the verb (like, for
instance), and the output is a direct copy except that the VForm value is now fin.
Furthermore, the morphs statement is used to ensure that the 3rd person singular will be
likes, and that the same form of a verb such as worry will be worries. Similar rules will
be used to generate all the other parts of the verb paradigm -- the present and past
participles, the passive participle, and so on.

HPSG goes further with the use of lexical rules, using them to handle a wide
range of grammatical phenomena. English passive structures, for instance (Sandy was
believed, and so on), can be analysed in this way, and as we shall now see, lexical rules
can also be used to eliminate traces from the grammar. Two rules are employed to do this
in the theory, the Complement Extraction Lexical Rule and the Subject Extraction
Lexical rule, as discussed below.

Complement Extraction lexical Rule (CELR)

In Chapter 9 of Pollard & Sag, the CELR is introduced as follows (p.378):

The basic idea is that SLASH originates not on traces, but rather from the head
that licenses the `missing' element. ... We assume there is a lexical rule ... that takes as
input a lexical entry with a certain COMPS list and returns as output a lexical entry that is
just the same except that one element has been removed from the COMPS list and placed
within the INHER:SLASH value.

The basis of the rule can therefore be represented by the following input and output
structures:

 75

Given a verb such as likes, this rule should apply to produce something with has an
empty comps list and an NP in the inherited:slash value -- exactly the same structure,
in fact, as we would get from combining the verb with trace.

To get this working in ALE, we need to introduce operations on the comps list,
and we can do this using an if statement in the lexical rule, which (simplified) will look
like this:

celr lex_rule
 (synsem:(loc:cat:(comps:Compsin),
 nonloc:(inherited:slash:e_set,
 tobind:slash:e_set)))
 **>
 (synsem:(loc:cat:(comps:Compsout),
 nonloc:(inherited:slash:(elt:Loc,
 elts:e_set),
 tobind:slash:e_set)))
 if
 select((loc:Loc),Compsin,Compsout)
 morphs
 X becomes X.

select(X,(hd:X,tl:Z),Z) if true.
select(X,[Hd|Y],[Hd|Z]) if select(X,Y,Z).

Again, it's not necessary to understand the mechanics of the Prolog here, but you
should note that the effect is to remove something (represented by the variable Loc
above) from the Compsin list and place it in the inherited:slash set, leaving the rest of
the complements in the Compsout list. Note also that this will result in three lexical
entries for a verb such as give which has two complements -- one with the first
complement in the SLASH set, one with the second, and one with neither. This will
ultimately mean that sentences like the book Sandy gave Kim will be ambiguous
depending on whether the book is the object given or the `receiver' (as in Kim Sandy gave
the book) -- clearly the receiver option is wrong semantically, but it's assumed that that's
a different problem.

In order for the above rule to work, all that's required is that the other category
features (head, spr, subj, and marking) should be added and copied from the input
structure to the output, as in the 3rd person singular rule we saw earlier. Note that we
don't need to copy all the head features separately as we actually want an exact copy of
the input feature structure for everything except the comps and inherited:slash values.
Finally, note that the lexical rules apply recursively, applying to their own output and to
the output of other lexical rules where the input feature specifications match, so the 3rd
person singular rule and the CELR will combine to produce two versions of like, one with
and one without the complement extracted, and two versions of likes also.

 76

Subject Extraction Lexical Rule (SELR)

Using trace, sentences such as Kim Sandy believes likes books can be analysed
with no extra effort -- NP trace can be the subject of likes, bound to Kim in the normal
manner. The CELR will not handle these alone, of course, as only complements of the
verb are affected, and so we must also implement the SELR.

The SELR is a little more complicated than the CELR, for various reasons, an
important one being that subject extractions are much more limited than complement
extractions -- for further discussion, see the relevant parts of Pollard & Sag (pp171ff, for
example). Generally, the theory assumes that it is not possible to affect the subj values
directly in the same way as the CELR operates on the comps list, and the SELR therefore
works only on verbs which have sentential complements. The idea is thus that the rule
`reaches inside' the comps list of a verb like believes and extracts the subject of the
embedded sentence. Schematically, the SELR looks like this:

As shown, the subj value on the embedded sentence is placed on the
inherited:slash value on the main verb. In ALE, we require a bit of Prolog code to get
this working, and so the relevant parts of the SELR are:

selr lex_rule
 (synsem:(loc:cat:(comps:Compsin),
 nonloc:(inherited:slash:e_set,
 tobind:slash:e_set)))
 **>
 (synsem:(loc:cat:(comps:Compsout),
 nonloc:(inherited:slash:(elt:Loc,
 elts:e_set),
 tobind:slash:e_set)))
 if
 subst((loc:(cat:(head:vform:fin,
 subj:e_list,
 comps:e_list))),
 (loc:(cat:(head:vform:fin,

 77

 subj:[(@ np,loc:Loc)],
 comps:e_list))),
 Compsin,
 Compsout)
 morphs
 X becomes X.

subst(X,Y,(hd:X,tl:Z),(hd:Y,tl:Z)) if true.
subst(X,Y,[Hd|Tl1],[Hd|Tl2]) if subst(X,Y,Tl1,Tl2).

