
Copyright notice: Excerpted from Implementing Typed Feature Structure
Grammars by Ann Copestake, published by CSLI Publications. ©2001 by CSLI

Publications. All rights reserved. This text may be used and shared in accordance
with the fair-use provisions of U.S. copyright law, and it may be archived and

redistributed in electronic form, provided that this entire notice, including
copyright information, is carried and provided that CSLI Publications is notified

and no fee is charged for access. Archiving, redistribution, or republication of this
text on other terms, in any medium, requires the consent of CSLI Publications.

Implementing Typed Feature
Structure Grammars

Ann Copestake

ISBN: 1-57586-260-3

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

Contents

Preface ix

I Typed Feature Structure Grammars 1

1 Introduction 3
1.1 What you need to run the LKB 4
1.2 What you need to know about to understand this book 5
1.3 A brief introduction to the LKB system 6
1.4 Using this book 8

2 A first session with the LKB system 10
2.1 Obtaining and starting the LKB 10
2.2 Using the LKB top menu 12
2.3 Loading an existing grammar 13
2.4 Examining typed feature structures and type

constraints 16
2.5 Parsing sentences 22
2.6 Viewing a semantic representation 26
2.7 Generating from parse results 27
2.8 Adding a lexical entry 28
2.9 Adding a type with a constraint description 29
2.10 Summary 30

v

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

vi / Implementing Typed Feature Structure Grammars

3 Typed feature structures made simple 32
3.1 A really really simple grammar 33
3.2 The type hierarchy 38
3.3 Typed feature structures 45
3.4 Unification 54
3.5 Type constraints and inheritance 67
3.6 Summary 78

4 Grammars in typed feature structures 80
4.1 An introduction to grammars in TFSs 80
4.2 Parsing in an implementation 90
4.3 Difference lists 95
4.4 The description language 99
4.5 Writing grammars in the LKB system 107
4.6 Summary 114

5 More advanced grammars 116
5.1 A lexicalist grammar 116
5.2 Lexical and morphological rules 123
5.3 Exploiting the type system in grammar encoding 131
5.4 Simple semantics and generation 137
5.5 Long distance dependencies 147
5.6 �A final note on formalism issues 151
5.7 Summary 155
5.8 Further information 155

II LKB User Manual 161

6 LKB user interface 163
6.1 Top level commands 164
6.2 Type hierarchy display 170
6.3 Typed feature structure display 170
6.4 Parse output display 173
6.5 Parse tree display 174
6.6 Chart display 175

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

Contents / vii

7 Error messages and debugging techniques 177
7.1 Error messages 177
7.2 Lexical entries 185
7.3 Grammar rules 186
7.4 Debugging techniques 186

8 Advanced features 190
8.1 Defining a new grammar 190
8.2 Script files 193
8.3 Parsing and generation efficiency techniques 196
8.4 Irregular morphology 199
8.5 Multiword lexemes 201
8.6 Parse ranking 201
8.7 Leaf types 201
8.8 Caches 202
8.9 Using emacs with the LKB system 203
8.10 YADU 203
8.11 MRS 204
8.12 Generation 205
8.13 Testing and Diagnosis 205
8.14 Parse tree labels 206
8.15 Linking the LKB to other systems 207

9 Details of system parameters 209
9.1 Grammar independent global variables 210
9.2 Grammar specific parameters 212
9.3 User definable functions 215

References 219

Index 225

Index of Menu Commands 230

Index of Parameters and Functions 232

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

2

A first session with the LKB system

The following chapter takes the new user through an initial session with
the LKB system. It covers the basics of:

1. Obtaining and starting the LKB
2. Using the LKB top menu
3. Loading an existing grammar
4. Examining typed feature structures and type constraints
5. Parsing sentences
6. Viewing a semantic representation
7. Generating from parse results
8. Adding a lexical entry
9. Adding a type with a constraint description

If you have no previous exposure to typed feature structure formalisms
you will find that you don’t fully understand all the terminology and
notation used here. In the subsequent chapters, I will go through a
sequence of grammars, starting with a very simple one and finishing off
with the one that is illustrated in this chapter, explaining all the details
of the formalism, so that you end up with a full understanding of how
everything works. The idea is that the very detailed information will be
easier to digest after this quick guided tour has given you an intuitive
idea of where we are going.

2.1 Obtaining and starting the LKB
The instructions in this section outline how to get an executable version
of the LKB for Windows, Linux or Solaris. Because the details may
change slightly, you should also refer to the instructions for downloading
on the LKB website:

http://cslipublications.stanford.edu/lkb.html

10

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

A first session with the LKB system / 11

In case of any conflicts, follow the instructions given there rather than
the ones in this book.

2.1.1 System requirements
Windows systems

1. Windows 95, 98, NT or 2000. The system may run on other ver-
sions of Windows but this has not been tested at the time of writing
(check the website for updates).

2. At least 128 Megabytes of memory.
3. 30 Megabytes of free disk space.
4. WinZip or PowerArchiver for extraction of the downloaded files.

Linux

1. The system has been extensively used with Red Hat Linux (6.0
and later). Other versions should also work but have not been
tested (check the website for updates).

2. At least 128 Megabytes of memory.
3. 30 Megabytes of disk space.
4. A suitable version of Motif: currently the LKB works with Metro

Link Incorporated’s Metro Motif 1.2.4 and OpenMotif. The LKB
does NOT work with lesstif at the time of writing.

5. gzip and tar are needed to extract the files.

Solaris Solaris requirements are similar to Linux, but Motif is generally
already installed on Solaris systems. OpenMotif is not available for
Solaris.
emacs We recommend the use of emacs (either gnuemacs or XEmacs)
with the LKB for editing the grammar files but this is not essential, and
it is not needed for this chapter. Instructions for obtaining emacs and
setting it up with the LKB are given on the website.

2.1.2 Downloads
You will need to download two archives of files from the LKB website:

http://cslipublications.stanford.edu/lkb.html

One is the executable version of the LKB for whichever platform you
intend to use, the other is a collection of example grammars.

Before downloading anything, I suggest that you make a new di-
rectory/folder9 for all the LKB files. I will refer to this as your LKB
directory.

9A directory is the equivalent in the Linux/Unix world to a folder in Win-
dows/Macintosh terminology. I will use the term directory rather than folder
throughout the rest of this book. I will also generally use the Linux/Unix notation,

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

12 / Implementing Typed Feature Structure Grammars

Use your browser to locate the relevant version of the LKB from the
LKB website and save the file to your LKB directory. You will then
have to extract the compressed files: on Linux or Solaris you can use
gzip followed by tar xf while on Windows, WinZip or PowerArchiver
should uncompress and extract as one operation.

You can then download and extract the data files into the same
directory. This should result in a directory data, with a number of sub-
directories, including itfs, which is the directory for all the grammars
we will use in this book.

Instructions for building the LKB from source files are on the website.

2.1.3 Starting the LKB
Before you start the LKB for the first time, you must create a tempo-
rary directory/folder. On Linux or Solaris, this should be a directory
called tmp in your home directory. On Windows, create the empty folder
C:\tmp. If necessary, the location of this directory can be varied, details
of how to do this are given on the LKB website.

To start the LKB on Windows, simply double click on lkb.exe. On
Linux or Solaris, cd to your lkb directory and type lkb at the command
line. If you have successfully started the LKB, you should see the LKB
top menu window, as described in the next section. You will also see a
command line, with prompts such as LKB(1): — this allows the user to
type in commands but can be ignored for the purposes of this chapter.

Warning note: do not use the NumLock key when using the LKB
system with Linux. There is a bug in the software on which the LKB
is built which causes menus to stop working intermittently when the
NumLock key is on. Once this has happened, restarting the LKB itself
will not help, you have to log out and restart your X session.