Once again, the other category features must be added to get the full working
version of the rule. With these in place, the grammar should once again handle sentences
such as:

Summary
This part of the course introduced the current analysis of long-distance

dependencies in HPSG, which mainly involved a look at the INHERITED and TOBIND
features. We then looked at lexical rules and at how empty categories can be eliminated
by the the use of lexical rules which operate on the valency features.

Exercises
Here we implement a fairly standard HPSG account of long distance

dependencies using the INHERITED and TOBIND features and lexical rules. We also
implement an analysis of passive sentences using lexical rules.

Solutions to these exercises can be found in grammar8.pl.

1. The file grammar7.pl provides the starting point for these exercises, so and make sure
you understand the contents -- as the text suggests, the actual Prolog code is not so
important, but an understanding of what it's doing is.

The grammar includes the new type set and a more standard version of the Non-Local
Feature Principle as discussed in the text. Note that the noslash macro now has the
following definition:

noslash macro
 nonloc:(inherited:slash:e_set,
 tobind:slash:e_set).

 78

The lexical entry for trace is the same as the previous grammar, however, and so it
produces an error message. Trace should now unify its loc value with an element in the
set represented by inherited:slash, and the tobind:slash value should be e_set.
Alter the entry for trace to take account of the new features and verify that the grammar
now parses sentences such as *the book Sandy Kim gave e e. If it's not clear how to pick
out a set element, look at the filler-head rule and the discussion in the text for clues.

2. We now want to start using lexical rules to generate verb entries, so, ignoring the
auxiliaries, remove all main verb entries from the lexicon except the base forms --
replacing the (fin;bse) specifications with bse will be appropriate in at least some
cases. Now implement the pres_3s (3rd person singular present tense) lexical rule as
described in the handout and check that likes is being generated. Note that Kim snored is
not now a possible test sentence, unless you provide another lexical rule to generate past
tense forms -- Kim snores should be ok, though. Add a (transitive) lexical entry for worry
and check that you can parse the book worries Kim.

3. The handout provides the basis for ALE versions of the CELR and the SELR, and
these partial representations are already present in grammar7.pl. Remove trace from the
grammar and fill out the category specifications in the lexical rules (use the pres_3s rule
as a guide). Note that, as the handout suggests, the head features can be copied using a
singular variable where it was necessary to spell them out in the pres_3s rule, so all we
need in this case is:

 ... head:Head, .. etc
**>
 ... head:Head, .. etc

With the rest of the valency features and the marking feature in place, check that you can
parse Sandy Kim likes (no `e' now, of course) and the book Sandy gives Kim -- the latter
with two analyses as discussed in the handout. Note that it may be necessary to exit from
ALE and start again from scratch at this stage -- the compiler sometimes gets confused
when lexical rules are being edited.

4. It was mentioned in the handout that lexical rules are used to generate passive
sentences in English, such as Kim was liked. As a first stage to getting this to work, we
need to add the type pas (passive participle) as a subtype of VFORM. Check the result
using show_type(vform):

TYPE: vform
SUBTYPES: [fin,pas,bse]
SUPERTYPES: [bot]
IMMEDIATE CONSTRAINT: none
MOST GENERAL SATISFIER:
 vform

You can use the `s' command to check the whole type signature if you're using the ALE
Emacs interface.

 79

5. Now we want a lexical rule which will generate suitable participial forms such as liked
and given, and which will also alter the feature structure to capture certain facts about
passives. For the moment, we shall ignore the by-phrases which often appear (Kim was
given the book by Sandy) and concentrate on getting Kim was given the book. One
obvious factor is that the object NP in a VP like give Sandy the book has become the
subject in Sandy was given the book, and this is what we want the lexical rule to achieve.

We therefore need a rule which will move an NP from the comps list of a verb entry and
place it in the subj value of the output structure. The relevant part of an ALE version of
this will be:

 head:(verb,
 vform:bse, etc ...
 comps:([loc:(cat:(head:(noun,
 prd:ObjPrd,
 mod:ObjMod),
 subj:[],
 comps:[],
 marking:ObjMarking))|ObjRest]),
 **>
 head:(verb,
 vform:pas, etc ...
 subj:[(loc:(cat:(head:(noun,
 prd:ObjPrd,
 mod:ObjMod),
 subj:[],
 comps:[],
 marking:ObjMarking)))],
 comps:ObjRest,
 .
 .
 morphs
 give becomes given, etc ...

Here we have split the list on the input category into its head and tail using the usual
Prolog [Head|Tail] syntax, the head of the list being the whole structure representing
the object NP. (It is assumed that the first complement is the object). This feature
structure is then copied into the subj value on the output, and the comps value on the
output is the tail of the original comps list. All of the other parts of the input must also be
copied, of course.

So, the next stage is to implement such a lexical rule and check that you get a lexical
entry for liked as a result -- note that you should get two entries for given, one in which
the CELR has operated in order to allow the book Sandy was given.