2.1.4 Installation problems
In case of installation or other problems which don’t seem to be cov-
ered in the documentation, please look at the instructions on the LKB
website. We will make fixes for known problems available there. The
website also contains details of how to report any bugs that you find.

2.2 Using the LKB top menu
.

The main way of interacting with the LKB is through the LKB top
menu window which is displayed once you have started the LKB, as
shown below.

with forward slash (/) separating directories, rather than the Windows notation, but
the equivalence should be obvious.

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

A first session with the LKB system / 13

This is a general purpose top level interaction window, with the menu
displayed across the top — most LKB system messages appear in the
pane below the menu buttons.10 I will use the term LKB interaction
window for the window in which messages appear. Most of the menu
commands are not available when the LKB is first started up, because
no grammar has been loaded.

2.3 Loading an existing grammar
The first step in this guided tour is to load an existing grammar: i.e.,
a set of files containing types and constraints, lexical entries, grammar
rules, lexical rules, morphological rules and ancillary information. The
LKB comes supplied with a series of grammars: the ones we will use in
this book are all in the directory data/itfs/grammars. In this section,
we will assume that you are working with the grammar in g8gap.

To load a grammar it is necessary to select a script file which controls
how the grammar files are loaded into the system. Select Complete
grammar from the LKB Load menu, and choose the file script from
the g8gap directory as shown below.

10The Macintosh version of the LKB has a slightly different user interface which I
will not describe in this book: for a brief discussion of the main differences, see the
LKB web page.

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

14 / Implementing Typed Feature Structure Grammars

You should see various messages appearing in the interaction window, as
shown in Figure 1 (the interaction window has been enlarged). If there
are any errors in the grammar which the system can detect at this point,
error messages will be displayed in this window. With this grammar,
there should be no errors, unless there is a problem associated with
the temporary directory (see §2.1). If you get an error message when
trying to load g8gap/script, it is possible you have selected another
file instead of script — try again.11

Once a file is successfully loaded, the menu commands are all avail-
able and a type hierarchy window is displayed (as shown below). You
can enlarge this window to show the complete hierarchy or scroll it in
the usual way.

11In case of genuine problems, please see the LKB webpage section on known bugs
and bug reporting.

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

FIGURE 1 Loading a grammar

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

16 / Implementing Typed Feature Structure Grammars

2.4 Examining typed feature structures and type con-
straints

In this section I will go through some of the ways in which you can
look at the data structures in the grammar, such as the types, type
constraints, lexical entries and grammar rules.

2.4.1 The type hierarchy window
The backbone of any grammar in the LKB is the type system, which
consists of a hierarchy of types, each of which has a constraint which is
expressed as a typed feature structure. Constraints are used to capture
generalizations: the type hierarchy allows for inheritance of constraints.
In the LKB system, the type hierarchy window is shown with the most
general type displayed at the left of the window.12 In this grammar, as
in all the grammars I will discuss, the most general type is called *top*.
You will notice that there is some multiple inheritance in the hierarchy

12In the book, except where showing a screen dump, I will show type hierarchies
with most general type towards the top of the page: the reason for the alternative ori-
entation in the LKB itself is that this is a more efficient layout for typical hierarchies,
which tend to be broad rather than deep.

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

A first session with the LKB system / 17

(i.e., some types have more than one parent). You will see a few types
with names such as glbtype1: these are types which are automatically
created by the system, for reasons which will be explained in the next
chapter.

Click on the type *ne-list* which is a daughter of *list*, which is
a daughter of *top*, and choose Expanded Type from the menu. A
window will appear as shown below.

This window shows the constraint on type *ne-list*: the constraint
is expressed as a typed feature structure (TFS). It has two features,
first and rest. The value of first is *top*, which indicates it can
unify with any TFS since *top* is the most general type. The value of
rest is *list* which indicates it can only unify with something which
is of type *list* or one of its subtypes. *list* and its daughters are
important because they are used to implement list structures which are
found in several places in the grammar. In this book, and in the LKB
system windows, types are shown in lowercase, bold font, while features
are shown in uppercase (small capitals in the book).

Look at the entry for the type *ne-list* in the actual source file
g8gap/types.tdl, by opening that file in your editor (if you are using
Windows, and have not installed emacs, you should use Notepad). If
you search for *ne-list*, you will see the following definition:

ne-list := *list* &
[FIRST *top*,
REST *list*].

The language in which the type and its constraint are defined in the files
is referred to as a description language. The type definition must specify
the parent or parents of a type (in this case, *list*) and optionally gives
a constraint definition. In this particular case, the constraint described

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

18 / Implementing Typed Feature Structure Grammars

in the file corresponds very closely to the expanded constraint shown
in the typed feature structure window, because the only parent of *ne-
list* is *list* and this does not have any features in its constraint.
However, in general, type constraints inherit a lot of information from
the ancestors of the type, so the description of a constraint is usually
very compact compared to the expanded constraint.

To see a more complicated type constraint, click on phrase in the
type hierarchy window (found via sign from *top*) and again choose
Expanded Type. The TFS window is shown below:

This illustrates that types can have complex constraints — the value of
a feature in a constraint can be a TFS.

Look at the definition of phrase in the source file g8gap/types.tdl:

phrase := sign &
[COMPS < >].

The notation < > is an abbreviation for *null*, which represents a list
with no elements. In contrast to *ne-list*, the expanded constraint on
phrase has inherited a lot of information from other types in the hierar-
chy: you can get an idea of how this inheritance operates by looking at

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

A first session with the LKB system / 19

the constraint of phrase’s parent (sign) in the type hierarchy window.
Note that sign has a feature sem which has the value semantics: some
of the information in the expanded constraint on phrase comes from
the constraint on semantics.

You will find that you can click on the types within the TFSs to get
menus and also on the description at the top of the window (e.g., phrase
- expanded). I won’t go through all these menu items here, however,
but they are discussed in Chapter 6.

2.4.2 The View commands
The view commands let you see objects such as lexical entries which
are not types and therefore cannot be accessed from the type hierarchy
window.

Select View from the LKB top menu and then select Word entries.
You will be prompted for a word which corresponds to a lexical entry.
Enter dog (case doesn’t matter), deleting the default that is specified
(unless of course the default is dog, in which case just select OK). You
should get a TFS window corresponding to the entry which has orthog-
raphy "dog" in the g8gap grammar as shown in Figure 2. If there were
multiple entries with the spelling "dog" they would all be displayed.

You should compare the TFS shown in the window with the lexical
description in the file g8gap/lexicon.tdl, to see how the inheritance
from type constraints operates. The lexical description for dog is simply:

dog := noun-lxm &
[ORTH.LIST.FIRST "dog",
SEM.RELS.LIST.FIRST.PRED "dog_rel"].

Nearly all the detail in the full TFS comes from the type noun-lxm.
Now try View Grammar rule and enter head-specifier-rule

(or choose it from the selections if a menu is displayed). You will see
that the grammar rule is also a TFS, which is shown in Figure 3. I do
not reproduce it in full here, because it will not fit on one page, but the
boxes indicate which parts of the structure have been ‘shrunk’ (this can
be done by clicking on a node in a TFS window, and choosing the menu
option Shrink/expand). A TFS that encodes a rule can be thought
of as consisting of a number of ‘slots’, into which the phrases for the
daughters and the mother fit. In this grammar, as in all the others we
will look at in this book, the mother is the TFS as a whole, while the
daughters are the elements in the list which is the value of the args

feature.