6. Finally, all we need is a lexical entry for the passive auxiliary was, which will be
exactly like the other auxiliaries except that it takes a passive VP (VForm:pas) as its
complement. With this in place, check that you can parse Sandy was liked, Sandy was
given the book, the book Sandy was given, Kim Sandy believes was given the book, and
any other suitable sentences you can think of!

 80

10 Semantics
Introduction

This is the eighth instalment of the course on HPSG and ALE. The only major
parts of the HPSG feature structures which we have not discussed contain the semantics
information which is represented by the CONTENT and CONTEXT features. This part
of the course therefore looks at some of the issues and at how semantic representations
can be constructed in ALE.

It should be noted that the account of the semantics of quantification changes in
the book -- the early discussions assume an older analysis which, as stated on p.47,
cannot handle certain problems concerning quantifier scoping. We shall therefore ignore
the relevant parts of the first analysis and concentrate on the final representation used in
the book in chapter 8. This does mean, however, that some aspects of most of the
semantic structures which appear in the first 7 chapters are incompatible with the
discussion below.

Semantic in HPSG: the Content and Context Features
The theory as described in the book introduces the CONTENT and CONTEXT

features, which contain the semantic information, as part of the Local information in a
sign:

The CONTEXT feature handles various kinds of background semantic
information relating to things like time and place of utterance, presuppositions, and so on.
We shall ignore this here and concentrate on the `core' semantic information represented
by the CONTENT feature.

The general semantic theory which is assumed is SITUATION SEMANTICS
(see, for example Richard Cooper (1990)). The details of the theory are not important
here -- the basic idea is that semantic representations should contain information on the
context of utterance, and so on. An important aspect of this is the notion of a `state-of-
affairs', which is a partial description of some situation, sometimes called `circumstances'

 81

or (in the Situation Semantics literature) `infons'. See section 8.2.2 below for a
description of states-of-affairs. HPSG semantics is also closely related to Discourse
Representation Theory (DRT) -- Kamp (1981) is a standard reference.

The structure of the CONTENT feature differs for different types of object --
nominal semantics is clearly different from verb semantics, and so forth. We shall assume
that the value of the CONTENT feature cont is the type cont, and that this has three sub-
types -- nom_obj (Nominal-Object), psoa (State-of-Affairs), and quant (Quantifier). We
shall look at these in turn, beginning with the Nominal-Object type, which represents the
semantics of nouns. Following the above points, though, note that the ALE representation
of the top-level structure of semantics is simply:

loc sub []
 intro [cat:cat,
 cont:cont].

cont sub [nom_obj,psoa,quant].

Nominal Objects

The nom_obj type, which is appropriate for nouns, introduces two features,
INDEX and RESTRICTION:

nom_obj sub []
 intro [index:ind,
 restr:set_psoa].

We shall look at the RESTRICTION feature below. Firstly, the following section
looks at the INDEX feature as this is a crucial part of the HPSG analysis of discourse
structure and binding.

The Index Feature

The INDEX feature works in much the same way as reference markers in DRT, in
which the use of a nominal normally results in a marker being introduced into the current
representation. Thus, for instance, a sentence such as the man likes books will result in a
discourse representation in which there are two markers representing the man and books,
and it is these markers which will be identified if the subsequent sentence is something
like he often reads them -- he should be identified with the marker for the man, and them
should pick out books. The following diagram summarises this:

 82

These indices are also used in the HPSG account of binding theory -- thus, for
instance, in a sentence such as John shaved himself, the indices for John and himself
should be shared. The INDEX feature takes the type ind as its value, and this in turn has
three subtypes -- it, there, and ref. The first two are used to account for verbs which
take `expletive' subjects, as in the following examples:

The ref (Referential) type covers most other cases in which nouns are used to refer to
objects.

One important point about the INDEX feature is that it contains agreement
features -- for present purposes, we shall assume that these are represented by GENDER,
NUMBER, and PERSON. The relevant part of the ALE type hierarchy will therefore be:

ind sub [it, there, ref]
 intro [gen:gen,
 num:num,
 per:per].

The type gen will have the basic subtypes masc, fem, and neut (not appropriate in
all languages, of course), num will include sing and pl (and `dual', and so on, where
necessary), and finally per will have subtypes first, second, and third.

The Restriction Feature

The other aspect of nominal semantics which we should look at here concerns the
RESTRICTION feature which, as noted above, takes a set of states-of-affair (psoa)

 83

types as value. The idea behind this feature is that it contains the basic semantic
information on a referent -- so the RESTRICTION value in the lexical entry for book, for
example, contains the basic semantic information that the object concerned is a book. In
an NP such as red book, the restriction is a set representing the facts that the object is a
book and is red. These facts are contained in the type psoa, and the following section
investigates this.

States-of-Affairs

The analysis of states-of-affairs is the main part of the semantics which changes
in chapter 8 of the Pollard & Sag book, and so this discussion is not relevant to the earlier
chapters. The psoa type now represents a `possibly quantified state-of-affairs', and its
ALE type structure is:

psoa sub []
 intro [quants:list_quant,
 nucleus:qfpsoa].

The quants feature contains a (possibly empty) list of quantifiers, while the
nucleus feature holds the core semantic information in the type qfpsoa (`quantifier-free
psoa'). Having the quantifiers in a list like this means that quantifier scope ambiguities
can be captured -- the following sentence is assumed to exemplify this (Pollard & Sag,
p.47):

The argument is that this represents a situation in which there is a single woman
who is loved by all the men, or that there is a unique woman for each of the men -- the
former meaning is perhaps more obvious in sentences such as:

The ordering of the quantifiers in a list allows the different interpretations to be
extracted.

The qfpsoa type will have as many subtypes as are deemed necessary to capture
the basic facts about noun and verb semantics. Thus the following ALE type hierarchy is
possible:

qfpsoa sub [property,un_relation, bin_relation, tri_relation].

property sub [book,red,]
 intro [instance:ref].

book sub [].

un_relation sub [snore,walk,run,].

 84

snore sub []
 intro [snorer:ref].

bin_relation sub [like,hit,].

like sub []
 intro [liker:ref,
 likee:ref].

tri_relation sub [give,sell,].

give sub []
 intro [giver:ref,
 given:ref,
 gift:ref].

Here we are assuming that `properties' such as being red, or being a book, are
`atomic' semantic representations introducing the feature INSTANCE which will be
bound to the index of a referential NP. Unary relations such as snore, however, introduce
a snorer feature, whose value is again a referential NP which will ultimately be
associated with the subject of the sentence, and so on for the other verb types.

Quantifiers

The quant type itself (the last subtype of cont), can be represented in ALE as
follows:

quant sub []
 intro [det:sem_det,
 restind:nom_obj].

The first feature, DETERMINER, is used simply to name one of three types of
semantic determiner:

sem_det sub [forall,exists,the].

forall sub [].
exists sub [].
the sub [].

The other feature, RESTIND, contains a `restricted index', which is a nominal
with a non-empty restriction set -- so quantification must range over properties, and so
on. Based on this approach to the semantics of quantifiers, Pollard & Sag suggest
(almost) the following representation for an NP like a poem:

 85

The next section looks at how these features appear in lexical entries and also at
how these can be implemented in ALE. For the moment, though, it should be noted that
we need to refine the definition of lists and sets that we have been using -- the above
discussion introduces types such as list_quant and set_psoa. This can be implemented
easily by defining new subtypes of list and set:

list sub [ne_list,list_sign,list_synsem,list_quant].

set sub [ne_set,set_psoa,set_loc].

Each of the new subtypes of list will have different types of member -- for
example:

ne_list sub [ne_list_sign, ne_list_synsem,ne_list_quant]
 intro [hd:bot,
 tl:list].

list_synsem sub [e_list,ne_list_synsem].

ne_list_synsem sub []
 intro [hd:synsem,
 tl:list_synsem].

We can now be more precise in the specification of lists and sets as values -- the
value of the valency features, for instance, will be of type list_synsem rather than just
list.

Semantics in ALE Lexical Entries
Each lexical item must now include semantic information. The following

subsections look at the various types of lexical entry that we have been working with --
nouns, verbs, determiners, and adjectives.

 86

Noun Semantics

Common nouns will include the INDEX and restr features as they are clearly of
the nom_obj type:

The main point here is that the values of the INSTANCE and INDEX features are
unified -- as discussed above, the restriction imposed by the common noun is associated
with a marker in the discourse, represented by the index.

This can be straightforwardly captured in ALE:

book --->
 synsem:((@ nbar((per:third,
 num:sg,
 gen:neut)),
 @ mod(none),
 @ spr([(@ detp(_))]),
 @ cont((index:Ind,
 restr:(elt:(nucleus:(book,
 instance:Ind),
 quants:[]),
 elts:e_set))),
 @ no_slash)).

Proper nouns are much simpler -- they just introduce a referential index with no
restrictions:

kim --->
 synsem:((@ np((per:third,
 num:sg,
 gen:masc)),
 @ mod(none)),
 loc:cont:(index:ref,
 restr:e_set),
 @ no_slash).

 87

Note the use of a number of simple new macros in the latter two entries -- (@ mod), (@
spr), and (@ cont) -- and also the addition of the agreement features as an argument in
the NBar and NP macros. The former will now be:

nbar(Ind) macro
 loc:(cat:(.....),
 cont:index:Ind).

Verb Semantics

The lexical entries for verbs will ensure that the indices representing their
subjects, and any complements, are used in the definition of the semantic relations that
the words describe. For example, likes will relate the index introduced by its subject to
the liker element in its semantics, while the object NP will be the likee:

like --->
 synsem:(loc:(cat:(head:(verb,
 vform:bse,
 aux:no,
 inv:no),
 spr:[(@ comp)],
 subj:[(@ np(Ind1))],
 comps:[(@ np(Ind2))],
 marking:unmarked),
 cont:(nucleus:(like,
 liker:Ind1,
 likee:Ind2),
 quants:[])),
 @ mod(none),
 @ no_slash).