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

FIGURE 2 Expanded lexical entry for dog

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

FIGURE 3 The head specifier rule

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

22 / Implementing Typed Feature Structure Grammars

2.5 Parsing sentences
To parse a sentence, click on Parse / Parse input. A suitable sentence
to enter is the dog barks. Click OK to start parsing. You will get a
window with one tiny parse tree, as shown below.13

Although this grammar illustrates some quite complicated linguistic phe-
nomena, it has a really tiny lexicon, so you can’t type in arbitrary sen-
tences and expect them to parse. To get an idea of what the grammar
will parse, look at the test.items file.

2.5.1 Parse trees
If you click on the tiny parse tree in the window that shows the parse
results, you will get a menu with an option Show enlarged tree. If
you choose this, you will see a window with a more readable version of
the tree, as shown below.

13The reason that the interface uses such a small size is that with non-trivial
grammars and sentences, the parse trees can be very large and numerous, so this
display is designed to allow a succinct overview.

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

A first session with the LKB system / 23

In the LKB system, a parse tree is just a convenient user interface
device, which is shorthand for a much larger TFS. Click on the upper-
most (S) node of the enlarged parse tree and choose the option Feature
structure — Edge 11. You will see a large TFS, which is shown in
Figure 4. As before, I have ‘shrunk’ some parts of the structure so that
it can be displayed on the page. This structure represents the entire
sentence. It is actually an instantiation of the head-specifier-rule
shown in Figure 3.

The top node in the parse tree corresponds to the root node of the
TFS shown in Figure 4. The structure for the phrase the dog is the
node which is the value of the path args.first (a path is a sequence
of features). The structure for the verb barks is the value of the path
args.first.rest. The parse trees are created from the TFSs by match-
ing these substructures against a set of node specifiers defined in the file
parse-nodes.tdl. I will go into a lot more detail about how grammar
rules work in the next chapters.

2.5.2 Morphological and lexical rules
You will notice that the parse tree has two nodes labelled V, one above
and one below barks. They represent the application of a morphological
rule: the lexicon contains an entry with the spelling "bark", and the rule
for third person singular verbs generates the inflected form "barks"
from the lexical form. Morphological rules are used for inflectional and
derivational processes which are associated with affixation: lexical rules

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

FIGURE 4 A TFS representing the sentence the dog barks

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

A first session with the LKB system / 25

are used where there is no affixation. Morphological and lexical rules
are very similar to ordinary grammar rules in the LKB system.

Try viewing the lexical entry for bark via View / Lex entry. This
behaves much like View / Word entries that you used before, because
in this small grammar, the identifiers for the lexical entries are the same
as the orthography. Hence when prompted for a Lex-id, you can just
enter bark. At the top left of the window, it will say bark - expanded.
If you click on this, you will get a menu, which among other things has
the option Apply all lex rules. If you select this, you will get a window
which shows which lexical rules apply to bark: you can click on the nodes
in the result window to display the feature structures corresponding to
the inflected forms.

2.5.3 Batch parsing
Now try Parse / Batch Parse. You will be prompted for the name
of a file which contains a test suite: i.e., a list of sentences which either
should or should not parse in a grammar. A suitable file, test.items,
already exists in the g8gap directory. Select test.items and enter the
name of a new file for the output, e.g., test.items.out. The system
will now parse all the sentences in test.items (this should only take a
few seconds, unless you are using a very slow machine or one with very
little memory). When you open the output file in your editor, it will
show the following for each sentence:

1. the number of the sentence
2. the sentence itself
3. the number of parses (0 if there were no parses)
4. the number of passive edges (roughly speaking a passive edge rep-

resents a phrase that the system constructed while attempting to

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

26 / Implementing Typed Feature Structure Grammars

parse a sentence)

For instance:

1 The dog barks. 1 11
2 *The dog bark. 0 10

Note that ungrammatical sentences are marked with an asterisk in the
test suite file, and though a preprocessor strips off the asterisk and any
punctutation symbols before attempting to parse, the results file shows
the sentence in the form in which it was input. At the end of the results
file, the total parsing time for all the sentences in the file is reported: of
course, this time will depend on what sort of machine you have.