Auxiliary verbs will simply pick up the semantics of their complement VPs:

does --->
 synsem:(loc:(cat:(head:(verb,
 mod:none,
 vform:fin,
 aux:yes),
 spr:Spr,
 subj:Subj,
 comps:[(@ vp(Prop),
 @ subj(Subj),
 @ spr(Spr),
 loc:cat:head:vform:bse)],
 marking:unmarked),
 cont:Prop),
 @ noslash).

The cont value on the auxiliary is simply unified with the head VP's cont value.
There are some new macros in use here too -- @ subj and @ spr -- and the vp macro now
has an argument, which will be the `proposition' expressed by the verb's semantics:

 88

vp(Proposition) macro
 loc:(cat:head:verb,
 comps:[],
 subj:[_]),
 cont:Proposition).

Determiner Semantics

The quantifiers will be classified depending on whether they are of the forall,
exists, or the types -- for instance:

every --->
 synsem:(loc:(cat:(head:(det,
 spec:((@ cont(Cont),
 @ nbar((num:sg))))),
 spr:[],
 subj:[],
 comps:[],
 marking:unmarked),
 cont:(det:forall,
 restind:Cont)),
 @ noslash).

Here the value of the RESTIND feature in the determiner's CONTENT is unified
with the CONTENT value of the specified Nbar.

Adjunct Semantics

Perhaps the most complicated semantics belongs to the adjuncts. As noted earlier,
we want an NP like the red book to introduce an index which is restricted by the semantic
attributes `red-ness' and `book-ness'. Adjuncts therefore add a new restriction to whatever
the set of restrictions is on their head:

red --->
 synsem:(loc:(cat:(head:(adj,
 prd:no,
 mod:(pre_mod_synsem,
 @ nbar(Ind),
 @ restr(Restrs))),
 spr:[],
 subj:[],
 comps:[],
 marking:unmarked),
 cont:(index:Ind,
 restr:(elt:(nucleus:(red,
 instance:Ind),
 quants:[]),
 elts:Restrs))),
 @ noslash).

 89

Note that yet another macro is in use here - @ restr -- and that the value of the
restr feature on the modified element is unified with the elts set in the CONTENT
feature. Thus, effectively, the restriction red is being added to the already-existing set.

The only other type of lexical entry we have been using is for complementisers,
which it is assumed have no semantics. The CONTENT feature can therefore just be left
unspecified.

There is an important aspect of HPSG semantics that we have not seen, and this is
the principle which ensures that the CONTENT values are passed from daughters to
mothers. This is handled by the Semantics Principle, discussed in the next section. Before
going on, however, note that the lexical rules also have to be edited to include the
CONTENT feature, and that the inflected verb rules (3rd person singular, and so on)
should now ensure that the correct agreement features appear.

The Semantics Principle
The basic idea behind the Semantics Principle is that the CONTENT value of a

mother is unified with the head daughter's CONTENT value, except when the non-head
is an adjunct, in which case the CONTENT on the mother comes from the adjunct
daughter. This is a slightly simplified version of the final principle, which ultimately
includes a notion of quantifier `storage' which we shall ignore for present purposes -- see
Pollard & Sag pp323ff for further details.

All we need to do to implement the Semantics Principle in ALE is to include the
following definition:

semantics_principle(synsem:loc:cont:Cont,
 synsem:loc:cont:Cont)
 if true.

This principle should now be added to all the rules as a goal:

semantics_principle(Mother,HeadDtr)

With the exception, of course, of the adjunct rules, in which the goal should be:

semantics_principle(Mother,AdjDtr)

Viewing Semantics Features
The file grammar9.pl contains an implementation of all the semantics features

discussed above. The grammar is clearly becoming quite complicated, and the feature
structures representing a complete parse can be extensive. ALE allows the printing of
certain features to be suppressed using the no_write_feat command:

 90

| ?- no_write_feat(cat).

yes
| ?- no_write_feat(nonloc).

yes

If we subsequently parse a sentence like Kim likes Sandy and view the results, we should
get:

sign
SYNSEM synsem
 LOC loc
 CAT ...
 CONT psoa
 NUCLEUS like
 LIKEE ref
 GEN fem
 NUM sg
 PER third
 LIKER ref
 GEN masc
 NUM sg
 PER third
 QUANTS e_list
 NONLOC ...

As the lexical entries for Kim and Sandy now include agreement features, and we
have specified that Kim is masculine and Sandy feminine, the semantics reflects this in
the analysis of the sentence -- the `liker' is masculine, and so on. The topicalised version
of the sentence, Sandy Kim likes, will have exactly the same semantics.

Similarly, the grammar will produce almost identical analyses for the passive
sentence Kim was given the book and the active form Sandy gave Kim the book. The only
difference is that in the latter case the `giver' is unspecified -- the rule ensures that Kim is
the `givee' (`receiver') in both cases. With the addition of an appropriate analysis of
prepositional phrases, the semantics of Kim was given the book by Sandy should be
identical to the active form.

And finally, note that the grammar in grammar9.pl excludes the verb believe as
its semantic representation introduces problems which are the subject of the next part of
the course.

 91

11 Raising and Control
Introduction

The previous eight parts of this course were concerned with an explanation of the
various features which form the core of current HPSG, and with how the theory can be
implemented in ALE. All the main apparatus is in place in the grammar in the file
grammar9.pl. Here we are concerned with using the theoretical and practical system in
the analysis of some classical linguistic problems, namely an account of RAISING and
CONTROL structures.

Before looking at the data immediately concerning raising and control, some
background discussion of the current HPSG account of complementation is useful. We
then look at some basic raising and control structures and finally at the behaviour of the
English expletive pronouns.

Complement Structures
In the earlier chapters of the Pollard & Sag book, there is an important discussion

concerning `unsaturated complements' (pp123ff). The relevant data are initially cited as
follows:

The complement structures in square brackets are `unsaturated' when the optional
subject is missing -- in the analysis assumed in the earlier chapters, this means that the
SUBCAT feature contains an NP, representing the subject, which has still to be found. In
the chapter 9 analysis, the situation is different -- the complements list is fully satisfied in
both cases, and so `unsaturated complements' is a bit of a misnomer in terms of the later
account. However, the central problem remains -- why are the examples in 9.1, 9.3, and
9.5 grammatical while the others are not?

The explanation offered in the book is that infinitival VPs with NP subjects and
complementisers, and `bare' infinitivals, form a natural class -- the book gives examples

 92

of a number of environments in which these structures are acceptable, including the
following:

The HPSG book refers to these contexts as free environments, and assumes that
central observation is that that the bare infinitival VPs appear in almost exactly the same
positions:

The analysis in the book in chapter 3 assumes that the free environments are
specified as +comp positions -- so a verb such as prefer, for example, specifies that its
complement must have a complementiser. In order to get this to work with the bare
infinitives too, Pollard & Sag assume that there is a null complementiser which marks the
VPs appropriately:

 93

Much of the relevant section in the book is aimed at contrasting the HPSG account with
the standard GB approach. The general trend in the later part of the book is to avoid
empty categories altogether, and there are probably two obvious ways of handling the
data. Firstly, a lexical rule could be used to ensure that verbs like prefer, and so on, are
subcategorised for either bare infinitives or infinitival sentences with for
complementisers. This solution does not capture the idea that these structures form a
natural class, and so the second solution would be to use the type hierarchy to define a
clausal supertype which subsumes the two structures.

Raising and Control Structures
In the Pollard & Sag book, the term EQUI is used more or less as a synonym for

control. As the book notes, the terms equi and raising relate to early transformational
accounts of data such as the following:

There are three main reasons for distinguishing these classes, which we shall
investigate shortly. Firstly, however, it is useful to look briefly at the semantics
associated with these structures.

Semantics of Control

A central assumption in HPSG is that the distinguishing characteristics in many of
the above cases are basically semantic. Thus, for instance, for verbs such as order and
permit, the type of the semantics is a psoa of the type influence, and this type introduces
three semantic roles -- the INFLUENCE (possibly an agent), the INFLUENCED
(typically animate), and SOA-ARG (the action that is involved). Thus in a sentence such
as Kim ordered Sandy to leave, Kim is the INFLUENCE, Sandy the INFLUENCED, and

 94

leave is the SOA-ARG. Similarly, the semantics of a sentence such as Kim persuaded
Sandy to leave can be partially represented as follows:

Here [1] will be identified with the subject, Kim, and [2] with the object, Sandy.
As shown, the SOA-ARG feature includes the information that Sandy did the leaving.

The other cases are treated in a similar manner -- there are various roles which the
arguments play, and there is a SOA-ARG feature which defines the action, or state-of-
affairs, which is relevant for the particular lexical item in question. There is a full
discussion of this material in chapter 7 of the HPSG book. The main point here is to note
how the semantic relationships are captured.

Equi/Raising Distinctions

It was noted above that there are three main distinctions drawn between equi and
raising structures. Firstly, and most importantly, equi items assign one more semantic
role, even though the surface syntactic relationships appear identical. Thus, for instance,
Pollard & Sag provide the following analyses for the sentences they try to run and they
tend to run:

 95

Thus the referential index representing the subject of an equi verb like try is
assigned a role in the verb's content, and in addition the index is structure-shared with the
index of the embedded subject. With a raising verb such as tend, the subject has no role
in the matrix psoa.

The essential fact about the distinction, then, is that all the subcategorised
dependents of equi verbs are assigned a semantic role, while raising verbs don't assign a
role to one of their subcategorised objects. The lexical entries below illustrate this:

Further examples of such verbs, including more complicated cases such as
persuade and object raising believe, can be found in chapter 3 of the HPSG book.