Have a look at the sentences in test.items to get some idea of the
coverage of the grammar. You should try parsing some of these sentences
individually and looking at the trees that result.

2.6 Viewing a semantic representation
Try parsing this dog chased that cat, and choosing Indexed MRS from
the menu that you get by clicking on the small parse tree. This will
give you a representation for the semantics of the sentence. (MRS is
a semantic representation language that can be converted into more
familiar languages such as predicate calculus, as is explained in more
detail in later chapters.)

The actual semantics is constructed as a TFS, and can be seen as the
value of the feature semantics in the TFS representing the parse for
the sentence. The representation that is displayed when you select In-
dexed MRS is much easier to read, although some information has
been omitted. A representation which is closer to the TFS structures
can be obtained by choosing MRS instead of Indexed MRS from the

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

A first session with the LKB system / 27

menu associated with the small parse tree.

Semantic structures like this can be conveniently passed to other
programs which use the results of the parse. One of the other options
on the menu is Prolog MRS, which illustrates a format suitable for
input to a Prolog system. (The Scoped MRS option which is also on
the menu is not useful with this particular grammar, because it requires
a fuller representation of quantifiers.)

2.7 Generating from parse results
The availability of semantics with this grammar allows us to try gener-
ating sentences. For convenience, this can be done simply by clicking
on one of the small parse trees that results from parsing a sentence
and choosing Generate. However, the actual input to the generator is
the MRS representation, as shown in the windows you have just seen.
Try generating from the result of parsing this dog chases that cat. The
sentences generated are displayed in a window, as shown below.

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

28 / Implementing Typed Feature Structure Grammars

You will notice that you get back four sentences. One is the input sen-
tence and another is the present tense version of that sentence. The
reason for getting both is that the semantic representation in this par-
ticular grammar does not include a representation of tense. You will
also see two topicalized sentences: that cat this dog chased and that cat
this dog chases. Topicalization may seem weird, but linguists generally
assume that grammars should produce such sentences and in fact they
are perfectly acceptable in some contexts.

If you click on one of the generated sentences, you will see a menu
which has the options Edge and Feature structure. If you click Edge,
you will see a tree for the sentence corresponding to the parse tree which
would be produced if the sentence were parsed, although without any
nodes corresponding to the inflectional rules.

Try parsing an ambiguous sentence, such as this dog chased that cat
near the aardvark and compare the semantics for the different trees.
Then generate from each tree. You should observe that you obtain a
slightly different set of sentences. Some of these sentences will seem very
weird, even if you have become used to topicalization! This grammar
actually accepts/generates some ungrammatical sentences: this is what
is formally referred to as overgeneration.

2.8 Adding a lexical entry
In this section, I will describe how to add a new lexical entry. You
may want to make a backup copy of the g8gap directory before you
start editing the files. First open the file g8gap/lexicon.tdl in your
text editor. You will see that the grammar has three lexical entries for
nouns — cat, dog and aardvark. Suppose you want to add another noun
entry, perhaps for rabbit. This will look exactly like the entry for dog,

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

A first session with the LKB system / 29

but with the value of the orthography path orth.list.first replaced by
"rabbit" and the value of the semantic path sem.rels.list.first.pred

replaced with a suitable predicate, which I will call "rabbit rel". The
"s round the orthography and semantic predicate values tell the system
that these are not ‘proper’ types: they are string types which do not need
to be declared. rel, on the other hand, is just a naming convention:
the semantic predicate could equally well be "rabbit’" or "gavagai".
Add a new lexical entry to the lexicon file by copying and pasting the
entry for dog and changing dog to rabbit, as shown below:

rabbit := noun-lxm &
[ORTH.LIST.FIRST "rabbit",
SEM.RELS.LIST.FIRST.PRED "rabbit_rel"].