Another important distinction is that only the raising expressions allow expletive
subjects:

 96

These facts are partly captured by the sorts of index assumed in HPSG:

The it and there sorts identify the two expletive NPs in English, while all other
NPs are referential. The lexical entries for equi expressions like try include the
information the their subjects are referential, while the raising type makes no such
restriction. Thus a raising verb like appear can have any type of subject:

The final distinction concerns the fact that in equi structures the unexpressed
subject of the VP complement is coindexed with one of the other objects, while in raising
structures the entire SYNSEM value of the missing subject is shared with another
subcategorised dependent. This results in a number of subtle differences which tend to
rely on information from languages such as Icelandic (see Pollard & Sag pp138-9). In
English, there is some evidence based on the fact that PPs can be controllers in equi
situations, but not in raising constructions. However, the arguments are fairly abstract,
and it is enough here to point the relevant parts of the book.

Expletive Pronouns
The expletive pronouns it and there appear in only a few places in English. This

follows from the fact that most NPs are assigned a semantic role, which is associated only
with the referential type of NP. Typically, expletive there appears as the subject of a
copula:

 97

Expletive it, on the other hand, appears as the subject of weather verbs, temporal
expressions, and in a few other environments:

There are also a number of cases of it turning up in non-subject positions, for instance:

The HPSG book's analysis of these involves the following signs:

The relevant entry for copula be assumed in the book is as follows:

 98

The latter entry is enough to handle VPs such as is no-one absent with the following
feature structure:

The content of this VP will be `complete', and it will only be able to combine with an
expletive there subject.

ALE Implementation
Most of the above AVMs can be directly implemented in ALE. The grammar in

grammar10.pl, which is a copy of some work by Suresh Manandhar and Claire Grover,
contains examples of everything mentioned in the text. This grammar can be regarded as
a starting point for research into a wide range of linguistic issues.

 99

12 Weak Unbounded Dependencies and
Binding Theory

Introduction
This is the final part of a course in implementing HPSG grammars in ALE; here I

will look at a couple of important linguistic issues which the course has not yet covered.
In fact, the HPSG book discusses a number of issues that the course ignores -- in general,
these are either fairly straightforward to implement (such as the analysis of prepositions)
or represent work which may be regarded as continuing research (such as `coerced
complements').

However, it is useful to look further at two fairly traditional areas of concern
which the book covers -- the treatment of `weak' unbounded dependencies such as the
`tough-movement' cases, and the analysis of binding.

Weak Unbounded Dependencies

In Chapter 4, Pollard & Sag discuss a number of issues concerning unbounded
dependency constructions (UDCs) -- we have already looked in some detail at the
treatment of topicalised sentences such as Kim Sandy likes, which are classified as
`strong' UDCs along with WH-questions, WH-relatives, it-clefts and pseudoclefts. We
have so far ignored the weak UDCs, however, such as tough-movement, non-WH-
relatives, and some others.

The basic distinction between strong and weak UDCs is that the former have an
overt filler in a non-argument position which is strongly associated with a gap, for
example (cf p157):

 100

The weak UDCs, on the other hand, have a constituent in an argument position that is in
some sense co-referential with the gap:

One important point to make about the latter cases is that the gap and the co-referential
constituent may have different case:

The HPSG assumption is that adjectives such as easy subcategorise for infinitive
complements containing an accusative gap which is coindexed with the subject. Pollard
& Sag suggest a partial lexical entry similar to the following:

The COMPS value would normally include a `for' PP also in order to account for
Charles is easy for Camilla to please, and so on. The main point to note is that the VP
complement has an accusative NP gap, and this NP is classified as a personal pronoun
(ppro) -- we shall see why in the discussion of binding theory which follows. The NP in
question is abbreviated as NP[acc]:ppro[1] in the latter example, and the index is shared
with the index of the subject. Pollard & Sag note that the index must be referential in
order to rule out the expletive examples below:

 101

Note further that it is the gap which is referential, and so in cases where there is no gap,
an expletive subject is still possible:

To emphasise the behaviour of the lexical entry in 10.4, Pollard & Sag provide the
following tree structure for example 10.3:

Here, in a similar manner to the way the filler-head schema operates, the value of
TO-BIND:SLASH on easy ensures that the NP gap is satisfied at the required level. The
normal feature-passing conventions ensure that the missing NP is associated with the
relevant part of the lexical entry for easy, and hence that it is coindexed with the matrix
subject. Further examples discussing double extractions (The play which Kim is easy to
talk to [e] about [e]) can be found in the book.

 102

A couple of final points about the tree in 10.8 should be noted. Firstly, it assumes that
there is an empty NP in the structure, and as we have seen in the earlier parts of this
course, current HPSG attempts to eliminate these by means of lexical rules -- the
complement extraction rule will produce the required form of please in this case. Also --
although the book does not discuss this -- it is probable that the lexical entry for easy in
10.3 should be produced using a lexical rule from the `base' form which would appear in
cases such as it is easy to please Kim in which there is no missing object in the VP.

Binding Theory
Chapter 6 in the HPSG book introduces binding theory, much of the discussion

being aimed at distinguishing HPSG from GB. This section provides a brief account of
the main general points which binding theory attempts to cover, the basic problem being
explanations of data such as the following:

The subscripts indicate coindexing -- so in 10.10, for instance, it is not possible
for the pronoun to refer to Sandy. A reflexive, as in 10.11, must be used.

The root of the HPSG account of binding lies in the classification of NPs. This is
done by introducing various subtypes to the NOMINAL-OBJECT sort, as shown in the
following diagram (p249):

Thus normal referential nouns are of type npro, pronouns are either personal (he,
they, and so on) or anaphoric, and anaphoric pronouns are either reflexives (such as
himself) or reciprocals (each other, for example). Pollard & Sag provide the following
example lexical entries (p250):

 103

Expletives are assumed to be of type ppro, which explains their appearance in tag
questions in which only pronominals are possible:

To illustrate the core of the binding problem, Pollard & Sag suggest the following
representation for the content of the sentence Fido chased himself:

What needs to be added to this structure is the information that the `chaser' and
the `chased' are coindexed. In the book, this is discussed in terms of the SUBCAT lists,
which in the present example would contain the following:

One of the binding principles, then, is a constraint which says that an anaphoric
NP must be coindexed with a less oblique item in the SUBCAT list. The obliqueness
hierarchy is simply the left-to-right ordering in the list, so an anaphor must be coindexed
with something to its left. This requirement is formally stated in terms of local
obliqueness-command (local o-command) as follows (p253):

 104

This statement is not enough to cover cases where one of the coindexed elements
is inside a larger constituent in the SUBCAT list -- as would be the case in a sentence
such as Kim thinks that Sandy likes him . For these the more general o-command
statement is necessary (p253):

The final statement required concerns the notion of o-binding, which defines what
it means for some grammar object to `bind' another (p254):

With these definitions in place, the HPSG binding principles can be stated (p254):

The book then works through a few standard binding cases to show how these
principles apply. This can be illustrated using the examples in 10.9, 10.10, and 10.11
above, repeated below:

Sentences such as 10.25 are acceptable because the anaphor is locally o-bound, as
Principle A insists. The SUBCAT list for the verb would be:

The related examples below are ruled out by the same principle, however:

 105

In 10.24, the SUBCAT list for the verb would have to be as follows:

This is ill-formed because the pronoun him is locally o-bound by the subject,
which violates Principle B. Cases such as Sandy believes Kim likes him are fine,
however, because the pronoun is o-bound, but not locally o-bound. Finally, Principle C
excludes analyses in which a referential expression (type npro) is bound.

Looking again at sentences such as Kim is easy to please as discussed in § 10.2,
we can now see why the NP gap following please is assumed to be a personal pronoun in
the lexical entry for easy in 10.3. If it were an anaphor, it would have to be bound by the
subject of please, which is clearly wrong, and if it were referential, it could not be bound
by the matrix subject. As a personal pronoun, it satisfies the binding principles.

The book discusses many other facts, and problems, concerning binding theory --
again, often with a view to contrasting HPSG and GB. There is also some discussion of
how the analysis can be maintained when the SUBCAT feature is split into the three
valency features in chapter 9 (p375, p379n, p401).

ALE Implementation
The analysis of tough-movement expressions suggested in § 10.2 can be

implemented fairly directly in ALE. Lexical entries such as that proposed for easy in 10.3
have obvious ALE counterparts, although there are no examples in the final grammar (
grammar10.pl) at the moment.

The situation with the binding constraints is different. As with some of the other
HPSG principles -- the nonlocal feature principle being a good example -- some amount
of prolog code would be necessary to effect the necessary checks. The obvious place to
apply the principles is to the mother category in rules -- in each case, the SUBCAT list on
the mother (sometimes called the `argument' list in recent HPSG) could be checked to
ensure that the principles are being satisfied.

However, just checking that the principles are not being violated is not actually
enough -- some mechanism is necessary in order to effect coindexing in the first place. In
all the examples of structure sharing that we have seen, either of full categories or
indices, the matching has been imposed by the schemas (and associated principles) and/or
lexical entries. In the case of binding, some mechanism would be necessary in order to
produce the two analyses below, for instance:

 106

There is nothing in HPSG, and certainly not in the ALE grammars we have seen,
which will do the actual coindexing. It may be that this can be left to an independent
discourse model, but however it is done, there is clearly no point in implementing the
binding principles until the bindings are actually in place.

Conclusion
This completes the HPSG/ALE course. The 10 parts have covered most of the

central concerns in the HPSG book, and have also covered most of the functional aspects
of the HPSG grammar which accompanies ALE. The latter grammar is based on the
analysis presented in the earlier chapters in the book, so the grammar developed in the
course is effectively a revised version which takes into account some of the points made
in chapter 9. The final grammar (grammar10.pl) is a copy of one written by Suresh
Manandhar and Claire Grover for a course in advanced grammar writing, and it
implements analyses of all the main linguistic issues covered in the current course apart
from the material discussed in this final part.