Save the file, and then select Load/ Reload grammar. This will
reload the script file that you loaded before, this time loading the changed
version of the lexicon. You may get some error messages in the LKB in-
teraction window at this point, if you have left out a character from the
new entry, for example. If you cannot see what is wrong, the description
of the error messages in §7.1.1 may help you track it down. When you
have successfully reloaded the system, you should be able to parse some
additional sentences, such as:

the rabbit chased the dog

Once you have successfully parsed some new sentences, you could add
them to the list of test sentences for batch parsing (i.e., test.items).

2.9 Adding a type with a constraint description
Substantial changes to the grammar always involve changing types. I will
illustate this with a very simple example. Consider nouns like scissors,
binoculars and trousers, which in most dialects of English always take
plural agreement. I’ll refer to these as pair nouns. We don’t want to give
such nouns a normal entry as a noun-lxm, because they would end up
behaving as standard nouns and having both singular and plural forms.
One very simple way to get approximately the correct behaviour with
this rather simple grammar is to make a new type which specifies that
the number agreement has to be plural. The instructions below walk
you through the process of creating the type: you are not expected to
understand exactly what is going on at this point, but just to get some
idea of how grammars may be modified.

Open the file g8gap/types.tdl. Search the file for the definition of
noun-lxm. Then add a new definition for pair-noun-lxm which should
inherit from noun-lxm, but specify that the value for head.numagr

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

30 / Implementing Typed Feature Structure Grammars

is pl. The type definition you need to add is:

pair-noun-lxm := noun-lxm &
[HEAD [NUMAGR pl]].

This specification can go anywhere in the file, though putting it under
the definition of noun-lxm will improve readability,

You can then save the types.tdl file and check that you can load
the revised grammar with Reload grammar. You should be able to
see the new type in the type hierarchy and view its constraint. However,
in order to demonstrate that the new type works as designed, we have
to add a new entry to the lexicon file that uses it. As in the last section,
you can do this by copying an existing entry, but this time you have to
change the type to pair-noun-lxm as well as changing the orthography,
the semantics and the identifier. For the sake of the example, we will
enter the orthography as "scissor", which will get the correct form
when it has gone through the rule for plural noun inflection.14

scissor := pair-noun-lxm &
[ORTH.LIST.FIRST "scissor",
SEM.RELS.LIST.FIRST.PRED "scissor_rel"].

Save the file and select Reload grammar. As before, check the LKB
interaction window to make sure reloading was successful. Try parsing
some new sentences. You should find that you cannot parse the dog
chased this scissor but you can parse the dog chased the scissors.

Try generating from the result of parsing the dog chased the scissors.
Note that the sentence with singular scissor is not generated. While
accepting ungrammatical sentences is not necessarily too problematic for
applications which are only intended to analyse sentences, we certainly
don’t want to generate them. One of the fundamental principles behind
systems such as the LKB is that grammars can be bidirectional: that is,
they can be used for both parsing and generation.

2.10 Summary
This tour has only touched on some of the features of the LKB system
— there are several menu options which have not been described (these
are all listed in Chapter 6). You should try playing around with the
grammar, parsing and generating some more sentences, looking at how
the TFSs are built up and adding a few more lexical entries that use the
types already in the grammar.

The main aim of this chapter was to give you a rough idea of what
14This isn’t unreasonable: a stem form scissor has to exist for some compound

nouns, such as scissor kick, though we don’t deal with compounds in this grammar.

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

A first session with the LKB system / 31

can be done with a typed feature structure system and a simple gram-
mar. Concepts such as types, typed feature structures, lexical entries,
grammar rules, parsing, generation and semantics were introduced very
briefly and informally. The next three chapters discuss all of this is full
detail. Although the grammar in g8gap is very small, it does illustrate
the main aspects of grammar engineering with typed feature structures
and can be used as a basis for understanding or writing much larger
grammars.

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

	Copyright:

